JP2016125290A - Power generating floor material - Google Patents

Power generating floor material Download PDF

Info

Publication number
JP2016125290A
JP2016125290A JP2015000939A JP2015000939A JP2016125290A JP 2016125290 A JP2016125290 A JP 2016125290A JP 2015000939 A JP2015000939 A JP 2015000939A JP 2015000939 A JP2015000939 A JP 2015000939A JP 2016125290 A JP2016125290 A JP 2016125290A
Authority
JP
Japan
Prior art keywords
power generation
pressure
surface body
flooring
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015000939A
Other languages
Japanese (ja)
Inventor
純一 西岡
Junichi Nishioka
純一 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2015000939A priority Critical patent/JP2016125290A/en
Publication of JP2016125290A publication Critical patent/JP2016125290A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power generating floor material that offers excellent overall power generation efficiency of a piezoelectric generator and comfort in walking, capable of protecting the piezoelectric generator from impacts and others, and may be installed regardless of a condition (irregularities and unevenness) of an installed surface.SOLUTION: A power generating floor material includes a top surface body 1, an undersurface body 2, a connecting wall 3 connecting the top surface body and the undersurface body, and one or more piezoelectric generators 5 disposed in a storage part 4 formed by the top surface body, the undersurface body, and the connecting wall. The undersurface body 2 is flexible and has a convex part 6 projecting downward. When the top surface body 2 is pressed by walking and the power generating floor material moves downward, a portion of the undersurface body 2 that forms the convex part and a portion in the surrounding are deformed by deflection relatively upward, thus press-pinching the piezoelectric generator 5 between the top surface body 1 and the undersurface body 2. Electricity is generated efficiently by the pressure fluctuation.SELECTED DRAWING: Figure 2

Description

本発明は、感圧発電装置を内蔵し、床材表面に加わる圧力の変動によって発電を行う発電床材に関する。   The present invention relates to a power generation floor material that incorporates a pressure-sensitive power generation device and generates power by fluctuations in pressure applied to the floor material surface.

物体の移動で生じる圧力変動により発電する圧電素子を使用した発電装置であって、圧電素子の過剰な変形を防止するストッパーを設けることで、強い圧力変動に対しても圧電素子が破損することなく発電できるようにした感圧発電装置が知られている(特許文献1)。   A power generation device using a piezoelectric element that generates electricity by pressure fluctuation caused by the movement of an object, and by providing a stopper that prevents excessive deformation of the piezoelectric element, the piezoelectric element is not damaged even by strong pressure fluctuation A pressure-sensitive power generator capable of generating power is known (Patent Document 1).

特開2007−97278号公報JP 2007-97278 A

上記の感圧発電装置は耐久性があり、種々の分野において有効利用が見込まれている。
例えば、床材に上記の感圧発電装置を内蔵し、歩行等で床材上面に生じる圧力変動により発電された電力を用いて、電波を発信したり、カウンターを起動して圧力変動の回数(荷重負荷の回数等)を記憶したり、床材に内装もしくは外装したLEDを発光させたりすることができる。また、その起電力の大きさによって、負荷された圧力変動の大きさや圧力変動の加速度を検知することもできる。それには、感圧発電装置に対して効率良く圧力変動を伝達し、且つ、圧力変動から感圧発電装置をより適切に保護することが必要になる。
The pressure-sensitive power generator described above has durability and is expected to be effectively used in various fields.
For example, the above-mentioned pressure-sensitive power generation device is built in the flooring, and using the electric power generated by the pressure fluctuation generated on the flooring top surface by walking or the like, the electric wave is transmitted, or the counter is activated and the number of pressure fluctuations ( The number of times of load load, etc.) can be stored, or the LED that is internally or externally mounted on the flooring can be made to emit light. Further, the magnitude of the pressure fluctuation applied and the acceleration of the pressure fluctuation can be detected based on the magnitude of the electromotive force. For this purpose, it is necessary to efficiently transmit the pressure fluctuation to the pressure-sensitive power generator and to protect the pressure-sensitive power generator more appropriately from the pressure fluctuation.

感圧発電装置を内蔵する床材は、床材の上面体と下面体との空間に感圧発電装置を水密的に収納し、上面体として可撓性のある板材や柔軟性のある板材を用いることで、歩行などにより床材の上面体に生じた圧力変動を感圧発電装置に伝達して発電させる構成とし、かつ、下面体として剛直ないし硬質の板材を用いることで、感圧発電装置を保護する構成とするのが普通である。   The flooring with a built-in pressure-sensitive power generation device stores the pressure-sensitive power generation device in a watertight manner in the space between the top and bottom surfaces of the flooring, and uses a flexible plate or a flexible plate as the top surface. By using the pressure fluctuation generated in the upper surface of the floor material by walking or the like to the pressure-sensitive power generation device and generating power, and using a rigid or hard plate material as the lower surface body, the pressure-sensitive power generation device It is normal to adopt a configuration that protects.

しかし、このような構成の床材は、特に、感圧発電装置の平面視面積が床材の面積よりもかなり小さくて複数の感圧発電装置が内蔵されている場合、歩行によって上面体の踏まれた部分の下方に配置された感圧発電装置には、上面体の踏まれた部分とその周辺に生じる圧力変動が十分伝達されるので、効率良く発電することになるが、上面体の踏まれた部分の下方に存在しない他の感圧発電装置には圧力変動が十分伝達されないので、効率良く発電することが困難になり、床材に内蔵された感圧発電装置全体としての発電効率が良いとは言い難いものである。
また、上面体として用いる可撓性や柔軟性のある板材は、精密機器である感圧発電装置を過大な圧力や衝撃力から保護できないという問題があり、しかも、歩行によって該板材に局所的な変形(撓み、沈み込み等)が生じるので、歩行感が良くないという問題もある。
更に、下面体として剛直ないし硬質の板材を用いるので、床材を敷設する敷設面である床下地に凹凸や不陸があると、床材を敷設する際に凹凸や不陸に起因して、床材が傾いたり、不安定になるという問題もある。
However, the flooring material having such a structure is particularly difficult when the pressure sensing power generation device has a plan view area that is considerably smaller than the flooring area and has a plurality of pressure sensing power generation devices built therein. The pressure-sensitive power generation device arranged below the raised part is sufficiently transmitted with the pressure fluctuations that occur in and around the part where the top body is stepped. Since pressure fluctuations are not sufficiently transmitted to other pressure-sensitive power generators that do not exist below the rare part, it is difficult to generate power efficiently, and the power generation efficiency of the pressure-sensitive power generator built in the flooring as a whole is reduced. It's hard to say good.
In addition, the flexible and flexible plate material used as the upper body has a problem that the pressure-sensitive power generation device, which is a precision instrument, cannot be protected from excessive pressure and impact force, and is locally applied to the plate material by walking. Since deformation (bending, sinking, etc.) occurs, there is also a problem that the feeling of walking is not good.
Furthermore, since a rigid or hard plate material is used as the lower surface, if there is unevenness or unevenness on the floor base that is the laying surface for laying the flooring, due to unevenness or unevenness when laying the flooring, There is also a problem that the flooring is tilted or unstable.

本発明は上記事情に鑑みなされたもので、その解決しようとする課題は、床材内部に収納された感圧発電装置全体としての発電効率が良く、歩行による上面体の不等な沈み込みや撓みが局所的に生じないため良好な歩行感を呈し、過大な圧力や衝撃的な圧力変動(負荷)から感圧発電装置を保護することができ、敷設面である床下地の状態(凹凸や不陸の有無)を選ばないで敷設できる発電床材を提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is that the power generation efficiency of the entire pressure-sensitive power generation device housed inside the flooring material is good, Since no bending occurs locally, it gives a good feeling of walking, can protect the pressure-sensitive power generation device from excessive pressure and shock pressure fluctuations (load), and the state of the floor surface (irregularity and It is to provide a power generation floor material that can be laid without choosing whether or not it is uneven.

上記課題を解決するため、本発明に係る発電床材は、上面体と、下面体と、該上面体と該下面体を接合する接合壁と、該上面体と該下面体と該接合壁とで形成される収納部に配置された一以上の感圧発電装置とを備えた発電床材であって、上記下面体が可撓性を有し、下向きに突出する凸部を備えていることを特徴とするものである。
ここに「可撓性」とは、柔軟で、圧力を加えて曲げたり、撓みを持たせたりすることができ、圧力を開放すると、反撥力で元の形に戻ろうとする性質を意味する。人間の歩行圧力程度の一定の圧力を加えても変形しないもの又は殆ど変形しないものや、一定の圧力を加えて変形した後は圧力を開放しても変形した形状をそのまま保持するもの又は元の形状に殆ど戻らないものは、可撓性を有するものに含まれない。
In order to solve the above problems, a power generation flooring according to the present invention includes an upper surface body, a lower surface body, a bonding wall that bonds the upper surface body and the lower surface body, the upper surface body, the lower surface body, and the bonding wall. A power generation flooring provided with one or more pressure-sensitive power generation devices arranged in a storage portion formed by the above, wherein the lower surface body has flexibility and has a convex portion protruding downward. It is characterized by.
Here, “flexibility” means a property that is flexible and can be bent or bent by applying pressure, and when the pressure is released, it returns to its original shape by repulsion. Those that do not deform or hardly deform even when a constant pressure of the human walking pressure is applied, those that retain the deformed shape as it is even if the pressure is released after being deformed by applying a certain pressure, or the original The thing which hardly returns to a shape is not included in the thing which has flexibility.

本発明の発電床材においては、前記上面体が前記下面体よりも硬質で剛性を有することが望ましい。ここに「剛性」とは、人間の歩行圧力程度の一定の圧力を加えても変形しないか、又は、殆ど変形しない性質を意味する。
また、前記凸部の上方からの投影領域が、前記感圧発電装置の上方からの投影領域と重なり、前者の投影領域の面積が後者の投影領域の面積よりも大きいことが望ましい。
そして、前記感圧発電装置が前記下面体の上面に直接または間接的に接して設けられ、該装置の上部と前記上面体の下面が離隔しているか、或いは、前記感圧発電装置が前記上面体の下面に直接または間接的に接して設けられ、該装置の下部と前記下面体の上面が離隔していることが望ましい。
In the power generation flooring of the present invention, it is desirable that the upper surface body is harder and more rigid than the lower surface body. Here, “rigidity” means a property that does not deform or hardly deforms even when a constant pressure such as human walking pressure is applied.
Further, it is desirable that a projection region from above the convex portion overlaps with a projection region from above the pressure-sensitive power generation device, and an area of the former projection region is larger than an area of the latter projection region.
The pressure-sensitive power generation device is provided directly or indirectly in contact with the upper surface of the lower surface body, and the upper portion of the device and the lower surface of the upper surface body are separated from each other, or the pressure-sensitive power generation device is It is desirable to be provided in direct or indirect contact with the lower surface of the body, and the lower part of the device and the upper surface of the lower surface body are spaced apart.

本発明の発電床材は、その上面体に例えば歩行圧力が上方から付加されると、床材全体が下方に移動しようとするが、下面体の下向きの凸部が敷設面である床下地によって下方から支持されているため、可撓性を有する下面体は、その凸部形成部分及びその周辺部分が上方に撓み変形して相対的に上方に押し上げられることになる。そのため、上面体と下面体の間の収納部に配置された感圧発電装置は、下面体の凸部形成部分及びその周辺部分と上面体とによって挟圧され、歩行圧力が効果的に感圧発電装置に伝達されるので、その圧力変動によって感圧発電装置は効率良く発電することができる。そして、下面体の凸部形成部分及びその周辺部分が上記のように可撓変形すると、可撓性を有する下面体には元の形状に戻ろうとする力(反撥力)が発生するため、歩行圧力が除去されるのと同時に下面体が元の形状に復元して感圧発電装置が除圧され、その圧力変動によって感圧発電装置が効率良く発電すると共に、発電床材は初期の状態に復帰する。
また、本発明の発電床材のように、下面体が可撓性を有し、下向きに突出する凸部を備えたものであると、敷設面である床下地に凹凸や不陸が存在しても、下面体によって床下地の凹凸や不陸を吸収できるので、床下地の状態を選ばないで敷設することができる。
The power generation flooring of the present invention, for example, when walking pressure is applied to the upper surface body from above, the entire flooring material tends to move downward, but the downward convex portion of the lower surface body is laid by the floor basement. Since the lower surface body having flexibility is supported from below, the convex portion forming portion and the peripheral portion thereof are bent upward and deformed, and are pushed upward relatively. Therefore, the pressure-sensitive power generation device disposed in the storage portion between the upper surface body and the lower surface body is sandwiched between the convex portion forming portion of the lower surface body and its peripheral portion and the upper surface body, and the walking pressure is effectively pressure-sensitive. Since it is transmitted to the power generation device, the pressure sensitive power generation device can generate power efficiently due to the pressure fluctuation. When the convex portion forming portion of the lower surface body and its peripheral portion are flexibly deformed as described above, a force (repulsive force) to return to the original shape is generated in the flexible lower surface body, so that walking At the same time as the pressure is removed, the bottom body is restored to its original shape, and the pressure-sensitive power generation device is depressurized, and the pressure-sensitive power generation device efficiently generates power due to the pressure fluctuation, and the power generation flooring is in the initial state. Return.
In addition, when the lower surface body is flexible and has a convex portion protruding downward like the power generation floor material of the present invention, there are irregularities and unevenness on the floor base that is the laying surface. However, since the unevenness and unevenness of the floor base can be absorbed by the lower surface body, the floor base can be laid regardless of the state of the floor base.

本発明の発電床材において、前記上面体が前記下面体よりも硬質で剛性を有するものであると、上面体の上を歩行しても、不等な沈み込みや撓みなどの変形が上面体に局所的に生じることがないので、歩行感に優れると共に、上面体と下面体との間の収容部に配置された感圧発電装置を、上方からの衝撃的な圧力変動(負荷)や過大な圧力から保護することができる。   In the power generation flooring of the present invention, if the upper surface body is harder and more rigid than the lower surface body, even if the user walks on the upper surface body, deformation such as unequal subsidence or deflection is caused by the upper surface body. Since it does not occur locally, it has excellent walking sensation, and the pressure-sensitive power generation device placed in the housing between the upper and lower bodies is used for shock pressure fluctuation (load) and excessive Can be protected from excessive pressure.

また、本発明の発電装置において、前記凸部の上方からの投影領域が、前記感圧発電装置の上方からの投影領域と重なり、前者の投影領域の面積が後者の投影領域の面積よりも大きいものは、上面体に歩行圧力が付加されたときに、下面体の凸部形成部分とその周辺部分が撓み変形し、全ての感圧発電装置が確実に相対的に押し上げられて下面体と上面体で挟圧され、圧力変動がロスなく全ての感圧発電装置に伝達されて発電するので、感圧発電装置全体としての発電効率を向上させることができる。   In the power generation device of the present invention, the projection region from above the convex portion overlaps the projection region from above the pressure-sensitive power generation device, and the area of the former projection region is larger than the area of the latter projection region. When the walking pressure is applied to the upper surface body, the convex portion forming portion and the peripheral portion of the lower surface body are bent and deformed, and all the pressure-sensitive power generation devices are surely relatively pushed up, so that the lower surface body and the upper surface body are Since it is pinched by the body and the pressure fluctuation is transmitted to all the pressure-sensitive power generation devices without loss, the power generation efficiency of the pressure-sensitive power generation device as a whole can be improved.

そして、本発明の発電床材において、前記感圧発電装置が前記下面体の上面に直接または間接的に接して設けられ、該装置の上部と前記上面体の下面が離隔しているか、或いは、前記感圧発電装置が前記上面体の下面に直接または間接的に接して設けられ、該装置の下部と前記下面体の上面が離隔しているものは、感圧発電装置と上面体の下面又は下面体の上面との離隔によって、床材表面(上面体)に付加される初期の衝撃的な圧力変動(加圧)を緩和し、感圧発電装置をより確実に保護することができる。
また、感圧発電装置の上部又は下部と、上面体の下面又は下面体の上面とが離隔していると、発電床材を敷設面である床下地に静置したとき、下面体が発電床材の自重に起因する感圧発電装置の発電効率低下の恐れを解消することができる。というのは、感圧発電装置に対して、上面体と下面体のいずれもが当接して構成されていると、発電床材を床下地に静置したとき、発電床材の自重で下面体が僅かに上方に撓み変形して、僅かながらであるが発電床材の自重による圧力が感圧発電装置に付加されることになるため、感圧発電装置には発電床材の自重が常時付加された状態となり、その分の圧力が発電に寄与できなくなる。これに対し、本発明のように感圧発電装置と上面体の下面又は下面体の上面とが離隔していると、発電床材の自重と下面体の圧力に対する反発力とがバランスして、感圧発電装置に対する発電床材の自重による圧力付加を防止することができ、発電効率を低下させることがない。また、本発明のように、離隔して構成されていると、上記に加えて、床材の各部材の成形精度や組立て精度の誤差を吸収することもできるという効果も期待できる。
And in the power generation flooring of the present invention, the pressure-sensitive power generation device is provided directly or indirectly in contact with the upper surface of the lower surface body, and the upper portion of the device and the lower surface of the upper surface body are separated from each other, or The pressure-sensitive power generation device is provided directly or indirectly in contact with the lower surface of the upper surface body, and the lower portion of the device and the upper surface of the lower surface body are separated from each other. By separating from the upper surface of the lower surface body, the initial shock pressure fluctuation (pressurization) applied to the floor material surface (upper surface body) can be reduced, and the pressure-sensitive power generation device can be more reliably protected.
Further, when the upper or lower portion of the pressure-sensitive power generation device and the lower surface of the upper surface body or the upper surface of the lower surface body are separated from each other, when the power generation flooring is left on the floor base that is a laying surface, the lower surface body is The fear of a decrease in power generation efficiency of the pressure-sensitive power generation device due to the weight of the material can be eliminated. This is because, when the upper surface and the lower surface are both in contact with the pressure-sensitive power generation device, the lower surface is caused by the weight of the power generation floor when the power generation floor is placed on the floor base. However, the pressure due to the weight of the power generation flooring is added to the pressure-sensitive power generation device, so the pressure-sensitive power generation device always has its own weight. Thus, the corresponding pressure cannot contribute to power generation. On the other hand, when the pressure-sensitive power generation device and the lower surface of the upper surface body or the upper surface of the lower surface body are separated as in the present invention, the weight of the power generation flooring and the repulsive force against the pressure of the lower surface body are balanced, It is possible to prevent pressure from being applied to the pressure-sensitive power generator due to the weight of the power generation floor material, and the power generation efficiency is not reduced. In addition to the above, when the components are separated as in the present invention, an effect of being able to absorb errors in molding accuracy and assembly accuracy of each member of the flooring can be expected.

本発明に係る発電床材の一実施形態を示す模式平面図である。It is a schematic plan view which shows one Embodiment of the electric power generation floor material which concerns on this invention. 図1のA−Aに沿った模式断面図である。It is a schematic cross section along AA of FIG. 本発明に係る発電床材の他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図、及び、模式半底面図である。It is the schematic cross section which shows other embodiment of the electric power generation floor material which concerns on this invention, and a schematic half bottom view. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 本発明に係る発電床材の更に他の実施形態を示す模式断面図である。It is a schematic cross section which shows other embodiment of the electric power generation flooring which concerns on this invention. 感圧発電装置の概略分解斜視図である。It is a schematic exploded perspective view of a pressure-sensitive power generation device. 本発明に係る発電床材の更に他の実施形態を、その上面体を一部破断して示す平面図である。It is a top view which shows further another embodiment of the electric power generation floor material which concerns on this invention, with the upper surface body partly broken. 図19のB−B線に沿った切断端面図である。FIG. 20 is a cut end view taken along line BB in FIG. 19. 同実施形態の発電床材を縁材で連結した発電床材連結体の平面図である。It is a top view of the electric power generation floor material coupling body which connected the electric power generation floor material of the embodiment with the edge material. 図21のC−C線に沿った切断部分端面図である。FIG. 22 is a cut-part end view taken along line CC of FIG. 21.

以下、図面を参照して本発明に係る発電床材の実施形態を説明する。   Hereinafter, an embodiment of a power generation flooring according to the present invention will be described with reference to the drawings.

図1は本発明に係る発電床材の一実施形態を示す模式平面図、図2は図1のA−A線に沿った模式断面図、図3〜図9及び図11〜図17はいずれも本発明に係る発電床材の更に他の実施形態を示す模式断面図、図10は本発明に係る発電床材の更に他の実施形態を示す模式断面図と模式半底面図、図18は感圧発電装置の概略分解斜視図である。
なお、図2〜図17に示す模式断面図において、右上がりのハッチングは可撓性を有する部材を表し、左上がりのハッチングは下面体よりも剛性を有する、または、剛性を有する硬質な材料で形成されていることを表し、縦のハッチングは可撓性を有する部材又は剛性を有する部材のいずれかを表す。
1 is a schematic plan view showing an embodiment of a power generation flooring according to the present invention, FIG. 2 is a schematic cross-sectional view taken along the line AA in FIG. 1, and FIGS. 3 to 9 and FIGS. FIG. 10 is a schematic cross-sectional view showing still another embodiment of the power generation flooring according to the present invention, FIG. 10 is a schematic cross-sectional view and schematic half-bottom view showing still another embodiment of the power generation flooring according to the present invention, and FIG. It is a schematic exploded perspective view of a pressure-sensitive power generation device.
In the schematic cross-sectional views shown in FIG. 2 to FIG. 17, the hatching that rises to the right represents a member having flexibility, and the hatching that rises to the left is more rigid than the bottom body or is a hard material having rigidity. The vertical hatching represents either a member having flexibility or a member having rigidity.

図1,図2に示す実施形態の発電床材は、平板状の上面体1と、平板状の下面体2と、これらの上面体1と下面体2を周縁部で接合する接合壁3と、これらの上面体1と下面体2と接合壁3とで形成される収納空間4に配置された一以上(本実施形態では4つ)の感圧発電装置5とを備えたものであって、下面体2は可撓性を有し、下向きに突出する凸部6を下面に備えている。
下面体2が有する「可撓性」とは、前述したように、柔軟で、圧力を加えて曲げたり、撓みを持たせたりすることができ、圧力を開放すると、反撥力で元の形に戻ろうとする性質を意味し、人間の歩行圧力程度の一定の圧力を加えても変形しないもの又は殆ど変形しないものや、一定の圧力を加えて変形した後に圧力を開放しても変形した形状をそのまま保持するもの又は元の形状に殆ど戻らないものは、可撓性を有するものに含まれない。
The power generation flooring of the embodiment shown in FIG. 1 and FIG. 2 includes a flat upper surface body 1, a flat lower surface body 2, and a joining wall 3 that joins the upper surface body 1 and the lower surface body 2 at the periphery. And one or more (four in this embodiment) pressure-sensitive power generation devices 5 arranged in the storage space 4 formed by the upper surface body 1, the lower surface body 2, and the joining wall 3. The lower surface body 2 has flexibility, and includes a convex portion 6 protruding downward on the lower surface.
As described above, the “flexibility” of the lower surface body 2 is soft and can be bent or bent by applying pressure. When the pressure is released, the repulsive force returns to its original shape. It means the nature of returning, and it does not deform even if a constant pressure of human walking pressure is applied, or it does not deform almost, or it deforms even if the pressure is released after deforming by applying a constant pressure. Those that are held as they are or those that hardly return to their original shapes are not included in the flexible ones.

下面体2の材質としては、上記の可撓性を有し、人間の歩行圧力程度の圧力を加えると容易に撓み変形し、かつ、反撥力に富むものが好適であり、例えば、ヤング率(弾性率)が500〜5000MPa程度の軟質塩化ビニルやポリオレフィンなどの合成樹脂、或いは、ゴム、或いは、これらの発泡体などからなる板状体が好ましく用いられ、また、これらを組み合わせて積層した板状積層体も用いられる。さらに好ましい下面体2のヤング率は、1000〜3500MPa程度である。   As the material of the lower surface body 2, a material having the above-described flexibility, easily deformed when a pressure equivalent to human walking pressure is applied, and rich in repulsive force is preferable. A plate-like body made of a synthetic resin such as soft vinyl chloride or polyolefin having a modulus of elasticity of about 500 to 5000 MPa, or rubber, or a foam thereof, is preferably used, and a plate-like shape obtained by combining these layers. A laminate is also used. Further, the Young's modulus of the lower surface body 2 is preferably about 1000 to 3500 MPa.

ヤング率が上記範囲を下回る下面体2は、発電床材を床下地などの敷設面に敷設すると、発電床材の自重によって下面体2の凸部形成部分及びその周辺部分が上方に撓み変形し、歩行圧力を上面体1に加えなくても、上面体1と下面体2とで最初から感圧発電装置5が少し挟圧されて、感圧発電装置5の発電に必要な変形量を確保し難くなることがあるため、確実かつ十分に発電させることが困難になる場合がある。また、ヤング率が上記範囲を上回る材質の下面体2は、人間の歩行圧力で撓み変形し難いので、やはり感圧発電装置に圧力変動を加えて発電させることが困難になる。下面体2の材質は軟質であることが望ましく、下面体2が軟質であると、衝撃的な圧力変動を緩和し、吸収することで、感圧発電装置を保護できる。   In the lower surface body 2 having a Young's modulus lower than the above range, when the power generation flooring is laid on a laying surface such as a floor base, the convex portion forming portion of the lower surface body 2 and its peripheral portion are bent upward and deformed by the weight of the power generation floor material. Even if the walking pressure is not applied to the upper surface body 1, the pressure-sensitive power generation device 5 is slightly pinched between the upper surface body 1 and the lower surface body 2 from the beginning, and the amount of deformation necessary for power generation of the pressure-sensitive power generation device 5 is secured. In some cases, it may be difficult to generate power reliably and sufficiently. In addition, the lower surface body 2 made of a material whose Young's modulus exceeds the above range is difficult to bend and deform due to human walking pressure, so that it is difficult to generate power by applying pressure fluctuation to the pressure-sensitive power generation device. The material of the lower surface body 2 is preferably soft. If the lower surface body 2 is soft, the pressure-sensitive power generation device can be protected by relaxing and absorbing shock pressure fluctuation.

下面体2の厚さは特に限定されないが、良好な可撓性により感圧発電装置に圧力変動を確実に伝達して十分に発電させるためには、1〜5mm程度であることが望ましい。この厚さの範囲を超えると下面体2の可撓性が低下するため、歩行時の圧力変動を感圧発電装置5に十分に伝達し難くなり、また、この厚さの範囲よりも薄くなると、下面体2の強度が低下するため、例えば小石等が存在する敷設面に発電床材を敷設して歩行圧力を加えたときに、下から突き上げる小石等によって下面体2や感圧発電装置5が破損する恐れが生じる。   Although the thickness of the lower surface body 2 is not particularly limited, it is preferably about 1 to 5 mm in order to reliably transmit the pressure fluctuation to the pressure-sensitive power generation device with sufficient flexibility to generate sufficient power. When the thickness range is exceeded, the flexibility of the lower surface body 2 is lowered, so that it becomes difficult to sufficiently transmit pressure fluctuations during walking to the pressure-sensitive power generation device 5, and when the thickness range becomes thinner than this thickness range. Since the strength of the lower surface body 2 is reduced, for example, when a power generation flooring is laid on a laying surface on which pebbles and the like exist and a walking pressure is applied, the lower surface body 2 and the pressure-sensitive power generation device 5 are moved by the pebbles pushed up from below. May cause damage.

上面体1は、可撓性もしくは柔軟性を有する材質で形成してもよいが、上記の下面体2よりも剛性を有する材質で形成することが望ましい。この上面体1が有する「剛性」とは、前述したように、人間の歩行圧力程度の一定の圧力を加えても変形しないか、又は、殆ど変形しない性質を意味する。
このような剛性を有する上面体1としては、硬質の塩化ビニル樹脂、ポリカーボネート樹脂などの合成樹脂や硬質ゴム、或いは、金属、陶磁器、石、木などで形成された板状体が用いられ、特に、歩行感や感圧発電装置5の保護の観点から、ヤング率(もしくは弾性率)が0.2〜700GPa程度であるものが好ましく用いられ、さらに好ましくは0.2〜250GPaであるものが用いられる。上面体1の厚さは特に限定されないが、剛性や強度の観点から、1〜20mm程度であることが望ましい。
The upper surface body 1 may be formed of a material having flexibility or flexibility, but is preferably formed of a material having rigidity higher than that of the lower surface body 2 described above. As described above, the “rigidity” of the upper surface body 1 means the property that it does not deform or hardly deforms even when a constant pressure such as a human walking pressure is applied.
As the upper surface body 1 having such rigidity, a synthetic resin such as hard vinyl chloride resin or polycarbonate resin, hard rubber, or a plate-like body formed of metal, ceramics, stone, wood or the like is used. From the viewpoint of walking feeling and protection of the pressure-sensitive power generation device 5, those having a Young's modulus (or elastic modulus) of about 0.2 to 700 GPa are preferably used, and more preferably 0.2 to 250 GPa. It is done. Although the thickness of the upper surface body 1 is not specifically limited, From a viewpoint of rigidity or intensity | strength, it is desirable that it is about 1-20 mm.

即ち、上面体1が上記の剛性を有し、そのヤング率が上記の範囲内であると、上面体1の上を人間が歩行しても、上面体1に不等な沈み込みや撓みなどの変形が局所的に生じることがないので、歩行感に優れると共に、上面体1と下面体2との間の収容部4に配置された感圧発電装置5を、上方からの衝撃的な圧力変動(負荷)や過大な圧力から確実に保護することができる。
そして、上面体1は、感圧発電装置を保護するという観点から、硬質であること、つまり下面体2よりも硬度が高い材料であることが好ましい。即ち、下面体2に比べ、上面体1は剛性が高く、さらに硬度が高い材質のものを用いることで、衝撃的または/及び局所的な圧力変動(荷重)が床材表面に付加されたとしても、感圧発電装置にそれらが直接的に加わることを防ぎ、また下面体2の可撓性や軟らかい性質がそれらを緩和・吸収するので、感圧発電装置の保護効果が相乗的に向上するのである。
That is, if the upper surface body 1 has the above-described rigidity and the Young's modulus is within the above range, even if a human walks on the upper surface body 1, the upper surface body 1 sinks unequally or bends. Is not generated locally, so that the walking feeling is excellent, and the pressure-sensitive power generation device 5 disposed in the accommodating portion 4 between the upper surface body 1 and the lower surface body 2 is subjected to shock pressure from above. It is possible to reliably protect against fluctuations (load) and excessive pressure.
And from the viewpoint of protecting the pressure-sensitive power generation device, the upper surface body 1 is preferably hard, that is, a material having higher hardness than the lower surface body 2. That is, it is assumed that the upper body 1 is higher in rigidity than the lower body 2 and is made of a material having higher hardness, so that impact or / and local pressure fluctuation (load) is applied to the floor material surface. However, the pressure-sensitive power generation device is prevented from being directly added thereto, and the flexibility and soft nature of the lower surface body 2 relaxes and absorbs them, so that the protective effect of the pressure-sensitive power generation device is synergistically improved. It is.

また、この上面体1の上には、意匠性、防滑性、防汚性などの向上、過度な衝撃からの感圧発電装置5の保護、歩行者転倒時の衝撃緩和などを図る目的で、軟質や硬質の塩化ビニル樹脂やポリオレフィン樹脂などで形成された、化粧用、防滑用、防汚用、衝撃吸収用などの各種床材を重ねて接着剤などで貼着一体化してもよい。   Moreover, on this upper surface body 1, in order to aim at the improvement of design nature, anti-slip property, antifouling property, etc., protection of the pressure-sensitive power generation device 5 from excessive impacts, impact mitigation when a pedestrian falls, etc. Various floor materials made of soft or hard vinyl chloride resin, polyolefin resin, etc., for cosmetics, antislip, antifouling, shock absorption, etc. may be stacked and adhered and integrated with an adhesive.

上面体1と下面体2をその周縁部で接合する接合壁3は、図2に示す発電床材では、下面体2と同様の可撓性を有し、変形可能で反撥力に富む材質で形成されているが、図3に示す発電床材のように、上面体1と同様の剛性を有し、歩行圧力程度の一定の圧力を加えても変形しないか、もしくは、変形しにくい材質で形成してもよい。可撓性を有する材質で接合壁3を形成した場合は、上面体1に加わる衝撃力を緩和することができ、また、剛性を有する材質で接合壁3を形成した場合は、上面体1に加えられた歩行圧力をロスなく下面体2の周縁部に伝え、下面体2の凸部形成部分及びその周辺部分を相対的に上方に撓み変形させて感圧発電装置5を上面体1と下面体2で挟圧することにより、その圧力変動で確実に発電させることができる。   The joining wall 3 that joins the upper surface body 1 and the lower surface body 2 at the peripheral edge thereof is made of a material that has the same flexibility as the lower surface body 2 in the power generation floor material shown in FIG. Although it is formed, it is made of a material that has the same rigidity as that of the upper surface body 1 and does not deform even when a constant pressure such as walking pressure is applied, or is difficult to deform, like the power generation flooring shown in FIG. It may be formed. When the joining wall 3 is formed of a flexible material, the impact force applied to the upper surface body 1 can be reduced, and when the joining wall 3 is formed of a rigid material, the upper surface body 1 is The applied walking pressure is transmitted to the peripheral portion of the lower surface body 2 without loss, and the convex portion forming portion of the lower surface body 2 and its peripheral portion are flexed and deformed relatively upward so that the pressure-sensitive power generation device 5 is connected to the upper surface body 1 and the lower surface. By pinching with the body 2, it is possible to reliably generate power with the pressure fluctuation.

上面体1と下面体3は、感圧発電装置5を水の侵入から保護するために、水密的に接合することが重要である。従って、接合壁3の上面と下面を、上面体1の下面と下面体2の上面に、接着剤で水密的に接着するか、或いは、加熱溶着、超音波溶着、高周波溶着などの手段で水密的に溶着することが望ましい。   It is important that the upper surface body 1 and the lower surface body 3 are joined in a watertight manner in order to protect the pressure-sensitive power generation device 5 from water intrusion. Therefore, the upper surface and the lower surface of the joining wall 3 are water-tightly bonded to the lower surface of the upper surface body 1 and the upper surface of the lower surface body 2 with an adhesive, or water-tight by means such as heat welding, ultrasonic welding, and high-frequency welding. It is desirable to weld.

また、上面体1と下面体2との間にシーリング材を塗布し、それを硬化させることによって、上面体1と下面体1を水密的に接合すると同時に接合壁3を形成することも望ましい。
上記シーリング材としては、一液又は二液反応型のシリコーン樹脂、変性シリコーン樹脂、ウレタン樹脂、ポリサルファイド樹脂、アクリル樹脂などからなるシーリング材が使用され、特に、25%モジュラスが0.1〜1.5N/mmの範囲に調整された若干軟質のものが好ましく使用される。なお、この25%モジュラスの数値は、JIS K 6251に準じて厚さ2mmのダンベル1号の形状に成形した供試体を使用して100mm/分の引張強度で測定したものである。
It is also desirable to apply a sealing material between the upper surface body 1 and the lower surface body 2 and cure it to form the bonding wall 3 at the same time as the upper surface body 1 and the lower surface body 1 are watertightly bonded.
As the sealing material, a sealing material made of a one-component or two-component reactive silicone resin, a modified silicone resin, a urethane resin, a polysulfide resin, an acrylic resin, or the like is used. In particular, the 25% modulus is 0.1 to 1.. A slightly soft one adjusted to a range of 5 N / mm 2 is preferably used. The value of 25% modulus was measured at a tensile strength of 100 mm / min using a specimen molded in the shape of dumbbell No. 2 having a thickness of 2 mm according to JIS K 6251.

このようなシーリング材で接合壁3を形成すると、感圧発電装置5を収納する収納部4の水密性が確保されることに加えて、上面体1に衝撃力が加えられたときに接合壁3が上下に少し圧縮変形して衝撃力を吸収することができ、しかも、上面体1に作用する歩行圧力を殆どロスすることなく下面体2の周縁部に伝えて、下面体2の凸部形成部分及びその周辺部分を相対的に上方に撓み変形させ、感圧発電装置2を上面体1と下面体2とで挟圧して、確実に発電させることができる。   When the joining wall 3 is formed of such a sealing material, in addition to ensuring the water tightness of the storage portion 4 that houses the pressure-sensitive power generation device 5, the joining wall is applied when an impact force is applied to the upper surface body 1. 3 can be slightly compressed and deformed up and down to absorb the impact force, and the walking pressure acting on the upper surface body 1 is transmitted to the peripheral portion of the lower surface body 2 with almost no loss, and the convex portion of the lower surface body 2 The forming portion and its peripheral portion are bent upward and deformed relatively, and the pressure-sensitive power generation device 2 can be sandwiched between the upper surface body 1 and the lower surface body 2 to reliably generate power.

また、接合壁3は、図4に示す発電床材のように、前述の剛性を有する材質で上面体1の周縁部から下方に突出させて一体に形成してもよいし、図5に示す発電床材のように、前述の可撓性を有する材質で下面体1の周縁部から上方に突出させて一体に形成してもよい。これらの場合は、上面体1と一体に形成された接合壁3の下端と下面体2の周縁部上面、又は、下面体1と一体に形成された接合壁3の上端と上面体1の周縁部下面を、接着剤や前記の溶着手段で水密的に接着又は溶着するだけで、収納部4の水密性を確保して感圧発電装置5を保護することができる。   Further, the joining wall 3 may be integrally formed by projecting downward from the peripheral portion of the upper surface body 1 with the above-described rigid material like the power generation flooring material shown in FIG. 4, or as shown in FIG. Like the power generation floor material, the above-described flexible material may be integrally formed by projecting upward from the peripheral portion of the lower surface body 1. In these cases, the lower end of the bonding wall 3 formed integrally with the upper surface body 1 and the upper surface of the peripheral portion of the lower surface body 2, or the upper end of the bonding wall 3 formed integrally with the lower surface body 1 and the peripheral edge of the upper surface body 1. The pressure-sensitive power generation device 5 can be protected by securing the water-tightness of the storage portion 4 only by water-tightly bonding or welding the lower surface of the portion with an adhesive or the above-described welding means.

図2〜図4に示す発電床材では、接合壁3の下端を下面体2の周縁部上面に載置して接着又は溶着しているが、図6に示す発電床材のように、下面体2の周側面を接合壁3の下端部内面に水密的に接着又は溶着しても勿論よい。   In the power generation flooring shown in FIGS. 2 to 4, the lower end of the joining wall 3 is placed on and bonded or welded to the upper surface of the peripheral portion of the lower surface body 2, but the lower surface as in the power generation flooring shown in FIG. 6. Of course, the peripheral side surface of the body 2 may be water-tightly bonded or welded to the inner surface of the lower end of the joining wall 3.

上面体1と下面体2と接合壁3とで形成される収納部4に配置された感圧発電装置5は、図18に示すように、上下に重ね合わされる方形板状の緩衝材5a,5bと、下側の緩衝材5bの上に配置された複数(本実施形態では9つ)の円形振動板5cと、それぞれの円形振動板5cの下面に接合されたチタン酸バリウム、ジルコニア等の圧電セラミックスやリチウムタンタレート等の圧電単結晶からなる円板状の圧電素子(不図示)と、下側の緩衝材5bの上面から突き出してそれぞれの圧電素子の中央部を下方から支える軸(不図示)と、上側の緩衝材5aの下面から突き出してそれぞれの円形振動板5cの周囲を複数箇所で支持する軸(不図示)と、この上側の緩衝材5aの下面から突き出すそれぞれの軸の先端に形成されたストッパー(不図示)とを備えたものである。   As shown in FIG. 18, the pressure-sensitive power generation device 5 disposed in the storage portion 4 formed by the upper surface body 1, the lower surface body 2, and the bonding wall 3 includes a rectangular plate-shaped cushioning material 5 a that is vertically stacked. 5b, a plurality of (9 in this embodiment) circular diaphragms 5c disposed on the lower cushioning material 5b, and barium titanate, zirconia, etc. joined to the lower surface of each circular diaphragm 5c. A disc-shaped piezoelectric element (not shown) made of a piezoelectric single crystal such as piezoelectric ceramics or lithium tantalate, and a shaft (not shown) that protrudes from the upper surface of the lower buffer material 5b and supports the central portion of each piezoelectric element from below. And a shaft (not shown) that protrudes from the lower surface of the upper cushioning material 5a and supports the periphery of each circular diaphragm 5c at a plurality of locations, and a tip of each shaft that projects from the lower surface of the upper cushioning material 5a. Stopper formed on Is obtained by a not shown).

この感圧発電装置5は、上下いずれかの緩衝材5a又は5bに圧力(外力)が作用すると、それぞれの圧電素子の中央部が下側の緩衝材5bの軸によって下方から支えられる一方、それぞれの円形振動板5cの周囲が上側の緩衝材5aの軸によって上方から押えられ、円形振動板3cと圧電素子の周囲が相対的に下側の緩衝材5bの方に反るため、この圧電素子の反り変形によって発電できるものであり、そのときの円形振動板5cと圧電素子の過剰な変形、破損が上記ストッパーで防止できるようになっている。   In the pressure-sensitive power generation device 5, when pressure (external force) is applied to either the upper or lower buffer material 5a or 5b, the central portion of each piezoelectric element is supported from below by the shaft of the lower buffer material 5b. Since the periphery of the circular vibration plate 5c is pressed from above by the shaft of the upper shock absorber 5a, the periphery of the circular vibration plate 3c and the piezoelectric element is relatively warped toward the lower shock absorber 5b. Electricity can be generated by warping deformation, and excessive deformation and breakage of the circular diaphragm 5c and the piezoelectric element at that time can be prevented by the stopper.

なお、この感圧発電装置5については前記特許文献1に詳しく開示されているので、これ以上の詳細な説明は省略することにする。   Since this pressure-sensitive power generation device 5 is disclosed in detail in the above-mentioned patent document 1, further detailed description will be omitted.

下面体2の下面に設けられた下向きに突出する凸部6は、図2に仮想線で示すように発電床材の上面体1に歩行圧力を加えて上面体1と接合壁3を下方に移動させたとき、床下地7に支えられて下面体2の凸部形成部分及びその周辺部分を相対的に上方に撓み変形させ、感圧発電装置5を上面体1と下面体2とで挟圧してその圧力変動で発電させる役目を果たすものである。   As shown by the phantom line in FIG. 2, the convex portion 6 provided on the lower surface of the lower surface body 2 applies walking pressure to the upper surface body 1 of the power generation floor material so that the upper surface body 1 and the joining wall 3 are moved downward. When moved, the convex portion forming portion of the lower surface body 2 and its peripheral portion are bent and deformed relatively upward while being supported by the floor base 7, and the pressure-sensitive power generation device 5 is sandwiched between the upper surface body 1 and the lower surface body 2. It plays the role of generating electricity by the pressure fluctuation.

凸部6は剛性のある材質、例えば、硬質の塩化ビニル樹脂などの合成樹脂や、アルミニウムやステンレスなどの金属や、石材などで形成しても勿論よいが、可撓性もしくは柔軟性を有する材質、例えば、軟質の塩化ビニル樹脂やポリオレフィン樹脂などの合成樹脂、ゴム、これらの発泡体などで形成することが望ましい。後者の可撓性もしくは柔軟性を有する材質で凸部6を形成すると、下方からの衝撃力を吸収・緩和して感圧発電装置5の保護に寄与すると共に、床下地7に凹凸や不陸があっても、それらを凸部6で吸収・緩和することができる。
但し、圧力によって大きな体積収縮を生じない材質であることが望ましく、また、反撥力に富む材質であることが望ましい。この観点から、圧縮強さが10N/cm以上程度(好ましくは1kN/cm以上)の合成樹脂やゴムが好ましく用いられる。
The convex portion 6 may be formed of a rigid material, for example, a synthetic resin such as a hard vinyl chloride resin, a metal such as aluminum or stainless steel, a stone material, or the like. For example, it is desirable to form with a synthetic resin such as a soft vinyl chloride resin or a polyolefin resin, rubber, or a foam thereof. When the convex portion 6 is formed of the latter flexible or flexible material, it absorbs and relaxes the impact force from below and contributes to the protection of the pressure-sensitive power generation device 5, and also has unevenness and unevenness on the floor base 7. Even if there is, they can be absorbed and relaxed by the convex portion 6.
However, it is desirable that the material does not cause large volume shrinkage due to pressure, and it is desirable that the material is rich in repulsive force. From this viewpoint, a synthetic resin or rubber having a compressive strength of about 10 N / cm 2 or more (preferably 1 kN / cm 2 or more) is preferably used.

凸部6は、図6,図12に示す発電床材のように、下面体2と同じ可撓性を有する材質で下面体2と一体に形成してもよいし、前記の材質で別個に作製した凸部6を下面体2の下面に接着又は溶着してもよい。
また、凸部6の突出寸法は、感圧発電装置6の発電に必要な変化量や、感圧発電装置6と上面体1と間隙寸法などを考慮して決定すればよいが、概ね1〜10mm程度に設定することが望ましい。
The convex portion 6 may be formed integrally with the lower surface body 2 with the same flexible material as the lower surface body 2 as in the power generation floor material shown in FIGS. The produced convex portion 6 may be bonded or welded to the lower surface of the lower surface body 2.
Further, the protruding dimension of the convex portion 6 may be determined in consideration of the amount of change necessary for power generation of the pressure-sensitive power generation device 6, the pressure-sensitive power generation device 6, the upper surface body 1, the gap size, and the like. It is desirable to set to about 10 mm.

凸部6の形状としては、極く厚肉の方形板、多角形板、円形板などの形状が好適であり、図1に示す発電床材では、極く厚肉の正方形板の形状を有する凸部6が形成されている。
凸部6の形状は上記に限定されるものではなく、例えば、図10に示す発電床材の凸部6のように、複数の小突起6aを縦横に配列形成した凹凸形状としてもよい。なお、小突起6aの配設に関しては、凸部6が剛性のある材質で形成されている場合には、凸部6の隅に各1つの小突起6aを形成するのみでもよい。また、図8に示すように、凸部6の周側面を上広がりの傾斜面としたり、図9に示すように、凸部6の下面を凸球面としてもよい。
As the shape of the convex portion 6, a shape such as a very thick square plate, a polygonal plate, a circular plate or the like is suitable, and the power generation floor shown in FIG. 1 has a shape of a very thick square plate. A convex portion 6 is formed.
The shape of the convex portion 6 is not limited to the above, and for example, it may be a concave / convex shape in which a plurality of small protrusions 6a are arranged vertically and horizontally like the convex portion 6 of the power generation flooring shown in FIG. Regarding the arrangement of the small protrusions 6a, when the convex part 6 is formed of a rigid material, it is only necessary to form one small protrusion 6a at each corner of the convex part 6. Further, as shown in FIG. 8, the peripheral side surface of the convex portion 6 may be an upwardly inclined surface, or the lower surface of the convex portion 6 may be a convex spherical surface as shown in FIG.

凸部6は、例えば図11に示す発電床材のように、各感圧発電装置5の下方にそれぞれ配置して下面体2の下面に感圧発電装置5と同数形成し、各凸部6の上方からの投影領域Tが各感圧発電装置5の上方からの投影領域Sと重なるようにしてもよく、また、図2,図7,図8,図10に示す発電床材のように、一群(4つ)の感圧発電装置5の下方に一つの凸部6を位置させて、該凸部6の上方からの投影領域Tが一群の感圧発電装置5の上方からの投影領域SGと重なるようにしてもよい。いずれの場合も、凸部6の上方からの投影領域Tの面積が、各感圧発電装置5又は一群の感圧発電装置5の上方からの投影領域S又はSGの面積よりも大きいことが望ましい。なお、感圧発電装置5を複数群(例えば二群)に分割し、それぞれの群の下方に凸部6を一つずつ配置して下面体2の下面に設けるようにしてもよい。   For example, like the power generation flooring shown in FIG. 11, the convex portions 6 are respectively arranged below the pressure-sensitive power generation devices 5 and formed on the lower surface of the lower surface body 2 in the same number as the pressure-sensitive power generation devices 5. The projection area T from above may overlap the projection area S from above each pressure-sensitive power generation device 5, and as in the power generation flooring shown in FIG. 2, FIG. 7, FIG. One projection 6 is positioned below a group (four) of pressure-sensitive power generation devices 5, and a projection region T from above the projection 6 is a projection region from above the group of pressure-sensitive power generation devices 5. You may make it overlap with SG. In any case, it is desirable that the area of the projection region T from above the convex portion 6 is larger than the area of the projection region S or SG from above each pressure-sensitive power generation device 5 or the group of pressure-sensitive power generation devices 5. . The pressure-sensitive power generation device 5 may be divided into a plurality of groups (for example, two groups), and one convex portion 6 may be arranged below each group and provided on the lower surface of the lower surface body 2.

感圧発電装置5と凸部6との関係を上記のようにすると、上面体1に歩行圧力が付加されたときに、下面体2の凸部形成部分とその周辺部分が撓み変形し、全ての感圧発電装置5が確実に相対的に押し上げられて下面体2と上面体1で挟圧され、圧力変動がロスなく全ての感圧発電装置5に伝達されて発電するので、感圧発電装置全体としての発電効率を向上させることができる。   When the relationship between the pressure-sensitive power generation device 5 and the convex portion 6 is as described above, when walking pressure is applied to the upper surface body 1, the convex portion forming portion and the peripheral portion of the lower surface body 2 are bent and deformed. The pressure-sensitive power generation device 5 is surely relatively pushed up and sandwiched between the lower surface body 2 and the upper surface body 1, and the pressure fluctuation is transmitted to all the pressure-sensitive power generation devices 5 without loss, thereby generating power. The power generation efficiency of the entire apparatus can be improved.

上面体1と下面体2との間隔(換言すれば収納部4の上下寸法)は、理論的には感圧発電装置5の高さ寸法と同一であればよいが、そうであると、床材表面(上面体1)に衝撃的な圧力が付加した場合、その衝撃力が感圧発電装置5に直接伝わり、感圧発電装置5の故障や破損を招く恐れがある。また、床材自体の自重や、構成部材の精度、組立ての精度によって感圧発電装置5が常時、僅かに圧縮変形し、感圧発電装置5の発電効率が悪くなる恐れもある。そこで、下記のように感圧発電装置5と上面体1もしくは下面体2との間に間隙(クリアランス)を設け、感圧発電装置5に衝撃力が直接加わらないように、且つ、感圧発電装置5が常時、僅かに圧縮変形しないようにすることが望ましい。   The distance between the upper surface body 1 and the lower surface body 2 (in other words, the vertical dimension of the storage section 4) may theoretically be the same as the height dimension of the pressure-sensitive power generator 5, but if so, When a shocking pressure is applied to the material surface (upper surface body 1), the impact force is directly transmitted to the pressure-sensitive power generation device 5, which may cause a failure or breakage of the pressure-sensitive power generation device 5. Further, the pressure-sensitive power generation device 5 is always slightly compressed and deformed due to the weight of the flooring itself, the accuracy of the components, and the accuracy of assembly, and the power generation efficiency of the pressure-sensitive power generation device 5 may be deteriorated. Therefore, a gap (clearance) is provided between the pressure-sensitive power generation device 5 and the upper surface body 1 or the lower surface body 2 as described below so that an impact force is not directly applied to the pressure-sensitive power generation device 5 and pressure-sensitive power generation. It is desirable to prevent the device 5 from being slightly compressed and deformed at all times.

即ち、図2に示す発電床材のように、感圧発電装置5を下面体2の上面に直接接した状態で設けるか、又は、図15,図17に示す発電床材のように、感圧発電装置5を下面体2の上面に板状介在物8を挟んで間接的に接した状態で設け、感圧発電装置5の上部と上面体1の下面を離隔して間隙(クリアランス)を形成するようにしてもよいし、図13に示す発電床材のように、感圧発電装置5を上面体1の下面に直接接した状態で設けるか、又は、図16に示す発電床材のように、感圧発電装置5を上面体1の下面に板状介在物8を挟んで間接的に接した状態で設け、感圧発電装置5の下部と下面体2の上面を離隔して間隙(クリアランス)を形成するようにしてもよい。   That is, the pressure sensitive power generation device 5 is provided in direct contact with the upper surface of the lower surface body 2 as in the power generation floor material shown in FIG. 2, or the power generation floor material as shown in FIGS. The pressure power generation device 5 is provided in a state where it is indirectly in contact with the upper surface of the lower surface body 2 with the plate-like inclusions 8 interposed therebetween, and the upper portion of the pressure sensitive power generation device 5 and the lower surface of the upper surface body 1 are separated to form a clearance. The pressure sensitive power generation device 5 may be provided in direct contact with the lower surface of the upper surface body 1 as in the power generation floor material shown in FIG. 13, or the power generation floor material shown in FIG. As described above, the pressure-sensitive power generation device 5 is provided in a state in which the pressure-sensitive power generation device 5 is indirectly in contact with the lower surface of the upper surface body 1 with the plate-shaped inclusion 8 interposed therebetween, and the lower portion of the pressure-sensitive power generation device 5 and the upper surface of the lower surface body 2 are spaced apart. You may make it form (clearance).

上記のように感圧発電装置5と上面体1の下面又は下面体2の上面との間に間隙(クリアランス)を設けると、発電床材の上面体1又は下面体2に付加される初期の衝撃的な圧力変動(加圧)が緩和され、感圧発電装置5をより確実に保護することができる。また、発電床材を敷設面である床下地7に静置したとき、下面体2が発電床材の自重で相対的に上方に僅かに撓み変形して、感圧発電装置5の発電に必要な変形空間が減少する恐れを解消し、発電効率の低下を防止することができると共に、床材の各部材の成形精度や組立て精度の誤差を吸収することもできる。
上記の間隙(クリアランス)は、0.5〜5mm程度に設定するのが適当である。
When a gap (clearance) is provided between the pressure-sensitive power generation device 5 and the lower surface of the upper surface body 1 or the upper surface of the lower surface body 2 as described above, the initial stage added to the upper surface body 1 or the lower surface body 2 of the power generation flooring material. The shocking pressure fluctuation (pressurization) is alleviated and the pressure-sensitive power generation device 5 can be protected more reliably. Further, when the power generation flooring is placed on the floor base 7 that is the laying surface, the lower surface body 2 is slightly bent and deformed relatively upward due to the weight of the power generation flooring, and is necessary for power generation of the pressure-sensitive power generation device 5. It is possible to eliminate the possibility of reducing the amount of deformation space, to prevent a decrease in power generation efficiency, and to absorb errors in molding accuracy and assembly accuracy of each member of the flooring.
It is appropriate to set the gap (clearance) to about 0.5 to 5 mm.

感圧発電装置5と上面体2の下面又は下面体2の上面との間に介在させる板状介在物8は、剛性有する材質、例えば硬質の合成樹脂や金属などで形成されたものでもよいし、可撓性を有する材質、例えば軟質の合成樹脂やゴムやこれらの発泡体で形成されたものでよい。剛性を有する材質で形成された板状介在物8を介在させると、衝撃力を受け止めて感圧発電装置5を確実に保護することができ、また、可撓性を有する材質で形成された板状介在物8を介在させると、衝撃力を吸収緩和して感圧発電装置5を同様に保護することができる。
板状介在物8を介在させる領域は、一群の感圧発電装置5の上方からの投影領域SGと完全に重なり、かつ、板状介在物8の面積は上記投影領域SGの面積のの1.0〜1.2倍であることが望ましい。板状介在物8と感圧発電装置5がこのような関係であると、より効果的に感圧発電装置5を保護することができる。
The plate-shaped inclusion 8 interposed between the pressure-sensitive power generation device 5 and the lower surface of the upper surface body 2 or the upper surface of the lower surface body 2 may be formed of a rigid material, such as a hard synthetic resin or metal. Alternatively, a flexible material such as a soft synthetic resin, rubber, or a foam thereof may be used. When the plate-like inclusion 8 formed of a rigid material is interposed, the pressure-sensitive power generation device 5 can be reliably protected by receiving an impact force, and the plate formed of a flexible material. When the inclusions 8 are interposed, the impact force can be absorbed and relaxed to similarly protect the pressure-sensitive power generation device 5.
The region in which the plate-shaped inclusion 8 is interposed completely overlaps with the projection region SG from above the group of pressure-sensitive power generators 5, and the area of the plate-shaped inclusion 8 is 1 of the area of the projection region SG. It is desirable to be 0 to 1.2 times. When the plate-shaped inclusion 8 and the pressure-sensitive power generation device 5 have such a relationship, the pressure-sensitive power generation device 5 can be protected more effectively.

更に、感圧発電装置5に必要以上に加わる変形を抑え、感圧発電装置5の圧潰を防止するために、図12〜図17に示す発電床材のように、支持柱9を設けることが望ましい。この支持柱9は剛性を有する材質で形成することが望ましく、また、支持柱9の高さは、感圧発電装置5の高さや、感圧発電装置5に加えられるべき適切な変形量や、感圧発電装置5と上面体1又は下面体2との間隙(クリアランス)などを勘案して決定されるが、その高さは概ね2〜10mmであることが望ましい。   Furthermore, in order to suppress deformation applied to the pressure-sensitive power generation device 5 more than necessary and prevent the pressure-sensitive power generation device 5 from being crushed, a support column 9 may be provided as in the power generation flooring shown in FIGS. desirable. The support column 9 is preferably formed of a material having rigidity, and the height of the support column 9 is the height of the pressure-sensitive power generation device 5, an appropriate amount of deformation to be applied to the pressure-sensitive power generation device 5, Although it is determined in consideration of a gap (clearance) between the pressure-sensitive power generation device 5 and the upper surface body 1 or the lower surface body 2, the height is preferably approximately 2 to 10 mm.

支持柱9を設ける箇所は特に限定されるものではなく、例えば、図12に示す発電床材のように、一群の感圧発電装置5の両側に支持柱9を配置して下面体2から立設したり、図13に示す発電床材のように、隣接する感圧発電装置5の間に支持柱9を配置して上面体1から垂設したり、図14に示す発電床材のように、一群の感圧発電装置5が相対的に上方に押し上げられたときに支持柱9が一群の感圧発電装置5の両側に位置するように支持柱9を上面体1から垂設したり、図15に示す発電床材のように、一群の感圧発電装置5の両側と、隣接する感圧発電装置5の間に支持柱9を配置して板状介在物8から立設したり、図16に示す発電床材のように、一群の感圧発電装置5の両側に支持柱9を配置して下面体2から立設、又は、板状介在物8から垂設したり、図17に示す発電床材のように、感圧発電装置5の両側に支持柱9を配置して板状介在物8から立設すればよい。
支持柱9を設ける場合は、図15〜図17に示す発電床材のように、感圧発電装置5を載置した板状介在物8から支持柱9を立設又は垂設する方が、図12〜図14に示す発電床材のように、支持柱9を下面体2又は上面体1から立設又は垂設するよりも、発電床材の組立作業が簡単になるので望ましい。
The place where the support pillars 9 are provided is not particularly limited. For example, the support pillars 9 are arranged on both sides of the group of pressure-sensitive power generators 5 as shown in FIG. As shown in FIG. 13, the support pillar 9 is disposed between the adjacent pressure-sensitive power generation devices 5 and suspended from the upper surface body 1 as in the power generation floor material shown in FIG. In addition, the support columns 9 are suspended from the upper surface body 1 so that the support columns 9 are positioned on both sides of the group of pressure-sensitive power generation devices 5 when the group of pressure-sensitive power generation devices 5 are pushed upward relatively. Like the power generation flooring shown in FIG. 15, support pillars 9 are arranged between both sides of the group of pressure-sensitive power generation devices 5 and the adjacent pressure-sensitive power generation devices 5 and are erected from the plate-like inclusions 8. 16, like the power generation flooring shown in FIG. 16, support pillars 9 are arranged on both sides of the group of pressure-sensitive power generation devices 5 and are erected from the lower surface body 2, or a plate Or vertically from the inclusions 8, as the power generation flooring illustrated in Figure 17, it may be erected from the plate-like inclusions 8 by placing the support post 9 on both sides of the sensitive pressure power device 5.
When the support pillar 9 is provided, it is better to erect or suspend the support pillar 9 from the plate-like inclusion 8 on which the pressure-sensitive power generation device 5 is placed, as in the power generation flooring shown in FIGS. As shown in FIGS. 12 to 14, it is desirable to assemble the power generating floor material more easily than to erect or suspend the support column 9 from the lower surface body 2 or the upper surface body 1.

次に、図3〜図17に示す発電床材について簡単に説明する。   Next, the power generation flooring shown in FIGS. 3 to 17 will be briefly described.

図3に示す発電床材は、接合壁3として剛性を有する材質で形成されたものを使用した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図3において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 3 is different from the power generation flooring shown in FIGS. 1 and 2 in that the joint wall 3 is made of a material having rigidity. Since the other configuration is the same as that of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.

図4に示す発電床材は、上面体1と同様の剛性を有する材質で接合壁3を上面体1と一体に形成した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図4において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 4 is different from the power generation floor material shown in FIGS. 1 and 2 in that the joining wall 3 is formed integrally with the upper surface body 1 with a material having the same rigidity as that of the upper surface body 1. The other configuration is the same as that of the power generation flooring shown in FIGS. 1 and 2, and thus the same reference numerals are given to the same members in FIG.

図5に示す発電床材は、下面体2と同様の可撓性を有する材質で接合壁3を下面体2と一体に形成した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図5において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 5 is different from the power generation floor material shown in FIGS. 1 and 2 in that the joining wall 3 is formed integrally with the lower surface body 2 using the same flexible material as the lower surface body 2. Yes. Since other configurations are the same as those of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.

図6に示す発電床材は、上面体1と同様の剛性を有する材質で、高さが下面体1の厚さ分だけ高い接合壁3を上面体1と一体に形成した点、凸部6を下面体2と同様の可撓性を有する材質で下面体2と一体形成した点、下面体2を接合壁3の内側に嵌合できる幅として下面体2の周側面を接合壁3の下部内面に接着又は溶着した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図6において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 6 is made of a material having the same rigidity as that of the upper surface body 1, and is formed by integrally forming the upper surface body 1 with a joining wall 3 having a height corresponding to the thickness of the lower surface body 1, and the convex portion 6. Is formed integrally with the lower surface body 2 with the same flexible material as that of the lower surface body 2, and the peripheral side surface of the lower surface body 2 is the lower part of the bonding wall 3 so that the lower surface body 2 can be fitted inside the bonding wall 3. It differs from the power generation flooring shown in FIGS. 1 and 2 in that it is adhered or welded to the inner surface. Since the other configuration is the same as that of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.

図7に示す発電床材は、剛性を有する材質又は可撓性を有する材質のいずれかで凸部6を形成した点で、図4に示す発電床材と異なっている。その他の構成は図4に示す発電床材と同様であるので、図7において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 7 is different from the power generation floor material shown in FIG. 4 in that the convex portion 6 is formed of either a rigid material or a flexible material. Since the other structure is the same as that of the power generation flooring shown in FIG. 4, the same reference numerals are given to the same members in FIG.

図8に示す発電床材は、凸部6の周側面が上広がりの傾斜面とされている点で、図7に示す発電床材と異なっている。その他の構成は図7に示す発電床材と同様であるので、図8において同一部材に同一符合を付し、重複する説明を省略する。なお、凸部6の周側面が上広がりの傾斜面とされている場合、凸部6の上方からの投影領域Tは、凸部6の周側面の上端縁で囲まれる領域となる。   The power generation flooring shown in FIG. 8 is different from the power generation flooring shown in FIG. 7 in that the peripheral side surface of the convex portion 6 is an inclined surface that spreads upward. Since the other structure is the same as that of the power generation flooring shown in FIG. 7, the same reference numerals are given to the same members in FIG. When the peripheral side surface of the convex portion 6 is an upwardly inclined surface, the projection region T from above the convex portion 6 is a region surrounded by the upper end edge of the peripheral side surface of the convex portion 6.

図9に示す発電床材は、凸部6の下面が凸球面とされている点で、図7に示す発電床材と異なっている。その他の構成は図7に示す発電床材と同様であるので、図9において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 9 is different from the power generation floor material shown in FIG. 7 in that the lower surface of the convex portion 6 is a convex spherical surface. Since the other structure is the same as that of the power generation floor material shown in FIG. 7, the same reference numerals are given to the same members in FIG.

図10に示す発電床材は、凸部6が複数の小突起6aを配列形成した凹凸形状を有する凸部である点で、図7に示す発電床材と異なっている。その他の構成は図7に示す発電床材と同様であるので、図10において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 10 is different from the power generation floor material shown in FIG. 7 in that the convex portion 6 is a convex portion having a concavo-convex shape in which a plurality of small protrusions 6a are arranged. Since the other structure is the same as that of the power generation flooring shown in FIG. 7, the same reference numerals are given to the same members in FIG.

図11に示す発電床材は、各感圧発電装置5の下方にそれぞれの凸部6が配置されて下面体2の下面に設けられ、各凸部6の上方からの投影領域Tが各感圧発電装置5の上方からの投影領域Sと重なっている点、各凸部6が剛性を有する材質又は可撓性を有する材質のいずれかで形成されている点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図11において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 11 is provided on the lower surface of the lower surface body 2 with the respective convex portions 6 arranged below each pressure-sensitive power generation device 5, and the projection region T from above each convex portion 6 has each sensitivity. 1 and 2 in that it overlaps with the projection region S from above the piezoelectric power generation device 5 and each convex portion 6 is formed of either a rigid material or a flexible material. Different from the power generation flooring shown. Since other configurations are the same as those of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.

図12に示す発電床材は、下面体2と同様の可撓性を有する材質で凸部6を下面体と一体に形成した点、一群の感圧発電装置5の両側に支持柱9を配置して下面体2から立設した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図12において同一部材に同一符合を付し、重複する説明を省略する。   The power generation floor material shown in FIG. 12 has the same flexible material as that of the lower surface body 2, and the protrusions 6 are formed integrally with the lower surface body, and support pillars 9 are arranged on both sides of the group of pressure sensitive power generation devices 5. Thus, the power generation flooring shown in FIGS. 1 and 2 is different from the power generation flooring shown in FIGS. Other configurations are the same as those of the power generation floor material shown in FIGS. 1 and 2, and thus the same reference numerals are given to the same members in FIG.

図13に示す発電床材は、感圧発電装置5を上面体2の下面に設けた点、隣接する感圧発電装置5の間に支持柱9を配置して上面体1から垂設した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図13において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 13 is a point in which the pressure-sensitive power generation device 5 is provided on the lower surface of the upper surface body 2 and a support pillar 9 is disposed between the adjacent pressure-sensitive power generation devices 5 and is suspended from the upper surface body 1. Thus, it is different from the power generation flooring shown in FIGS. Other configurations are the same as those of the power generation flooring shown in FIGS. 1 and 2, and thus the same reference numerals are given to the same members in FIG.

図14に示す発電床材は、床材表面に加えられた歩行圧力によって一群の感圧発電装置5が相対的に上方に押し上げられたときに支持柱9が一群の感圧発電装置5の両側に位置するように支持柱9を上面体1から垂設した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図14において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 14 has support pillars 9 on both sides of the group of pressure sensitive power generation devices 5 when the group of pressure sensitive power generation devices 5 is pushed upward relatively by the walking pressure applied to the floor material surface. 1 and FIG. 2 is different from the power generation flooring shown in FIG. Other configurations are the same as those of the power generation flooring shown in FIGS. 1 and 2, so the same reference numerals are given to the same members in FIG.

図15に示す発電床材は、下面体2と感圧発電装置5の間に、剛性を有する材質又は可撓性を有する材質のいずれかで形成された板状介在物8を介在させた点、支持柱9を一群の感圧発電装置5の両側と感圧発電装置5の相互感に配置して板状介在物8から立設した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図15において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 15 has a plate-like inclusion 8 formed of either a rigid material or a flexible material between the lower surface body 2 and the pressure-sensitive power generation device 5. 1 and FIG. 2 in that the support pillars 9 are arranged on both sides of the group of pressure-sensitive power generation devices 5 and the pressure-sensitive power generation device 5 and are erected from the plate-like inclusions 8. Is different. Other configurations are the same as those of the power generation flooring shown in FIGS. 1 and 2, and thus the same reference numerals are given to the same members in FIG.

図16に示す発電床材は、上面体1と一群の感圧発電装置5の間に、可撓性を有する材質で形成された板状介在物8を介在させた点、一群の感圧発電装置5の両側に支持柱9を配置して下面体2又は板状介在物8から立設又は垂設した点、剛性を有する材質又は可撓性を有する材質で凸部6を形成した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図16において同一部材に同一符合を付し、重複する説明を省略する。   The power generation flooring shown in FIG. 16 is a group of pressure-sensitive power generation in that a plate-shaped inclusion 8 formed of a flexible material is interposed between the upper surface body 1 and the group of pressure-sensitive power generation devices 5. The support pillars 9 are arranged on both sides of the device 5 and are erected or suspended from the lower body 2 or the plate-like inclusions 8, and the convex portions 6 are formed of a rigid material or a flexible material. 1 and FIG. 2 are different from the power generation flooring. Since the other structure is the same as that of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.

図17に示す発電床材は、下面体2と感圧発電装置5の間に、剛性を有する材質で形成された板状介在物8を介在させた点、感圧発電装置5の両側に支持柱9を配置して板状介在物8から立設した点、下面体2の下面に剛性を有する材質で形成された小面積の凸部6を複数形成した点で、図1,図2に示す発電床材と異なっている。その他の構成は図1,図2に示す発電床材と同様であるので、図17において同一部材に同一符合を付し、重複する説明を省略する。
このような構成の発電床材は、感圧発電装置5の上下を、剛性を有する上面体1と板状介在物8とで囲んでいるため、上面体1に衝撃力が加えられた場合でも、また、敷設面の小石などが可撓性を有する下面体2を下方から突き上げた場合でも、剛性を有する上面体1と板状介在物8によって感圧発電装置5が破損しないように保護することができる。また、剛性を有する小さな凸部6を下面体2の下面に複数設けることができるので、敷設面の凹凸を容易に吸収することができる。
The power generation flooring shown in FIG. 17 is supported on both sides of the pressure-sensitive power generation device 5 in that a plate-like inclusion 8 formed of a rigid material is interposed between the lower surface body 2 and the pressure-sensitive power generation device 5. 1 and FIG. 2 in that the pillars 9 are arranged and are erected from the plate-like inclusions 8, and a plurality of small-area convex portions 6 made of a rigid material are formed on the lower surface of the lower surface body 2. Different from the power generation flooring shown. Since the other configuration is the same as that of the power generation flooring shown in FIGS. 1 and 2, the same reference numerals are given to the same members in FIG.
Since the power generation flooring having such a structure surrounds the upper and lower sides of the pressure-sensitive power generation device 5 with the rigid upper surface body 1 and the plate-like inclusions 8, even when an impact force is applied to the upper surface body 1. In addition, even when pebbles or the like on the laying surface push up the flexible lower surface body 2 from below, the pressure-sensitive power generation device 5 is protected from damage by the rigid upper surface body 1 and the plate-shaped inclusion 8. be able to. Moreover, since the small convex part 6 which has rigidity can be provided in multiple numbers on the lower surface of the lower surface body 2, the unevenness | corrugation of a laying surface can be absorbed easily.

上述した図1〜図17の発電床材はいずれも、その上面体1に歩行圧力が上方から付加されると、床材全体が下方に移動しようとするが、下面体2の下向きの凸部6が敷設面である床下地7によって下方から支持されているため、可撓性を有する下面体2は、その凸部形成部分及びその周辺部分が上方に撓み変形して相対的に上方に押し上げられることになる。そのため、上面体1と下面体2の間の収納部4に配置された感圧発電装置5は、下面体2の凸部形成部分及びその周辺部分と上面体1とによって挟圧され、歩行圧力が効果的に感圧発電装置に伝達されるので、その圧力変動によって感圧発電装置5は効率良く発電することができる。そして、下面体2の凸部形成部分及びその周辺部分が上記のように可撓変形すると、可撓性を有する下面体には元の形状に戻ろうとする力(反撥力)が発生するため、歩行圧力が除去されるのと同時に下面体2が元の形状に復元して感圧発電装置5が除圧され、その圧力変動によって感圧発電装置5が効率良く発電すると共に、発電床材は初期の状態に復帰する。
また、下面体2は可撓性を有し、下向きに突出する凸部6を備えているため、敷設面である床下地7に凹凸や不陸が存在しても、下面体2によって床下地7の凹凸や不陸を吸収できるので、床下地7の状態を選ばないで敷設することができる。
1 to 17 described above, when walking pressure is applied to the upper surface body 1 from above, the entire floor material tends to move downward, but the downwardly projecting portion of the lower surface body 2 Since 6 is supported from below by a floor base 7 which is a laying surface, the lower surface body 2 having flexibility has its convex portion forming portion and its peripheral portion bent upward and deformed and pushed upward relatively. Will be. Therefore, the pressure-sensitive power generation device 5 arranged in the storage portion 4 between the upper surface body 1 and the lower surface body 2 is pinched by the convex portion forming portion of the lower surface body 2 and its peripheral portion and the upper surface body 1, and walking pressure is increased. Is effectively transmitted to the pressure-sensitive power generation device, so that the pressure-sensitive power generation device 5 can efficiently generate power by the pressure fluctuation. And when the convex part formation part of the lower surface body 2 and its peripheral part deform | transform flexibly as mentioned above, since the force (repulsive force) which returns to the original shape generate | occur | produces in the flexible lower surface body, At the same time as the walking pressure is removed, the lower surface body 2 is restored to its original shape, and the pressure-sensitive power generation device 5 is depressurized. Return to the initial state.
In addition, since the lower surface body 2 is flexible and includes a convex portion 6 that protrudes downward, even if unevenness or unevenness is present on the floor surface 7 that is a laying surface, 7 can be laid without depending on the state of the floor foundation 7.

以上のような発電床材は、発電した電力を利用して、歩行時に電波を発信したり、カウンターを起動して圧力変動(荷重負荷等)の回数を記憶したり、後述する実施形態のようにLEDなどの発光素子を発光させたりすることができる。さらに、その起電力の大きさによって負荷された荷重の大きさや荷重負荷の加速度を検知することもでき、それによって感圧発電装置の適切な保護に寄与することもできる。   The power generation flooring as described above uses the generated power to transmit radio waves during walking, or activates a counter to store the number of pressure fluctuations (load load, etc.), as in the embodiments described later. Or a light emitting element such as an LED can emit light. Furthermore, the magnitude of the load applied by the magnitude of the electromotive force and the acceleration of the load can be detected, thereby contributing to appropriate protection of the pressure-sensitive power generation device.

なお、場合によっては、下向きの凸部6とは別に、発電床材の裏面に下向きに突出する支持仮柱(不図示)を設けてもよい。ただし、この支持仮柱は下面体2の下面に設けるのではなく、接合壁3の下面などに設けるのがよい。この支持仮柱は発電床材の自重とバランスする程度の力で床材を支持するものであり、発電床材に自重以上の圧力が付加されると、発電床材を支持することなく、付加された圧力を凸部6を介して感圧発電装置5に伝達する。   In addition, depending on the case, you may provide the temporary support pillar (not shown) which protrudes below on the back surface of an electric power generation floor material separately from the downward convex part 6. FIG. However, this supporting temporary column is preferably not provided on the lower surface of the lower surface body 2 but on the lower surface of the joining wall 3 or the like. This temporary support column supports the flooring with a force that balances with the weight of the power generation flooring. If a pressure higher than its own weight is applied to the power generation flooring, it is added without supporting the power generation flooring. The generated pressure is transmitted to the pressure-sensitive power generation device 5 through the convex portion 6.

発電床材を敷設する敷設面7は、コンクリートや木材などで形成された平坦な床下地であってもよいし、砂利や少々の凹凸や不陸のある床下地であっても構わない。ただし、極めて柔らかい材質によって形成されている床下地(例えば、極めてクッション性の高いクッションフロアなど)は好ましくない。   The laying surface 7 on which the power generation flooring material is laid may be a flat floor base made of concrete, wood, or the like, or may be a gravel, a floor with some unevenness or unevenness. However, a floor base formed of a very soft material (for example, a cushion floor having a very high cushioning property) is not preferable.

次に、図19〜図22に基づいて、発電した電力で発光素子を発光させることにより暗い場所でも歩行者を安全に誘導できるようにした発電床材の実施形態を説明する。   Next, based on FIGS. 19-22, embodiment of the electric power generation floor material which made it possible to guide | invade a pedestrian safely also in a dark place by making a light emitting element light-emit with the generated electric power is demonstrated.

図19はそのような実施形態の発電床材をその上面体を一部破断して示す平面図、図20は図19のB−B線に沿った切断端面図、図21は同実施形態の発電床材を縁材で連結した発電床材連結体の平面図、図22は図21のC−C線に沿った切断部分端面図である。   FIG. 19 is a plan view showing a power generation floor material of such an embodiment with a top surface partly broken away, FIG. 20 is a cut end view taken along line BB of FIG. 19, and FIG. FIG. 22 is a cut-part end view taken along the line CC of FIG. 21. FIG.

この発電床材Pは、図19,図20に示すように、剛性を有する上面体1と、可撓性を有する下面体2と、これらの上面体1と下面体2を周縁部で水密的に接合する二重の接合壁3(前記シーリング材で形成された接合壁)とで囲まれる収納空間4に、複数の感圧発電装置5を内蔵したものであって、この感圧発電装置5は、板状介在物8となる配線基板の中央部と四隅部に合計5つ搭載され、この配線基板8を介して下面体2に間接的に接した状態で収納空間4に内蔵されており、各感圧発電装置5と上面体1の下面との間には小さな隙間が形成されている。そして、下面体2の下面には、各感圧発電装置5の下方に位置して、剛性又は可撓性のいずれかを有する合計5つの厚肉板状の凸部6が設けられており、各凸部6の上方からの投影領域と各感圧発電装置5の上方からの投影領域が重なると共に、前者の投影領域の面積が後者の投影領域の面積よりも大きくなっている。   As shown in FIGS. 19 and 20, the power generation flooring P includes a rigid upper surface body 1, a flexible lower surface body 2, and the upper surface body 1 and the lower surface body 2 are watertight at the periphery. A plurality of pressure-sensitive power generators 5 are built in a storage space 4 surrounded by a double joint wall 3 (joint wall formed of the sealing material) to be joined to the pressure-sensitive power generator 5. Are mounted in the central portion and the four corners of the wiring board to be the plate-like inclusions 8 and are built in the storage space 4 in a state of being indirectly in contact with the lower surface body 2 through the wiring board 8. A small gap is formed between each pressure-sensitive power generation device 5 and the lower surface of the upper surface body 1. And on the lower surface of the lower surface body 2, a total of five thick plate-like convex portions 6 having either rigidity or flexibility are provided below each pressure-sensitive power generation device 5, The projection area from above each projection 6 and the projection area from above each pressure-sensitive power generation device 5 overlap, and the area of the former projection area is larger than the area of the latter projection area.

下面体2は上面体1よりも横幅が広くなっており、この下面体2の両側縁の上面には、左右一対の帯状発光部10が接合壁3の外側面に沿って設けられると共に、この帯状発光部10に沿って外側に、後述する連結用縁材11の取付け部12が設けられている。そして、この取付け部12の上面には、所謂「面ファスナー」の係合ループ又は係合フックを有する片方の面状材17aが貼着されている。   The lower surface body 2 has a wider width than the upper surface body 1, and a pair of left and right strip-like light emitting portions 10 are provided along the outer surface of the bonding wall 3 on the upper surfaces of both side edges of the lower surface body 2. An attachment portion 12 for a connecting edge member 11 to be described later is provided on the outer side along the belt-like light emitting portion 10. Then, one planar material 17 a having an engagement loop or an engagement hook of a so-called “surface fastener” is attached to the upper surface of the attachment portion 12.

配線基板8の前後両辺の中央部には、図19に示すように中継基盤13a、13bが設けられており、感圧発電装置5と双方の中継基盤13a,13b、及び、帯状発光部10,10と片方の中継基盤13a、及び、感圧発電装置5同士が電気的に接続されている。従って、感圧発電装置5が発電すると、その電力を用いて帯状発光部10の発光素子を発光させることができるようになっている。   As shown in FIG. 19, relay bases 13 a and 13 b are provided at the center of both front and rear sides of the wiring board 8, and the pressure-sensitive power generation device 5 and both of the relay bases 13 a and 13 b, and the belt-like light emitting part 10, 10 and one of the relay boards 13a and the pressure-sensitive power generation devices 5 are electrically connected. Therefore, when the pressure-sensitive power generation device 5 generates power, the light-emitting element of the belt-like light emitting unit 10 can emit light using the electric power.

帯状発光部10は、帯状の配線基板の表面に、発光素子10aとしてLEDを所定間隔をあけて多数並べて搭載すると共に、その上から樹脂などの透明材料で封止又は被覆したものであって、発光素子10a(LED)が感圧発電装置5から中継基盤12aを経て供給される電力によって発光、点灯するように電気的に接続されている。この帯状発光部10は、上面体1の左右両側辺のほぼ全長に亘り連続して設ける必要は必ずしもなく、断続的に設けるようにしてもよい。   The band-shaped light emitting unit 10 is a surface of a band-shaped wiring board on which a large number of LEDs are arranged side by side as a light emitting element 10a and sealed or covered with a transparent material such as a resin from above. The light emitting element 10a (LED) is electrically connected so as to emit light and turn on by electric power supplied from the pressure-sensitive power generation device 5 via the relay base 12a. The belt-like light emitting portion 10 does not necessarily have to be provided continuously over substantially the entire length of the left and right sides of the upper surface body 1 and may be provided intermittently.

帯状発光部5の発光素子5aはLEDに限定されるものではなく、有機ELや無機ELなどを使用してもよい。その場合は、陽電極と陰電極を両側縁に備えた帯状の有機EL又は無機ELを帯状の基板上に設け、その上から樹脂などの透明材料で封止又は被覆して帯状発光部10を作製すればよい。また、発光素子10aとして白熱球や蛍光灯を使用し、これを帯状発光部10に埋め込んでもよい。   The light emitting element 5a of the belt-like light emitting unit 5 is not limited to the LED, and an organic EL, an inorganic EL, or the like may be used. In that case, a strip-shaped organic EL or inorganic EL provided with a positive electrode and a negative electrode on both side edges is provided on a strip-shaped substrate, and the strip-shaped light emitting portion 10 is sealed or covered with a transparent material such as resin from above. What is necessary is just to produce. Alternatively, an incandescent bulb or a fluorescent lamp may be used as the light emitting element 10a, and this may be embedded in the belt-like light emitting unit 10.

双方の中継基盤13a,13bの左右両側には、保護柱14a,14aが配線基板8から立設されており、歩行圧力によって上面体1が下方に撓んだときでも保護柱14a,14aで上板1を支えて中継基板13a,13bが押し潰されないように保護している。そして、この中継基板13a,13bからリード線15a,15bが接合壁3を水密的に貫通して発電床材Pの右前コーナー部及び右後のコーナー部に引き出され、先端にコネクタ16a,16bが取付けられている。上記のリード線15a,15bは、接合壁3を貫通させないで、接合壁3の一部を切り欠いて発電床材Pのコーナー部に引き出すようにしてもよく、その場合は接合壁3の切り欠いた部分を後からシーリング材などで水密的にシールすることが望ましい。   Protection pillars 14a and 14a are erected from the wiring board 8 on both the left and right sides of both of the relay bases 13a and 13b. Even when the upper surface body 1 is bent downward by walking pressure, the protection pillars 14a and 14a are The board 1 is supported to protect the relay boards 13a and 13b from being crushed. Then, the lead wires 15a and 15b penetrate the junction wall 3 from the relay boards 13a and 13b in a watertight manner and are drawn out to the right front corner portion and the right rear corner portion of the power generation flooring P, and the connectors 16a and 16b are provided at the tips. Installed. The lead wires 15a and 15b may not be penetrated through the joining wall 3, but may be cut out at a part of the joining wall 3 and drawn out to the corner portion of the power generation flooring P. It is desirable to seal the lacked part with a sealing material after watertight.

なお、上面体1の表面に装飾用或いは防滑用の被覆シート6を重ね、意匠性を高めたり、防滑機能を付与してもよい。   Note that a decorative or anti-slip covering sheet 6 may be stacked on the surface of the upper surface body 1 to enhance the design or provide an anti-slip function.

図21に示す発電床材連結体は、上記の発電床材Pを隣接させて直線的に三枚配置すると共に、互いに隣接する発電床材Pの左右両側縁に連結用の縁材11を半ピッチずつ位置をずらせて脱着可能に取付け、この連結用縁材11によって三枚の発電床材Pを連結したものであって、前端に位置する発電床材Pの前端縁と後端に位置する発電床材Pの後端縁には非連結用の縁材110が、また、前端に位置する発電床材Pの左右両側縁の前半部と後端に位置する発電床材Pの左右両側縁の後半部には非連結用の縁材111が、それぞれ脱着可能に取付けられている。連結される発電床材Pの枚数は二枚以上であればよく、また、連結の形態は、図21に示すような直線的な連結形態でも、L形の連結形態でも、十字形の連結形態でも、その他の所望の連結形態でもよい。   The power generation flooring connector shown in FIG. 21 is arranged in a straight line with the above-mentioned power generation flooring P adjacent to each other, and the connecting edge members 11 are arranged on both left and right edges of the power generation flooring P adjacent to each other. Each of the power generation flooring materials P is connected by the connecting edge material 11 so as to be detachable by shifting the position by the pitch, and is positioned at the front edge and the rear end of the power generation flooring material P located at the front end. A non-connecting edge member 110 is provided at the rear end edge of the power generation floor material P, and left and right side edges of the power generation floor material P positioned at the front half and the rear end of the power generation floor material P positioned at the front end. The non-connecting rim material 111 is detachably attached to the latter half of each. The number of power generation floor materials P to be connected may be two or more, and the connection form is a linear connection form as shown in FIG. 21, an L-shaped connection form, or a cross-shaped connection form. However, other desired connection forms may be used.

連結用縁材11は、図22に示すように、水平な重ね縁11aの外側に略直角三角形の断面形状を有する外縁部11bを一体に設けたものであって、重ね縁11aの上面と外縁部11bの緩やかな斜面には防滑性を付与するための複数の浅い溝11cが、また、外縁部11bの底面には肉盗み用の複数の溝11dが、それぞれ形成されており、更に、重ね縁11aの下面には、面ファスナー17の係合フック又は係合ループを有する他方の面状材17bが貼着されている。   As shown in FIG. 22, the connecting edge member 11 is formed by integrally providing an outer edge portion 11b having a cross section of a substantially right triangle on the outer side of the horizontal overlapping edge 11a, and the upper surface and the outer edge of the overlapping edge 11a. A plurality of shallow grooves 11c for providing anti-slip properties are formed on the gentle slope of the portion 11b, and a plurality of grooves 11d for stealing meat are formed on the bottom surface of the outer edge portion 11b. On the lower surface of the edge 11a, the other planar material 17b having an engagement hook or an engagement loop of the hook-and-loop fastener 17 is attached.

この連結用の縁材11は、発電床材Pの左右両側縁の長さと実質的に同一の長さを有しており、図21に示すように、該縁材11を発電床材Pの左右両側縁に対し前後に半ピッチずつ位置をずらして、図22に示すように、該縁材11の重ね縁11aを発電床材Pの側縁の取付け部12に重ね、面ファスナー17の片方の面状材17aと他方の面状材17bの係合フックと係合ループを係合させることによって、脱着可能に発電床材Pの取付け部12に取付けられている。そして、このように縁材11が取付けられた状態では、縁材11の重ね縁11aの上面と、帯状発光部10の上面と、上面体1の上面が面一になり、縁材11の外縁部11bの底面と、下面体2の凸部6の下面が面一になっている。   The connecting edge member 11 has substantially the same length as the lengths of the left and right side edges of the power generation floor material P. The edge material 11 is connected to the power generation floor material P as shown in FIG. As shown in FIG. 22, the overlapping edge 11 a of the edge member 11 is overlapped with the attachment portion 12 on the side edge of the power generation flooring P, and the one side of the hook-and-loop fastener 17. By attaching the engagement hook and the engagement loop of the planar material 17a and the other planar material 17b, the planar material 17a is detachably attached to the attachment portion 12 of the power generation floor material P. When the edge member 11 is attached in this manner, the upper surface of the overlapping edge 11 a of the edge member 11, the upper surface of the strip-like light emitting unit 10, and the upper surface of the upper surface body 1 are flush with each other. The bottom surface of the portion 11b and the bottom surface of the convex portion 6 of the lower surface body 2 are flush with each other.

連結用の縁材11の材質は特に限定されるものではなく、各種の合成樹脂、ゴム、金属、木材などで作製された縁材がいずれも使用可能であるが、特に、軟質塩化ビニル樹脂やオレフィン系樹脂などの軟質合成樹脂で成形された縁材8が好ましく使用される。このような軟質合成樹脂製の縁材11で発電床材Pを連結すると、発電床材連結体の設置面に不陸があっても、軟質合成樹脂製の縁材11が変形することで、発電床材連結体が不陸に追従して発電床材相互の連結部分で折れ曲がりながら設置できる利点がある。また、ゴム製の縁材11も、同様の利点があるので好ましく使用される。   The material of the connecting rim material 11 is not particularly limited, and any rim material made of various synthetic resins, rubber, metal, wood, etc. can be used. An edge material 8 formed of a soft synthetic resin such as an olefin resin is preferably used. When the power generation floor material P is connected with the edge material 11 made of such a soft synthetic resin, even if there is unevenness on the installation surface of the power generation floor material connection body, the edge material 11 made of the soft synthetic resin is deformed, There is an advantage that the power generation flooring connected body can be installed while following the unevenness and bending at the connecting part of the power generation flooring. The rubber edge member 11 is also preferably used because it has the same advantages.

非連結用の前記縁材110,111は、連結用の縁材11と同じ材質、同じ断面形状を有するものであって、連結用の縁材11と同様に、重ね縁の下面に面ファスナー17の係合フック又は係合ループを有する他方の面状材17bを貼着したものであるが、図21に示すように、縁材110の両端と縁材111の一端は斜め45°に切断されており、縁材111の長さは縁材11の長さの略1/2になっている。そのため、縁材110の両端に縁材111,111をコ字形に接合した状態で、前端に位置する発電床材Pの前端縁と左右両側縁の前半分、及び、後端に位置する発電床材Pの後端縁と左右両側縁の後半分に脱着可能に取付けられるようになっている。   The non-connecting edge members 110 and 111 have the same material and the same cross-sectional shape as the connecting edge member 11, and like the connecting edge member 11, the hook-and-loop fastener 17 is provided on the lower surface of the overlapping edge. The other planar material 17b having the engagement hook or the engagement loop is affixed. As shown in FIG. 21, both ends of the edge member 110 and one end of the edge member 111 are cut at an angle of 45 °. The length of the edge member 111 is approximately ½ of the length of the edge member 11. Therefore, the power generation floor located at the front end edge of the power generation flooring P located at the front end, the front half of the left and right side edges, and the rear end with the edge members 111 joined to both ends of the edge member 110 in a U-shape. The material P is detachably attached to the rear end edge of the material P and the rear half of the left and right side edges.

なお、図示はしていないが、非連結用の縁材110を、前端に位置する発電床材Pの前端縁と後端に位置する発電床材Pの後端縁に脱着可能に取付けることができるように、前端に位置する発電床材Pの前端縁と後端に位置する発電床材Pの後端縁には帯状の取付け部がそれぞれ設けられており、その上面に面ファスナー17の片方の面状材17aが貼着されている。   Although not shown in the figure, the non-connecting edge member 110 may be detachably attached to the front end edge of the power generation flooring P located at the front end and the rear end edge of the power generation flooring P located at the rear end. A belt-like attachment portion is provided on each of the front end edge of the power generation flooring P located at the front end and the rear end edge of the power generation flooring P located at the rear end. The sheet material 17a is attached.

この発電床材連結体は、面ファスナー17によって連結用縁材11を発電床材Pの左右両側縁の取付け部12に脱着可能に取付けているが、面ファスナー以外の取付け手段で脱着可能に取付けてもよい。面ファスナー以外の取付け手段としては、例えば、発電床材Pの取付け部12又は連結用縁材11のいずれか一方に嵌合凸部を形成すると共に他方に嵌合凹部を形成して、嵌合凸部を嵌合凹部に脱着可能に嵌合させる取付け手段、或いは、発電床材Pの取付け部12に連結用縁材11を止具で脱着可能に取付ける取付け手段などが挙げられる。   In this power generation flooring assembly, the connecting edge member 11 is detachably attached to the attachment portions 12 on the left and right side edges of the power generation flooring P by the hook-and-loop fastener 17, but is attached to be removable by attachment means other than the hook-and-loop fastener. May be. As attachment means other than the hook-and-loop fastener, for example, a fitting convex part is formed on one of the attachment part 12 of the power generation flooring P or the connecting edge member 11, and a fitting concave part is formed on the other, and fitting is performed. An attaching means for detachably fitting the convex part to the fitting concave part, or an attaching means for detachably attaching the connecting edge member 11 to the attaching part 12 of the power generation flooring P with a stopper, or the like can be mentioned.

図21に示すように、前後に連結された発電床材P,Pの対向するコーナーにそれぞれ引き出されたリード線15a,15bは、コネクタ16a,16bで接続されており、発電床材連結体の全体に亘って帯状発光部10の発光素子10aの発光・点灯が制御されるようになっている。   As shown in FIG. 21, the lead wires 15a and 15b led out to the opposite corners of the power generation floor materials P and P connected in the front-rear direction are connected by connectors 16a and 16b, respectively. The light emission / lighting of the light emitting element 10a of the belt-like light emitting unit 10 is controlled throughout.

このような発電床材連結体を構成する発電床材Pの上面体1に歩行圧力が付加されると、床材P全体が下方に移動しようとするが、下面体2の下向きの凸部6が敷設面によって下方から支持されているため、可撓性を有する下面体2は、その凸部形成部分及びその周辺部分が上方に撓み変形して相対的に上方に押し上げられることになる。そのため、上面体1と下面体2の間の収納部4に配置された感圧発電装置5は、下面体2の凸部形成部分及びその周辺部分と上面体1とによって挟圧され、歩行圧力が効果的に感圧発電装置5に伝達されるので、その圧力変動によって感圧発電装置5は効率良く発電することができる。そして、下面体2の凸部形成部分及びその周辺部分が上記のように可撓変形すると、可撓性を有する下面体には元の形状に戻ろうとする力(反撥力)が発生するため、歩行圧力が除去されるのと同時に下面体2が元の形状に復元して感圧発電装置5が除圧され、その圧力変動によって感圧発電装置5が効率良く発電することができる。
と共に、発電床材は初期の状態に復帰する。
When walking pressure is applied to the upper surface body 1 of the power generation floor material P constituting such a power generation floor material connection body, the entire floor material P tries to move downward, but the downward convex portion 6 of the lower surface body 2. Is supported from below by the laying surface, the convex portion forming portion and the peripheral portion thereof are bent upward and deformed and relatively pushed upward. Therefore, the pressure-sensitive power generation device 5 arranged in the storage portion 4 between the upper surface body 1 and the lower surface body 2 is pinched by the convex portion forming portion of the lower surface body 2 and its peripheral portion and the upper surface body 1, and walking pressure is increased. Is effectively transmitted to the pressure-sensitive power generation device 5, so that the pressure-sensitive power generation device 5 can efficiently generate power by the pressure fluctuation. And when the convex part formation part of the lower surface body 2 and its peripheral part deform | transform flexibly as mentioned above, since the force (repulsive force) which returns to the original shape generate | occur | produces in the flexible lower surface body, At the same time as the walking pressure is removed, the lower surface body 2 is restored to its original shape and the pressure-sensitive power generation device 5 is depressurized, and the pressure-sensitive power generation device 5 can efficiently generate power by the pressure fluctuation.
At the same time, the power generation flooring returns to the initial state.

この発電床材連結体は、上記のように歩行圧力を加えた発電床材Pの感圧発電装置5が発電すると、該発電床材Pの前の発電床材、又は、該発電床材Pとその前の発電床材、又は、該発電床材Pの前後に連結された発電床材の帯状発光部10の発光素子10aが発光するように電気的に制御されている。具体的には、前端又は後端に位置する第一の発電床材Pの感圧発電装置5が感圧して発電すると、中間に位置する第二の発電床材P、又は、第一と第二の発電床材P,Pの帯状発光部10の発光素子10aが発光・点灯し、中間に位置する第二の発電床材Pの感圧発電装置3が感圧して発電すると、前後両端に位置する第一と第三の発電床材P,Pの帯状発光部10の発光素子10aが発光するように制御されている。そのため、この発電床材連結体を夜間や暗所に設置すると、各発電床材Pの帯状発光部10の発光素子10aの発光・点灯により、歩行者の誘導効果や視認性が顕著に向上する利点がある   When the pressure-sensitive power generation device 5 of the power generation flooring P to which the walking pressure is applied as described above generates power, the power generation flooring connected body or the power generation flooring P is in front of the power generation flooring P. In addition, the light-emitting element 10a of the belt-like light emitting unit 10 of the power generation flooring in front of the power generation flooring or the power generation flooring connected to the front and back of the power generation flooring P is electrically controlled to emit light. Specifically, when the pressure-sensitive power generation device 5 of the first power generation flooring P located at the front end or the rear end senses pressure and generates power, the second power generation flooring P located in the middle or the first and first When the light-emitting element 10a of the belt-like light-emitting portion 10 of the second power generation flooring P, P emits light and lights up, and the pressure-sensitive power generation device 3 of the second power generation flooring P located in the middle generates pressure and generates power, The light emitting elements 10a of the strip-like light emitting portions 10 of the first and third power generation floor materials P, P that are positioned are controlled to emit light. Therefore, when this power generation flooring assembly is installed at night or in a dark place, the pedestrian's guidance effect and visibility are remarkably improved by the light emission / lighting of the light emitting elements 10a of the belt-like light emitting portions 10 of each power generation flooring P. Have an advantage

なお、各発電床材Pの帯状発光部10の発光素子10aは、その全てが一斉に発光・点灯するように制御されている必要はなく、帯状発光部10の一部の発光素子10aが同時に発光・点灯するように制御されていてもよい。例えば、発電床材Pの寸法が大きくて帯状発光部10がかなり長い場合には、歩行圧力を感圧した感圧発電装置5よりも先方に位置する発光素子10aが同時に発光・点灯するように制御してもよい。   The light emitting elements 10a of the band-like light emitting portions 10 of the respective power generation floor materials P need not be controlled so that all of the light emitting elements 10a emit and light all at once. It may be controlled to emit light / light up. For example, when the size of the power generation flooring P is large and the belt-like light emitting unit 10 is considerably long, the light emitting element 10a located ahead of the pressure sensitive power generation device 5 that senses the walking pressure is simultaneously lit and lit. You may control.

1 上面体
2 下面体
3 接合壁
4 収納部
5 感圧発電装置
6 凸部
7 敷設面(床下地)
8 板状介在物
9 支持柱
10 帯状発光部
10a 発光素子
11 連結用の縁材
110,111 非連結用の縁材
P 発電床材
S 感圧発電装置の上方からの投影領域
SG 一群の感圧発電装置の上方からの投影領域
T 凸部の上方からの投影領域
DESCRIPTION OF SYMBOLS 1 Upper surface body 2 Lower surface body 3 Joining wall 4 Storage part 5 Pressure sensitive power generation device 6 Convex part 7 Laying surface (floor base)
DESCRIPTION OF SYMBOLS 8 Plate-shaped inclusion 9 Support pillar 10 Strip | belt-shaped light emission part 10a Light emitting element 11 Edge material for connection 110,111 Edge material for non-connection P Electric power generation floor material S Projection area | region from the upper side of a pressure sensitive power generation device SG One group of pressure sensitivity Projection area from above of power generator T Projection area from above projection

Claims (4)

上面体と、下面体と、該上面体と該下面体を接合する接合壁と、該上面体と該下面体と該接合壁とで形成される収納部に配置された一以上の感圧発電装置とを備えた発電床材であって、
上記下面体が可撓性を有し、下向きに突出する凸部を備えていることを特徴とする発電床材。
One or more pressure-sensitive power generation units disposed in a storage section formed by an upper surface body, a lower surface body, a bonding wall that bonds the upper surface body and the lower surface body, and the upper surface body, the lower surface body, and the bonding wall. A power generation flooring comprising a device,
The power generation flooring according to claim 1, wherein the lower surface body is flexible and includes a convex portion protruding downward.
前記上面体が前記下面体よりも剛性を有することを特徴とする、請求項1に記載の発電床材。   The power generation flooring according to claim 1, wherein the upper surface body is more rigid than the lower surface body. 前記凸部の上方からの投影領域が、前記感圧発電装置の上方からの投影領域と重なり、前者の投影領域の面積が、後者の投影領域の面積よりも大きいことを特徴とする、請求項1又は請求項2に記載の発電床材。   The projection area from above the convex portion overlaps with the projection area from above the pressure-sensitive power generation device, and the area of the former projection area is larger than the area of the latter projection area. The power generation flooring according to claim 1 or 2. 前記感圧発電装置が前記下面体の上面に直接または間接的に接して設けられ、該装置の上部と前記上面体の下面が離隔しているか、或いは、前記感圧発電装置が前記上面体の下面に直接または間接的に接して設けられ、該装置の下部と前記下面体の上面が離隔していることを特徴とする、請求項1ないし請求項3のいずれかに記載の発電床材。   The pressure-sensitive power generation device is provided directly or indirectly in contact with the upper surface of the lower surface body, and the upper portion of the device and the lower surface of the upper surface body are separated from each other, or the pressure-sensitive power generation device is mounted on the upper surface body. The power generation flooring according to any one of claims 1 to 3, wherein the power generation flooring is provided in direct or indirect contact with a lower surface, and a lower portion of the device is separated from an upper surface of the lower surface body.
JP2015000939A 2015-01-06 2015-01-06 Power generating floor material Pending JP2016125290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015000939A JP2016125290A (en) 2015-01-06 2015-01-06 Power generating floor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015000939A JP2016125290A (en) 2015-01-06 2015-01-06 Power generating floor material

Publications (1)

Publication Number Publication Date
JP2016125290A true JP2016125290A (en) 2016-07-11

Family

ID=56359100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015000939A Pending JP2016125290A (en) 2015-01-06 2015-01-06 Power generating floor material

Country Status (1)

Country Link
JP (1) JP2016125290A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032696A (en) * 2009-07-31 2011-02-17 Toli Corp Flooring material and method for manufacturing the same
US20110037349A1 (en) * 2009-08-11 2011-02-17 Man-Lung Sham Apparatus and method for generating electricity using piezoelectric material
JP2011153469A (en) * 2010-01-27 2011-08-11 Toli Corp Floor material and method for manufacturing the same
JP2011250520A (en) * 2010-05-24 2011-12-08 Hayami Kohei Multistage power generation unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032696A (en) * 2009-07-31 2011-02-17 Toli Corp Flooring material and method for manufacturing the same
US20110037349A1 (en) * 2009-08-11 2011-02-17 Man-Lung Sham Apparatus and method for generating electricity using piezoelectric material
JP2011153469A (en) * 2010-01-27 2011-08-11 Toli Corp Floor material and method for manufacturing the same
JP2011250520A (en) * 2010-05-24 2011-12-08 Hayami Kohei Multistage power generation unit

Similar Documents

Publication Publication Date Title
JP5396573B2 (en) Floor material and manufacturing method thereof
MY163993A (en) Light emitting device
RU2017116151A (en) TOUCH COVERING FOR INDUSTRIAL DEVICE
JP6197245B2 (en) Power generation floor material and its connected body
EP2353424A3 (en) Fluid-filled bladder for footwear and other applications
JP2014236175A5 (en)
RU2012149912A (en) PROTECTIVE PANEL INTENDED FOR ATTACHING TO THE AREA OF THE STRUCTURE OF THE BODY OF THE VEHICLE AND THE VEHICLE EQUIPPED WITH SUCH A PANEL
JP2013016458A5 (en)
TW200802741A (en) Covered devices in a semiconductor package
RU2012103539A (en) DISPLAY DEVICE
JP2016135059A (en) Power-generating floor material
JP2011187657A (en) Solar cell module and method of reinforcing solar cell module
JP2016125290A (en) Power generating floor material
KR102017683B1 (en) LED Mounting Type Handrail Assembly
JP6262535B2 (en) Floor sheet material and display floor structure
JP2015137728A (en) Seismic isolation structure for equipment
JP6343144B2 (en) Floor power generation structure
DE60216119D1 (en) INTEGRATED ARRAYS OF MODULATORS AND LASERS ON ELECTRONIC SWITCHING
JP2018147876A5 (en)
KR101429983B1 (en) Structure for absorption of impact
JP2018206592A5 (en)
DK1959494T3 (en) The power semiconductor module
WO2021185369A1 (en) Folding mobile phone shell and connector
KR20150125745A (en) Piezo-electric mat and manufacturing method of the same
KR102281898B1 (en) Functional bracket assembly for attaching photovoltaic modules with enhanced portability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120