JP2016123802A - Superconducting magnet apparatus and magnetic resonance imaging apparatus - Google Patents

Superconducting magnet apparatus and magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2016123802A
JP2016123802A JP2015002160A JP2015002160A JP2016123802A JP 2016123802 A JP2016123802 A JP 2016123802A JP 2015002160 A JP2015002160 A JP 2015002160A JP 2015002160 A JP2015002160 A JP 2015002160A JP 2016123802 A JP2016123802 A JP 2016123802A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic flux
superconducting member
cylindrical
flux converging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015002160A
Other languages
Japanese (ja)
Other versions
JP6473623B2 (en
Inventor
知新 堀
Tomochika Hori
知新 堀
照久 宮副
Teruhisa Miyafuku
照久 宮副
竜弥 安藤
Tatsuya Ando
竜弥 安藤
柴田 圭一郎
Keiichiro Shibata
圭一郎 柴田
幸信 今村
Yukinobu Imamura
幸信 今村
村田 幸弘
Yukihiro Murata
幸弘 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2015002160A priority Critical patent/JP6473623B2/en
Publication of JP2016123802A publication Critical patent/JP2016123802A/en
Application granted granted Critical
Publication of JP6473623B2 publication Critical patent/JP6473623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize uniform high magnetic field without enlarging a superconducting coil.SOLUTION: The superconducting magnet apparatus of the present invention comprises a superconducting coil 111 generating magnetic flux of a predetermined direction in space at the side of internal diameter, and a superconducting member 122 which make the magnetic flux in the space at the side of the internal diameter to converge at the side of central axis of the magnetic flux, and it is characterized by the shape of the inner wall of the cylindrical superconducting member 122. That is, when the superconducting member 122 is sectioned into plane surface vertical to the central axis of the cylinder, the area of a region surrounded by the superconducting member 122 is changed according to the position along with direction of the magnetic flux from one end part of the cylindrical superconducting member 122 to the other end part in a manner where at least 2 positions having minimum value are provided on the way reaching the other end part.SELECTED DRAWING: Figure 2

Description

本発明は、超電導磁石装置およびその超電導磁石装置を用いた磁気共鳴撮像装置(以下、MRI装置という)に関する。   The present invention relates to a superconducting magnet apparatus and a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) using the superconducting magnet apparatus.

MRI(Magnetic Resonance Imaging)装置は、医療分野で欠かすことのできない装置となっている。そして、分解能の高い撮像画像、例えば、脳内血管の鮮明な撮像画像が必要な場合には、被検体に高磁場を印加することが可能なMRI装置が用いられる。医療分野では、すでに数テスラの磁場の発生が可能なMRI装置が実用に供されている。   An MRI (Magnetic Resonance Imaging) apparatus is an indispensable apparatus in the medical field. When a high-resolution captured image, for example, a clear captured image of a blood vessel in the brain, is required, an MRI apparatus that can apply a high magnetic field to the subject is used. In the medical field, MRI apparatuses capable of generating a magnetic field of several Tesla have already been put into practical use.

MRI装置において、高磁場を実現しようとすると、その高磁場を発生する超電導磁石が大型化するという問題が存在する。超電導磁石が大型化した場合、その超電導磁石を構成する物量の材料費などのために製造コストが増大するとともに、MRI装置の設置にも広いスペースが必要となり、運用コストもかさむことになる。そこで、超電導磁石を大型化することなく高磁場を実現することが可能なMRI装置が求められている。   In an MRI apparatus, when a high magnetic field is to be realized, there is a problem that the superconducting magnet that generates the high magnetic field is enlarged. When the superconducting magnet is increased in size, the manufacturing cost increases due to the material cost of the material constituting the superconducting magnet, and a large space is also required for installing the MRI apparatus, which increases the operation cost. Therefore, there is a need for an MRI apparatus that can realize a high magnetic field without increasing the size of the superconducting magnet.

特許文献1には、超電導磁石などにより発生する磁束を、入口が広く出口が狭い円筒状または中空円錐状の超電導部材の内側を通過させて収束させ、高磁場を実現する技術が開示されている。また、特許文献2には、ソレノイドコイルなどからなる超電導磁石のコイル内部に円筒状の超電導部材を配設することによって、その超電導部材の円筒内における磁場の均一化を図る技術が開示されている。なお、これらの従来技術では、超電導状態にある超電導体は、完全反磁性を示し、その超電導体内に磁束が侵入することはないという、いわゆるマイスナー効果が共通して利用されている。   Patent Document 1 discloses a technique for realizing a high magnetic field by causing a magnetic flux generated by a superconducting magnet or the like to pass through and converge inside a cylindrical or hollow conical superconducting member having a wide inlet and a narrow outlet. . Patent Document 2 discloses a technique for making a magnetic field uniform in a cylinder of the superconducting member by disposing a cylindrical superconducting member inside a coil of a superconducting magnet such as a solenoid coil. . In these prior arts, the so-called Meissner effect is commonly used, in which superconductors in a superconducting state exhibit complete diamagnetism and magnetic flux does not enter the superconductor.

特許第5158799号公報Japanese Patent No. 5158799 特許第3184678号公報Japanese Patent No. 3184678

特許文献1には、磁束を収束させて高磁場を実現する技術は開示されているものの、その高磁場における磁束を均一化する技術については開示されていない。また、特許文献2には、高磁場を実現する技術は開示されていないが、ソレノイドコイル内部に挿入された超電導状態の円筒部材を用いて、その円筒内部の磁束を均一化する技術について開示されている。しかしながら、次に示すように、特許文献1,2に開示された技術を組み合わせたとしても、超電導磁石を大型化することなく、均一な高磁場を得ることが可能なMRI装置が実現できるとは限らない。   Patent Document 1 discloses a technique for realizing a high magnetic field by converging a magnetic flux, but does not disclose a technique for making the magnetic flux uniform in the high magnetic field. Patent Document 2 does not disclose a technique for realizing a high magnetic field, but discloses a technique for using a superconducting cylindrical member inserted in a solenoid coil to equalize the magnetic flux inside the cylinder. ing. However, as shown below, even if the techniques disclosed in Patent Documents 1 and 2 are combined, an MRI apparatus capable of obtaining a uniform high magnetic field without increasing the size of the superconducting magnet can be realized. Not exclusively.

ちなみに、特許文献2の段落0032、図2、段落0035、図5などによれば、磁束均一化のために用いる超電導状態の円筒部材(24、23)の磁束方向の長さ128mmは、その内径30mmの約4倍となっている。すなわち、円筒部材の長さは、その内径に比べて十分に大きいものとされている。しかも、円筒部材(24、23)の長さは、ソレノイドコイル11の長さ96mmよりも長く、その一部がソレノイドコイル11の外部に突出している。そして、このような構成の超電導磁石を想定すれば、円筒内部の中央部では、円筒端部での磁束の不均一性の影響が緩和されるため、当然ながら、磁束の均一化が促進される。   Incidentally, according to Paragraph 0032, FIG. 2, Paragraph 0035, FIG. 5 and the like of Patent Document 2, the length of 128 mm in the magnetic flux direction of the cylindrical member (24, 23) in the superconducting state used for uniformizing the magnetic flux has its inner diameter. It is about 4 times 30mm. That is, the length of the cylindrical member is sufficiently larger than its inner diameter. In addition, the length of the cylindrical members (24, 23) is longer than the length of the solenoid coil 11 of 96 mm, and a part of the cylindrical member protrudes outside the solenoid coil 11. If the superconducting magnet having such a configuration is assumed, the influence of the non-uniformity of the magnetic flux at the end of the cylinder is mitigated at the central portion inside the cylinder. .

それに対し、現実のMRI装置では、磁束均一化のための円筒部材の長さをその内径に比べ十分に大きくすることができるとは限らず、また、円筒部材を超電導磁石の外側まで突出させることができるとは限らない。従って、従来技術だけでは、超電導磁石を大型化することなく、均一な高磁場を得ることが可能なMRI装置を実現できるとはいえない。   On the other hand, in an actual MRI apparatus, the length of the cylindrical member for equalizing the magnetic flux cannot always be made sufficiently larger than the inner diameter, and the cylindrical member is projected to the outside of the superconducting magnet. It is not always possible. Therefore, it cannot be said that the conventional technique alone can realize an MRI apparatus capable of obtaining a uniform high magnetic field without increasing the size of the superconducting magnet.

以上のような従来技術の問題点に鑑み、本発明は、超電導コイルを大型化することなく均一な高磁場を実現することが可能な超電導磁石装置およびその超電導磁石装置を用いたMRI装置を提供することを目的とする。   In view of the above-described problems of the prior art, the present invention provides a superconducting magnet device capable of realizing a uniform high magnetic field without increasing the size of the superconducting coil, and an MRI apparatus using the superconducting magnet device. The purpose is to do.

本発明に係る超電導磁石装置は、内径側の空間に一定方向の磁束を生成する超電導コイルと、前記超電導コイルの内径側の空間の磁束をその磁束の中心軸側に収束させる超電導部材を有してなる円筒状の磁束収束部と、を備え、前記円筒状の磁束収束部を前記磁束の中心軸に垂直な平面で切断したとき、前記円筒状の磁束収束部に含まれる超電導部材で囲まれる領域の面積は、前記円筒状の磁束収束部の一方の端部から前記磁束の方向に沿って他方の端部に到るに従い変化し、その他方の端部に到るまでの間に少なくとも2つの極小値をとることを特徴とする。   A superconducting magnet device according to the present invention has a superconducting coil that generates a magnetic flux in a fixed direction in a space on the inner diameter side, and a superconducting member that converges the magnetic flux in the inner diameter side space of the superconducting coil to the central axis side of the magnetic flux. A cylindrical magnetic flux converging portion, and when the cylindrical magnetic flux converging portion is cut along a plane perpendicular to the central axis of the magnetic flux, the cylindrical magnetic flux converging portion is surrounded by a superconducting member included in the cylindrical magnetic flux converging portion The area of the region changes from one end of the cylindrical magnetic flux converging portion to the other end along the direction of the magnetic flux, and at least 2 until the other end is reached. It takes two minimum values.

本発明によれば、超電導コイルを大型化することなく均一な高磁場を実現することが可能な超電導磁石装置およびその超電導磁石装置を用いたMRI装置が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the superconducting magnet apparatus which can implement | achieve a uniform high magnetic field, without enlarging a superconducting coil, and the MRI apparatus using the superconducting magnet apparatus are provided.

本発明の第1の実施形態に係るMRI装置の外観斜視図の例を示した図。The figure which showed the example of the external appearance perspective view of the MRI apparatus which concerns on the 1st Embodiment of this invention. 図1のMRI装置のA−Aの位置における断面構造の例を模式的に示した図。The figure which showed typically the example of the cross-section in the position of AA of the MRI apparatus of FIG. 磁束収束部の超電導部材の形状の例を示した図で、(a)は、超電導部材の斜視図の例、(b)は、超電導部材の中心軸Bの方向から見た側面図の例、(c)は、超電導部材の中心軸Bを含む平面で切断したときの断面構造の例を示した図。It is the figure which showed the example of the shape of the superconducting member of a magnetic flux convergence part, (a) is an example of the perspective view of a superconducting member, (b) is the example of the side view seen from the direction of the central axis B of a superconducting member, (C) is the figure which showed the example of the cross-section when cut | disconnecting in the plane containing the central axis B of a superconducting member. 第1の実施形態に係る超電導部材による磁束均一化の効果を説明する図であり、(a)は、比較例の超電導部材の円筒内の磁束の様子を示した図、(b)は、本実施形態に係る超電導部材の円筒内の磁束の様子を示した図。It is a figure explaining the effect of the magnetic flux equalization by the superconducting member which concerns on 1st Embodiment, (a) is a figure which showed the mode of the magnetic flux in the cylinder of the superconducting member of a comparative example, (b) is this The figure which showed the mode of the magnetic flux in the cylinder of the superconducting member which concerns on embodiment. 超電導部材の断面形状の変形例を示した図。The figure which showed the modification of the cross-sectional shape of a superconducting member. 超電導部材の断面形状の他の変形例を示した図。The figure which showed the other modification of the cross-sectional shape of the superconducting member. 本発明の第2の実施形態に係るMRI装置の外観斜視図の例を示した図。The figure which showed the example of the external appearance perspective view of the MRI apparatus which concerns on the 2nd Embodiment of this invention. 図7のMRI装置のC−Cの位置における断面構造の例を模式的に示した図。The figure which showed typically the example of the cross-section in the position of CC of the MRI apparatus of FIG. 下側の超電導磁石に取り付けられる磁束収束部(下部磁束収束部)の超電導部材の斜視図の例を示した図。The figure which showed the example of the perspective view of the superconducting member of the magnetic flux converging part (lower magnetic flux converging part) attached to a lower superconducting magnet. 第2の実施形態に係る超電導部材による磁束収束および磁束均一化の効果を説明する図。The figure explaining the effect of the magnetic flux convergence by the superconducting member which concerns on 2nd Embodiment, and magnetic flux equalization.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to a common component and the overlapping description is abbreviate | omitted.

<第1の実施形態>
図1は、本発明の第1の実施形態に係るMRI装置100の外観斜視図の例を示した図であり、図2は、図1のMRI装置100のA−Aの位置における断面構造の例を模式的に示した図である。図1および図2に示すように、MRI装置100の主要部は、支持筺体である円筒状のガントリ10の内部に、円筒状の超電導磁石11が収容されて構成されている。そして、本実施形態では、円筒状の超電導磁石11の内径側にさらに磁束収束部12が取り付けられているのが特徴となっている。
<First Embodiment>
FIG. 1 is a view showing an example of an external perspective view of the MRI apparatus 100 according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the MRI apparatus 100 in FIG. It is the figure which showed the example typically. As shown in FIGS. 1 and 2, the main part of the MRI apparatus 100 is configured such that a cylindrical superconducting magnet 11 is accommodated in a cylindrical gantry 10 that is a support housing. In this embodiment, the magnetic flux converging part 12 is further attached to the inner diameter side of the cylindrical superconducting magnet 11.

ここで、円筒状の磁束収束部12の円筒内の空間は、被検体挿入領域15と呼ばれ、テーブル2上に載置された被検体4が挿入される。そして、被検体4が載置されたテーブル2の挿抜は、制御装置5からの指示に従ってテーブル駆動部3によって行われる。   Here, the space in the cylinder of the cylindrical magnetic flux converging unit 12 is called a subject insertion region 15, and the subject 4 placed on the table 2 is inserted therein. The table driving unit 3 inserts and removes the table 2 on which the subject 4 is placed in accordance with an instruction from the control device 5.

なお、円筒状の超電導磁石11の円筒内(内径側)には、磁束収束部12のほかにも、図示しない磁場勾配コイルや磁気共鳴信号取得のための高周波コイルなどが配設されている。制御装置5は、これらのコイルへ供給する電流や信号を制御するとともに、高周波コイルから得られる磁気共鳴信号を用いて被検体4の2次元または3次元画像を生成し、生成した画像を表示装置6に表示する。   In addition to the magnetic flux converging unit 12, a magnetic field gradient coil (not shown), a high-frequency coil for acquiring a magnetic resonance signal, and the like are disposed in the cylinder (inner diameter side) of the cylindrical superconducting magnet 11. The control device 5 controls currents and signals supplied to these coils, generates a two-dimensional or three-dimensional image of the subject 4 using a magnetic resonance signal obtained from the high-frequency coil, and displays the generated image as a display device. 6 is displayed.

さらに、図2に示すように、超電導磁石11は、真空容器112の中に収容され、図示しない輻射シールドに囲まれた超電導コイル111によって構成される。このとき、超電導コイル111は、第1冷却部13から供給される液体ヘリウムなどの冷媒を介して冷却されてもよいし、第1冷却部13につながった熱伝導部材を介して冷却されてもよい。なお、超電導コイル111が冷媒を介して冷却される場合には、超電導コイル111は、輻射シールド(図示省略)の内側に設けられた冷媒容器(図示省略)に収容されるものとする。   Further, as shown in FIG. 2, the superconducting magnet 11 is housed in a vacuum vessel 112 and is constituted by a superconducting coil 111 surrounded by a radiation shield (not shown). At this time, the superconducting coil 111 may be cooled via a refrigerant such as liquid helium supplied from the first cooling unit 13 or may be cooled via a heat conducting member connected to the first cooling unit 13. Good. When the superconducting coil 111 is cooled via a refrigerant, the superconducting coil 111 is accommodated in a refrigerant container (not shown) provided inside a radiation shield (not shown).

また、磁束収束部12は、設置台121に取り付けられた超電導部材122が真空容器124の中に収容され、さらに輻射シールド123に囲まれて構成される。そして、真空容器124は、円筒状の超電導磁石11の真空容器112の内径面に図示しない締結部材を介して固定されるとともに、超電導部材122が取り付けられた設置台121は、荷重支持体120を介して、真空容器124の超電導磁石11側の面に取り付けられる。このとき、超電導部材122は、第2冷却部14から供給される液体ヘリウムなどの冷媒を介して冷却されてもよいし、第2冷却部14につながった熱伝導部材を介して冷却されてもよい。なお、超電導部材122が冷媒を介して冷却される場合には、超電導部材122は、輻射シールド123の内側に設けられた冷媒容器(図示省略)に収容されているものとする。   Further, the magnetic flux converging unit 12 is configured such that a superconducting member 122 attached to an installation base 121 is housed in a vacuum vessel 124 and is further surrounded by a radiation shield 123. The vacuum vessel 124 is fixed to the inner diameter surface of the vacuum vessel 112 of the cylindrical superconducting magnet 11 via a fastening member (not shown), and the installation table 121 to which the superconducting member 122 is attached attaches the load support 120. And is attached to the surface of the vacuum vessel 124 on the superconducting magnet 11 side. At this time, the superconducting member 122 may be cooled via a refrigerant such as liquid helium supplied from the second cooling unit 14 or may be cooled via a heat conducting member connected to the second cooling unit 14. Good. When the superconducting member 122 is cooled via a refrigerant, the superconducting member 122 is assumed to be accommodated in a refrigerant container (not shown) provided inside the radiation shield 123.

ここで、第1冷却部13と第2冷却部14とは、互いに独立に制御され、動作するものとし、真空容器112と真空容器124とは、互いに連通していないものとする。従って、超電導コイル111の冷却温度と超電導部材122の冷却温度は、互いに相違してもよい。よって、超電導コイル111の線材として、例えば、ニオブ・チタン(NbTi)、ニオブ・スズ(NbSn)などを用い、磁束収束部12の超電導部材122として高温超電導材料を用いるようなことをしてもよい。 Here, the first cooling unit 13 and the second cooling unit 14 are controlled and operated independently of each other, and the vacuum vessel 112 and the vacuum vessel 124 are not in communication with each other. Therefore, the cooling temperature of the superconducting coil 111 and the cooling temperature of the superconducting member 122 may be different from each other. Therefore, for example, niobium titanium (NbTi), niobium tin (Nb 3 Sn) or the like is used as the wire of the superconducting coil 111, and a high-temperature superconducting material is used as the superconducting member 122 of the magnetic flux converging unit 12. Also good.

また、図2に示すように、第2冷却部14と超電導部材122とをつなぐ冷媒の通路または熱伝導経路の途中にヒータ16を配設してもよい。なお、この場合のヒータ16の役割については後記する。   Further, as shown in FIG. 2, the heater 16 may be disposed in the middle of the refrigerant path or the heat conduction path connecting the second cooling unit 14 and the superconducting member 122. The role of the heater 16 in this case will be described later.

以上、図1および図2に示したような構成を有するMRI装置100においては、円筒状の超電導磁石11の円筒内には、円筒の中心軸に略平行な方向、すなわち、被検体4の体軸と略平行な方向の磁束が発生する。このようなMRI装置100は、しばしば、水平型MRI装置と呼ばれる。そして、本実施形態では、前記したように、超電導磁石11の円筒内には、超電導部材122を備えてなる円筒状の磁束収束部12がさらに配設されている。   As described above, in the MRI apparatus 100 having the configuration as shown in FIGS. 1 and 2, the cylindrical superconducting magnet 11 has a direction substantially parallel to the central axis of the cylinder, that is, the body of the subject 4. Magnetic flux is generated in a direction substantially parallel to the axis. Such an MRI apparatus 100 is often referred to as a horizontal MRI apparatus. In the present embodiment, as described above, the cylindrical magnetic flux converging unit 12 including the superconducting member 122 is further disposed in the cylinder of the superconducting magnet 11.

ここで、磁束収束部12の設置台121や真空容器124は、非磁性のステンレスなどで構成され、超電導部材122は、所定の臨界温度以下で超電導状態になる超電導体で構成されている。そのため、超電導部材122が所定の臨界温度以下になったときには、超電導磁石11の円筒内を通る磁束は、磁束収束部12の超電導部材122の外側に排斥され、その磁束の中心軸側に収束させられる。その結果、円筒状の磁束収束部12の円筒内の空間、すなわち、被検体挿入領域15における磁束密度(磁場強度)は大きくなる。   Here, the installation base 121 and the vacuum vessel 124 of the magnetic flux converging unit 12 are made of nonmagnetic stainless steel or the like, and the superconducting member 122 is made of a superconductor that is in a superconducting state below a predetermined critical temperature. Therefore, when the superconducting member 122 becomes a predetermined critical temperature or less, the magnetic flux passing through the cylinder of the superconducting magnet 11 is rejected to the outside of the superconducting member 122 of the magnetic flux converging unit 12 and converged to the central axis side of the magnetic flux. It is done. As a result, the magnetic flux density (magnetic field strength) in the cylindrical space of the cylindrical magnetic flux converging unit 12, that is, the subject insertion region 15, is increased.

さらに、図3を用いて、磁束収束部12の超電導部材122の形状について詳しく説明する。ここで、図3は、超電導部材122の形状の例を示した図で、(a)は、超電導部材122の斜視図の例、(b)は、超電導部材122の中心軸Bの方向から見た側面図の例、(c)は、超電導部材122の中心軸Bを含む平面で切断したときの断面構造の例を示した図である。   Furthermore, the shape of the superconducting member 122 of the magnetic flux converging unit 12 will be described in detail with reference to FIG. Here, FIG. 3 is a diagram showing an example of the shape of the superconducting member 122, (a) is an example of a perspective view of the superconducting member 122, and (b) is a view from the direction of the central axis B of the superconducting member 122. (C) is a diagram showing an example of a cross-sectional structure when cut along a plane including the central axis B of the superconducting member 122.

図3(a)〜(c)に示すように、超電導部材122の外観は、円筒形状をしているが、さらに、次の2つの特徴を有している。その1つは、円筒形状の超電導部材122にスリット125が設けられていることである。スリット125は、中心軸Bに沿って超電導部材122の円筒側面に設けられた間隙であり、超電導部材122の円筒内を通過する磁束によって、その磁束の周囲に生じる周回電流を阻止するためのものである。なお、スリット125は、単なる間隙でなく、通常は、その間隙に絶縁性の樹脂などが詰め込まれたものとなっている。また、超電導部材122に設けられるスリット125の数は、1つに限定されず、2つ以上であってもよい。   As shown in FIGS. 3A to 3C, the superconducting member 122 has a cylindrical appearance, but has the following two features. One of them is that a slit 125 is provided in a cylindrical superconducting member 122. The slit 125 is a gap provided on the cylindrical side surface of the superconducting member 122 along the central axis B, and prevents the circulating current generated around the magnetic flux by the magnetic flux passing through the cylinder of the superconducting member 122. It is. Note that the slit 125 is not a mere gap, but is usually filled with an insulating resin or the like in the gap. Further, the number of slits 125 provided in the superconducting member 122 is not limited to one and may be two or more.

本実施形態に係る超電導部材122の形状のもう1つの特徴は、円筒形状の超電導部材122の円筒内壁に凹凸が形成されていることである。この凹凸は、超電導部材122の円筒の内部、すなわち、被検体挿入領域15における磁束の均一度を向上させるために形成されたものである。従って、その凹凸の形状は、超電導部材122の中心軸Bを中心に略回転対称となっており、中心軸Bを含む平面で切断したときの断面形状は、例えば、図3(c)に示すような形状をしている。すなわち、超電導部材122は、その一方の端部から円筒の奥に行くにつれて次第に厚くなり、中央付近で薄くなり、他方の端部で再度厚くなるという断面構造をしている。   Another feature of the shape of the superconducting member 122 according to this embodiment is that irregularities are formed on the cylindrical inner wall of the cylindrical superconducting member 122. The unevenness is formed in order to improve the uniformity of the magnetic flux in the cylinder of the superconducting member 122, that is, in the subject insertion region 15. Therefore, the shape of the unevenness is substantially rotationally symmetric about the central axis B of the superconducting member 122, and the cross-sectional shape when cut along a plane including the central axis B is, for example, shown in FIG. It has a shape like this. That is, the superconducting member 122 has a cross-sectional structure that gradually increases in thickness from one end portion toward the back of the cylinder, becomes thinner near the center, and becomes thicker again at the other end portion.

言い換えれば、超電導部材122を中心軸Bに垂直な平面で切断したとき、その超電導部材122で囲まれる領域の面積(ただし、スリット125は無いものとみなす)は、超電導部材122の円筒の一方の端部から他方の端部に到るまでの間に、2つの極小値と1つの極大値をとることになる。つまり、超電導部材122の円筒内を通る磁束の通路は、一方の端部から奥に進むにつれて次第に狭くなり、あるところから次第に広くなっていく。そして、円筒の中央部付近を過ぎると再度狭くなっていき、他方の端部の手前から再度広くなっていく。   In other words, when the superconducting member 122 is cut along a plane perpendicular to the central axis B, the area of the region surrounded by the superconducting member 122 (however, it is assumed that there is no slit 125) is one of the cylinders of the superconducting member 122. Between the end portion and the other end portion, two minimum values and one maximum value are taken. In other words, the path of the magnetic flux passing through the cylinder of the superconducting member 122 becomes gradually narrower from one end to the back and gradually becomes wider from a certain point. And after passing the central part vicinity of a cylinder, it will become narrow again, and it will become wide again before the other edge part.

図4は、超電導部材122による磁束均一化の効果を説明する図であり、(a)は、比較例の超電導部材122aの円筒内の磁束の例を示した図、(b)は、本実施形態に係る超電導部材122の円筒内の磁束の例を示した図である。なお、図4(a)、(b)では、非磁性の設置台121、真空容器124などの図示は省略されている。   4A and 4B are diagrams for explaining the effect of uniforming the magnetic flux by the superconducting member 122. FIG. 4A is a diagram showing an example of the magnetic flux in the cylinder of the superconducting member 122a of the comparative example, and FIG. It is the figure which showed the example of the magnetic flux in the cylinder of the superconducting member 122 which concerns on a form. In FIGS. 4A and 4B, illustrations of the non-magnetic installation base 121, the vacuum vessel 124, and the like are omitted.

図4(a)の比較例では、超電導部材122aの内壁に凹凸はないものとしている。従って、超電導磁石11の内径側の磁束(矢印付きで示した流線)の通過可能な断面積は、側方が超電導部材122aで囲まれた被検体挿入領域15ではマイスナー効果により小さくなるため、その領域での磁束密度つまり磁場強度は大きくなる。しかしながら、超電導部材122aの円筒内における磁束の通過可能な断面積は、奥に進むにつれいったん小さくなった後は、ほぼ一定の断面積となる。そのため、超電導部材122aの円筒の中央の被検体挿入領域15における磁束は、超電導部材122aの端部効果の影響を受けて、どうしても磁束の中心軸側に寄りがちとなる。その結果、被検体挿入領域15における磁束の均一性が十分に確保されないことになる。   In the comparative example of FIG. 4A, it is assumed that the inner wall of the superconducting member 122a is not uneven. Accordingly, the cross-sectional area through which the magnetic flux (streamlines shown with arrows) on the inner diameter side of the superconducting magnet 11 can pass is reduced by the Meissner effect in the subject insertion region 15 whose side is surrounded by the superconducting member 122a. The magnetic flux density, that is, the magnetic field strength in that region increases. However, the cross-sectional area through which the magnetic flux can pass in the cylinder of the superconducting member 122a becomes a substantially constant cross-sectional area once it becomes smaller as it goes deeper. Therefore, the magnetic flux in the subject insertion region 15 at the center of the cylinder of the superconducting member 122a tends to be closer to the central axis side of the magnetic flux due to the influence of the end effect of the superconducting member 122a. As a result, the magnetic flux uniformity in the subject insertion region 15 is not sufficiently ensured.

一方、本実施形態の一例である図4(b)の場合、超電導部材122の円筒内における磁束の通過可能な断面積は、奥に進むにつれ小さくなった後、再度、大きくなっている。すなわち、超電導部材122の内壁には、両端の端部近傍に凸部があり、中央部に凹部がある。そのため、超電導部材122の円筒内を通過する磁束は、端部近傍の凸部により収束されて磁場強度が大きくなる。また、超電導部材122の円筒の中央部の凹部では、磁束が通過できる空間が外側に広がっているため、磁束もやや外側に広がることになる。よって、比較例(図4(a))では、被検体挿入領域15で磁束が磁束の中心軸に寄りがちであったものを、本実施形態(図4(b))では、その磁束を外側に広げることができるので、磁束の均一性を向上させることができる。   On the other hand, in the case of FIG. 4B as an example of the present embodiment, the cross-sectional area through which the magnetic flux can pass in the cylinder of the superconducting member 122 becomes smaller as it goes further, and then becomes larger again. That is, the inner wall of the superconducting member 122 has a convex portion in the vicinity of both end portions and a concave portion in the central portion. Therefore, the magnetic flux passing through the cylinder of the superconducting member 122 is converged by the convex portion near the end portion, and the magnetic field strength is increased. In addition, in the concave portion at the center of the cylinder of the superconducting member 122, the space through which the magnetic flux can pass spreads outward, so the magnetic flux also spreads outward slightly. Therefore, in the comparative example (FIG. 4A), the magnetic flux tends to be close to the central axis of the magnetic flux in the subject insertion region 15, but in the present embodiment (FIG. 4B), the magnetic flux is outside. Therefore, the uniformity of the magnetic flux can be improved.

なお、図3、図4(b)に示したような超電導部材122の内壁に設ける凸部や凹部のさらに詳細な形状は、例えば、コンピュータシミュレーションなどにより事前に求めることができる。また、超電導部材122の形状の他の例としては、さらに図5および図6に示すような変形例を想定することができる。   Note that more detailed shapes of the convex portions and concave portions provided on the inner wall of the superconducting member 122 as shown in FIGS. 3 and 4B can be obtained in advance by computer simulation, for example. Further, as another example of the shape of the superconducting member 122, modifications as shown in FIGS. 5 and 6 can be assumed.

図5は、超電導部材122の断面形状の変形例を示した図である。この変形例に係る超電導部材122bは、図5に示すように中心軸Bに沿って、その内壁に3つの凸部と2つの凹部を有している。このとき、中央の凸部の効果は、図3に示した超電導部材122の中央部の凹部に、さらに新たな凸部が設けられたものと考えると分かり易い。すなわち、図3(図4(b))に示した超電導部材122に設けられた中央部の凹部により、被検体挿入領域15での磁束が外側に広げられ過ぎるような場合には、その凹部に図5で新たに設けられた凸部により、被検体挿入領域15での磁束を中心軸B側に押し戻すことができる。よって、被検体挿入領域15における磁束の均一性を向上させることができる。   FIG. 5 is a view showing a modification of the cross-sectional shape of the superconducting member 122. The superconducting member 122b according to this modification has three convex portions and two concave portions on the inner wall along the central axis B as shown in FIG. At this time, the effect of the central convex portion can be easily understood by assuming that a new convex portion is provided in the concave portion at the central portion of the superconducting member 122 shown in FIG. That is, when the magnetic flux in the subject insertion region 15 is excessively spread outward by the central concave portion provided in the superconducting member 122 shown in FIG. 3 (FIG. 4B), the concave portion The magnetic flux in the subject insertion region 15 can be pushed back to the central axis B side by the convex portion newly provided in FIG. Therefore, the uniformity of the magnetic flux in the subject insertion region 15 can be improved.

以上の考えを拡大すると、超電導部材122bの内壁に設けられる凸部は、さらに4つ以上であってもよく、また、凹部は、3つ以上であってもよい。このような場合にも、コンピュータシミュレーションにより、適宜、その形状を定めることができる。   When the above idea is expanded, the number of convex portions provided on the inner wall of the superconducting member 122b may be four or more, and the number of concave portions may be three or more. Even in such a case, the shape can be appropriately determined by computer simulation.

図6は、超電導部材122の断面形状の他の変形例を示した図である。図6に示すように、この変形例では、円筒状の超電導磁石11の円筒の端部の内壁に、新たな超電導部材122cが設けられている点で、図4(b)に示した本実施形態に係る超電導部材122の形状と相違している。なお、図6では、超電導部材122cは、超電導部材122と分離されているが、両者がつながった構造であってもよい。   FIG. 6 is a view showing another modification of the cross-sectional shape of the superconducting member 122. As shown in FIG. 6, in this modification, the present embodiment shown in FIG. 4B is provided in that a new superconducting member 122c is provided on the inner wall of the cylindrical end portion of the cylindrical superconducting magnet 11. This is different from the shape of the superconducting member 122 according to the embodiment. In FIG. 6, the superconducting member 122c is separated from the superconducting member 122, but may have a structure in which both are connected.

本変形例では、超電導磁石11の内径側を通過する磁束は、超電導磁石11の端部に設けられた超電導部材122cで予め収束させられるので、超電導部材122では、収束させる度合いが小さくて済むこととなり、磁束の均一化が促進される。   In this modification, since the magnetic flux passing through the inner diameter side of the superconducting magnet 11 is converged in advance by the superconducting member 122c provided at the end of the superconducting magnet 11, the degree of convergence can be small in the superconducting member 122. Thus, the uniform magnetic flux is promoted.

また、本変形例では、超電導部材122cは、超電導磁石11の一方の端部にしか設けないものとしているが、両方の端部に設けてもよい。なお、超電導部材122cを超電導磁石11の一方の端部にしか設けないとしたのは、その超電導部材122cを設けない端部からテーブル2に載置した被検体4を被検体挿入領域15へ挿入する場合の便宜を考慮したものである。   In the present modification, the superconducting member 122c is provided only at one end of the superconducting magnet 11, but may be provided at both ends. The reason why the superconducting member 122c is provided only at one end of the superconducting magnet 11 is that the subject 4 placed on the table 2 is inserted into the subject insertion region 15 from the end where the superconducting member 122c is not provided. This is for convenience.

以上に説明した第1の実施形態およびその変形例に係る超電導部材122,122b,122cは、その全体が所定の臨界温度以下で超電導状態になるバルク材の超電導体で構成されているものとしている。しかしながら、一般的な超電導体のバルク材はもろいので、ここでは、超電導体を樹脂で固めたものを用いる。その場合、樹脂は、その温度膨張係数が固められる超電導体の温度膨張係数にできるだけ近いものが好ましい。また、磁束収束部12の冷却効率の観点からは、熱伝導率が大きい樹脂が好ましい。
また、超電導部材122,122b,122cは、金属やセラミックスの表面に、超電導体を蒸着したものでもよい。また、金属やセラミックスや樹脂成型物に超電導体を含んでなるテープ材を貼付したものであってもよい。
The superconducting members 122, 122b, and 122c according to the first embodiment and the modification described above are assumed to be composed of a bulk superconductor that becomes a superconducting state below a predetermined critical temperature. . However, since a bulk material of a general superconductor is fragile, a superconductor solidified with a resin is used here. In that case, it is preferable that the resin is as close as possible to the temperature expansion coefficient of the superconductor whose temperature expansion coefficient is solidified. Further, from the viewpoint of the cooling efficiency of the magnetic flux converging part 12, a resin having a high thermal conductivity is preferable.
Further, the superconducting members 122, 122b, and 122c may be formed by depositing a superconductor on the surface of metal or ceramic. Moreover, what stuck the tape material which contains a superconductor to a metal, ceramics, or a resin molding may be used.

第1の実施形態の説明の最後に超電導コイル111および超電導部材122の冷却および運転の仕方について補足しておく。すなわち、本実施形態では、第2冷却部14(図2参照)で超電導部材122を超電導状態になるまで冷却し、その後、第1冷却部13で冷却されすでに超電導状態になっている超電導コイル111に通電し、超電導コイル111の内径側に磁束を生成するようにするものとする。こうすることにより、超電導部材122でのマイスナー効果が確実に発現し、超電導コイル111の内径側に生成された磁束は、超電導部材122により確実に収束されることになる。   At the end of the description of the first embodiment, a supplementary description will be given of how to cool and operate the superconducting coil 111 and the superconducting member 122. That is, in the present embodiment, the superconducting member 122 is cooled by the second cooling unit 14 (see FIG. 2) until it is in the superconducting state, and then cooled by the first cooling unit 13 and already in the superconducting state. And a magnetic flux is generated on the inner diameter side of the superconducting coil 111. By doing so, the Meissner effect in the superconducting member 122 is surely expressed, and the magnetic flux generated on the inner diameter side of the superconducting coil 111 is reliably converged by the superconducting member 122.

また、図2に示したように、第2冷却部14と超電導部材122とをつなぐ冷媒の通路または熱伝導経路の途中に設けられたヒータ16は、超電導コイル111の内径側に生成される磁場の強度(磁束密度)を切り替えるのに用いられる。すなわち、ヒータ16により超電導部材122の温度を臨界温度以上にすれば、超電導部材122による磁束の収束効果が消滅するので、被検体挿入領域15における磁場強度を高磁場から低磁場に切り換えることができる。また、温度調整によって超電導部材122のマイスナー効果の大きさを調整することもできる。   As shown in FIG. 2, the heater 16 provided in the middle of the refrigerant path or the heat conduction path connecting the second cooling unit 14 and the superconducting member 122 is a magnetic field generated on the inner diameter side of the superconducting coil 111. It is used to switch the strength (magnetic flux density). That is, if the temperature of the superconducting member 122 is raised to a critical temperature or higher by the heater 16, the magnetic flux converging effect by the superconducting member 122 disappears, so that the magnetic field strength in the subject insertion region 15 can be switched from a high magnetic field to a low magnetic field. . Moreover, the magnitude of the Meissner effect of the superconducting member 122 can be adjusted by adjusting the temperature.

以上、本発明の第1の実施形態によれば、円筒状の超電導コイル111の径側の空間に超電導部材122を有してなる円筒状の磁束収束部12が配設されるので、側方がその超電導部材122で囲まれる空間、すなわち、被検体挿入領域15では磁束が収束され、磁場強度が増大する。また、超電導部材122で囲まれる空間の磁束方向に垂直な平面で切断したときの断面積、すなわち、磁束が通過可能な断面積を適切に定めることにより、被検体挿入領域15における磁束の均一化を図ることができる。よって、水平型のMRI装置100において、超電導コイル111の起磁力を大きくすることなく、すなわち、超電導磁石11を大型化することなく、均一な高磁場を得ることが可能になる。   As described above, according to the first embodiment of the present invention, the cylindrical magnetic flux converging portion 12 including the superconducting member 122 is disposed in the radial space of the cylindrical superconducting coil 111. However, the magnetic flux is converged in the space surrounded by the superconducting member 122, that is, the subject insertion region 15, and the magnetic field strength is increased. Further, the magnetic flux in the subject insertion region 15 can be made uniform by appropriately determining a cross-sectional area when cut along a plane perpendicular to the magnetic flux direction of the space surrounded by the superconducting member 122, that is, a cross-sectional area through which the magnetic flux can pass. Can be achieved. Therefore, in the horizontal MRI apparatus 100, it is possible to obtain a uniform high magnetic field without increasing the magnetomotive force of the superconducting coil 111, that is, without increasing the size of the superconducting magnet 11.

<第2の実施形態>
図7は、本発明の第2の実施形態に係るMRI装置200の外観斜視図の例を示した図であり、図8は、図7のMRI装置200のC−Cの位置における断面構造の例を模式的に示した図である。図7および図8に示すように、MRI装置200の主要部は、上下に分離された支持筺体である頑丈な円盤状のガントリ20の内部に、それぞれ、上下の磁極を形成する水平環状の超電導磁石21が収容されて構成されている。そして、本実施形態では、上下の水平環状の超電導磁石21のそれぞれの下面および上面に、上下に分離された磁束収束部22が取り付けられているのが特徴となっている。
<Second Embodiment>
FIG. 7 is a view showing an example of an external perspective view of the MRI apparatus 200 according to the second embodiment of the present invention. FIG. 8 is a cross-sectional view of the MRI apparatus 200 in FIG. It is the figure which showed the example typically. As shown in FIG. 7 and FIG. 8, the main part of the MRI apparatus 200 is a horizontal annular superconductor that forms upper and lower magnetic poles inside a sturdy disk-shaped gantry 20 that is a support housing separated vertically. The magnet 21 is accommodated and configured. The present embodiment is characterized in that the magnetic flux converging portions 22 separated in the vertical direction are attached to the lower surface and the upper surface of the upper and lower horizontal annular superconducting magnets 21, respectively.

ここで、上下の磁束収束部22で挟まれた空間の中央部分は、被検体挿入領域25と呼ばれ、テーブル2上に載置された被検体4が挿入される。そして、被検体4が載置されたテーブル2の挿抜は、第1の実施形態の場合と同様に、制御装置5からの指示に従ってテーブル駆動部3によって行われる。   Here, the central portion of the space sandwiched between the upper and lower magnetic flux converging portions 22 is called a subject insertion region 25, and the subject 4 placed on the table 2 is inserted. Then, insertion / extraction of the table 2 on which the subject 4 is placed is performed by the table driving unit 3 in accordance with an instruction from the control device 5 as in the case of the first embodiment.

なお、上下の水平環状の超電導磁石21のそれぞれの下面および上面には、磁束収束部22のほかにも、図示しない磁場勾配コイルや磁気共鳴信号取得のための高周波コイルなどが配設されている。制御装置5は、これらのコイルへ供給する電流や信号を制御するとともに、高周波コイルから得られる磁気共鳴信号を用いて被検体4の2次元または3次元画像を生成し、生成した画像を表示装置6に表示する。   In addition to the magnetic flux converging unit 22, a magnetic field gradient coil (not shown) and a high-frequency coil for acquiring a magnetic resonance signal are disposed on the lower and upper surfaces of the upper and lower horizontal annular superconducting magnets 21. . The control device 5 controls currents and signals supplied to these coils, generates a two-dimensional or three-dimensional image of the subject 4 using a magnetic resonance signal obtained from the high-frequency coil, and displays the generated image as a display device. 6 is displayed.

さらに、図8に示すように、上下に分離された超電導磁石21は、それぞれが真空容器212の中に収容され、図示しない輻射シールドに囲まれた超電導コイル211によって構成される。このとき、超電導コイル211は、第1冷却部23から供給される液体ヘリウムなどの冷媒を介して冷却されてもよいし、第1冷却部23につながった熱伝導部材を介して冷却されてもよい。なお、超電導コイル211が冷媒を介して冷却される場合には、超電導コイル211は、輻射シールド(図示省略)の内側に設けられた冷媒容器(図示省略)に収容されるものとする。   Further, as shown in FIG. 8, the superconducting magnets 21 separated in the upper and lower directions are each housed in a vacuum vessel 212 and are constituted by a superconducting coil 211 surrounded by a radiation shield (not shown). At this time, the superconducting coil 211 may be cooled via a refrigerant such as liquid helium supplied from the first cooling unit 23 or may be cooled via a heat conducting member connected to the first cooling unit 23. Good. In addition, when the superconducting coil 211 is cooled via a refrigerant, the superconducting coil 211 is accommodated in a refrigerant container (not shown) provided inside a radiation shield (not shown).

また、上下に分離された磁束収束部22は、それぞれ、設置台221に取り付けられた超電導部材222が真空容器224の中に収容され、さらに輻射シールド223に囲まれて構成される。そして、上下の真空容器224は、それぞれ上下の円盤状の超電導磁石21の真空容器212の下面または上面に図示しない締結部材を介して固定される。また、超電導部材222が取り付けられた設置台221は、荷重支持体220を介して、真空容器224の超電導磁石11側の面に取り付けられる。このとき、超電導部材222は、第2冷却部24から供給される液体ヘリウムなどの冷媒を介して冷却されてもよいし、第2冷却部24につながった熱伝導部材を介して冷却されてもよい。なお、超電導部材222が冷媒を介して冷却される場合には、超電導部材222は、輻射シールド223の内側に設けられた冷媒容器(図示省略)に収容されているものとする。   In addition, the magnetic flux converging portions 22 separated in the vertical direction are configured such that the superconducting member 222 attached to the installation base 221 is accommodated in the vacuum vessel 224 and is further surrounded by the radiation shield 223. The upper and lower vacuum containers 224 are fixed to the lower surface or upper surface of the vacuum container 212 of the upper and lower disk-shaped superconducting magnets 21 via a fastening member (not shown). The installation base 221 to which the superconducting member 222 is attached is attached to the surface of the vacuum vessel 224 on the superconducting magnet 11 side via the load support 220. At this time, the superconducting member 222 may be cooled via a refrigerant such as liquid helium supplied from the second cooling unit 24 or may be cooled via a heat conducting member connected to the second cooling unit 24. Good. When the superconducting member 222 is cooled via a refrigerant, the superconducting member 222 is accommodated in a refrigerant container (not shown) provided inside the radiation shield 223.

ここで、第1冷却部23と第2冷却部24とは、互いに独立に制御され、動作するものとし、真空容器212と真空容器224とは、互いに連通していないものとする。従って、超電導コイル211の冷却温度と超電導部材222の冷却温度は、互いに相違してもよい。よって、超電導コイル211の線材として、例えば、ニオブ・チタン(NbTi)、ニオブ・スズ(NbSn)などを用い、磁束収束部22の超電導部材222として高温超電導材料を用いるようなことをしてもよい。 Here, the first cooling unit 23 and the second cooling unit 24 are controlled and operated independently of each other, and the vacuum vessel 212 and the vacuum vessel 224 are not in communication with each other. Therefore, the cooling temperature of the superconducting coil 211 and the cooling temperature of the superconducting member 222 may be different from each other. Therefore, for example, niobium titanium (NbTi), niobium tin (Nb 3 Sn) or the like is used as the wire of the superconducting coil 211, and a high-temperature superconducting material is used as the superconducting member 222 of the magnetic flux converging unit 22. Also good.

また、図8に示すように、第2冷却部24と超電導部材122とをつなぐ冷媒の通路または熱伝導経路の途中にヒータ26を配設してもよい。なお、この場合のヒータ26の役割は、第1の実施形態のヒータ16(図2参照)の役割と同じである。   Further, as shown in FIG. 8, the heater 26 may be disposed in the middle of the refrigerant path or the heat conduction path connecting the second cooling unit 24 and the superconducting member 122. In this case, the role of the heater 26 is the same as the role of the heater 16 (see FIG. 2) of the first embodiment.

以上、図7および図8に示したような構成を有するMRI装置200においては、上下に分離された2つの超電導磁石21を仮想的につなぐ円筒内で超電導コイル211の内径側には、その円筒の中心軸に略平行な方向、すなわち、被検体4の体軸と略垂直な方向の磁束が発生する。このようなMRI装置200は、しばしば、垂直型MRI装置と呼ばれる。そして、本実施形態では、2つの超電導磁石21を仮想的につなぐ円筒内の両端部には、超電導部材222を備えてなる磁束収束部22が配設されていることになる。   As described above, in the MRI apparatus 200 having the configuration as shown in FIGS. 7 and 8, the cylinder is formed on the inner diameter side of the superconducting coil 211 in the cylinder that virtually connects the two superconducting magnets 21 separated vertically. Is generated in a direction substantially parallel to the central axis of the subject 4, that is, in a direction substantially perpendicular to the body axis of the subject 4. Such an MRI apparatus 200 is often called a vertical MRI apparatus. And in this embodiment, the magnetic flux converging part 22 provided with the superconducting member 222 is arrange | positioned in the both ends in the cylinder which connects the two superconducting magnets 21 virtually.

さらに、図8に加え図9を用い、磁束収束部22の超電導部材222の形状について詳しく説明する。ここで、図9は、下側の超電導磁石21に取り付けられる磁束収束部22の超電導部材222の斜視図の例を示した図である。図8および図9から分かるように、超電導部材222の外観形状は、中空の半円錐、すなわち、一方の端部の径が他方の端部の径よりも小さくなっている半円錐状の筒である。そして、超電導部材222は、径が大きいほうの端部が設置台221に取り付けられ、設置台221は、超電導磁石21の所定の位置に取り付けられている。   Further, the shape of the superconducting member 222 of the magnetic flux converging portion 22 will be described in detail with reference to FIG. 9 in addition to FIG. Here, FIG. 9 is a view showing an example of a perspective view of the superconducting member 222 of the magnetic flux converging portion 22 attached to the lower superconducting magnet 21. As can be seen from FIGS. 8 and 9, the superconducting member 222 has a hollow semiconical shape, that is, a semiconical tube in which the diameter of one end is smaller than the diameter of the other end. is there. The end portion of the superconducting member 222 having the larger diameter is attached to the installation base 221, and the installation base 221 is attached to a predetermined position of the superconducting magnet 21.

ここで、設置台221は、上下の超電導磁石21の下面または上面に取り付けられるので、超電導コイル211の内径側に生成される磁束は、設置台221を略垂直に通過することになる。そこで、ここでは、設置台221に取り付けられた超電導部材222は、その半円錐の中心軸がこの磁束の中心軸と略一致する位置に配設されるものとする。さらに、本実施形態では、互いに径が異なる中空半円錐の超電導部材222が複数個、磁束の中心軸を中心として同心状に設置台221に取り付けられているものとする。そして、その場合、それぞれの半円錐の高さは、それぞれ異なるものであってもよいものとする。   Here, since the installation table 221 is attached to the lower surface or the upper surface of the upper and lower superconducting magnets 21, the magnetic flux generated on the inner diameter side of the superconducting coil 211 passes through the installation table 221 substantially vertically. Therefore, here, the superconducting member 222 attached to the installation base 221 is disposed at a position where the central axis of the half cone substantially coincides with the central axis of the magnetic flux. Furthermore, in this embodiment, it is assumed that a plurality of hollow semiconical superconducting members 222 having different diameters are attached to the installation base 221 concentrically around the central axis of the magnetic flux. In that case, the height of each half cone may be different.

また、第1の実施形態の場合と同様に、磁束収束部22の設置台221や真空容器224は、非磁性のステンレスなどで構成され、超電導部材222は、所定の臨界温度以下で超電導状態になる超電導体で構成されているとする。そのため、超電導部材222が所定の臨界温度以下になったときには、超電導コイル211の内径側を通る磁束(垂直方向の磁束)は、半円錐状の超電導部材222によって磁束の中心軸側に収束させられる。その結果、上下の磁束収束部22で挟まれた被検体挿入領域25における磁場強度は大きくなる。   Similarly to the case of the first embodiment, the installation base 221 and the vacuum vessel 224 of the magnetic flux converging unit 22 are made of nonmagnetic stainless steel or the like, and the superconducting member 222 is in a superconducting state below a predetermined critical temperature. It is assumed that it is composed of a superconductor. Therefore, when the superconducting member 222 is below a predetermined critical temperature, the magnetic flux passing through the inner diameter side of the superconducting coil 211 (the magnetic flux in the vertical direction) is converged to the central axis side of the magnetic flux by the semiconical superconducting member 222. . As a result, the magnetic field strength in the subject insertion region 25 sandwiched between the upper and lower magnetic flux converging units 22 is increased.

さらに、図9に示すように、半円錐状の超電導部材222にスリット225が設けられている。スリット225は、超電導部材222の側面に設けられた間隙であり、超電導部材222の内側をその中心軸に沿って通過する磁束によって、超電導部材222に生じる周回電流を阻止するためのものである。なお、スリット225は、単なる間隙でなく、通常は、その間隙に絶縁性の樹脂などが詰め込まれたものである。また、超電導部材222に設けられるスリット225の数は、1つに限定されず、2つ以上であってもよい。   Further, as shown in FIG. 9, a slit 225 is provided in the semiconical superconducting member 222. The slit 225 is a gap provided on the side surface of the superconducting member 222, and is intended to prevent the circulating current generated in the superconducting member 222 by the magnetic flux passing through the inside of the superconducting member 222 along its central axis. Note that the slit 225 is not a mere gap, but is usually one in which an insulating resin or the like is packed in the gap. Further, the number of slits 225 provided in the superconducting member 222 is not limited to one and may be two or more.

以上のような超電導部材222は、第1の実施形態の場合と同様に、所定の臨界温度以下で超電導状態になる超電導体のバルク材が樹脂で固められたもので構成されているものとする。あるいは、超電導部材222は、金属やセラミックスの表面に、超電導体を蒸着したものでもよい。また、金属やセラミックスや樹脂成型物に超電導体を含んでなるテープ材を貼付したものであってもよい。   As in the case of the first embodiment, the superconducting member 222 as described above is configured by a superconductor bulk material that becomes a superconducting state at a predetermined critical temperature or lower and is solidified with a resin. . Alternatively, the superconducting member 222 may be a superconductor deposited on the surface of a metal or ceramic. Moreover, what stuck the tape material which contains a superconductor to a metal, ceramics, or a resin molding may be used.

図10は、第2の実施形態に係る超電導部材222による磁束収束および磁束均一化の効果を説明する図である。図10に示すように、第2の実施形態では、上下2つの水平環状の超電導コイル211によって生成され、その内径側を通る磁束(矢印付きで示した流線)は、垂直方向を向いている。本実施形態では、超電導部材222が超電導状態になったときには、その中空半円錐状の超電導部材222の磁束を排斥する効果(マイスナー効果)により、前記磁束は、磁束の中心軸側に収束させられる。その結果、被検体挿入領域25における磁束密度(磁場強度)は大きくなる。   FIG. 10 is a diagram for explaining the effect of magnetic flux convergence and magnetic flux equalization by the superconducting member 222 according to the second embodiment. As shown in FIG. 10, in the second embodiment, the magnetic flux (streamlines shown with arrows) generated by two upper and lower horizontal annular superconducting coils 211 and passing through the inner diameter side thereof is directed in the vertical direction. . In the present embodiment, when the superconducting member 222 is in a superconducting state, the magnetic flux is converged to the central axis side of the magnetic flux by the effect of eliminating the magnetic flux of the hollow semiconical superconducting member 222 (Meissner effect). . As a result, the magnetic flux density (magnetic field strength) in the subject insertion region 25 increases.

なお、この第2の実施形態では、被検体挿入領域25の側方部が開放された状態になっている。そのため、超電導部材222により収束させられる磁束の外周部の磁束は、磁束の中心軸から外側に膨らみがちになる。その膨らみを補正するために本実施形態では、径の異なる超電導部材222が複数個、磁束の中心軸を中心軸に同心状に配設されている。このとき、複数の超電導部材222の高さは相違してもよい。   In the second embodiment, the side portion of the subject insertion region 25 is open. Therefore, the magnetic flux at the outer peripheral portion of the magnetic flux converged by the superconducting member 222 tends to bulge outward from the central axis of the magnetic flux. In order to correct the swelling, in this embodiment, a plurality of superconducting members 222 having different diameters are concentrically arranged with the central axis of the magnetic flux as the central axis. At this time, the heights of the plurality of superconducting members 222 may be different.

逆にいえば、複数の半円錐状の超電導部材222の径の大きさ、側面の傾き、高さなどを適宜調整することにより、被検体挿入領域25における磁束の均一化を実現することができる。なお、その磁束均一化を実現するための半円錐状の超電導部材222の径の大きさ、側面の傾き、高さなどの条件は、コンピュータシミュレーションなどにより事前に求めることができる。   In other words, the magnetic flux in the subject insertion region 25 can be made uniform by appropriately adjusting the size of the plurality of semiconical superconducting members 222, the inclination of the side surfaces, the height, and the like. . It should be noted that conditions such as the diameter of the semiconical superconducting member 222 for achieving the uniform magnetic flux, the inclination of the side surface, and the height can be obtained in advance by computer simulation or the like.

以上、本発明の第2の実施形態によれば、上下の水平環状の超電導磁石21のそれぞれの下面および上面に、図8〜図10を用いて説明したような上下に分離された磁束収束部22を取り付けたことにより、被検体挿入領域25の磁場強度を増大させ、磁束の均一化を図ることができる。よって、垂直型のMRI装置200において、超電導コイル211の起磁力を大きくすることなく、すなわち、超電導磁石21を大型化することなく、均一な高磁場を得ることが可能になる。   As described above, according to the second embodiment of the present invention, the upper and lower horizontal annular superconducting magnets 21 have their magnetic flux converging portions separated vertically as described with reference to FIGS. By attaching 22, the magnetic field strength of the subject insertion region 25 can be increased and the magnetic flux can be made uniform. Therefore, in the vertical MRI apparatus 200, a uniform high magnetic field can be obtained without increasing the magnetomotive force of the superconducting coil 211, that is, without increasing the size of the superconducting magnet 21.

最後に、第1の実施形態に係る超電導部材122の形状と、第2の実施形態に係る超電導部材222の形状の異同について補足しておく。第1の実施形態に係る超電導部材122の外観形状は、磁束の方向に沿った円筒形状をし、その内壁面に凹凸が形成されたものとなっている。そして、その内壁の凹凸の特徴は、図3〜図6を用いて説明したように、超電導部材122を磁束の中心軸Bに垂直な平面で切断したとき、超電導部材122で囲まれる領域の面積は、円筒状の超電導部材122の一方の端部から磁束の方向に沿って他方の端部に到るまでに少なくとも2つの極小値をとるという特徴を有している。   Finally, the difference between the shape of the superconducting member 122 according to the first embodiment and the shape of the superconducting member 222 according to the second embodiment will be supplemented. The external shape of the superconducting member 122 according to the first embodiment has a cylindrical shape along the direction of magnetic flux, and has irregularities formed on its inner wall surface. As described with reference to FIGS. 3 to 6, the unevenness of the inner wall is characterized by the area of the region surrounded by the superconducting member 122 when the superconducting member 122 is cut along a plane perpendicular to the central axis B of the magnetic flux. Is characterized in that it takes at least two minimum values from one end of the cylindrical superconducting member 122 to the other end along the direction of the magnetic flux.

一方、第2の実施形態では、被検体挿入領域25により上下に分断された1対の超電導部材222を、第1の実施形態でいう超電導部材122に対応付けることができる。この場合、上下の半円錐状の超電導部材222は、通過する磁束をその磁束の中心側に収束させる効果を有する点で、第1の実施形態に係る超電導部材122の円筒の内壁の両端部に設けられた凸部(図4(b)参照)に対応する構成要素ということができる。また、第2の実施形態に係る超電導部材222を上下に分断する被検体挿入領域25の部分は、通過する磁束が外側に広がるという意味で、第1の実施形態に係る超電導部材122の円筒の内壁の中央部に設けられた凹部に対応する構成要素といえる。   On the other hand, in the second embodiment, a pair of superconducting members 222 divided vertically by the subject insertion region 25 can be associated with the superconducting member 122 in the first embodiment. In this case, the upper and lower semiconical superconducting members 222 have an effect of converging the passing magnetic flux toward the center of the magnetic flux, and are thus provided at both ends of the cylindrical inner wall of the superconducting member 122 according to the first embodiment. It can be said that it is a component corresponding to the provided convex part (refer FIG.4 (b)). Further, the portion of the subject insertion region 25 that divides the superconducting member 222 according to the second embodiment into the upper and lower parts means that the magnetic flux passing therethrough spreads outward, so that the cylindrical portion of the superconducting member 122 according to the first embodiment is expanded. It can be said that it is a component corresponding to the recessed part provided in the center part of the inner wall.

従って、第2の実施形態において超電導部材222が上下に分断された領域(被検体挿入領域25)では、磁束の中心軸に垂直な平面に超電導部材222が現れないので、その平面における超電導部材222で囲まれる領域の面積は無限大とみなすことができる。とすれば、第2の実施形態に係る超電導部材222は、磁束の中心軸に垂直なで切断したときの超電導部材122で囲まれる領域の面積は、磁束収束部22の一方の端部から磁束の方向に沿って他方の端部に到るまでに2つの極小値を有するという、第1の実施形態と同様の特徴を有しているといえる。   Therefore, in the region in which the superconducting member 222 is divided vertically in the second embodiment (subject insertion region 25), the superconducting member 222 does not appear on a plane perpendicular to the central axis of the magnetic flux, so the superconducting member 222 on that plane The area surrounded by can be considered as infinite. Then, the area of the region surrounded by the superconducting member 122 when the superconducting member 222 according to the second embodiment is cut perpendicularly to the central axis of the magnetic flux is from one end of the magnetic flux converging unit 22 to the magnetic flux. It can be said that it has the same characteristics as the first embodiment in that it has two minimum values before reaching the other end along the direction.

本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。   The present invention is not limited to the embodiments and modifications described above, and includes various modifications. For example, the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of an embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of another embodiment or modification can be replaced with another embodiment or modification. It is also possible to add the following configuration. In addition, with respect to a part of the configuration of each embodiment or modification, the configuration included in another embodiment or modification may be added, deleted, or replaced.

2 テーブル
3 テーブル駆動部
4 被検体
5 制御装置
6 表示装置
10,20 ガントリ
11,21 超電導磁石
12,22 磁束収束部
13,23 第1冷却部
14,24 第2冷却部
15,25 被検体挿入領域
16,26 ヒータ
100,200 MRI装置
111,211 超電導コイル
112,212 真空容器
120,220 荷重支持体
121,221 設置台
122,222 超電導部材
123,223 輻射シールド
124,224 真空容器
125,225 スリット
2 Table 3 Table drive unit 4 Subject 5 Control device 6 Display device 10, 20 Gantry 11, 21 Superconducting magnet 12, 22 Magnetic flux converging unit 13, 23 First cooling unit 14, 24 Second cooling unit 15, 25 Subject insertion Region 16, 26 Heater 100, 200 MRI apparatus 111, 211 Superconducting coil 112, 212 Vacuum vessel 120, 220 Load support 121, 221 Installation base 122, 222 Superconducting member 123, 223 Radiation shield 124, 224 Vacuum vessel 125, 225 Slit

Claims (11)

内径側の空間に一定方向の磁束を生成する超電導コイルと、
前記超電導コイルの内径側の空間の磁束をその磁束の中心軸側に収束させる超電導部材を有してなる円筒状の磁束収束部と、
を備え、
前記円筒状の磁束収束部を前記磁束の中心軸に垂直な平面で切断したとき、前記円筒状の磁束収束部に含まれる超電導部材で囲まれる領域の面積は、前記円筒状の磁束収束部の一方の端部から前記磁束の方向に沿って他方の端部に到るに従い変化し、その他方の端部に到るまでの間に少なくとも2つの極小値をとること
を特徴とする超電導磁石装置。
A superconducting coil that generates a magnetic flux in a certain direction in the space on the inner diameter side;
A cylindrical magnetic flux converging portion having a superconducting member for converging the magnetic flux in the space on the inner diameter side of the superconducting coil to the central axis side of the magnetic flux;
With
When the cylindrical magnetic flux converging part is cut along a plane perpendicular to the central axis of the magnetic flux, the area of the region surrounded by the superconducting member included in the cylindrical magnetic flux converging part is the area of the cylindrical magnetic flux converging part. A superconducting magnet device characterized in that it changes as it reaches the other end along the direction of the magnetic flux from one end, and takes at least two local minimum values before reaching the other end. .
前記超電導コイルを冷却する第1冷却部と、前記磁束収束部の超電導部材を冷却する第2冷却部と、をさらに備え、前記第2冷却部は、前記第1冷却部とは独立に動作して前記磁束収束部の超電導部材を冷却すること
を特徴とする請求項1に記載の超電導磁石装置。
A first cooling part for cooling the superconducting coil; and a second cooling part for cooling the superconducting member of the magnetic flux converging part, wherein the second cooling part operates independently of the first cooling part. The superconducting magnet device according to claim 1, wherein the superconducting member of the magnetic flux converging portion is cooled.
前記第2冷却部を介して前記磁束収束部の超電導部材を超電導の臨界温度以下に冷却した後、冷却されて超電導状態となっている前記超電導コイルに通電すること
を特徴とする請求項2に記載の超電導磁石装置。
The superconducting member of the magnetic flux converging unit is cooled to a temperature lower than the critical temperature of superconducting through the second cooling unit, and then the superconducting coil that is cooled and is in a superconducting state is energized. The superconducting magnet device described.
前記第2冷却部と前記磁束収束部の超電導部材とをつなぐ熱伝導経路または冷媒通路の一部にヒータが設けられていること
を特徴とする請求項2に記載の超電導磁石装置。
The superconducting magnet apparatus according to claim 2, wherein a heater is provided in a part of a heat conduction path or a refrigerant path connecting the second cooling part and the superconducting member of the magnetic flux converging part.
前記超電導コイルが垂直型の磁気共鳴撮像装置に用いられるものである場合には、前記磁束収束部は、前記磁束の方向に沿って、上部電極側の超電導コイル部に取り付けられる上部磁束収束部と、下部電極側の超電導コイル部に取り付けられる下部磁束収束部と、に分離されており、前記磁束の方向に沿って、前記上部磁束収束部と前記下部磁束収束部とを隔てる空間は、被検体挿入空間であること
を特徴とする請求項1から請求項4のいずれか1項に記載の超電導磁石装置。
When the superconducting coil is used in a vertical magnetic resonance imaging apparatus, the magnetic flux converging part includes an upper magnetic flux converging part attached to the superconducting coil part on the upper electrode side along the direction of the magnetic flux. A space that separates the upper magnetic flux converging portion and the lower magnetic flux converging portion along the direction of the magnetic flux. The superconducting magnet device according to any one of claims 1 to 4, wherein the superconducting magnet device is an insertion space.
前記上部磁束収束部および前記下部磁束収束部のそれぞれに含まれる超電導部材は、いずれも半円錐筒状の形状をしており、前記半円錐筒状の超電導部材は、いずれも、広い開口面側が前記超電導コイル側に取り付けられ、狭い開口面側が前記被検体挿入空間に接していること
を特徴とする請求項5に記載の超電導磁石装置。
Each of the superconducting members included in each of the upper magnetic flux converging part and the lower magnetic flux converging part has a semiconical cylindrical shape, and each of the semiconical cylindrical superconducting members has a wide opening surface side. The superconducting magnet apparatus according to claim 5, wherein the superconducting magnet apparatus is attached to the superconducting coil side, and a narrow opening surface side is in contact with the subject insertion space.
前記上部磁束収束部および前記下部磁束収束部は、いずれも傾斜度と高さが異なる複数の半円筒状の超電導部材を前記磁束の中心軸を中心に同心状に配置してなること
を特徴とする請求項6に記載の超電導磁石装置。
Each of the upper magnetic flux converging part and the lower magnetic flux converging part is formed by concentrically arranging a plurality of semi-cylindrical superconducting members having different inclinations and heights around the central axis of the magnetic flux. The superconducting magnet device according to claim 6.
前記磁束収束部の超電導部材は、バルク材の超電導体が樹脂で固められたものであること
を特徴とする請求項1から請求項7のいずれか1項に記載の超電導磁石装置。
The superconducting magnet device according to any one of claims 1 to 7, wherein the superconducting member of the magnetic flux converging part is a superconductor made of a bulk material solidified with a resin.
前記磁束収束部の超電導部材は、金属またはセラミックスに超電導体が蒸着されたものであること
を特徴とする請求項1から請求項7のいずれか1項に記載の超電導磁石装置。
The superconducting magnet device according to any one of claims 1 to 7, wherein the superconducting member of the magnetic flux converging unit is a superconducting member deposited on a metal or ceramics.
前記磁束収束部の超電導部材は、非磁性部材の表面に超電導体からなるテープ材が貼付されたものであること
を特徴とする請求項1から請求項7のいずれか1項に記載の超電導磁石装置。
The superconducting magnet according to any one of claims 1 to 7, wherein the superconducting member of the magnetic flux converging part is a nonmagnetic member with a tape material made of a superconductor attached thereto. apparatus.
請求項1から請求項10のいずれか1項に記載の超電導磁石装置を備えてなること
を特徴とする磁気共鳴撮像装置。
A magnetic resonance imaging apparatus comprising the superconducting magnet device according to any one of claims 1 to 10.
JP2015002160A 2015-01-08 2015-01-08 Superconducting magnet device and magnetic resonance imaging device Active JP6473623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002160A JP6473623B2 (en) 2015-01-08 2015-01-08 Superconducting magnet device and magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002160A JP6473623B2 (en) 2015-01-08 2015-01-08 Superconducting magnet device and magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JP2016123802A true JP2016123802A (en) 2016-07-11
JP6473623B2 JP6473623B2 (en) 2019-02-20

Family

ID=56358497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002160A Active JP6473623B2 (en) 2015-01-08 2015-01-08 Superconducting magnet device and magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JP6473623B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142816A1 (en) * 2018-01-17 2019-07-25 国立大学法人岩手大学 Hybrid-type superconducting bulk magnet device
CN114267514A (en) * 2021-11-29 2022-04-01 深圳航天科技创新研究院 Streamlined magnet structure for magnetic resonance imaging
CN114724796A (en) * 2022-06-09 2022-07-08 山东奥新医疗科技有限公司 Magnetic resonance superconducting magnet with novel structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411308A (en) * 1987-07-03 1989-01-13 Mitsubishi Electric Corp Magnetic field generation device
JPS6474708A (en) * 1987-09-17 1989-03-20 Shimadzu Corp Low temperature vessel for superconducting magnet
JPH02156512A (en) * 1988-12-08 1990-06-15 Toshiba Corp Coil device
JPH06196321A (en) * 1992-09-11 1994-07-15 Nippon Steel Corp Variable strength and uniform parallel magnetic field generation device
JPH08191826A (en) * 1995-01-19 1996-07-30 Hitachi Medical Corp Static magnetic field generator for magnetic resonance imaging apparatus
US5543770A (en) * 1992-09-11 1996-08-06 Nippon Steel Corporation Apparatus for generating uniform and parallel magnetic field, the intensity of which is variable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411308A (en) * 1987-07-03 1989-01-13 Mitsubishi Electric Corp Magnetic field generation device
JPS6474708A (en) * 1987-09-17 1989-03-20 Shimadzu Corp Low temperature vessel for superconducting magnet
JPH02156512A (en) * 1988-12-08 1990-06-15 Toshiba Corp Coil device
JPH06196321A (en) * 1992-09-11 1994-07-15 Nippon Steel Corp Variable strength and uniform parallel magnetic field generation device
US5543770A (en) * 1992-09-11 1996-08-06 Nippon Steel Corporation Apparatus for generating uniform and parallel magnetic field, the intensity of which is variable
JPH08191826A (en) * 1995-01-19 1996-07-30 Hitachi Medical Corp Static magnetic field generator for magnetic resonance imaging apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142816A1 (en) * 2018-01-17 2019-07-25 国立大学法人岩手大学 Hybrid-type superconducting bulk magnet device
JP2019125710A (en) * 2018-01-17 2019-07-25 国立大学法人岩手大学 Hybrid-type superconducting bulk magnet device
JP7006291B2 (en) 2018-01-17 2022-01-24 国立大学法人岩手大学 Hybrid superconducting bulk magnet device
CN114267514A (en) * 2021-11-29 2022-04-01 深圳航天科技创新研究院 Streamlined magnet structure for magnetic resonance imaging
CN114267514B (en) * 2021-11-29 2023-11-14 深圳航天科技创新研究院 Streamlined magnet structure for magnetic resonance imaging
CN114724796A (en) * 2022-06-09 2022-07-08 山东奥新医疗科技有限公司 Magnetic resonance superconducting magnet with novel structure

Also Published As

Publication number Publication date
JP6473623B2 (en) 2019-02-20

Similar Documents

Publication Publication Date Title
JP3654463B2 (en) Magnetic resonance imaging system
JP3631533B2 (en) Magnetic resonance imaging magnet
CN101226809B (en) Superconducting magnet and magnetic resonance imaging apparatus
JPH0838453A (en) Open type magnetic resonance imaging magnet
JPH10225447A (en) Plane-type magnetic resonance imaging magnet
JP6473623B2 (en) Superconducting magnet device and magnetic resonance imaging device
WO1997025726A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
JP3663262B2 (en) Open magnetic resonance imaging magnet
US10281539B2 (en) Superconducting magnet device or magnetic resonance imaging apparatus including a support member having a coefficient of thermal expansion highter than that of a columnar member
US9859045B2 (en) Superconducting magnet
JP3238425B2 (en) Magnet device for magnetic resonance imaging
JPH09120912A (en) Open structure conductive cooling magnetic resonance imagingmagnet
JP4928477B2 (en) Superconducting magnet apparatus, magnetic resonance imaging apparatus using the same, and nuclear magnetic resonance apparatus
JP2004509721A (en) Vertical magnetic field type MRI apparatus having a conical gradient coil disposed in a main magnet
JPH10127604A (en) Mri magnet structure
JP3583528B2 (en) Electromagnet for use in magnetic resonance imaging equipment
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JP4017460B2 (en) Open-type magnetic resonance superconducting platform magnet for cone imaging
WO2012014914A1 (en) Gradient coil apparatus and magnetic resonance imaging apparatus
JP5548374B2 (en) Magnetic resonance imaging system and apparatus having multiple section magnets
US5534779A (en) Magnet systems
JP6619417B2 (en) Magnetic resonance imaging system
JP6758555B1 (en) Superconducting coil device and MRI device
JP2000012325A (en) Superconducting magnetic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190128

R150 Certificate of patent or registration of utility model

Ref document number: 6473623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150