JP2016122766A - Nonlinear resistive material, and method for manufacturing nonlinear resistance part - Google Patents

Nonlinear resistive material, and method for manufacturing nonlinear resistance part Download PDF

Info

Publication number
JP2016122766A
JP2016122766A JP2014262788A JP2014262788A JP2016122766A JP 2016122766 A JP2016122766 A JP 2016122766A JP 2014262788 A JP2014262788 A JP 2014262788A JP 2014262788 A JP2014262788 A JP 2014262788A JP 2016122766 A JP2016122766 A JP 2016122766A
Authority
JP
Japan
Prior art keywords
linear resistance
mold
raw material
thermoplastic resin
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014262788A
Other languages
Japanese (ja)
Inventor
成俊 村杉
Narutoshi Murasugi
成俊 村杉
石島 善三
Zenzo Ishijima
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014262788A priority Critical patent/JP2016122766A/en
Publication of JP2016122766A publication Critical patent/JP2016122766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonlinear resistive material which enables the control of zinc oxide crystal grains.SOLUTION: A nonlinear resistive material comprises: zinc oxide powder of 5-80 vol.% to its whole composition with the balance consisting of a polymer material including a thermoplastic resin and wax, and inevitable impurities. It is preferable that grains of the zinc oxide powder included in the nonlinear resistive material are spaced apart from one another to avoid their touching each other by the polymer material. Further, the thermoplastic resin accounts for 20-70 vol.% of the polymer material included in the nonlinear resistive material. It is preferable that the balance include wax.SELECTED DRAWING: Figure 1

Description

本発明は、例えばサージ吸収素子、電圧安定化素子などに用いられる非直線性抵抗材料および非直線性抵抗部品の製造方法に関する。   The present invention relates to a non-linear resistance material used for, for example, a surge absorbing element, a voltage stabilizing element, and the like, and a method for manufacturing a non-linear resistance component.

正常な電圧が印加された時には高抵抗値であって絶縁特性を示し、異常な高電圧が印加された時には低抵抗値を示す非直線性の電流−電圧特性を示す非直線性抵抗材料は、サージ吸収を目的としたサージ吸収器や電圧安定化素子に広く利用されている。このような非直線性抵抗材料の中で、酸化亜鉛を主成分とする非直線性抵抗材料は、印加した電圧によってその抵抗値が変化する特性、すなわちバリスタ特性に優れている。   A non-linear resistance material that exhibits a non-linear current-voltage characteristic that exhibits a high resistance value and exhibits insulation characteristics when a normal voltage is applied, and exhibits a low resistance value when an abnormal high voltage is applied. Widely used in surge absorbers and voltage stabilizers for surge absorption. Among such non-linear resistance materials, the non-linear resistance material mainly composed of zinc oxide is excellent in the characteristic that its resistance value changes depending on the applied voltage, that is, the varistor characteristic.

この非直線性抵抗材料は、例えば、次の方法で製作される。主成分となる酸化亜鉛粉末と、微量の酸化ビスマス、酸化アンチモン、酸化コバルト、酸化マンガン等の粉末状基本添加物とを湿式混合し、その湿式混合により得られたスラリーを噴霧乾燥により造粒し、その造粒粉末を押型に充填して成形した後、その成形体を焼成してセラミックス焼結体を製作する(例えば、特許文献1および2参照)。   This non-linear resistance material is manufactured by the following method, for example. Zinc oxide powder, which is the main component, and a small amount of powdery basic additives such as bismuth oxide, antimony oxide, cobalt oxide, and manganese oxide are wet mixed, and the slurry obtained by the wet mixing is granulated by spray drying. Then, the granulated powder is filled into a pressing mold and molded, and then the molded body is fired to produce a ceramic sintered body (see, for example, Patent Documents 1 and 2).

特開2003−59705号公報JP 2003-59705 A 特開2014−123764号公報Japanese Patent Application Laid-Open No. 2014-123764

非直線性抵抗材料においては、バリスタ特性のバラツキを抑制するために、酸化亜鉛の結晶粒を均等とするとともに均一に分散させる必要がある。しかしながら、従来の非直線性抵抗材料は、造粒時の密度ばらつき、押型への充填ばらつき、成形時における密度ばらつきが生じるため、均等な大きさの結晶粒とすることが難しい。また、従来の非直線性抵抗材料は焼成を行うため、焼成により酸化亜鉛の結晶粒が成長することとなり、焼成時における酸化亜鉛の結晶粒のコントロールが大変難しく、場合によっては酸化亜鉛の結晶粒が粗大化して、バリスタ特性の設計が難しいという課題があった。   In the non-linear resistance material, it is necessary to uniformly and uniformly disperse the zinc oxide crystal grains in order to suppress variations in varistor characteristics. However, the conventional non-linear resistance material has a density variation at the time of granulation, a variation in filling of the pressing mold, and a density variation at the time of molding, so that it is difficult to obtain crystal grains of uniform size. In addition, since the conventional non-linear resistance material is fired, the crystal grains of zinc oxide grow by firing, and it is very difficult to control the crystal grains of zinc oxide at the time of firing. As a result, the varistor characteristics are difficult to design.

さらに、非直線性抵抗材料のバリスタ特性を調整する際は、焼結体の厚みを変更することが一般的であるが、難加工性のため厚さや形状に制約があった。   Further, when adjusting the varistor characteristics of the non-linear resistance material, it is common to change the thickness of the sintered body, but there are restrictions on the thickness and shape due to difficulty in processing.

このような状況の下、本発明は、酸化亜鉛の結晶粒が制御可能な非直線性抵抗材料を提供すること、およびその材料を用いた造形性に優れる非直線性抵抗部品の製造方法を提供することを目的とする。   Under such circumstances, the present invention provides a non-linear resistance material in which the crystal grains of zinc oxide can be controlled, and a method for manufacturing a non-linear resistance component having excellent formability using the material. The purpose is to do.

本発明の非直線性抵抗材料は、酸化亜鉛粉末が非直線性抵抗材料の全体組成に対し5〜80体積%含有され、残部が熱可塑性樹脂とワックスからなる高分子材料および不可避不純物からなり、高分子材料中に酸化亜鉛粉末が分散していることを特徴とする。ここで、高分子材料は酸化亜鉛粉末を結着させ、および分散させるため使用されている。このため、本発明の非直線性抵抗材料を用いた非直線性抵抗部品は、高分子材料により形状が維持されるため、従来のような結晶粒の粗大化が生じる焼成が不要であり、酸化亜鉛を均一かつ微細に分散したものとして非直線性抵抗部品を構成することが可能となる。酸化亜鉛粉末は、隣り合う粉末どうしが接触しないよう高分子材料により隔てられているものとすることが好ましい。   The non-linear resistance material of the present invention contains zinc oxide powder in an amount of 5 to 80% by volume based on the total composition of the non-linear resistance material, and the balance is composed of a polymer material consisting of a thermoplastic resin and wax and inevitable impurities, It is characterized in that zinc oxide powder is dispersed in the polymer material. Here, the polymeric material is used to bind and disperse the zinc oxide powder. For this reason, since the shape of the non-linear resistance component using the non-linear resistance material of the present invention is maintained by the polymer material, there is no need for firing that causes coarsening of crystal grains as in the prior art, and oxidation is not necessary. It is possible to configure the non-linear resistance component as a uniform and finely dispersed zinc. The zinc oxide powder is preferably separated by a polymer material so that adjacent powders do not come into contact with each other.

本発明の非直線性抵抗部品の製造方法は、酸化亜鉛粉末が非直線性抵抗材料の全体組成に対し熱可塑性樹脂とワックスからなる高分子材料を5〜80体積%添加して、加熱混練して原料を調整する原料調整工程と、前記原料を所定量、押型の型孔内に充填する充填工程と、前記押型内の原料をパンチで加圧して所定形状に成形する加圧成形工程と、前記加圧成形工程の後に得られた成形体を抜き出す抜き出し工程とを備えることを特徴とする。   In the method for producing a nonlinear resistance component of the present invention, the zinc oxide powder is added by 5 to 80% by volume of a polymer material composed of a thermoplastic resin and a wax with respect to the entire composition of the nonlinear resistance material, and is heated and kneaded. A raw material adjustment step for adjusting the raw material, a filling step for filling the raw material in a predetermined amount of the mold cavity, and a pressure forming step for pressing the raw material in the die with a punch to form a predetermined shape, An extraction step of extracting a molded body obtained after the pressure forming step.

本発明の非直線性抵抗材料に添加される高分子材料は、押型内における粉末の均等な流動性を得るように、および抜き出し時に高分子材料の一部が軟化または溶融し、容易に押型から離型するように、熱可塑性樹脂とワックスにより構成する。   The polymer material added to the non-linear resistance material of the present invention can be easily removed from the mold so that a uniform fluidity of the powder in the mold is obtained and a part of the polymer material is softened or melted during extraction. It is comprised with a thermoplastic resin and wax so that it may release.

上記高分子材料は、熱可塑性樹脂の割合が20〜70体積%であり、ワックスが残部とすることが好ましい。   The polymer material preferably has a thermoplastic resin ratio of 20 to 70% by volume, with the balance being wax.

また、本発明の非直線性抵抗材料に含有される酸化亜鉛粉末は、50μm以下の粉末であることが好ましい。   Moreover, it is preferable that the zinc oxide powder contained in the nonlinear resistance material of the present invention is a powder of 50 μm or less.

本発明の非直線性抵抗部品の製造方法における加圧成形工程は、前記原料に含まれる前記熱可塑性樹脂の軟化点以上の温度で行うことが好ましい。   The pressure molding step in the method for producing a nonlinear resistance component of the present invention is preferably performed at a temperature equal to or higher than the softening point of the thermoplastic resin contained in the raw material.

また、本発明の非直線性抵抗部品の製造方法における抜き出し工程は、前記原料に含まれる前記熱可塑性樹脂の軟化点以下の温度で行うことが好ましい。   Moreover, it is preferable to perform the extraction process in the manufacturing method of the nonlinear resistance component of this invention at the temperature below the softening point of the said thermoplastic resin contained in the said raw material.

本発明の非直線性抵抗材料は、焼成工程を実施しないことから使用する酸化亜鉛粉末の結晶粒がそのまま製品中の酸化亜鉛の結晶粒となるため、容易に結晶粒のコントロールが可能となる。   Since the non-linear resistance material of the present invention does not carry out the firing step, the crystal grains of the zinc oxide powder to be used become the crystal grains of zinc oxide in the product as they are, so that the crystal grains can be easily controlled.

また、高分子材料の可塑性によって複雑な形状でも造形が容易になる。さらに、通常の押型成形の活用により成形性が向上し、焼成工程の廃止によるコスト低減も可能となる。   Further, modeling is facilitated even in a complicated shape due to the plasticity of the polymer material. Furthermore, the formability is improved by utilizing the normal stamping molding, and the cost can be reduced by eliminating the firing process.

本発明の一実施形態である非直線性抵抗材料の断面写真(COMP像(反射電子組成像))である。It is a cross-sectional photograph (COMP image (reflection electron composition image)) of the nonlinear resistance material which is one Embodiment of this invention.

本発明に係る非直線性抵抗材料は、高分子材料中に酸化亜鉛粉末が分散した複合材料である。本発明においては、酸化亜鉛粉末を高分子材料中に分散させることで、各々の酸化亜鉛粉末を分離して保持するとともに、非直線性抵抗材料の形状を保持する。酸化亜鉛粉末は、非直線性抵抗材料の全体組成に対し5〜80体積%含有される。酸化亜鉛粉末の含有量が5体積%以上であれば、非直線性抵抗材料のバリスタ特性が得られ、80体積%以下であれば、クラックを生じることなく成形体を造形することができる。   The non-linear resistance material according to the present invention is a composite material in which zinc oxide powder is dispersed in a polymer material. In the present invention, the zinc oxide powder is dispersed in the polymer material, whereby each zinc oxide powder is separated and held, and the shape of the nonlinear resistance material is held. Zinc oxide powder is contained in an amount of 5 to 80% by volume based on the total composition of the nonlinear resistance material. If the content of the zinc oxide powder is 5% by volume or more, the varistor characteristics of the nonlinear resistance material can be obtained, and if it is 80% by volume or less, the molded body can be formed without causing cracks.

残部となる高分子材料中には、成形性を考慮し、軟化点が異なる2種の原料とし、具体的には、熱可塑性樹脂とワックスにより構成する。高分子材料は、非直線性抵抗材料の保形性のため、常温において固体状態を維持している必要がある。   In the remaining polymer material, in consideration of moldability, two raw materials having different softening points are used, and specifically, a thermoplastic resin and a wax are used. The polymer material needs to maintain a solid state at room temperature because of the shape retention of the nonlinear resistance material.

熱可塑性樹脂は、非直線性抵抗材料の可塑性を付与するために用いられ、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアセタール、ポリエチレンビニルアセテート等を用いることができる。ワックスは、特に酸化亜鉛粉末と押型(ダイスおよびパンチ)との間の接触を防止して加圧成形時に酸化亜鉛粉末の均等な流動を実現するとともに、抜き出し時の成形体と押型間の摩耗を低減して抜き出し易くするために添加され、パラフィンワックス、ウレタンワックス、カルナバワックス等を用いることができる。このような熱可塑性樹脂とワックスは、体積比で20:80〜70:30の範囲で構成すると好適となる。   The thermoplastic resin is used to impart plasticity to the nonlinear resistance material, and polystyrene, polyethylene, polypropylene, polyacetal, polyethylene vinyl acetate, and the like can be used. In particular, the wax prevents contact between the zinc oxide powder and the die (die and punch) to achieve an even flow of the zinc oxide powder during pressure molding, and also prevents wear between the molded body and the die during extraction. A paraffin wax, a urethane wax, a carnauba wax, or the like can be used because it is added to reduce and facilitate the extraction. It is preferable that such a thermoplastic resin and wax are configured in a volume ratio of 20:80 to 70:30.

原料として用いられる酸化亜鉛粉末は粒径が50μm以下のものが適している。粒径が50μm以下のものであると、非直線性抵抗部品の形状が薄板形状の場合であっても、酸化亜鉛粉末の分散が容易になる。   The zinc oxide powder used as a raw material is suitable to have a particle size of 50 μm or less. When the particle size is 50 μm or less, the zinc oxide powder is easily dispersed even when the shape of the nonlinear resistance component is a thin plate shape.

上記の高分子材料を上記の酸化亜鉛粉末に添加して加熱混練することで、微細な結晶粒を有する造形性に優れた非直線性抵抗材料を得ることができる。個々の酸化亜鉛粉末が高分子材料により被覆された状態となるよう加熱混練すると、加圧成形工程の後に得られる非直線性抵抗材料において、隣り合う酸化亜鉛粉末どうしが接触しないよう高分子材料により隔てられている状態として構成でき、酸化亜鉛の大きさを均一かつ均等にできるので好ましい。   By adding the above polymer material to the above zinc oxide powder and kneading with heating, a non-linear resistance material having fine crystal grains and excellent formability can be obtained. When the individual zinc oxide powders are heated and kneaded so that they are covered with the polymer material, the non-linear resistance material obtained after the pressure molding process is made of the polymer material so that adjacent zinc oxide powders do not contact each other. Since it can comprise as a state which is separated and the magnitude | size of zinc oxide can be made uniform and equal, it is preferable.

非直線性抵抗部品を製造するにあたっては、上記の非直線性抵抗材料を用いて押型成形、射出成形、打ち抜き等の方法により所望の形状を付与すればよい。   In producing a non-linear resistance component, a desired shape may be imparted by a method such as stamping, injection molding or punching using the above non-linear resistance material.

上記の非直線性抵抗材料を用いた非直線性抵抗部品の好ましい製造方法としては、押型成形が挙げられる。すなわち、非直線性抵抗部品の外周形状を成形する型孔を有する押型と、非直線性抵抗部品の下面を成形する下パンチと、非直線性抵抗部品の上面を成形する上パンチからなる押型装置を用い、押型の型孔と下パンチとにより形成されるキャビティに、上記の非直線性抵抗材料を原料として充填し、この原料を上下パンチにより加圧成形することにより非直線性抵抗部品の形状を付与し、その後、非直線性抵抗部品を押型の型孔から抜き出すことにより製造することができる。   As a preferable method for producing a non-linear resistance component using the above non-linear resistance material, there is a die molding. That is, a stamping device comprising a stamping die that molds the outer peripheral shape of a nonlinear resistance component, a lower punch that molds the lower surface of the nonlinear resistance component, and an upper punch that molds the upper surface of the nonlinear resistance component The shape of the non-linear resistance component is formed by filling the above-mentioned non-linear resistance material as a raw material into the cavity formed by the die hole of the stamping die and the lower punch, and press-molding this raw material with the upper and lower punches Then, the non-linear resistance component can be extracted from the die hole of the stamping die.

上記の加圧成形工程を冷間で行った場合であっても、原料(非直線性抵抗材料)に含まれるワックス分が流動して容易に所望の非直線性抵抗部品の形状を造形することができる。ただし、加圧成形工程において、原料(非直線性抵抗材料)が流動状態であると、押型内の隙間を充填でき高密度に加圧成形できることから、加圧に先立ち、原料を高分子材料に含まれる熱可塑樹脂の軟化点以上の温度に加熱しておくことが好ましい。また、原料の流動性が最大となる熱可塑性樹脂の融点以上の温度に加熱するとより好ましい。この加熱は押型内にヒータを設置するなどして原料を押型に充填した後に加熱してもよく、材料を予め加熱して供給してもよい。原料が軟化した後、上下方向よりパンチで加圧して造形する。   Even when the above-described pressure forming process is performed in a cold manner, the wax component contained in the raw material (nonlinear resistance material) flows to easily form the shape of the desired non-linear resistance component. Can do. However, if the raw material (nonlinear resistance material) is in a fluid state in the pressure molding process, the gap in the mold can be filled and high pressure molding can be performed. It is preferable to heat to a temperature above the softening point of the thermoplastic resin contained. Moreover, it is more preferable to heat to a temperature equal to or higher than the melting point of the thermoplastic resin that maximizes the fluidity of the raw material. This heating may be performed after a raw material is filled in the mold by installing a heater in the mold, or the material may be preheated and supplied. After the material is softened, it is shaped by pressing with a punch from above and below.

なお、原料を予め加熱して加圧成形を行う場合、抜き出しは、高分子材料に含まれる熱可塑性樹脂の軟化点以下の温度に冷却した後に行うことが望ましい。このようにすることで、成形体が硬化し、薄肉であっても抜き出し時および抜き出し後も成形体の形状が保持され、取り扱いも容易になる。また、この場合、高分子材料に含まれるワックスの軟化点以上かつ融点以下の温度とすると、抜き出し圧力が最も小さくなるためより好ましい。   In addition, when press-molding by heating a raw material beforehand, it is desirable to extract after cooling to the temperature below the softening point of the thermoplastic resin contained in a polymeric material. By doing in this way, a molded object hardens | cures, and even if it is thin, the shape of a molded object is hold | maintained at the time of extraction and after extraction, and handling becomes easy. In this case, it is more preferable that the temperature be equal to or higher than the softening point and not higher than the melting point of the wax contained in the polymer material because the extraction pressure becomes the smallest.

上記のように、加圧時に材料が熱可塑性樹脂の軟化点以上の温度に加熱されており、抜き出し時に熱可塑性樹脂の軟化点以下の温度に冷却されている状態を得るには、押型内部にヒータ等の加熱手段と、冷媒導通管等の冷却手段とを同時に設けておけば容易に原料の温度を制御することができる。またこの場合に原料の供給装置に加熱手段を設けておくこともできる。これらの装置構成とした場合に、予め押型に設けた加熱手段により熱可塑性樹脂の軟化点以上に加熱した押型に、熱可塑性樹脂の軟化点以上に加熱した原料を供給して加圧成形工程を行い、その後押型に設けた冷却手段により原料と押型を原料に含まれる熱可塑性樹脂の軟化点以下の温度まで冷却してから抜き出し工程を行うことがより好ましい。   As described above, in order to obtain a state in which the material is heated to a temperature equal to or higher than the softening point of the thermoplastic resin during pressurization and is cooled to a temperature equal to or lower than the softening point of the thermoplastic resin during extraction, If a heating means such as a heater and a cooling means such as a refrigerant conducting pipe are provided at the same time, the temperature of the raw material can be easily controlled. In this case, a heating means can be provided in the raw material supply apparatus. In the case of these apparatus configurations, a pressure molding step is performed by supplying a raw material heated above the softening point of the thermoplastic resin to a mold heated above the softening point of the thermoplastic resin by a heating means provided in the mold in advance. More preferably, after that, the raw material and the die are cooled to a temperature not higher than the softening point of the thermoplastic resin contained in the raw material by the cooling means provided in the die and then the extraction step is performed.

もう一つの上記の非直線性抵抗材料を用いた非直線性抵抗部品の好ましい製造方法としては、射出成形が挙げられる。すなわち、非直線性抵抗部品の外形の一部を形成する型孔を有する固定金型と、非直線性抵抗部品の外形の残部を形成する型孔を有する可動金型からなる射出成形金型を用い、前記固定金型と前記可動金型を型締めした後、非直線性抵抗材料に含有される熱可塑性樹脂の軟化点以上に加熱され流動状態にある非直線性抵抗材料を、前記固定金型の型孔と前記可動金型の型孔から形成されるキャビティに連通する原料導入路より射出して、前記キャビティを流動状態にある非直線性抵抗材料により充満させて非直線性抵抗部品の形状を付与し、その後、前記固定金型および前記可動金型を非直線性抵抗材料に含有される熱可塑性樹脂の軟化点以下の温度に冷却して非直線性抵抗材料を固化し、可動金型を駆動して型開きを行って、固化した非直線性抵抗部品を固定金型から取り出す。このとき、非直線性抵抗部品はランナーと呼ばれる原料導入路内で固化した非直線性抵抗材料と一体化して造形されるため、非直線性抵抗部品を固定金型からランナーとともに取り出した後、ランナーを分離して非直線性抵抗部品を得ることができる。ここで、流動状態にある非直線性抵抗材料をキャビティに導く導入路は、固定金型に設けてもよく、可動金型に設けてもよく、両者に設けてもよい。   Another preferred method for manufacturing a non-linear resistance component using the above non-linear resistance material is injection molding. That is, an injection mold comprising a fixed mold having a mold hole that forms a part of the outer shape of the nonlinear resistance component and a movable mold having a mold hole that forms the remainder of the outer shape of the nonlinear resistance component. And after the fixed mold and the movable mold are clamped, the non-linear resistance material that is heated and flowed above the softening point of the thermoplastic resin contained in the non-linear resistance material is used as the fixed mold. Injecting from the raw material introduction path communicating with the cavity formed from the mold hole of the mold and the mold hole of the movable mold, the cavity is filled with the non-linear resistance material in a fluid state, and the non-linear resistance component After giving the shape, the fixed die and the movable die are cooled to a temperature below the softening point of the thermoplastic resin contained in the non-linear resistance material to solidify the non-linear resistance material. Drive the mold, open the mold, solidify the straight Taking out a sexual resistance component from the fixed mold. At this time, since the non-linear resistance component is formed integrally with the non-linear resistance material solidified in the raw material introduction path called the runner, the non-linear resistance component is taken out together with the runner from the fixed mold, and then the runner Can be separated to obtain a non-linear resistance component. Here, the introduction path for guiding the nonlinear resistance material in a fluid state to the cavity may be provided in the fixed mold, the movable mold, or both.

また、上記のような射出成形金型装置において、原料導入路のキャビティ側の連通路を遮蔽する原料導入路遮蔽手段を設けておくと、流動状態にある非直線性抵抗材料をキャビティ内に射出した後、原料導入路遮蔽手段により原料導入路のキャビティ側の連通路を遮蔽することにより、予め非直線性抵抗部品とランナーを分離することが可能となり、固定金型からの取り出し後のランナー分離作業が不要となるため好ましい。   Further, in the injection mold apparatus as described above, if a raw material introduction path shielding means for shielding the communication path on the cavity side of the raw material introduction path is provided, the non-linear resistance material in a fluid state is injected into the cavity. After that, by blocking the communication path on the cavity side of the raw material introduction path by the raw material introduction path shielding means, it becomes possible to separate the non-linear resistance component and the runner in advance, and the runner separation after taking out from the fixed mold This is preferable because no work is required.

酸化亜鉛粉末は、表1に示す粒径のものを用意した。また、高分子材料として、熱可塑性樹脂のポリアセタール(軟化点110℃、融点170℃)とパラフィンワックス(軟化点40℃、融点60℃)を体積比で4:6の比率で混合したものを用意した。これらを表1に示す割合で配合、混練して非直線性抵抗材料を調整した。この原料を表1に示す温度に加熱した押型に供給して直径10mm×長さ0.5mmの形状に成形を行い、表1に示す温度に冷却した後、抜き出しを行った。これらの成形可否の結果を表1に示す。   The zinc oxide powder having a particle size shown in Table 1 was prepared. Also prepared as a polymer material is a mixture of thermoplastic resin polyacetal (softening point 110 ° C., melting point 170 ° C.) and paraffin wax (softening point 40 ° C., melting point 60 ° C.) in a volume ratio of 4: 6. did. These were blended and kneaded in the proportions shown in Table 1 to prepare a nonlinear resistance material. This raw material was supplied to a pressing mold heated to the temperature shown in Table 1 and formed into a shape having a diameter of 10 mm × length of 0.5 mm. After cooling to the temperature shown in Table 1, extraction was performed. Table 1 shows the results of these moldability.

表の試料番号01〜08の試料は、高分子材料の添加量を確認した例である。これらの試料より、高分子材料の添加量が20体積%に満たない試料番号01の試料では、結合剤となる高分子材料の量が少なく、成形クラックを生じて形状を維持できなかった。一方、高分子材料の添加量が20体積%以上の試料(試料番号02〜08)では、良好な外観を備えた試料を作製することができた。以上より高分子材料の添加量は20〜95体積%で良好な外観の成形体試料が得られることが確認された。なお、表1の外観評価において「◎」は設計通りの寸法で平滑な表面を有する場合を示し、それ以外の不備がある試料については、「×(使用不可)」または「○(条件付きで使用可能)」 としている。   Samples with sample numbers 01 to 08 in the table are examples in which the addition amount of the polymer material was confirmed. From these samples, in the sample of sample number 01 in which the amount of the polymer material added was less than 20% by volume, the amount of the polymer material serving as the binder was small, and the shape could not be maintained due to the formation of molding cracks. On the other hand, in the sample (sample numbers 02 to 08) in which the addition amount of the polymer material was 20% by volume or more, a sample having a good appearance could be produced. From the above, it was confirmed that a molded article sample having a good appearance was obtained when the addition amount of the polymer material was 20 to 95% by volume. In addition, in the appearance evaluation of Table 1, “◎” indicates the case where the dimensions are as designed and has a smooth surface, and for other defective samples, “× (unusable)” or “○ (conditionally Can be used).

表1の試料番号05および09、10、11の試料は、粉末粒径の影響を調べた例である。これらの試料より、粒径が50μm以下の試料番号05および09、10の試料では良好な外観を備えた成形体試料が得られていることがわかる。一方、粒径が100μmを超える試料番号11の試料では、表面に凹凸が見られることから、形状によっては使用が困難であることがわかった。使用する粉末は50μm以下のものを用いることが好ましいことが確認された。   Sample Nos. 05 and 09, 10, and 11 in Table 1 are examples in which the influence of the powder particle size was examined. From these samples, it can be seen that samples of sample numbers 05, 09, and 10 having a particle size of 50 μm or less have obtained molded body samples having a good appearance. On the other hand, the sample of Sample No. 11 having a particle size exceeding 100 μm has irregularities on the surface, indicating that it is difficult to use depending on the shape. It was confirmed that the powder to be used is preferably 50 μm or less.

表1の試料番号05および12、13の試料は、成形時の加熱温度(成形温度)の影響を調べた例である。成形時の加熱温度が熱可塑性樹脂の軟化点温度以上である試料番号05、13の試料では、良好な外観を備えるとともに、高い成形体密度の成形体が得られた。一方、成形時の加熱温度が熱可塑性樹脂の軟化点温度に満たない温度である試料番号12の試料の成形においては、原料の流動性が低下して押型内の隙間が完全には充填されず、成形体密度が低いものとなった。このことから、成形時の加熱温度は特に問わないが、成形時の加熱温度を、バインダーに使用した熱可塑性樹脂の軟化点温度以上の温度とすると成形体密度を高くできるので好ましいことが確認された。   Sample Nos. 05, 12 and 13 in Table 1 are examples in which the influence of the heating temperature (molding temperature) during molding was examined. In the samples Nos. 05 and 13 in which the heating temperature at the time of molding was equal to or higher than the softening point temperature of the thermoplastic resin, a molded body having a good appearance and a high molded body density was obtained. On the other hand, in the molding of the sample No. 12 where the heating temperature at the time of molding is less than the softening point temperature of the thermoplastic resin, the fluidity of the raw material is lowered and the gap in the mold is not completely filled. As a result, the molded body density was low. From this, the heating temperature at the time of molding is not particularly limited, but it is confirmed that it is preferable to set the heating temperature at the time of molding to a temperature equal to or higher than the softening point temperature of the thermoplastic resin used for the binder because the molded body density can be increased. It was.

表1の試料番号05および14、15の試料は、抜き出し時の冷却温度(抜き出し温度)の影響を調べた例である。抜き出し時の押型の冷却温度(つまり、この温度が抜き出し時における成形体の温度にほぼ一致する)がワックスの軟化点温度以上かつワックスの融点以下の試料番号05の試料ではワックスの潤滑性が良好に発揮され、低い抜き出し圧力で良好な抜き出しが行えた。一方、抜き出し時の冷却温度がバインダーに含まれるワックスの軟化点温度に満たない試料番号14の試料では、良好な外観の試料を作製できたが、ワックスの潤滑効果が減少するため抜き出し圧力の増加が見られた。また、抜き出し時の冷却温度がワックスの融点を大きく超えた試料番号15の試料では、良好な外観の試料を作製できたが、抜き出し時に潤滑作用を発揮するワックスの油膜が一部途切れて抜き出し圧力の増加が見られた。このことから、抜き出し時の冷却温度は使用したワックスの軟化点温度以上かつ融点以下の温度とすると、抜き出し圧力を低減して効率よく抜き出し工程を行うことができるので好ましいことが確認された。   Sample Nos. 05, 14 and 15 in Table 1 are examples in which the influence of the cooling temperature (extraction temperature) at the time of extraction was examined. Sample No. 05, which has a mold cooling temperature at the time of extraction (that is, this temperature substantially coincides with the temperature of the molded body at the time of extraction) above the softening point temperature of wax and below the melting point of wax, has good wax lubricity. And was able to perform good extraction with a low extraction pressure. On the other hand, in the sample No. 14 in which the cooling temperature at the time of extraction was less than the softening point temperature of the wax contained in the binder, a sample having a good appearance could be produced, but the extraction pressure increased because the lubricating effect of the wax decreased. It was observed. Further, in the sample of Sample No. 15 in which the cooling temperature at the time of extraction greatly exceeded the melting point of the wax, a sample having a good appearance could be produced, but the oil film of the wax that exerts a lubricating action at the time of extraction was partially interrupted and the extraction pressure was Increased. From this, it was confirmed that it is preferable to set the cooling temperature at the time of extraction to a temperature not lower than the softening point temperature and not higher than the melting point of the wax used, because the extraction pressure can be reduced and the extraction process can be performed efficiently.

表1の試料番号05および16、17の試料は、熱可塑性樹脂の影響を調べた例である。試料番号16はポリアセタールをポリプロピレン(軟化点110℃、融点170℃)に変更し、表1に示す温度で成形及び抜き出しを行った結果である。同様に、試料番号17はポリアセタールをポリエチレン(軟化点80℃、融点130℃)に変更し、表1に示す温度で成形及び抜き出しを行った結果である。試料番号16、17の試料では、ともに良好な外観を備えた成形体が得られた。このことから、軟化点を有する熱可塑性樹脂を用いて成形が可能であることが確認された。   Sample Nos. 05, 16 and 17 in Table 1 are examples in which the influence of the thermoplastic resin was examined. Sample No. 16 is the result of changing the polyacetal to polypropylene (softening point 110 ° C., melting point 170 ° C.) and molding and extracting at the temperatures shown in Table 1. Similarly, sample number 17 is the result of molding and drawing at the temperatures shown in Table 1 after changing the polyacetal to polyethylene (softening point 80 ° C., melting point 130 ° C.). In the samples of Sample Nos. 16 and 17, a molded body having a good appearance was obtained. From this, it was confirmed that molding was possible using a thermoplastic resin having a softening point.

図1は、試料番号05の試料の断面を走査型電子顕微鏡で観察して得たCOMP像(反射電子組成像)である。本発明の非直線性抵抗材料は、高分子材料中に酸化亜鉛粉末が均一に分散しているものであることが確認された。   FIG. 1 is a COMP image (reflected electron composition image) obtained by observing a cross section of the sample No. 05 with a scanning electron microscope. It was confirmed that the non-linear resistance material of the present invention is a material in which zinc oxide powder is uniformly dispersed in a polymer material.

本発明の高分子材料中に酸化亜鉛粉末が分散した複合材料は、非直線性抵抗材料として好適である。例えば、雷防護素子用の材料として好適である。   A composite material in which zinc oxide powder is dispersed in the polymer material of the present invention is suitable as a nonlinear resistance material. For example, it is suitable as a material for a lightning protection element.

10…酸化亜鉛粉末、11…高分子材料。   10 ... zinc oxide powder, 11 ... polymer material.

Claims (10)

酸化亜鉛粉末が5〜80体積%と、残部が熱可塑性樹脂とワックスからなる高分子材料および不可避不純物からなり、前記高分子材料中に酸化亜鉛粉末が分散していることを特徴とする非直線性抵抗材料。   A non-linearity characterized in that the zinc oxide powder is 5 to 80% by volume, the balance is made of a polymer material made of thermoplastic resin and wax, and inevitable impurities, and the zinc oxide powder is dispersed in the polymer material. Resistance material. 前記酸化亜鉛粉末どうしが、前記高分子材料により接触しないよう隔てられていることを特徴とする請求項1に記載の非直線性抵抗材料。   The nonlinear resistance material according to claim 1, wherein the zinc oxide powders are separated from each other by the polymer material. 前記高分子材料に占める熱可塑性樹脂が20〜70体積%であり、残部がワックスであることを特徴とする請求項1または2に記載の非直線性抵抗材料。   3. The nonlinear resistance material according to claim 1, wherein the thermoplastic resin in the polymer material is 20 to 70% by volume, and the balance is a wax. 4. 酸化亜鉛粉末が50μm以下の粉末であることを特徴とする請求項1〜3のいずれかに記載の非直線性抵抗材料。   The non-linear resistance material according to claim 1, wherein the zinc oxide powder is a powder of 50 μm or less. 酸化亜鉛粉末5〜80体積%と、残部が熱可塑性樹脂とワックスからなる高分子材料および不可避不純物からなる原料を、加熱混練して原料調整する原料調整工程と、
前記原料を所定量、押型の型孔内に充填する充填工程と、
前記押型内の原料をパンチで加圧して所定形状に造形する加圧成形工程と、
前記加圧成形工程の後に得られた成形体を抜き出す抜き出し工程とを備えることを特徴とする非直線性抵抗部品の製造方法。
A raw material adjustment step of adjusting the raw material by heating and kneading a raw material consisting of a polymer material consisting of 5 to 80% by volume of zinc oxide powder, the balance being a thermoplastic resin and wax, and inevitable impurities,
A filling step of filling a predetermined amount of the raw material into the mold cavity of the mold;
A pressure forming step of pressing the raw material in the mold with a punch to form a predetermined shape;
A non-linear resistance component manufacturing method comprising: an extraction step of extracting a molded body obtained after the pressure forming step.
前記高分子材料に占める熱可塑性樹脂が20〜70体積%であり、残部がワックスであることを特徴とする請求項5に記載の非直線性抵抗部品の製造方法。   The method for producing a non-linear resistance component according to claim 5, wherein the thermoplastic resin in the polymer material is 20 to 70% by volume and the balance is wax. 酸化亜鉛粉末が50μm以下の粉末であることを特徴とする請求項6または7に記載の非直線性抵抗部品の製造方法。   The method for manufacturing a non-linear resistance component according to claim 6 or 7, wherein the zinc oxide powder is a powder of 50 µm or less. 前記加圧成形工程を、前記原料に含まれる前記熱可塑性樹脂の軟化点以上の温度で行うことを特徴とする請求項5〜7のいずれかに記載の非直線性抵抗部品の製造方法。   The method for producing a nonlinear resistance component according to claim 5, wherein the pressure molding step is performed at a temperature equal to or higher than a softening point of the thermoplastic resin included in the raw material. 前記抜き出し工程を、前記原料に含まれる前記熱可塑性樹脂の軟化点以下の温度で行うことを特徴とする請求項8に記載の非直線性抵抗部品の製造方法。   The method of manufacturing a nonlinear resistance component according to claim 8, wherein the extracting step is performed at a temperature equal to or lower than a softening point of the thermoplastic resin included in the raw material. 酸化亜鉛粉末5〜80体積%と、残部が熱可塑性樹脂とワックスからなる高分子材料および不可避不純物からなる原料を、加熱混練して原料調整する原料調整工程と、
非直線性抵抗部品の外形の一部を形成する型孔を有する固定金型と、非直線性抵抗部品の外形の残部を形成する型孔を有する可動金型を型締めして、前記固定金型の型孔と前記可動金型の型孔から形成されるキャビティに、原料導入路より非直線性抵抗材料に含有される熱可塑性樹脂の軟化点以上に加熱され流動状態にある非直線性抵抗材料を射出して、前記キャビティを流動状態にある非直線性抵抗材料により充満させる原料射出工程と、
前記キャビティに充満した非直線性抵抗材料を、非直線性抵抗材料に含有される熱可塑性樹脂の軟化点以下の温度に冷却して非直線性抵抗材料を固化する冷却工程と、
前記可動金型を駆動させて型開きを行うとともに、固化した非直線性抵抗部品を固定金型から取り出す取り出し工程とを備えることを特徴とする非直線性抵抗部品の製造方法。
A raw material adjustment step of adjusting the raw material by heating and kneading a raw material consisting of a polymer material consisting of 5 to 80% by volume of zinc oxide powder, the balance being a thermoplastic resin and wax, and inevitable impurities,
A fixed mold having a mold hole forming a part of the outer shape of the non-linear resistance component and a movable mold having a mold hole forming the remainder of the non-linear resistance component are clamped, and the fixed mold A non-linear resistance that is heated and flowed above the softening point of the thermoplastic resin contained in the non-linear resistance material from the raw material introduction path into the cavity formed by the mold hole of the mold and the mold hole of the movable mold A raw material injection step of injecting material and filling the cavity with a non-linear resistance material in a fluid state;
A cooling step of solidifying the non-linear resistance material by cooling the non-linear resistance material filled in the cavity to a temperature below the softening point of the thermoplastic resin contained in the non-linear resistance material;
A method of manufacturing a non-linear resistance component, comprising: opening the mold by driving the movable mold, and taking out the solidified non-linear resistance component from the fixed mold.
JP2014262788A 2014-12-25 2014-12-25 Nonlinear resistive material, and method for manufacturing nonlinear resistance part Pending JP2016122766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262788A JP2016122766A (en) 2014-12-25 2014-12-25 Nonlinear resistive material, and method for manufacturing nonlinear resistance part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262788A JP2016122766A (en) 2014-12-25 2014-12-25 Nonlinear resistive material, and method for manufacturing nonlinear resistance part

Publications (1)

Publication Number Publication Date
JP2016122766A true JP2016122766A (en) 2016-07-07

Family

ID=56326702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262788A Pending JP2016122766A (en) 2014-12-25 2014-12-25 Nonlinear resistive material, and method for manufacturing nonlinear resistance part

Country Status (1)

Country Link
JP (1) JP2016122766A (en)

Similar Documents

Publication Publication Date Title
KR101806252B1 (en) Three dimensional printing method using metal powder-containing composition
Abel et al. Fused filament fabrication (FFF) of metal-ceramic components
JP5439194B2 (en) Organic binder manufacturing method and organic binder
DE3942745C2 (en)
Sommer et al. Influence of feedstock preparation on ceramic injection molding and microstructural features of zirconia toughened alumina
WO2020003901A1 (en) Composition for 3d printer
US6296044B1 (en) Injection molding
KR101761649B1 (en) Metal powder-containing composition for three dimensional printing
Thomas et al. Production of alumina microparts by powder injection molding
KR20110089281A (en) Method for producing cemented carbide or cermet products
EP3541552A1 (en) Method for producing a porous moulded body and porous moulded body
CN108115141A (en) A kind of ejection forming method of Ultra-fine WC-Co Cemented Carbide
JP2016122766A (en) Nonlinear resistive material, and method for manufacturing nonlinear resistance part
JP4877997B2 (en) Method for producing sintered hard alloy
JP2015108126A (en) Method for recycling fluororesin
KR102188274B1 (en) Three dimensional printing apparatus using stick-type metal and ceramic material and precision extrusion control method thereof
DE10149793B4 (en) Process for the production of sintered bodies from a plastic molding composition containing powder, wax and solvent
US9034210B2 (en) Feedstock and method for preparing the feedstock
JP5556752B2 (en) Composition for injection molding and method for producing the same
Seerane et al. Investigation of the powder loading of gas-atomized Ti6Al4V powder using an ‘in-house’binder for metal injection moulding
CN115052696A (en) System and method for nanocrystalline metal powder injection molding
TWI580746B (en) Binder for injection molding
KR102516735B1 (en) A three dimensional printing apparatus using ceramic material
CN106944610A (en) A kind of cermet material, preparation method and products thereof
Saidin et al. Preparation of aluminum feedstock for green part specimen using metal injection molding