JP2016121848A - Cooler - Google Patents

Cooler Download PDF

Info

Publication number
JP2016121848A
JP2016121848A JP2014262185A JP2014262185A JP2016121848A JP 2016121848 A JP2016121848 A JP 2016121848A JP 2014262185 A JP2014262185 A JP 2014262185A JP 2014262185 A JP2014262185 A JP 2014262185A JP 2016121848 A JP2016121848 A JP 2016121848A
Authority
JP
Japan
Prior art keywords
air
outside air
heat exchanger
cooling device
inside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014262185A
Other languages
Japanese (ja)
Inventor
将吾 前田
Shogo Maeda
将吾 前田
直之 舟田
Naoyuki Funada
直之 舟田
弘仁 堺
Hirohito Sakai
弘仁 堺
雅史 坪内
Masafumi Tsubouchi
雅史 坪内
雅史 松井
Masafumi Matsui
雅史 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014262185A priority Critical patent/JP2016121848A/en
Priority to PCT/JP2015/006060 priority patent/WO2016103593A1/en
Publication of JP2016121848A publication Critical patent/JP2016121848A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a cooler capable of suppressing reverse heat exchange between inside and outside air in a heat exchanger, to stabilize cooling capacity.SOLUTION: A cooler 10 includes: a first air blowing passage 15a for outside air in which outside air passes through a heat exchanger 21; a second air blowing passage 15b for outside air in which outside air detours the heat exchanger 21; and a flow passage switching member 28 switching a flow passage for outside air to any one. When the temperature of inside air is lower than the temperature of outside air, reverse heat exchange between inside and outside air is performed in the heat exchanger 21, and in this case, a main stream of outside air is switched to the side of the second air blowing passage 15b in which the main stream detours the heat exchanger 21 by switching operation of the flow passage switching member 28, and a function as the heat exchanger 21 is suppressed.SELECTED DRAWING: Figure 1

Description

本発明は、冷凍回路と熱交換器とを併用する冷却装置に関する。   The present invention relates to a cooling device that uses a refrigeration circuit and a heat exchanger in combination.

従来、熱源を筐体内や部屋内に有する装置や構造物において、内気を冷却するための冷却装置としては、例えば特許文献1に開示のものが知られている。   Conventionally, as a cooling device for cooling the inside air in a device or structure having a heat source in a housing or a room, a device disclosed in, for example, Patent Document 1 is known.

特許文献1の冷却装置(冷却機能を有するサーバ収納装置)の構成としては、先ず冷却対象(熱源側)の内気が循環する第1送風路と、外部と連通するダクトに接続されて外気が循環する第2送風路とが並設されており、各送風路にはそれぞれ気流を生じさせる送風機が備えられている。   As a configuration of the cooling device (server storage device having a cooling function) of Patent Document 1, first, the outside air is circulated by being connected to a first air passage through which the inside air of the object to be cooled (heat source side) circulates and a duct communicating with the outside. The second air passages are arranged in parallel, and each air passage is provided with a blower that generates an air flow.

次いで、第1送風路にはエバポレータ(蒸発器)が、第2送風路にはコンデンサ(凝縮器)がそれぞれ備えられ、エバポレータ、コンデンサ、及びコンプレッサ(圧縮機)を含む冷凍回路が構成されている。冷凍回路は、第1送風路を流れる内気の熱をエバポレータにより吸熱する一方、その吸熱分に相当する排熱を第2送風路を流れる外気に対して行い、内気を冷却する熱交換を行っている。   Next, an evaporator (evaporator) is provided in the first air passage, and a condenser (condenser) is provided in the second air passage, respectively, and a refrigeration circuit including an evaporator, a condenser, and a compressor (compressor) is configured. . The refrigeration circuit absorbs the heat of the inside air flowing through the first air passage by the evaporator, and performs exhaust heat corresponding to the heat absorption on the outside air flowing through the second air passage, and performs heat exchange to cool the inside air. Yes.

更に同文献1の開示技術では、エネルギー消費効率を上げるために熱交換器が併用されている。熱交換器は、対向流方式であって第1及び第2送風路に跨るようにして備えられ、第1送風路のエバポレータの上流側で且つ第2送風路のコンデンサの上流側に位置するように設けられている。熱交換器は、内気がエバポレータに到達する前に内外気間の熱交換作用により内気の吸熱を予め行っている。つまり、熱交換器と冷凍回路との2段階で内気の冷却が可能な構成となっている。   Furthermore, in the disclosed technique of the document 1, a heat exchanger is used in combination to increase energy consumption efficiency. The heat exchanger is a counter flow system and is provided so as to straddle the first and second air passages, and is located upstream of the evaporator of the first air passage and upstream of the condenser of the second air passage. Is provided. The heat exchanger preliminarily absorbs the inside air by heat exchange between the inside and outside air before the inside air reaches the evaporator. In other words, the inside air can be cooled in two stages of the heat exchanger and the refrigeration circuit.

特開2010−160533号公報(第4図)JP 2010-160533 A (FIG. 4)

ところで、熱交換器は、外気の温度が低く内気の温度が高い場合に、内外気間の熱交換作用にて内気の吸熱を行い、内気を冷却する仕組みである。しかしながら、逆に外気の温度が高く内気の温度が低くなる環境下では、熱交換器の仕組み上、内外気間の熱交換作用が逆になり、逆に内気を温めてしまう。そして、下流のエバポレータにて内気を冷却することになるため、エバポレータによる冷却作用の一部が相殺されてしまう。つまり、冷却装置全体ではかえって熱交換が非効率となってしまうため、このような事態を回避する手段が必要である。   By the way, the heat exchanger is a mechanism that cools the inside air by absorbing heat of the inside air by heat exchange action between the inside and outside air when the temperature of the outside air is low and the temperature of the inside air is high. However, in an environment where the temperature of the outside air is high and the temperature of the inside air is low, the heat exchange action between the inside and outside air is reversed due to the mechanism of the heat exchanger, and the inside air is heated. Since the inside air is cooled by the downstream evaporator, a part of the cooling action by the evaporator is offset. That is, since the heat exchange becomes inefficient in the entire cooling device, a means for avoiding such a situation is necessary.

本発明は、上記課題を解決するためになされたものであって、その目的は、熱交換器にて内外気間で逆の熱交換が行われることを抑制し、冷却能力の安定化を図ることができる冷却装置を提供することにある。   The present invention has been made to solve the above-described problems, and the object thereof is to suppress reverse heat exchange between the inside and outside air in the heat exchanger and to stabilize the cooling capacity. It is to provide a cooling device that can be used.

上記課題を解決する冷却装置は、冷却対象の内気及び外気を互いに通過させその内外気間で熱交換を行う対向流方式の熱交換器と、前記内外気間で熱搬送を行うエバポレータ及びコンデンサを含む冷凍回路と、前記内気及び外気の気流を生じさせる送風機とを備え、前記送風機の送風動作と前記熱交換器及び前記冷凍回路の少なくとも一方の冷却動作にて前記冷却対象の内気の冷却を行う冷却装置であって、前記内気及び外気を互いに通過させて前記熱交換器として機能させる態様から、前記内気及び外気の少なくとも一方を前記熱交換器を迂回する流路として前記熱交換器としての機能を抑制する態様に切り替える切替手段を備えて構成される。   A cooling device that solves the above problems includes a counter-flow type heat exchanger that allows the inside air and outside air to be cooled to pass through each other and exchanges heat between the inside and outside air, and an evaporator and a condenser that carry heat between the inside and outside air. A cooling circuit that includes the refrigeration circuit and a blower that generates the air flow of the inside air and the outside air, and cools the inside air to be cooled by a blowing operation of the blower and a cooling operation of at least one of the heat exchanger and the refrigeration circuit. A function as the heat exchanger as a cooling device, in which at least one of the inside air and the outside air bypasses the heat exchanger from the mode in which the inside air and the outside air pass each other and function as the heat exchanger It is provided with switching means for switching to a mode for suppressing the above.

本発明の冷却装置によれば、熱交換器にて内外気間で逆の熱交換が行われることを抑制し、冷却能力の安定化を図ることができる。   According to the cooling device of the present invention, it is possible to suppress reverse heat exchange between the inside and outside air in the heat exchanger and to stabilize the cooling capacity.

一実施形態における冷却装置の構成図である。It is a block diagram of the cooling device in one Embodiment. 別例における冷却装置の構成図である。It is a block diagram of the cooling device in another example.

以下、冷却装置の一実施形態について説明する。   Hereinafter, an embodiment of the cooling device will be described.

図1に示すように、冷却装置10は、熱源を有する冷却対象Aを冷却、例えば熱源となる蓄電池を多数収容する蓄電池室内を冷却するものである。冷却装置10は、冷却対象Aである蓄電池室の外壁面に対して蓄電池室の大きさ等を勘案した数及び配置にて取り付けられ、壁面に設けられる貫通口を通じて蓄電池室の内気を導入し冷却して再び蓄電池室内に供給する。   As shown in FIG. 1, the cooling device 10 cools a cooling target A having a heat source, for example, cools a storage battery chamber that houses a large number of storage batteries serving as heat sources. The cooling device 10 is attached to the outer wall surface of the storage battery chamber, which is the cooling target A, in the number and arrangement considering the size of the storage battery chamber, and cools by introducing the inside air of the storage battery chamber through the through-hole provided in the wall surface. Then, it is supplied again into the storage battery chamber.

冷却装置10の筐体11は、例えば四角箱状をなし、冷却対象Aに対して取り付けられる取付面12には、図1にて示す取付姿勢において上側に内気導入口12aが設けられ、該内気導入口12aよりも下側に離間した位置に内気吐出口12bが設けられている。筐体11の内部においては、内気導入口12aと内気吐出口12bとの間に内気送風路13が構成されている。内気導入口12aには冷却対象Aからの内気が導入され、内気送風路13の通過により冷却された低温内気が内気吐出口12bから冷却対象Aに吐出される。   The casing 11 of the cooling device 10 has, for example, a rectangular box shape, and the attachment surface 12 attached to the cooling target A is provided with an inside air inlet 12a on the upper side in the attachment posture shown in FIG. An inside air discharge port 12b is provided at a position spaced below the introduction port 12a. Inside the housing 11, an inside air blowing path 13 is configured between the inside air introduction port 12 a and the inside air discharge port 12 b. The inside air from the cooling target A is introduced into the inside air introduction port 12a, and the low temperature inside air cooled by the passage through the inside air blowing path 13 is discharged from the inside air discharge port 12b to the cooling target A.

また、取付面12とは反対側の筐体11の外側面14には、下側に外気導入口14aが設けられ、該外気導入口14aよりも上側に離間した位置に外気排出口14bが設けられている。尚、外気導入口14aは内気吐出口12bよりも下側に設けられ、外気排出口14bは内気吐出口12bより上側で且つ内気導入口12aより下側に設けられている。筐体11の内部においては、外気導入口14aと外気排出口14bとの間に外気送風路15が構成されている。外気導入口14aには冷却装置10の周囲の外気が導入され、外気送風路15の通過、即ち内気冷却時の排熱により加温された高温外気が外気排出口14bから外部に排出される。   In addition, the outer surface 14 of the housing 11 opposite to the mounting surface 12 is provided with an outside air introduction port 14a on the lower side, and an outside air discharge port 14b is provided at a position spaced above the outside air introduction port 14a. It has been. The outside air introduction port 14a is provided below the inside air discharge port 12b, and the outside air discharge port 14b is provided above the inside air discharge port 12b and below the inside air introduction port 12a. Inside the housing 11, an outside air blowing path 15 is formed between the outside air inlet 14 a and the outside air outlet 14 b. Outside air around the cooling device 10 is introduced into the outside air introduction port 14a, and high temperature outside air heated by exhaust heat at the time of passing through the outside air blowing passage 15, that is, cooling of the inside air is discharged from the outside air discharge port 14b.

筐体11の内部には、内気を冷却する手段として熱交換器(熱交換素子)21と冷凍回路22とが備えられている。熱交換器21は、対向流方式であり、内外気の互いの流通が無く内外気間で熱交換を行う装置である。冷凍回路22は、エバポレータ(蒸発器)23、コンデンサ(凝縮器)24、及びコンプレッサ25と、各装置を繋ぎ冷媒を循環させる配管(共に図示略)とを備え、内外気間で熱搬送を行う装置である。また、筐体11の内部には、内気送風路13において内気の気流を生じさせる内気用送風機26と、外気送風路15において外気の気流を生じさせる外気用送風機27とを備えている。   Inside the housing 11, a heat exchanger (heat exchange element) 21 and a refrigeration circuit 22 are provided as means for cooling the inside air. The heat exchanger 21 is a counter flow system, and is a device that exchanges heat between the inside and outside air without mutual circulation of the inside and outside air. The refrigeration circuit 22 includes an evaporator (evaporator) 23, a condenser (condenser) 24, a compressor 25, and pipes (both not shown) that connect the devices and circulate the refrigerant, and transfer heat between the inside and outside air. Device. Further, inside the housing 11, an inside air blower 26 that generates an inside air flow in the inside air blowing path 13 and an outside air blower 27 that generates an outside air flow in the outside air blowing path 15 are provided.

内気送風路13においては、内気導入口12aの近傍に内気用送風機26が配置され、次いで熱交換器21が配置され、内気吐出口12bの近傍にエバポレータ23が配置されている。つまり、内気用送風機26が送風動作を行うと、内気導入口12aから導入される冷却対象Aからの内気が熱交換器21を通過し、次いでエバポレータ23を通過して内気吐出口12bから冷却対象Aに対して吐出される。   In the inside air blowing path 13, an inside air blower 26 is arranged in the vicinity of the inside air introduction port 12a, a heat exchanger 21 is arranged next, and an evaporator 23 is arranged in the vicinity of the inside air discharge port 12b. That is, when the inside air blower 26 performs a blowing operation, the inside air from the cooling target A introduced from the inside air introduction port 12a passes through the heat exchanger 21, then passes through the evaporator 23, and is cooled from the inside air discharge port 12b. A is discharged to A.

一方、外気送風路15は、外気導入口14aの近傍に外気用送風機27を備え、これ以降の下流側は2つの送風路、即ち外気第1送風路15a及び外気第2送風路15bとして並列的に構成されている。外気第1送風路15a側には熱交換器21が配置され、外気第2送風路15b側には流路切替部材28とその下流側にコンデンサ24とが配置されている。流路切替部材28は、熱交換器21の外気側流路の入口と並んで設けられ、例えば外気第2送風路15bの入口を開閉する開閉部材にて構成されている。   On the other hand, the outside air blowing path 15 includes an outside air blower 27 in the vicinity of the outside air introduction port 14a, and the downstream side thereafter is paralleled as two blowing paths, that is, the outside air first blowing path 15a and the outside air second blowing path 15b. It is configured. The heat exchanger 21 is disposed on the outside air first air passage 15a side, and the flow path switching member 28 is disposed on the outside air second air passage 15b side, and the condenser 24 is disposed on the downstream side thereof. The flow path switching member 28 is provided side by side with the inlet of the outdoor air side flow path of the heat exchanger 21, and is constituted by, for example, an opening / closing member that opens and closes the inlet of the external air second air passage 15b.

つまり、流路切替部材28は、外気第2送風路15bの入口を閉鎖することで外気用送風機27を経た外気を外気第1送風路15a側に導き、外気第2送風路15bの入口を開放することで外気用送風機27を経た外気を自身の外気第2送風路15b側に導く動作を行う。尚、熱交換器21の外気側流路の入口は開放したままで開閉部材を用いないが、熱交換器21を含む外気第1送風路15aの圧損(流路抵抗)の方が、コンデンサ24を含む外気第2送風路15bの圧損よりも相対的に十分大きいため、流路切替部材28により外気第2送風路15bの入口を開放した場合の外気の流れは、主として圧損の小さい側の外気第2送風路15bに切り替わるようになっている。   That is, the flow path switching member 28 closes the inlet of the outside air second air passage 15b to guide the outside air that has passed through the outside air blower 27 to the outside air first air passage 15a side, and opens the entrance of the outside air second air passage 15b. By doing so, the operation | movement which guides the external air which passed through the external air blower 27 to the own external air 2nd ventilation path 15b side is performed. In addition, although the inlet of the outside air side flow path of the heat exchanger 21 is left open and no opening / closing member is used, the pressure loss (flow path resistance) of the outside air first air passage 15a including the heat exchanger 21 is greater than the capacitor 24. Therefore, the flow of the outside air when the inlet of the outside air second air passage 15b is opened by the flow path switching member 28 is mainly the outside air on the side where the pressure loss is small. It switches to the 2nd ventilation path 15b.

次に、冷却装置10の動作(作用)について説明する。   Next, the operation (action) of the cooling device 10 will be described.

[熱交換器21による内気冷却モード]
本モードは、内気の温度が外気の温度よりも高い場合に用いられ、熱交換器21のみで内気の冷却が行われるモードである。本モードでは、内気用送風機26及び外気用送風機27が送風動作される一方、冷凍回路22の動作は停止状態とする。また、流路切替部材28は、外気第2送風路15bの入口を閉鎖状態とする。
[Inside air cooling mode by heat exchanger 21]
This mode is used when the temperature of the inside air is higher than the temperature of the outside air, and the inside air is cooled only by the heat exchanger 21. In this mode, the inside air blower 26 and the outside air blower 27 are blown, while the operation of the refrigeration circuit 22 is stopped. The flow path switching member 28 closes the inlet of the outside air second air passage 15b.

内気用送風機26の送風動作により、内気が内気送風路13を流れ、熱交換器21の内気側流路を通過する。また、外気用送風機27の送風動作により、外気が外気送風路15、この場合外気第1送風路15a側を流れ、熱交換器21の外気側流路を通過する。これにより、熱交換器21にて内気の吸熱がなされると共に外気に対して排熱がなされ、冷却された内気が冷却対象Aに供給される。   Due to the blowing operation of the inside air blower 26, the inside air flows through the inside air blowing path 13 and passes through the inside air side flow path of the heat exchanger 21. Further, by the blowing operation of the outside air blower 27, outside air flows through the outside air blowing path 15, in this case, the outside air first blowing path 15 a side, and passes through the outside air side flow path of the heat exchanger 21. As a result, the heat exchanger 21 absorbs the inside air and exhausts the outside air, and the cooled inside air is supplied to the cooling target A.

[熱交換器21と冷凍回路22とを併用した内気冷却モード]
本モードは、内気の温度が外気の温度よりも高い場合に用いられ、熱交換器21及び冷凍回路22を併用した内気の十分な冷却が行われるモードである。本モードでは、内気用送風機26及び外気用送風機27の送風動作と、冷凍回路22の冷却動作とが行われる。流路切替部材28は、外気第2送風路15bの入口を半開状態(所定量の開状態)とする。
[Inside air cooling mode using both heat exchanger 21 and refrigeration circuit 22]
This mode is used when the temperature of the inside air is higher than the temperature of the outside air, and is a mode in which sufficient cooling of the inside air is performed using the heat exchanger 21 and the refrigeration circuit 22 in combination. In this mode, the blowing operation of the inside air blower 26 and the outside air blower 27 and the cooling operation of the refrigeration circuit 22 are performed. The flow path switching member 28 makes the inlet of the outside air second air passage 15b a half-open state (a predetermined amount of the open state).

内気用送風機26及び外気用送風機27の送風動作により、内気が熱交換器21にて冷却され、更にその下流のエバポレータ23を通過することで一層冷却され、十分に冷却された内気が冷却対象Aに供給される。   The inside air is cooled by the heat exchanger 21 by the blowing operation of the inside air blower 26 and the outside air blower 27, and further cooled by passing through the evaporator 23 downstream thereof, and the sufficiently cooled inside air is cooled. To be supplied.

また、外気側では、熱交換器21からの排熱とコンデンサ24からの排熱がなされる。流路切替部材28により外気第2送風路15bの入口が半開放(半閉鎖)となることで、外気第1及び第2送風路15a,15bのそれぞれに対して外気の配分がなされ、熱交換器21での排熱とコンデンサ24での排熱とが好適に行われる。   Further, on the outside air side, exhaust heat from the heat exchanger 21 and exhaust heat from the condenser 24 are performed. Since the inlet of the outside air second air passage 15b is semi-opened (semi-closed) by the flow path switching member 28, the outside air is distributed to each of the outside air first and second air passages 15a and 15b, and heat exchange is performed. The exhaust heat in the vessel 21 and the exhaust heat in the condenser 24 are preferably performed.

[冷凍回路22による内気冷却モード]
本モードは、上記の2つのモードの環境とは逆に、内気の温度が外気の温度に対して等しいか低い場合に用いられ、この場合は冷凍回路22による内気の冷却が行われるモードである。つまり、熱交換器21では内外気の逆の熱交換が行われてしまうため、熱交換器21での熱交換作用を抑制する。本モードでは、内気用送風機26及び外気用送風機27の送風動作と冷凍回路22の冷却動作とが行われ、流路切替部材28は外気第2送風路15bの入口を開放状態に切り替える。
[Inside air cooling mode by refrigeration circuit 22]
This mode is used in the case where the temperature of the inside air is equal to or lower than the temperature of the outside air, contrary to the environment of the above two modes, and in this case, the inside air is cooled by the refrigeration circuit 22. . That is, since the heat exchanger 21 performs reverse heat exchange between the inside and outside air, the heat exchange action in the heat exchanger 21 is suppressed. In this mode, the air blowing operation of the inside air blower 26 and the outside air blower 27 and the cooling operation of the refrigeration circuit 22 are performed, and the flow path switching member 28 switches the inlet of the outside air second air flow path 15b to the open state.

流路切替部材28により外気第2送風路15bの入口が開放されることで、外気の主たる流れは外気第2送風路15b側に切り替わる。つまり、外気第1送風路15aの熱交換器21への外気の供給が十分に少なくなるため、熱交換器21での熱交換作用が十分に抑制される(熱交換器21としての機能を抑制)。これにより、内気が熱交換器21を通過する際に、外気にて逆に温められてしまうことが十分に抑制される。   When the inlet of the outside air second air passage 15b is opened by the flow path switching member 28, the main flow of the outside air is switched to the outside air second air passage 15b side. That is, since the supply of outside air to the heat exchanger 21 of the first outside air passage 15a is sufficiently reduced, the heat exchange action in the heat exchanger 21 is sufficiently suppressed (the function as the heat exchanger 21 is suppressed). ). As a result, when the inside air passes through the heat exchanger 21, it is sufficiently suppressed that the inside air is heated by the outside air.

そして、熱交換器21を経た内気はエバポレータ23を通過することで冷却され、冷却された内気が冷却対象Aに供給される。また、本モードでの外気の主たる流れは外気第2送風路15b側であるため、コンデンサ24からの排熱はこの外気の気流に乗って行われる。   The inside air that has passed through the heat exchanger 21 is cooled by passing through the evaporator 23, and the cooled inside air is supplied to the cooling target A. Further, since the main flow of the outside air in this mode is the outside air second air passage 15b side, the exhaust heat from the condenser 24 is carried on the outside air flow.

尚、上記各冷却モードは、使用者のモード切替スイッチ等の操作にて切り替えてもよく、また冷却装置10の制御回路(図示略)にて、例えば内外気の温度の検出等に基づいて現状に適したモードを自動的に切り替えてもよい。   Each of the above cooling modes may be switched by a user's operation of a mode change switch or the like, and the control circuit (not shown) of the cooling device 10 is used to detect the current temperature based on, for example, the detection of the temperature of the inside and outside air. The mode suitable for the mode may be automatically switched.

次に、本実施形態の特徴的な効果を記載する。   Next, characteristic effects of the present embodiment will be described.

(1)本実施形態の冷却装置10は、外気が熱交換器21を通過する外気第1送風路15aと、外気が熱交換器21を迂回する外気第2送風路15bと、外気の流路を何れかに切り替える流路切替部材28とを備えて構成される。そして、内気の温度が外気の温度よりも低い場合、熱交換器21にて内外気の逆の熱交換が行われてしまうため、このような場合には、流路切替部材28の切替動作により外気の主流が熱交換器21を迂回する外気第2送風路15b側に切り替えられ、熱交換器21としての機能が抑制される。そのため、内気が熱交換器21を通過しても外気にて温められることを抑制でき、冷却装置10の冷却能力の安定化を図ることができる。   (1) The cooling device 10 according to the present embodiment includes an outside air first air passage 15a through which outside air passes through the heat exchanger 21, an outside air second air passage 15b through which outside air bypasses the heat exchanger 21, and an outside air passage. And a flow path switching member 28 for switching between the two. If the inside air temperature is lower than the outside air temperature, the heat exchanger 21 performs reverse heat exchange between the inside and outside air. In such a case, the switching operation of the flow path switching member 28 is performed. The main flow of the outside air is switched to the outside air second air passage 15b side that bypasses the heat exchanger 21, and the function as the heat exchanger 21 is suppressed. Therefore, even if the inside air passes through the heat exchanger 21, it can be suppressed from being warmed by the outside air, and the cooling capacity of the cooling device 10 can be stabilized.

(2)外気の流路を切り替えて熱交換器21の機能を切り替える手段として、冷却装置10に対して外気第1及び第2送風路15a,15bを並列的に構成し、外気の流路をその何れかに切り替える流路切替部材28を用いた構成としたことから、比較的簡単な構成にて実現することができる。   (2) As means for switching the function of the heat exchanger 21 by switching the outside air flow path, the outside air first and second air passages 15a and 15b are configured in parallel to the cooling device 10, and the outside air flow path is configured. Since the configuration using the flow path switching member 28 for switching to any one of them is realized, it can be realized with a relatively simple configuration.

(3)外気第1及び第2送風路15a,15bの圧損差を利用し、流路切替部材(開閉部材)28を第2送風路15b側にのみ設ける構成としたことで、冷却装置10の内部構造の簡素化に貢献でき、冷却装置10の小型化も期待できる。   (3) By using the pressure loss difference between the first and second air passages 15a and 15b in the outside air, the flow path switching member (opening / closing member) 28 is provided only on the second air passage 15b side, so that the cooling device 10 It can contribute to the simplification of the internal structure and can be expected to reduce the size of the cooling device 10.

(4)流路切替部材28を外気第2送風路15bの入口の開閉を行う開閉部材にて構成したことで、流路切替部材28を比較的簡単な構成にて実現することができる。   (4) Since the flow path switching member 28 is configured with an opening / closing member that opens and closes the inlet of the outside air second air passage 15b, the flow path switching member 28 can be realized with a relatively simple configuration.

(5)熱交換器21の機能を切り替える手段として外気のみの流路を切り替える構成としたことで、比較的簡単な構成にて実現することができる。   (5) By adopting a configuration that switches the flow path of only the outside air as means for switching the function of the heat exchanger 21, it can be realized with a relatively simple configuration.

尚、上記実施形態は、以下のように変更してもよい。   In addition, you may change the said embodiment as follows.

・外気第1及び第2送風路15a,15bを並列的に構成し、外気の流路をその何れかに切り替える流路切替部材28を用いて外気の流路変更を行うように構成したが、図2に示す冷却装置10aのように内気の流路変更を行う構成としてもよい。内気送風路13は、内気用送風機26の下流側において、内気が熱交換器21を通過する内気第1送風路13aと、内気が熱交換器21を迂回して直接的にエバポレータ23に向かう内気第2送風路13bとで並列的に構成する。また、流路切替部材29は、内気第2送風路13bの入口を開閉する開閉部材にて構成する。このような構成としても、上記実施形態と同様な効果を得ることが可能である。   The outside air first and second air passages 15a, 15b are configured in parallel, and the outside air flow path is changed using the flow path switching member 28 that switches the outside air flow path to any one of them, It is good also as a structure which changes the flow path of inside air like the cooling device 10a shown in FIG. The inside air blowing path 13 includes an inside air first blowing path 13a through which the inside air passes through the heat exchanger 21 and an inside air that bypasses the heat exchanger 21 and goes directly to the evaporator 23 on the downstream side of the inside air blower 26. The second air passage 13b is configured in parallel. The flow path switching member 29 is configured by an opening / closing member that opens and closes the inlet of the inside air second air passage 13b. Even with such a configuration, it is possible to obtain the same effect as the above-described embodiment.

また、図1の外気側の切り替え、及び図2の内気側の切り替えの両者の構成を用いてもよい。   Moreover, you may use the structure of both the switching of the outside air side of FIG. 1, and the switching of the inside air side of FIG.

・図1では外気第1及び第2送風路15a,15bの圧損差を利用し、流路切替部材(開閉部材)28を第2送風路15b側にのみ設け、図2では内気第1及び第2送風路13a,13bの圧損差を利用し、流路切替部材(開閉部材)29を第2送風路13b側にのみ設けたが、それぞれ外気第1送風路15a側、内気第1送風路13a側にも連動する開閉部材等を設けてもよい。このようにすれば、図1では外気の流れを、図2では内気の流れをそれぞれ確実に(例えばその流れの全部を確実に)切り替えることが可能である。   In FIG. 1, the pressure loss difference between the outside air first and second air passages 15a and 15b is used, and a flow path switching member (opening / closing member) 28 is provided only on the second air passage 15b side, and in FIG. Although the flow path switching member (opening / closing member) 29 is provided only on the second air passage 13b side using the pressure loss difference between the two air passages 13a and 13b, the outside air first air passage 15a side and the inside air first air passage 13a, respectively. An opening / closing member or the like interlocking with the side may also be provided. In this way, the flow of outside air in FIG. 1 and the flow of inside air in FIG. 2 can be switched reliably (for example, all of the flow can be switched reliably).

また、図1では外気第1及び第2送風路15a,15bのそれぞれに図示略の送風機を設置し(外気用送風機27を省略可)、図2では内気第1及び第2送風路13a,13bのそれぞれに図示略の送風機を設置し(内気用送風機26を省略可)、各送風機の動作態様を切り替えることで外気若しくは内気の流路切り替えを行うことも可能である。この場合、外気第1及び第2送風路15a,15bの各送風機、内気第1及び第2送風路13a,13bの各送風機が切替手段となる。   Further, in FIG. 1, a blower (not shown) is installed in each of the outside air first and second air passages 15a and 15b (the outside air blower 27 can be omitted), and in FIG. 2, the inside air first and second air passages 13a and 13b. It is also possible to perform switching of the flow path of the outside air or the inside air by installing a blower (not shown) in each of them (the inside air blower 26 can be omitted) and switching the operation mode of each blower. In this case, each blower of the outside air first and second blower passages 15a and 15b and each blower of the inside air first and second blower passages 13a and 13b serve as switching means.

・図1及び図2に示す流路切替部材28,29は、流路を開閉する機能を有するものであり、具体的には同図1及び図2のように回動動作にて開閉する開閉部材であったり、またスライド動作により開閉する開閉部材等、他の構成のものも含む。   The flow path switching members 28 and 29 shown in FIG. 1 and FIG. 2 have a function of opening and closing the flow path. Specifically, the open / close is opened and closed by a rotating operation as shown in FIG. 1 and FIG. Other components such as a member or an opening / closing member that opens and closes by a sliding operation are also included.

・その他、冷却装置10の構成を適宜変更してもよい。例えばエバポレータ23やコンデンサ24、送風機26,27等の設置位置を適宜変更してもよい。その中で例えば、図1及び図2では押込型の送風機26,27を用いてそれぞれ熱交換器21の上流側に設置したが、吸込型の送風機を用いてそれぞれ熱交換器21の下流側に設置してもよい。   -In addition, you may change the structure of the cooling device 10 suitably. For example, the installation positions of the evaporator 23, the condenser 24, the blowers 26 and 27, and the like may be changed as appropriate. Among them, for example, in FIG. 1 and FIG. 2, the push-type blowers 26 and 27 are installed on the upstream side of the heat exchanger 21, but the suction-type blower is used on the downstream side of the heat exchanger 21. May be installed.

また、図1及び図2では側方視で熱交換器21が長方形状のものを用いたが、六角形状や菱形状のものを用いてもよい。また、図1及び図2において熱交換器21内の流路がL字型のものを用いたが、コ字型のものやI字型(ストレート型)のものを用いてもよい。   Moreover, although the heat exchanger 21 used the rectangular thing in the side view in FIG.1 and FIG.2, a hexagonal shape or a rhombus shape may be used. Moreover, although the flow path in the heat exchanger 21 in FIG.1 and FIG.2 used the L-shaped thing, you may use a U-shaped thing or an I-shaped (straight type) thing.

また、図1では外気第1及び第2送風路15a,15bを互いに隔壁なく並設し、図2では内気第1及び第2送風路13a,13bを互いに隔壁なく並設したが、それぞれ隔壁を設けてもよい。隔壁は、並設の送風路15a,15b間や送風路13a,13b間のそれぞれを確実に分離させる機能や、熱交換器21の支持する機能ともなる。   In FIG. 1, the outside air first and second air passages 15a and 15b are arranged side by side without a partition. In FIG. 2, the inside air first and second air passages 13a and 13b are arranged side by side without a partition. It may be provided. The partition wall also functions to reliably separate the air passages 15a and 15b and the air passages 13a and 13b from each other, and to support the heat exchanger 21.

また、配置的にも図1では熱交換器21とコンデンサ24とが並設、図2では熱交換器21とエバポレータ23とが並設されているが、それぞれ直列的な配置であっても流路(送風路)が並列的な構成となっていればよい。   Further, in terms of arrangement, the heat exchanger 21 and the condenser 24 are arranged in parallel in FIG. 1, and the heat exchanger 21 and the evaporator 23 are arranged in parallel in FIG. It suffices if the path (fan path) has a parallel configuration.

また、熱交換器21及び冷凍回路22を内気冷却として機能させたが、内気暖房のために冷却装置10を逆の使い方をしてもよい。   Moreover, although the heat exchanger 21 and the refrigerating circuit 22 were functioned as internal air cooling, you may use the cooling device 10 reversely for internal air heating.

次に、上記実施形態及び別例から把握できる技術的思想を以下に付記として追記する。   Next, technical ideas that can be grasped from the above-described embodiment and other examples will be additionally described below.

(付記1)冷却対象の内気及び外気を互いに通過させその内外気間で熱交換を行う対向流方式の熱交換器と、前記内外気間で熱搬送を行うエバポレータ及びコンデンサを含む冷凍回路と、前記内気及び外気の気流を生じさせる送風機とを備え、前記送風機の送風動作と前記熱交換器及び前記冷凍回路の少なくとも一方の冷却動作にて前記冷却対象の内気の冷却を行う冷却装置であって、
前記内気及び外気を互いに通過させて前記熱交換器として機能させる態様から、前記内気及び外気の少なくとも一方側の一部又は全部を前記熱交換器を迂回する流路に切り替えて前記熱交換器としての機能を抑制する態様に切り替える切替手段を備えて構成されていることを特徴とする冷却装置。
(Appendix 1) A counter-flow type heat exchanger that allows the inside air and the outside air to be cooled to pass through each other and exchange heat between the inside and outside air, a refrigeration circuit that includes an evaporator and a condenser that performs heat transfer between the inside and outside air, A cooling device for cooling the inside air to be cooled by a blowing operation of the blower and a cooling operation of at least one of the heat exchanger and the refrigeration circuit. ,
From the aspect in which the inside air and the outside air are allowed to pass each other and function as the heat exchanger, a part or all of at least one side of the inside air and the outside air is switched to a flow path that bypasses the heat exchanger as the heat exchanger. A cooling device characterized by comprising switching means for switching to a mode that suppresses the function.

(付記2)付記1に記載の冷却装置において、
前記切替手段は、前記内気又は外気が前記熱交換器を通過する第1送風路と、前記内気又は外気が前記熱交換器を迂回する第2送風路と、前記内気又は外気の流路を前記第1及び第2送風路のいずれかに切り替える流路切替部材とを備えて構成されていることを特徴とする冷却装置。
(Supplementary note 2) In the cooling device according to supplementary note 1,
The switching means includes a first air passage through which the inside air or outside air passes through the heat exchanger, a second air passage through which the inside air or outside air bypasses the heat exchanger, and a flow path of the inside air or outside air. A cooling device comprising: a flow path switching member that switches to one of the first and second air passages.

(付記3)付記2に記載の冷却装置において、
前記内気又は外気が前記熱交換器を通過する前記第1送風路は、前記内気又は外気が前記熱交換器を迂回する第2送風路よりも圧損が相対的に大きく構成されるものであって、
前記流路切替部材は、圧損の小さい側の前記第2送風路の入口の開閉を行う開閉部材にて構成されていることを特徴とする冷却装置。
(Supplementary note 3) In the cooling device according to supplementary note 2,
The first air passage through which the inside air or outside air passes through the heat exchanger is configured such that the pressure loss is relatively larger than the second air passage through which the inside air or outside air bypasses the heat exchanger. ,
The cooling device according to claim 1, wherein the flow path switching member is configured by an opening / closing member that opens and closes an inlet of the second air passage on the side having a small pressure loss.

(付記4)付記1〜3の何れか1項に記載の冷却装置において、
前記切替手段は、前記内気及び外気の何れか一方側のみを対象に構成されていることを特徴とする冷却装置。
(Appendix 4) In the cooling device according to any one of appendices 1 to 3,
The cooling device, wherein the switching means is configured for only one of the inside air and outside air.

本発明は、蓄電池やパワーコンディショナーを多数収容する室内や、サーバールームの冷却に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for cooling a room that houses a large number of storage batteries and power conditioners and a server room.

A…冷却対象、13a…内気第1送風路(切替手段、第1送風路)、13b…内気第2送風路(切替手段、第2送風路)、15a…外気第1送風路(切替手段、第1送風路)、15b…外気第2送風路(切替手段、第2送風路)、21…熱交換器、22…冷凍回路、23…エバポレータ、24…コンデンサ、26…内気用送風機、27…外気用送風機、28,29…流路切替部材(切替手段)。   A ... Cooling target, 13a ... Inside air first air passage (switching means, first air passage), 13b ... Inside air second air passage (switching means, second air passage), 15a ... Outside air first air passage (switching means, switching means, First air passage), 15b ... Outside air second air passage (switching means, second air passage), 21 ... Heat exchanger, 22 ... Refrigeration circuit, 23 ... Evaporator, 24 ... Condenser, 26 ... Blower for inside air, 27 ... Outside air blower, 28, 29... Flow path switching member (switching means).

Claims (4)

冷却対象の内気及び外気を互いに通過させその内外気間で熱交換を行う対向流方式の熱交換器と、前記内外気間で熱搬送を行うエバポレータ及びコンデンサを含む冷凍回路と、前記内気及び外気の気流を生じさせる送風機とを備え、前記送風機の送風動作と前記熱交換器及び前記冷凍回路の少なくとも一方の冷却動作にて前記冷却対象の内気の冷却を行う冷却装置であって、
前記内気及び外気を互いに通過させて前記熱交換器として機能させる態様から、前記内気及び外気の少なくとも一方側の一部又は全部を前記熱交換器を迂回する流路に切り替えて前記熱交換器としての機能を抑制する態様に切り替える切替手段を備えて構成されていることを特徴とする冷却装置。
A counter-flow type heat exchanger that allows the inside air and the outside air to be cooled to pass through each other and exchanges heat between the inside and outside air, a refrigerating circuit that includes an evaporator and a condenser that performs heat transfer between the inside and outside air, and the inside air and outside air A cooling device that cools the internal air of the cooling target in a blowing operation of the blower and a cooling operation of at least one of the heat exchanger and the refrigeration circuit,
From the aspect in which the inside air and the outside air are allowed to pass each other and function as the heat exchanger, a part or all of at least one side of the inside air and the outside air is switched to a flow path that bypasses the heat exchanger as the heat exchanger. A cooling device characterized by comprising switching means for switching to a mode that suppresses the function.
請求項1に記載の冷却装置において、
前記切替手段は、前記内気又は外気が前記熱交換器を通過する第1送風路と、前記内気又は外気が前記熱交換器を迂回する第2送風路と、前記内気又は外気の流路を前記第1及び第2送風路のいずれかに切り替える流路切替部材とを備えて構成されていることを特徴とする冷却装置。
The cooling device according to claim 1, wherein
The switching means includes a first air passage through which the inside air or outside air passes through the heat exchanger, a second air passage through which the inside air or outside air bypasses the heat exchanger, and a flow path of the inside air or outside air. A cooling device comprising: a flow path switching member that switches to one of the first and second air passages.
請求項2に記載の冷却装置において、
前記内気又は外気が前記熱交換器を通過する前記第1送風路は、前記内気又は外気が前記熱交換器を迂回する第2送風路よりも圧損が相対的に大きく構成されるものであって、
前記流路切替部材は、圧損の小さい側の前記第2送風路の入口の開閉を行う開閉部材にて構成されていることを特徴とする冷却装置。
The cooling device according to claim 2, wherein
The first air passage through which the inside air or outside air passes through the heat exchanger is configured such that the pressure loss is relatively larger than the second air passage through which the inside air or outside air bypasses the heat exchanger. ,
The cooling device according to claim 1, wherein the flow path switching member is configured by an opening / closing member that opens and closes an inlet of the second air passage on the side having a small pressure loss.
請求項1〜3の何れか1項に記載の冷却装置において、
前記切替手段は、前記内気及び外気の何れか一方側のみを対象に構成されていることを特徴とする冷却装置。
In the cooling device according to any one of claims 1 to 3,
The cooling device, wherein the switching means is configured for only one of the inside air and outside air.
JP2014262185A 2014-12-25 2014-12-25 Cooler Pending JP2016121848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014262185A JP2016121848A (en) 2014-12-25 2014-12-25 Cooler
PCT/JP2015/006060 WO2016103593A1 (en) 2014-12-25 2015-12-07 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262185A JP2016121848A (en) 2014-12-25 2014-12-25 Cooler

Publications (1)

Publication Number Publication Date
JP2016121848A true JP2016121848A (en) 2016-07-07

Family

ID=56328844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262185A Pending JP2016121848A (en) 2014-12-25 2014-12-25 Cooler

Country Status (1)

Country Link
JP (1) JP2016121848A (en)

Similar Documents

Publication Publication Date Title
WO2017037816A1 (en) Ventilation device
US8499575B2 (en) Air-conditioning system for electronic components
WO2016103593A1 (en) Cooling apparatus
WO2014050227A1 (en) Controller for ventilation device
JP5759808B2 (en) Air conditioning system and air conditioning control method for server room management
JP2013116714A (en) Vehicle air-conditioning device
WO2012099464A1 (en) Cooling system for cooling air in a room and data centre comprising such cooling system
JP2015064171A (en) Dehumidification and ventilation device
KR101564096B1 (en) Heat Recovery Ventilation System with Bypass Duct
JP2014142109A (en) Heat storage control system and heat storage body for use therein
JPWO2014147891A1 (en) Air conditioner for vehicles
CN213395606U (en) Air conditioner
KR101205301B1 (en) dehumidification device using thermoelectric element
KR20140107821A (en) An accumulator and an air conditioner using thereof
WO2015121994A1 (en) Electronic-apparatus cooling device and case for cooling
US11358438B2 (en) Automotive air conditioning system
JP2018096646A (en) Refrigerator
JP2016121848A (en) Cooler
JP4353859B2 (en) Air conditioner
JP2016162824A (en) Cooling device
EP2702332A1 (en) Air conditioner exhaust recycling
JP6747920B2 (en) Air conditioning system
JP6805693B2 (en) Air conditioner
JP2012063050A (en) Air conditioner
JP6506121B2 (en) Air conditioning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520