JP2016121720A - Spherical bearing, rotation drive device and variable nozzle device - Google Patents

Spherical bearing, rotation drive device and variable nozzle device Download PDF

Info

Publication number
JP2016121720A
JP2016121720A JP2014260768A JP2014260768A JP2016121720A JP 2016121720 A JP2016121720 A JP 2016121720A JP 2014260768 A JP2014260768 A JP 2014260768A JP 2014260768 A JP2014260768 A JP 2014260768A JP 2016121720 A JP2016121720 A JP 2016121720A
Authority
JP
Japan
Prior art keywords
bearing
spherical
shaft body
bodies
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014260768A
Other languages
Japanese (ja)
Other versions
JP6482858B2 (en
Inventor
由貴 師岡
Yuki Morooka
由貴 師岡
智史 高橋
Tomohito Takahashi
智史 高橋
積利 佐藤
Tsumutoshi Sato
積利 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2014260768A priority Critical patent/JP6482858B2/en
Publication of JP2016121720A publication Critical patent/JP2016121720A/en
Application granted granted Critical
Publication of JP6482858B2 publication Critical patent/JP6482858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a spherical bearing having a wide movable range and capable of being applied to various use environments, a rotation drive device, and a variable nozzle device.SOLUTION: A spherical surface upper bearing includes: a shaft body having a portion of which the outer peripheral surface is formed of a spherical surface; a plurality of split bearing bodies individually and independently receiving the spherical surface of the shaft body; energization means energizing the plurality of split bearing bodies arranged along the spherical surface of the shaft body to the shaft body side; and a holding member holding the plurality of split bearing bodies energized to the shaft body side by the energization means. Preferably, the spherical surface upper bearing can be used in a variable nozzle device.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、事務機や産業機械等の軸受として用いられる球面軸受、及びこの球面軸受を備えた回転駆動装置、並びに可変ノズル装置に関する。   The present invention relates to, for example, a spherical bearing used as a bearing for an office machine, an industrial machine, etc., a rotary drive device including the spherical bearing, and a variable nozzle device.

従来から、軸受は使用する環境に適合するような篏合隙間を見込んだ設計を行うが、軸受の構成要素のはめ合いを調整するため、例えば、軸受の内輪と外輪との隙間にスリーブを設けた構造の軸受が知られている(特許文献1参照)。   Conventionally, bearings have been designed with a fitting gap that fits the environment in which they are used, but in order to adjust the fit of the bearing components, for example, a sleeve is provided in the gap between the inner ring and outer ring of the bearing. A bearing having a different structure is known (see Patent Document 1).

特開平9−126234号公報JP-A-9-126234

上記特許文献1のような従来の球面滑り軸受では、組み立て時において各構成要素のはめ合いを高精度に調整できたとしても、その後の使用環境として、例えば、過酷な温度変化を伴う環境下での使用が難しい場合があった。   In the conventional spherical plain bearing as described in Patent Document 1, even if the fit of each component can be adjusted with high accuracy during assembly, the subsequent use environment is, for example, in an environment with severe temperature changes. It was sometimes difficult to use.

本発明は、広い可動範囲を持ち、様々な使用環境に適用できる球面軸受及び回転駆動装置並びに可変ノズル装置を提供する。   The present invention provides a spherical bearing, a rotary drive device, and a variable nozzle device that have a wide movable range and can be applied to various usage environments.

本発明の球面軸受は、外周面が球状面で形成された部分を有する軸体と、前記軸体の球状面を個々独立して受ける複数の分割軸受体と、前記軸体の球状面に沿って配置される前記複数の分割軸受体を前記軸体側に付勢する付勢手段と、前記付勢手段によって前記軸体側に付勢される前記複数の分割軸受体を保持する保持部材と、を備えたことを特徴とする。
かかる本発明の様態によれば、複数の分割軸受体のそれぞれが付勢手段によって軸体側に付勢されているので、広い可動範囲を実現できて、様々な使用環境にも適用することが可能となる。
A spherical bearing according to the present invention includes a shaft body having a portion having an outer peripheral surface formed of a spherical surface, a plurality of split bearing bodies that individually receive the spherical surface of the shaft body, and a spherical surface of the shaft body. An urging means for urging the plurality of divided bearing bodies arranged to the shaft body side, and a holding member for holding the plurality of divided bearing bodies urged to the shaft body side by the urging means. It is characterized by having.
According to such an aspect of the present invention, each of the plurality of split bearing bodies is biased toward the shaft body by the biasing means, so that a wide movable range can be realized and it can be applied to various usage environments. It becomes.

また、本発明の球面軸受は、前記軸体の球状面を3つ以上の前記分割軸受体で受けるよう構成され、3つ以上の前記分割軸受体は、前記軸体の球状面に対して外周方向に均等配置されたことを特徴とする。
かかる本発明の様態によれば、均等配置された3つ以上の分割軸受体によって軸体を受けるため、より広い可動範囲を実現できる。
The spherical bearing of the present invention is configured to receive the spherical surface of the shaft body by three or more of the divided bearing bodies, and the three or more of the divided bearing bodies have an outer periphery with respect to the spherical surface of the shaft body. It is characterized by being evenly arranged in the direction.
According to this aspect of the present invention, since the shaft body is received by three or more equally divided bearing bodies, a wider movable range can be realized.

さらに、上記本発明では、前記保持手段は、前記軸体が挿入配置される空間を画成する挿入開口部を有し、前記挿入開口部の開口周縁には、前記軸体との間で前記分割軸受体が挿入可能な挿入部が外周方向に複数設けられ、複数の前記挿入部の間のそれぞれには、前記挿入部から挿入された前記分割軸受体を前記軸体の球状面の外周方向に滑らせて前記分割軸受体を保持する保持部が設けられたことを特徴とする。
かかる本発明の様態によれば、軸体の外周面に沿って複数の分割軸受体を効率よく配置することが可能となる。
Furthermore, in the above-mentioned present invention, the holding means has an insertion opening that defines a space in which the shaft is inserted and arranged, and the opening periphery of the insertion opening is between the shaft and the shaft. A plurality of insertion portions into which the split bearing body can be inserted are provided in the outer peripheral direction, and the split bearing body inserted from the insertion portion is inserted between the plurality of insertion portions in the outer peripheral direction of the spherical surface of the shaft body. A holding portion for holding the divided bearing body by sliding is provided.
According to this aspect of the present invention, it is possible to efficiently arrange a plurality of split bearing bodies along the outer peripheral surface of the shaft body.

あるいは、上記本発明では、前記保持手段は、前記軸体が挿入配置される空間を画成する挿入開口部と、前記挿入開口部側とは反対側の外周部から前記挿入開口部に向けて貫通して設けられ、前記分割軸受体のそれぞれが挿入される複数の貫通孔とを有することを特徴とする。
かかる本発明の様態によれば、保持手段に設けた複数の貫通孔を通じて効率よく複数の分割軸受体を軸体の外周面に当接配置することが可能となる。
Or in the said invention, the said holding means is toward the said insertion opening part from the insertion opening part which defines the space where the said shaft body is inserted and arrange | positioned, and the outer peripheral part on the opposite side to the said insertion opening part side. It has a plurality of through holes which are provided through and into which each of the divided bearing bodies is inserted.
According to this aspect of the present invention, it is possible to efficiently place a plurality of divided bearing bodies in contact with the outer peripheral surface of the shaft body through the plurality of through holes provided in the holding means.

上記本発明では、前記保持部材は、前記軸体を取り囲み、前記付勢手段を介在させて複数の前記分割軸受体を保持する環状の保持面を有することを特徴とする。
かかる本発明の様態によれば、複数の分割軸受体を安定的に保持することが可能となる。
In the present invention, the holding member has an annular holding surface that surrounds the shaft body and holds the plurality of split bearing bodies with the urging means interposed therebetween.
According to this aspect of the present invention, it becomes possible to stably hold a plurality of split bearing bodies.

また、上記本発明では、前記付勢手段は、複数の前記分割軸受体毎に対応して個々独立して設けられた複数の弾性変形部を有することを特徴とする。
かかる本発明の様態によれば、各分割軸受体のそれぞれに弾性変形部を設けることで、個々独立した各分割軸受体の動作を実現できる。
Moreover, in the said invention, the said urging | biasing means has the some elastic deformation part provided independently corresponding to every said some division | segmentation bearing body, It is characterized by the above-mentioned.
According to this aspect of the present invention, by providing the elastically deforming portion in each of the divided bearing bodies, the operation of each of the independent divided bearing bodies can be realized.

さらに、上記本発明では、前記付勢手段は、複数の前記分割軸受体のそれぞれに一体的に設けられた弾性変形部を有することを特徴とする。
かかる本発明の様態によれば、各分割軸受体のそれぞれに共通の弾性変形部を設けることにより、各分割軸受体の付勢構造が簡略化される。
Further, in the present invention, the urging means has an elastic deformation portion provided integrally with each of the plurality of divided bearing bodies.
According to this aspect of the present invention, the biasing structure of each divided bearing body is simplified by providing a common elastic deformation portion for each divided bearing body.

上記本発明では、複数の前記分割軸受体のそれぞれは、同一形状で設けられ、前記付勢手段は、複数の前記分割軸受体のそれぞれを前記軸体に向けて均等な付勢力で付勢するようにしたことを特徴とする。
かかる本発明の様態によれば、軸体を均等な付勢力で保持できることから、安定した軸受構造を実現できる。
In the present invention, each of the plurality of split bearing bodies is provided in the same shape, and the biasing means biases each of the plurality of split bearing bodies toward the shaft body with an equal biasing force. It is characterized by doing so.
According to this aspect of the present invention, since the shaft body can be held with an equal urging force, a stable bearing structure can be realized.

なお、本発明は、上述した球面軸受を備えた回転駆動装置にも広く適用できる。
かかる本発明の態様によれば、広い可動範囲を持ち、様々な使用環境に適用できる軸受構造を持った回転駆動装置を実現できる。
Note that the present invention can be widely applied to a rotary drive device including the spherical bearing described above.
According to this aspect of the present invention, it is possible to realize a rotary drive device having a bearing structure that has a wide movable range and can be applied to various usage environments.

また、本発明は、上述した構成に限定されず、例えば、外周面の一部が球状面で形成された球状部を有するノズル部材と、前記ノズル部材のノズル孔に連通する圧力空間を画成する圧力容器と、を備え、前記圧力容器のうち前記ノズル部材が装着されるノズル装着部には、前記ノズル部材の前記球状部を受ける球面軸受が前記圧力空間内に突出して接合され、前記ノズル部材のうち前記球状部から前記圧力空間内に延設される基端部は、前記球面軸受の外周部に対してシール部材を介在させて摺接し、前記ノズル部材の前記基端部と前記シール部材とは、前記ノズル部材の回動中心と同心円上で摺接するようにした可変ノズル装置についても広く対象とする。   Further, the present invention is not limited to the above-described configuration. For example, a nozzle member having a spherical portion in which a part of the outer peripheral surface is a spherical surface, and a pressure space communicating with the nozzle hole of the nozzle member are defined. A spherical bearing that receives the spherical portion of the nozzle member so as to protrude into the pressure space and is joined to a nozzle mounting portion to which the nozzle member is mounted among the pressure vessels. A base end portion of the member extending from the spherical portion into the pressure space is in sliding contact with an outer peripheral portion of the spherical bearing via a seal member, and the base end portion of the nozzle member and the seal The term “member” is also widely used for variable nozzle devices that are slidably contacted with the center of rotation of the nozzle member.

かかる本発明の態様によれば、ノズル部材と球面軸受との摺接部分にシール部材を介在させることにより、ノズル部材を可動させても、圧力容器内の圧力変動を効果的に抑えることができる。   According to this aspect of the present invention, the pressure fluctuation in the pressure vessel can be effectively suppressed even if the nozzle member is moved by interposing the seal member at the sliding contact portion between the nozzle member and the spherical bearing. .

なお、このような本発明の可変ノズル装置では、前記球面軸受は、前記球状部の前記球状面を個々独立して受ける複数の分割軸受体と、前記軸体の球状面に沿って配置される前記複数の分割軸受体を前記軸体側に付勢する付勢手段と、前記付勢手段によって前記軸体側に付勢される前記複数の分割軸受体を保持する保持部材と、を有し、前記保持部材は、前記圧力容器に結合されていることを特徴とする。
かかる本発明の態様によれば、圧力容器内の圧力変動を効果的に抑えながら、ノズル部材の可動範囲を広く設定できる他、様々な使用環境にも適用できる。
In such a variable nozzle device of the present invention, the spherical bearing is disposed along a plurality of divided bearing bodies that individually receive the spherical surfaces of the spherical portions and the spherical surface of the shaft body. Biasing means for biasing the plurality of split bearing bodies toward the shaft body side, and a holding member for holding the plurality of split bearing bodies biased toward the shaft body side by the biasing means, The holding member is coupled to the pressure vessel.
According to such an aspect of the present invention, the movable range of the nozzle member can be set wide while effectively suppressing the pressure fluctuation in the pressure vessel, and can be applied to various usage environments.

本発明は、広い可動範囲を持ち、様々な使用環境に適用できる球面軸受及び回転駆動装置並びに可変ノズル装置を実現できる。   The present invention can realize a spherical bearing, a rotary drive device, and a variable nozzle device that have a wide movable range and can be applied to various usage environments.

第1実施形態に係る球面軸受の概略構成を示す斜視図及び正面図。The perspective view and front view which show schematic structure of the spherical bearing which concerns on 1st Embodiment. 第1実施形態に係る球面軸受の概略構成を示す立体分解図。FIG. 3 is an exploded view showing a schematic configuration of the spherical bearing according to the first embodiment. 第1実施形態に係る球面軸受の要部拡大図。The principal part enlarged view of the spherical bearing which concerns on 1st Embodiment. 第1実施形態に係る球面軸受の平面図及び断面図。The top view and sectional drawing of the spherical bearing which concern on 1st Embodiment. 第1実施形態に係る球面軸受体が軸を備えた場合の斜視図。The perspective view in case the spherical bearing body which concerns on 1st Embodiment is provided with the axis | shaft. 第1実施形態に係る球面軸受の組立手順図。The assembly procedure figure of the spherical bearing which concerns on 1st Embodiment. 第2実施形態に係る球面軸受の概略構成を示す斜視図及び立体分解図。The perspective view and three-dimensional exploded view which show schematic structure of the spherical bearing which concerns on 2nd Embodiment. 第2実施形態に係る球面軸受の組立手順図。The assembly procedure figure of the spherical bearing which concerns on 2nd Embodiment. 第3実施形態に係る球面軸受の概略構成を示す斜視図及び立体分解図。The perspective view which shows schematic structure of the spherical bearing which concerns on 3rd Embodiment, and a three-dimensional exploded view. 第3実施形態に係る球面軸受の組立手順図。The assembly procedure figure of the spherical bearing which concerns on 3rd Embodiment. 第4実施形態に係る球面軸受の概略構成図を示す斜視図及び立体分解図。The perspective view and three-dimensional exploded view which show the schematic block diagram of the spherical bearing which concerns on 4th Embodiment. 第5実施形態に係る球面軸受の概略構成図を示す斜視図。The perspective view which shows the schematic block diagram of the spherical bearing which concerns on 5th Embodiment. 本発明の他の実施形態に係る可変ノズル装置の概略断面図。The schematic sectional drawing of the variable nozzle apparatus which concerns on other embodiment of this invention.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明の球面軸受は、軸体と、この軸体を個々独立して受ける複数の分割軸受体と、これら複数の分割軸受体を軸体側に付勢する付勢手段と、軸体を付勢した複数の分割軸受体を保持する保持部材とを備えた、広い可動範囲を持ち、様々な使用環境に適用できる加圧球面軸受に関するものである。   The spherical bearing of the present invention includes a shaft body, a plurality of divided bearing bodies that individually receive the shaft bodies, biasing means for biasing the plurality of divided bearing bodies toward the shaft body, and biasing the shaft body The present invention relates to a pressurizing spherical bearing having a wide movable range and a holding member for holding a plurality of divided bearing bodies, which can be applied to various usage environments.

すなわち、本発明は、保持手段が保持した複数の分割軸受体によって軸体を取り囲みつつ複数の分割軸受体を軸体側に付勢(加圧)した独立縣架の加圧球面軸受の構成とし、複数の分割軸受体の間で軸体の球面滑り動作に加え、軸体の揺動を実質的に許容し、軸体に対する各分割軸受体の高い追従性を実現した点に特徴がある。   That is, the present invention has a configuration of a pressure spherical bearing of an independent rack in which a plurality of divided bearing bodies are biased (pressurized) to the shaft body side while surrounding the shaft body by a plurality of divided bearing bodies held by the holding means, In addition to the spherical sliding motion of the shaft body between the plurality of split bearing bodies, the shaft body is substantially allowed to swing, and the high trackability of each split bearing body with respect to the shaft body is realized.

このように、上述した本発明の特徴的構成は、球面滑り動作可能な軸体の可動範囲が実質的に大きくなり、更に、軸体の付勢(加圧)状態によって、軸体に対する高い追従性を持った加圧球面軸受となり、様々な使用環境、例えば、過酷な温度変化を伴った環境下での熱膨張に適用できる他、軸体に加わる物理的な衝撃吸収、又は保持手段に加わる物理的な衝撃吸収にも極めて有効である。   As described above, the above-described characteristic configuration of the present invention substantially increases the movable range of the shaft body that can perform the spherical sliding operation, and further, the shaft body is highly followable depending on the biased (pressurized) state of the shaft body. This is a pressurized spherical bearing with the characteristics, and it can be applied to thermal expansion in various usage environments, for example, environments with severe temperature changes, and it is also applied to physical shock absorption applied to the shaft body or holding means It is extremely effective for physical shock absorption.

また、本発明は、主に、異なる金属材料で形成された軸体(内輪)及び複数の分割軸受体(外輪)、すなわち、金属製の球状軸受体とするのがよい。軸受としての高い形状安定性、高耐久性を実現できる。   In addition, the present invention is preferably a shaft body (inner ring) and a plurality of split bearing bodies (outer ring) formed of different metal materials, that is, a metal spherical bearing body. High shape stability and high durability as a bearing can be realized.

さらに、本発明では、外輪を構成する複数の分割軸受体は、それぞれが同一形状で、内輪を構成する軸体の外周に等間隔で3分割または4分割するのがよい。軸受体を細かく分割すれば、軸体の揺動範囲を広く設定できる他、安定駆動を併せて実現できる。   Furthermore, in the present invention, it is preferable that the plurality of split bearing bodies constituting the outer ring have the same shape and are divided into three or four at equal intervals on the outer periphery of the shaft body constituting the inner ring. If the bearing body is divided finely, the swing range of the shaft body can be set wide and stable driving can be realized.

また、軸体を取り囲む各分割軸受体と、これら各分割軸受体を保持する保持手段との間には、付勢手段を介在させることで、各分割軸受体を軸体側に加圧状態、すなわち、独立縣架した構成となる。これにより、具体的には詳述するが、軸体を各分割軸受体で受けた状態のまま、その軸受部分の可動範囲を広く設定できる。   In addition, by placing an urging means between each divided bearing body surrounding the shaft body and the holding means for holding each divided bearing body, each divided bearing body is pressurized to the shaft body side, that is, It becomes the configuration which stands independently. Thus, although specifically described in detail, the movable range of the bearing portion can be set wide while the shaft body is received by each divided bearing body.

このような付勢手段は、予め保持手段に装着されていてもよいし、各分割軸受体のそれぞれに対応して設けられていてもよい。例えば、付勢手段を保持手段に装着しておく場合には、その付勢手段は、各分割軸受体のそれぞれに共通の付勢手段であってもよいし、別々の付勢手段を設けてもよい。いずれの場合でも、付勢手段から各分割軸受体に対する付勢力をそれぞれ同等に設定とすれば、軸体に対して均等に加圧した安定的な独立縣架の加圧球面軸受を構成することが可能となる。   Such urging means may be mounted on the holding means in advance, or may be provided corresponding to each of the divided bearing bodies. For example, when the urging means is attached to the holding means, the urging means may be a common urging means for each of the divided bearing bodies, or a separate urging means is provided. Also good. In any case, if the urging force from the urging means to each divided bearing body is set to be equal, a stable independent frame pressure spherical bearing that is equally pressurized against the shaft body is constructed. Is possible.

さらに、上述した各分割軸受体を保持する保持手段は、例えば、軸体を加圧保持する各分割軸受体を取り囲んで一体的に設けられた環状の枠体(ハウジング)で構成するのがよい。これにより、各分割軸受体を安定的且つ確実に保持することが可能となるため、信頼性の向上に有効である。なお、本発明は、このような保持手段に対して物理的な衝撃が加わっても、各分割軸受体が軸体側に付勢された状態であることから、軸体に対する衝撃吸収の構成を実現できる他、熱膨張による寸法変化にも適用可能である。   Furthermore, the holding means for holding each of the divided bearing bodies described above may be constituted by, for example, an annular frame (housing) that is integrally provided so as to surround each divided bearing body that pressurizes and holds the shaft body. . As a result, each split bearing body can be held stably and reliably, which is effective in improving reliability. In the present invention, even if a physical impact is applied to such a holding means, each split bearing body is in a state of being biased toward the shaft body side, so that a configuration for absorbing the shock to the shaft body is realized. In addition, it can be applied to dimensional changes due to thermal expansion.

以下、図面に基づき本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<第1実施形態>
図1には、本発明の第1実施形態に係る球面軸受の全体的な概略構成図を示し、図1(a)が斜視図であり、図1(b)が正面図である。図2には、図1の球面軸受の分解斜視図を示す。図3には、図2の要部拡大図を示す。図4には、図1の球面軸受の平面図及び断面図を示す。
<First Embodiment>
FIG. 1 shows an overall schematic configuration diagram of a spherical bearing according to a first embodiment of the present invention, FIG. 1 (a) is a perspective view, and FIG. 1 (b) is a front view. FIG. 2 is an exploded perspective view of the spherical bearing of FIG. FIG. 3 shows an enlarged view of the main part of FIG. FIG. 4 shows a plan view and a cross-sectional view of the spherical bearing of FIG.

図1乃至図4に示すように、本実施形態の球面軸受100は、外周面が球状面110aで形成された軸体110と、この軸体110を受ける軸受ユニット120と、この軸受ユニット120を保持する保持部材130とを備え、例えば、取付対象物となるベース基板140に連結される。   As shown in FIGS. 1 to 4, the spherical bearing 100 of the present embodiment includes a shaft body 110 having an outer peripheral surface formed of a spherical surface 110 a, a bearing unit 120 that receives the shaft body 110, and the bearing unit 120. The holding member 130 to hold | maintain is connected, for example to the base board 140 used as an attachment target object.

ここで、軸体110は、その軸方向に貫通する貫通孔111が設けられた金属製の円筒状部材からなり、その外周面が球状面110aで形成されている。また、この軸体110に設けられた貫通孔111には、詳細は後述するが、棒状部材が嵌合することで、球面滑り動作する軸体110を備えた軸部材となる。なお、この軸体110を形成する材料としては、特に限定されるものではないが、例えば、本実施形態ではアルミニウムで形成した。   Here, the shaft body 110 is made of a metal cylindrical member provided with a through hole 111 penetrating in the axial direction, and an outer peripheral surface thereof is formed by a spherical surface 110a. Although the details will be described later in the through hole 111 provided in the shaft body 110, the shaft member 110 is provided with the shaft body 110 that performs spherical sliding operation by fitting a rod-shaped member. In addition, although it does not specifically limit as a material which forms this shaft body 110, For example, in this embodiment, it formed with aluminum.

このような軸体110を受ける軸受ユニット120は、軸体110の外周方向に沿って軸体110を取り囲むように配置された4つの分割軸受体121で構成される。また、これら各分割軸受体121は、例えば、本実施形態では金属製の円弧状部材から形成され、軸体110の外周面(球状面110a)を受ける側の面が軸体110の球状面110aに沿った球状の軸受面121aで設けられている。さらに、これら各分割軸受体121のうち軸受面121aとは反対側の外周面に弾性変形部122が一体的に接合されている。すなわち、本実施形態の軸受ユニット120は、弾性変形部122がそれぞれ設けられた4つの分割軸受体121によって構成される。なお、上記軸体110を形成する金属材料と、分割軸受体121を形成する金属材料とは異なるものを用いるのがよく、例えば、本実施形態では、各分割軸受体121を真鍮で形成した。また、本実施形態では、弾性変形部122が各々設けられた分割軸受体121の形状を同一形状とし、各弾性変形部122による付勢力も同等とした。   The bearing unit 120 that receives the shaft body 110 includes four divided bearing bodies 121 that are arranged so as to surround the shaft body 110 along the outer circumferential direction of the shaft body 110. Further, each of the divided bearing bodies 121 is formed of, for example, a metal arcuate member in this embodiment, and the surface on the side receiving the outer peripheral surface (spherical surface 110a) of the shaft body 110 is the spherical surface 110a of the shaft body 110. Is provided with a spherical bearing surface 121a. Furthermore, the elastic deformation part 122 is integrally joined to the outer peripheral surface on the opposite side to the bearing surface 121a among these divided bearing bodies 121. That is, the bearing unit 120 of the present embodiment is configured by four divided bearing bodies 121 each provided with an elastic deformation portion 122. In addition, it is good to use what differs from the metal material which forms the said shaft body 110, and the metal material which forms the division | segmentation bearing body 121, for example, in this embodiment, each division | segmentation bearing body 121 was formed with the brass. In the present embodiment, the shape of the split bearing body 121 provided with the elastic deformation portions 122 is the same, and the urging force of each elastic deformation portion 122 is also equal.

さらに、上記の軸受ユニット120を保持する保持部材130には、各軸受ユニット120が挿入保持される保持孔131が軸方向に貫通して設けられている。例えば、本実施形態の保持部材130は、保持孔131が設けられた円筒部132と、この円筒部132の一端部側の外周部において径方向外側に突出して設けられた鍔状のフランジ部133とを有する。なお、このフランジ部133は、図1及び図2に示すように、ベース基板140に対して、ビスAで連結される。   Furthermore, the holding member 130 that holds the bearing unit 120 is provided with a holding hole 131 through which the bearing unit 120 is inserted and held in the axial direction. For example, the holding member 130 according to the present embodiment includes a cylindrical portion 132 provided with a holding hole 131 and a flange-like flange portion 133 that protrudes radially outward from an outer peripheral portion on one end side of the cylindrical portion 132. And have. The flange portion 133 is connected to the base substrate 140 with screws A as shown in FIGS.

また、このような保持部材130の保持孔131には、各軸受ユニット120のそれぞれを保持する4つの保持部134が内周面に沿って等間隔に設けられ、これら各保持部134の間には各軸受ユニット120が挿入可能となる4つの切欠部135が設けられている。さらに、各保持部134は、保持孔134の開口内に突出して設けられ、各軸受ユニット120の軸方向の移動を制限する一対の庇部136を有する。   Further, in the holding hole 131 of the holding member 130, four holding portions 134 that hold the respective bearing units 120 are provided at equal intervals along the inner peripheral surface. Are provided with four notches 135 into which the respective bearing units 120 can be inserted. Further, each holding portion 134 has a pair of flange portions 136 that protrude from the opening of the holding hole 134 and limit the movement of each bearing unit 120 in the axial direction.

このような保持部材130の保持孔131のうち一方側の開口部は、軸体110が同軸上に挿入される挿入開口部137を形成する。そして、この挿入開口部137内に対して軸体110が配置されている状態では、挿入開口部137の開口周縁において、各分割軸受体121が挿入可能となる挿入部138が4つの切欠部135と軸体110との間にそれぞれ形成される。このような各挿入部138は、組み立て時において分割軸受体121をそれぞれ挿入する部分となるが、組み立て後は、熱放出を行うための通気部となる。これにより、様々な使用環境に対する適応力を高めることができる。   The opening on one side of the holding hole 131 of the holding member 130 forms an insertion opening 137 into which the shaft body 110 is inserted coaxially. In a state where the shaft body 110 is disposed in the insertion opening 137, the insertion portions 138 into which the divided bearing bodies 121 can be inserted are formed at the four notches 135 at the opening periphery of the insertion opening 137. And the shaft body 110, respectively. Each insertion portion 138 is a portion into which the split bearing body 121 is inserted during assembly, but after assembly, it becomes a ventilation portion for releasing heat. Thereby, the adaptability with respect to various use environments can be improved.

また、保持部材130の保持孔のうち他方側の開口部には、軸体110が配置される状態において上記切欠部135の開口を塞ぐための4つの取付片139が、図2及び図3(b)に示すように、ビスBで連結される。これら各取付片139の端部には、各分割軸受体121の移動を制限する突起部139aが設けられている。すなわち、各取付片139で各切欠部138を塞いだときに、保持部134に保持された各分割軸受体121の角部に突起部139aが当接し、これによって保持部134に位置する各分割軸受体121の移動が実質的に制限される。なお、ここで、各分割軸受体121間の幅(ピッチ幅)は、軸体110の軸方向の幅よりも小さく設定されており、これによって上述した各分割軸受体121の挿入配置が容易となる。   Further, in the opening on the other side of the holding hole of the holding member 130, four attachment pieces 139 for closing the opening of the notch 135 in a state where the shaft body 110 is arranged are shown in FIGS. As shown in b), they are connected by screws B. Protrusions 139a for restricting the movement of the respective divided bearing bodies 121 are provided at the ends of the mounting pieces 139. That is, when each notch 138 is closed with each mounting piece 139, the protrusion 139 a comes into contact with the corner of each divided bearing body 121 held by the holding part 134, and thereby each division located at the holding part 134. The movement of the bearing body 121 is substantially limited. Here, the width (pitch width) between the divided bearing bodies 121 is set to be smaller than the axial width of the shaft body 110, which facilitates the insertion and arrangement of the divided bearing bodies 121 described above. Become.

上記球面軸受100は、取付対象物となるベース基板140に連結される。ベース基板140は軸方向に貫通する開口孔141と、保持部材130のフランジ部133が嵌る溝142と、保持部材130の4つの切欠片139を連結させるビスBが貫通するビス保持孔143が設けられている。ベース基板140は、図2に示すように保持部材130のフランジ部133と4つのビスAで連結される。   The spherical bearing 100 is connected to a base substrate 140 that is an attachment target. The base substrate 140 is provided with an opening hole 141 penetrating in the axial direction, a groove 142 into which the flange portion 133 of the holding member 130 is fitted, and a screw holding hole 143 through which the screw B for connecting the four notch pieces 139 of the holding member 130 passes. It has been. As shown in FIG. 2, the base substrate 140 is connected to the flange portion 133 of the holding member 130 with four screws A.

ここで、図5を参照して、球状軸受体の動作を説明する。図5には、図1の球面軸受の軸体が軸を備えた概略図を示す。   Here, with reference to FIG. 5, operation | movement of a spherical bearing body is demonstrated. FIG. 5 is a schematic view in which the shaft body of the spherical bearing of FIG. 1 includes a shaft.

図5に示すように、本実施形態の球面軸受100においては、軸体110に棒状部材150が篏合しており、球面軸受110内で球面滑り動作をする軸体110が軸部材となる。このような本実施形態の球面軸受100は、ベース基板140に固定された状態において、軸体110の中心軸に対して回転が可能である。また、図5(a)及び図5(b)に示すような球面滑り動作も滑らかに行うことができる。また、このような軸体110を受ける軸受ユニット120は、軸体110に対して各分割軸受体121を付勢手段によって付勢しているため、各分割軸受体121の軸体110(つまり軸体)へ追従性する。これにより、軸体110に対して球面滑りに要する動作とは異なる衝撃が加わっても、軸体110に対して各分割軸受体121が追従するため、軸体110の軸受状態は保持される。したがって、軸体110の軸としての可動範囲に加えて、付勢状態による軸体110の揺動範囲を付加することができる。 As shown in FIG. 5, in the spherical bearing 100 of the present embodiment, a rod-shaped member 150 is engaged with the shaft body 110, and the shaft body 110 that performs a spherical sliding motion in the spherical bearing 110 serves as the shaft member. The spherical bearing 100 according to the present embodiment can rotate with respect to the central axis of the shaft body 110 while being fixed to the base substrate 140. Further, the spherical sliding motion as shown in FIGS. 5A and 5B can be performed smoothly. Further, since the bearing unit 120 that receives the shaft body 110 urges each of the divided bearing bodies 121 by the urging means with respect to the shaft body 110, the shaft body 110 (that is, the shaft of each divided bearing body 121). Body). Thereby, even if an impact different from the operation required for the spherical slip is applied to the shaft body 110, each split bearing body 121 follows the shaft body 110, so that the bearing state of the shaft body 110 is maintained. Therefore, in addition to the movable range as the shaft of the shaft body 110, the swing range of the shaft body 110 according to the biased state can be added.

なお、図6を参照して、本実施形態における球面軸受100の組立手順について詳細に説明する。図6は、本実施形態に係る球面軸受の組立手順を示す斜視図である。   In addition, with reference to FIG. 6, the assembly procedure of the spherical bearing 100 in this embodiment is demonstrated in detail. FIG. 6 is a perspective view showing an assembling procedure of the spherical bearing according to the present embodiment.

まず、図6(a)に示すように、保持部材130の挿入開口部137に対して同軸上に軸体110を挿入する。次に、図6(b)に示すように、軸受ユニット120を構成する分割軸受体121及び弾性変形部122の1つを保持部材130の挿入部138に対して挿入する。このとき、分割軸受体121の軸受面121aを保持部材130内の軸体110の外周面に沿って滑らせて挿入する。続いて、図6(c)に示すように、軸体110の外周面と分割軸受体121の内周面を沿わせながら、1つの軸受ユニット120を保持する保持部134へとスライドさせる。なお、このときの軸受ユニット120の状態を示す断面図を図4(a)に示す。次いで、残り3つの分割軸受体121及び弾性変形部122についても同様にして各保持部134にスライド挿入配置する。そして、図3(b)及び図4(b)に示すように、軸受ユニット120の間に対応して取付片139をビスBで固定して球面軸受100を組み立てた後、ベース基板140にビスAで固定する。これにより、全ての部品の組立が完了し、このとき球面軸受100の中心軸が定まる。   First, as shown in FIG. 6A, the shaft body 110 is inserted coaxially with respect to the insertion opening 137 of the holding member 130. Next, as shown in FIG. 6B, one of the split bearing body 121 and the elastic deformation portion 122 constituting the bearing unit 120 is inserted into the insertion portion 138 of the holding member 130. At this time, the bearing surface 121 a of the split bearing body 121 is inserted by sliding along the outer peripheral surface of the shaft body 110 in the holding member 130. Subsequently, as shown in FIG. 6C, the shaft body 110 is slid to the holding portion 134 that holds one bearing unit 120 while keeping the outer peripheral surface of the shaft body 110 and the inner peripheral surface of the split bearing body 121 along. A sectional view showing the state of the bearing unit 120 at this time is shown in FIG. Next, the remaining three divided bearing bodies 121 and the elastically deformable portions 122 are similarly slid and inserted into the holding portions 134. 3 (b) and 4 (b), the mounting piece 139 is fixed with screws B correspondingly between the bearing units 120, and the spherical bearing 100 is assembled. Fix with A. Thereby, the assembly of all the parts is completed, and at this time, the central axis of the spherical bearing 100 is determined.

以上説明したように、本実施形態の球面軸受100では、保持手段130が保持した4つの分割軸受体121によって軸体110を取り込みつつ、等間隔で環状に配置された4つの分割軸受体121を軸体110側に付勢(加圧)しているので、安定的な独立懸架の加圧球面軸受の構造を実現できる。 As described above, in the spherical bearing 100 of the present embodiment, the four divided bearing bodies 121 arranged annularly at equal intervals while the shaft body 110 is taken in by the four divided bearing bodies 121 held by the holding means 130. Since the shaft body 110 is biased (pressurized), it is possible to realize a structure of a stable independently suspended pressure spherical bearing.

より詳細には、本実施形態では、個々独立して均等配置された各分割軸受体121によって軸体110が均等な付勢力を受けているため、各分割軸受体121内で軸体110が球面滑り動作が可能な状態のまま、例えば、軸体110に対して外部から衝撃が加わっても付勢範囲内でその衝撃を吸収できることから、保持手段130あるいはベース基板140に対して衝撃の伝播を有効に低減することができる。なお、保持手段130やベース基板140に対する衝撃についても、上記の付勢範囲内で、軸体110に直接伝播することを防止することができる。すなわち、本実施形態の球面軸受100は、球面滑り動作に加えて揺動可能な構造となるため、広い可動範囲を実現できて、様々な使用環境に適用できる他、安定した球面滑り動作を実現できる。   More specifically, in this embodiment, since the shaft body 110 receives an equal urging force by each of the divided bearing bodies 121 that are equally arranged independently and independently, the shaft body 110 is a spherical surface in each of the divided bearing bodies 121. For example, even if an impact is applied to the shaft body 110 from the outside while the sliding motion is possible, the impact can be absorbed within the urging range, so that the impact is propagated to the holding means 130 or the base substrate 140. It can be effectively reduced. Note that the impact on the holding means 130 and the base substrate 140 can also be prevented from directly propagating to the shaft body 110 within the above-described urging range. That is, since the spherical bearing 100 of the present embodiment has a swingable structure in addition to the spherical sliding motion, it can realize a wide movable range and can be applied to various usage environments, and also realizes a stable spherical sliding motion. it can.

さらに、本実施形態では、4つの分割軸受体121が軸体110の外周に沿って均等な間隔で4方向から軸体110を球面滑り可能且つ揺動可能に保持した構造となっていることから、非常にシンプルで且つ比較的低コストな軸受構造を実現できる。   Further, in the present embodiment, the four split bearing bodies 121 have a structure in which the shaft body 110 is held in a spherically slidable and swingable manner from four directions at equal intervals along the outer periphery of the shaft body 110. A very simple and relatively low cost bearing structure can be realized.

さらに、本実施形態では、4つの分割軸受体121の外周面に弾性変形部122が一体的に接合されているので、軸体110の球面滑り動作に加えて、軸体110の揺動を実質的に許容し、軸体110に対する各分割軸受体121の高い追従性を実現できるため、例えば、使用環境に起因して生じる熱膨張などの寸法変化、あるいは外部からの衝撃が頻繁に加わるような使用環境にも対応することができる。   Furthermore, in this embodiment, since the elastic deformation portion 122 is integrally joined to the outer peripheral surfaces of the four divided bearing bodies 121, the shaft body 110 is substantially swung in addition to the spherical sliding motion of the shaft body 110. Can be realized, and high followability of each split bearing body 121 with respect to the shaft body 110 can be realized. For example, dimensional changes such as thermal expansion caused by the use environment, or external impacts are frequently applied. It can also handle the usage environment.

特に、本実施形態は、球面滑り動作可能な軸体110の可動範囲が大きくなり、さらに、軸体110の付勢(加圧)状態によって、軸体110に対する高い追従性をもった加圧球面軸受となるため、軸体110に加わる物理的な衝撃吸収、または保持手段130に加わる物理的な衝撃に対して、高耐久性を実現することができる。   In particular, in the present embodiment, the movable range of the shaft body 110 capable of the spherical sliding operation is increased, and further, the pressurized spherical surface having high followability with respect to the shaft body 110 depending on the biased (pressurized) state of the shaft body 110. Since it becomes a bearing, high durability can be realized with respect to physical shock absorption applied to the shaft body 110 or physical shock applied to the holding means 130.

なお、本実施形態では、軸体110が一つの部品として構成されているが、軸と一体型となって、過酷環境下においても容易に組立が可能であり、さらに軸への安定した追従性も実現される。 In this embodiment, the shaft body 110 is configured as a single component. However, the shaft body 110 is integrated with the shaft, and can be easily assembled even in a harsh environment. Further, the shaft can be stably tracked. Is also realized.

<第2実施形態>
図7には、本発明の第2実施形態に係る球面軸受の全体的な概略図を示し、図7の(a)が斜視図であり、図7(b)は立体分解図である。なお、本実施形態において、一部の軸受構成については、上述した第1実施形態と同様のため、重複する説明及び図示は省略する。
Second Embodiment
7 is an overall schematic view of a spherical bearing according to a second embodiment of the present invention, FIG. 7 (a) is a perspective view, and FIG. 7 (b) is a three-dimensional exploded view. In addition, in this embodiment, about a part of bearing structure, since it is the same as that of 1st Embodiment mentioned above, the overlapping description and illustration are abbreviate | omitted.

具体的には、本実施形態の球面軸受200では、第1実施形態の保持部材130における円筒部132を貫通して軸受ユニット120が挿入される4つの挿入貫通孔132aと、これら各挿入貫通孔132を塞ぐための保持片132bとを設け、更に、円筒部132の外側を覆う保持カバー231をビスCで取付固定する構造とした以外は、上述した第1実施形態と同様である。 Specifically, in the spherical bearing 200 of the present embodiment, four insertion through holes 132a through which the bearing unit 120 is inserted through the cylindrical portion 132 in the holding member 130 of the first embodiment, and each of these insertion through holes. The first embodiment is the same as the first embodiment except that a holding piece 132b for closing 132 is provided and a holding cover 231 that covers the outside of the cylindrical portion 132 is attached and fixed with screws C.

なお、軸受ユニット120は、保持部材130内の保持孔137に対して軸体110を挿入配置後に、各挿入貫通孔132aに挿入され、その後、保持片132b、保持カバー231、保持片139のそれぞれによって、軸体110に対する移動が実質的に制限される。   The bearing unit 120 is inserted into each insertion through-hole 132a after the shaft body 110 is inserted and arranged in the holding hole 137 in the holding member 130, and thereafter each of the holding piece 132b, the holding cover 231 and the holding piece 139 is inserted. Therefore, the movement with respect to the shaft body 110 is substantially limited.

また、本実施形態では、軸受ユニットに対応して設けられる挿入貫通孔132aの挿入口が、上述した第1実施形態における保持部材130の挿入部138の代わりに設けられており、より詳細には、図7(b)に示すように、円筒部132の外周を厚さ方向に貫通し、円筒部132の軸に垂直な方向の貫通孔として挿入貫通孔132を設ける。この挿入貫通孔132aは全て庇部136に対応して形成され、さらに保持部材230は、上記挿入貫通孔132aを塞ぐために挿入貫通孔132aと実質的に同一形状の保持片132bを有する。   In the present embodiment, the insertion opening of the insertion through hole 132a provided corresponding to the bearing unit is provided instead of the insertion portion 138 of the holding member 130 in the first embodiment described above, and more specifically. As shown in FIG. 7B, the insertion through-hole 132 is provided as a through-hole extending in the thickness direction through the outer periphery of the cylindrical portion 132 and perpendicular to the axis of the cylindrical portion 132. The insertion through holes 132a are all formed corresponding to the flanges 136, and the holding member 230 has a holding piece 132b having substantially the same shape as the insertion through hole 132a in order to close the insertion through hole 132a.

また、保持部材230の保持片132bを固定するための保持カバー231は、図7(b)に示すように、保持部材230のフランジ部133とビスCで連結される。例えば、本実施形態の保持カバー231は、保持片132bの動きを固定するために、保持片132bの外周面を全て覆うような円筒カバー部231aを有する。 Further, the holding cover 231 for fixing the holding piece 132b of the holding member 230 is connected to the flange portion 133 of the holding member 230 with a screw C as shown in FIG. For example, the holding cover 231 of the present embodiment has a cylindrical cover portion 231a that covers the entire outer peripheral surface of the holding piece 132b in order to fix the movement of the holding piece 132b.

ここで、図8を参照して、本実施形態における球面軸受200の組立手順について説明する。図8は図7の組立手順図を示す。図8(a)に示すように、保持部材230の挿入開口部137から同軸上に軸体110を挿入する。次に、図8(b)に示すように、保持部材230の円筒部132に設けられた挿入貫通孔132aに対して軸受ユニット120、保持片132bの順に挿入する。最後に、図8(c)に示すように、保持カバー231を保持部材230の円筒部132の軸方向に挿入する。   Here, with reference to FIG. 8, the assembly procedure of the spherical bearing 200 in this embodiment is demonstrated. FIG. 8 shows an assembly procedure diagram of FIG. As shown in FIG. 8A, the shaft body 110 is inserted coaxially from the insertion opening 137 of the holding member 230. Next, as shown in FIG. 8B, the bearing unit 120 and the holding piece 132 b are inserted in this order into the insertion through-hole 132 a provided in the cylindrical portion 132 of the holding member 230. Finally, as shown in FIG. 8C, the holding cover 231 is inserted in the axial direction of the cylindrical portion 132 of the holding member 230.

以上説明したように、本実施形態においても第1実施形態で述べた効果と同様な効果があり、さらに軸受ユニット120を保持部材230の円筒部132の外周からの挿入保持が可能となる。これにより、軸体110にする軸受ユニット120の設置を比較的容易に行うことが可能となる。   As described above, this embodiment also has the same effect as that described in the first embodiment, and the bearing unit 120 can be inserted and held from the outer periphery of the cylindrical portion 132 of the holding member 230. Thereby, it becomes possible to install the bearing unit 120 to be the shaft body 110 relatively easily.

<第3実施形態>
図9には、本発明の第3実施形態に係る球面軸受の全体的な概略図を示し、図9(a)が斜視図であり、図9(b)が分解斜視図である。なお、本実施形態において一部の軸受構造については、上述した第1実施形態及び第2実施形態と同様のため、重複する説明及び図示は省略する。
<Third Embodiment>
FIG. 9 shows an overall schematic view of a spherical bearing according to a third embodiment of the present invention, FIG. 9 (a) is a perspective view, and FIG. 9 (b) is an exploded perspective view. In addition, about a part of bearing structure in this embodiment, since it is the same as that of 1st Embodiment and 2nd Embodiment mentioned above, the overlapping description and illustration are abbreviate | omitted.

具体的には、上述した第1実施形態及び第2実施形態の軸受ユニット120は各分割軸受体121の外周面に一体的に弾性変形部122が接合されているのに対し、本実施形態の球面軸受300は、図9(b)に示すように分割軸受体121と弾性変形部122とが別体として存在する。   Specifically, in the bearing unit 120 of the first embodiment and the second embodiment described above, the elastic deformation portion 122 is integrally joined to the outer peripheral surface of each split bearing body 121, whereas in the present embodiment, As shown in FIG. 9B, the spherical bearing 300 includes a split bearing body 121 and an elastic deformation portion 122 as separate bodies.

さらに、上述した第2実施形態では、軸受ユニット120を保持部材230へと取付後、保持片132bを挿入しているのに対して、本実施形態は、図9(b)に示すように、保持片132bが存在せず、別体となった弾性変形部331が保持片の役割も担っている。   Furthermore, in the second embodiment described above, the holding piece 132b is inserted after the bearing unit 120 is attached to the holding member 230, whereas in the present embodiment, as shown in FIG. The holding piece 132b does not exist, and the elastic deformation portion 331 which is a separate body also plays the role of the holding piece.

例えば、本実施形態の弾性変形部331は、保持部材330の軸方向と垂直に存在する挿入貫通孔132aに挿入した時、軸体110に対して分割軸受体121が全て付勢するように、保持部材330の円筒部132の外周と等しい径の外周面を有する。   For example, when the elastic deformation portion 331 of the present embodiment is inserted into the insertion through-hole 132a that exists perpendicular to the axial direction of the holding member 330, the split bearing body 121 is all urged against the shaft body 110. The holding member 330 has an outer peripheral surface having a diameter equal to the outer periphery of the cylindrical portion 132.

ここで、図10を参照して本実施形態の球面軸受300の組立手順を説明する。図10は図9の組立手順図である。図10(a)は、第1実施形態と同様に、保持部材330の挿入開口部137に同軸上に軸体110を挿入し、保持部材330の挿入貫通孔132aから分割軸受体121を挿入し、保持部までスライドして挿入する。この時、図10(d)に示すように、分割軸受体121の内周面は軸体110の外周面に必ずしも触れていなくてもよい。次に、図10(b)は第2実施形態と同様に、保持部材330の軸と垂直方向に設けられた挿入貫通孔132aから弾性変形部331を挿入する。最後に図10(c)に示すように、第2実施形態と同様に、保持カバー231を取り付ける。この時、図10(e)に示すように、弾性変形部331が分割軸受体121を軸体110へと付勢するため、分割軸受体121の内周面と軸体110の外周面とが実質的に当接し、個々独立した独立縣架の構造が形成される。   Here, an assembly procedure of the spherical bearing 300 of the present embodiment will be described with reference to FIG. FIG. 10 is an assembly procedure diagram of FIG. In FIG. 10A, as in the first embodiment, the shaft body 110 is inserted coaxially into the insertion opening 137 of the holding member 330, and the split bearing body 121 is inserted from the insertion through hole 132a of the holding member 330. , Slide to the holding part and insert. At this time, as shown in FIG. 10 (d), the inner peripheral surface of the split bearing body 121 may not necessarily touch the outer peripheral surface of the shaft body 110. Next, in FIG. 10B, the elastic deformation portion 331 is inserted from the insertion through hole 132a provided in the direction perpendicular to the axis of the holding member 330, as in the second embodiment. Finally, as shown in FIG. 10C, the holding cover 231 is attached as in the second embodiment. At this time, as shown in FIG. 10 (e), the elastic deformation portion 331 biases the split bearing body 121 toward the shaft body 110, so that the inner peripheral surface of the split bearing body 121 and the outer peripheral surface of the shaft body 110 are separated. Substantially abutting and independent independent frame structures are formed.

以上説明したように、本実施形態の保持部材330によれば、第1実施形態及び第2実施形態で述べた効果と同様の効果がある。また、弾性変形部331と分割軸受体121が同じ挿入口からの挿入が困難な場合でも、それぞれを保持部材へと取り付けることが可能となる。これにより、弾性変形部331の大きさや形に関係なく、弾性変形部331を設置することが可能となる。   As described above, according to the holding member 330 of the present embodiment, there are the same effects as the effects described in the first embodiment and the second embodiment. Moreover, even when it is difficult to insert the elastic deformation portion 331 and the split bearing body 121 from the same insertion port, each can be attached to the holding member. Accordingly, the elastic deformation portion 331 can be installed regardless of the size and shape of the elastic deformation portion 331.

<第4実施形態>
図11には、本発明の第4実施形態に係る球面軸受の全体的な概略図を示し、図11(a)が斜視図であり、図11(b)が分解斜視図である。なお、本実施形態において、一部の軸受構造については、上述した第1実施形態から第3実施形態と同様のため、重複する説明及び図示は省略する。
<Fourth embodiment>
FIG. 11 shows an overall schematic view of a spherical bearing according to a fourth embodiment of the present invention, FIG. 11 (a) is a perspective view, and FIG. 11 (b) is an exploded perspective view. In addition, in this embodiment, about a part of bearing structure, since it is the same as that of 3rd Embodiment mentioned above, the overlapping description and illustration are abbreviate | omitted.

具体的には、上述した第1実施形態から第3実施形態の弾性変形部は個々独立して存在しているのに対して、本実施形態の球面軸受400は、図11(b)に示すように、各分割軸受体121に共通の弾性変形部422が保持部材430の円筒部内周面に接合されている。なお、各分割軸受体121の取付手順は、上述した第1実施形態と同様である。   Specifically, the elastic deformation portions of the first to third embodiments described above exist independently, whereas the spherical bearing 400 of the present embodiment is shown in FIG. As described above, the elastic deformation portion 422 common to the divided bearing bodies 121 is joined to the inner peripheral surface of the cylindrical portion of the holding member 430. In addition, the attachment procedure of each division | segmentation bearing body 121 is the same as that of 1st Embodiment mentioned above.

以上説明したように、本実施形態の球面軸受400は、各分割軸受体121のそれぞれに共通の弾性変形部422を設けることにより、各分割軸受体121の付勢構造を簡略化することができる。   As described above, the spherical bearing 400 of the present embodiment can simplify the biasing structure of each divided bearing body 121 by providing a common elastic deformation portion 422 for each divided bearing body 121. .

<第5実施形態>
図12には、本発明の第5実施形態に係る球面軸受の全体的な概略図を示す。なお、本実施形態において、一部の軸受構造については、上述した第1実施形態から第4実施形態と同様のため、重複する説明及び図示は省略する。
<Fifth Embodiment>
FIG. 12 shows an overall schematic diagram of a spherical bearing according to a fifth embodiment of the present invention. In addition, in this embodiment, about a part of bearing structure, since it is the same as that of 1st Embodiment mentioned above-4th Embodiment, the overlapping description and illustration are abbreviate | omitted.

具体的には、第1実施形態から第4実施形態の軸体は、独立して存在していたが、本実施形態の球面軸受500は、軸体510が軸と一体型になっている以外は、取付手順や軸の自由度も第1実施形態から第4実施形態と同様である。   Specifically, the shaft bodies of the first to fourth embodiments exist independently, but the spherical bearing 500 of this embodiment is different from the shaft body 510 except that the shaft body 510 is integrated with the shaft. The mounting procedure and the degree of freedom of the shaft are the same as those in the first to fourth embodiments.

以上説明したように、本実施形態では第1実施形態から第4実施形態までの効果と同様の効果があり、さらに軸と軸体が一体型であるため、部品点数が減り、ガタが少なくなり、機械的精度が向上する。   As described above, the present embodiment has the same effects as those of the first to fourth embodiments. Further, since the shaft and the shaft body are integrated, the number of parts is reduced and the backlash is reduced. , Mechanical accuracy is improved.

<他の実施形態>
以上、本発明を第1〜第6実施形態に基づいて詳細に説明したが、本発明は上述した第1〜第5実施形態に限定されるものではない。
<Other embodiments>
As mentioned above, although this invention was demonstrated in detail based on 1st-6th embodiment, this invention is not limited to 1st-5th embodiment mentioned above.

上述した第1〜第5実施形態では、すべてにおいて軸体に対する高い追従性を持った加圧球面軸受となり、また軸体に加わる物理的な衝撃吸収、又は保持手段に加わる物理的な衝撃吸収にも有効である。 In the above-described first to fifth embodiments, the pressure spherical bearing has high followability to the shaft body in all cases, and is used for physical shock absorption applied to the shaft body or physical shock absorption applied to the holding means. Is also effective.

上述した第1〜第5実施形態では、保持部材を円柱状の部材として説明をしたが、本発明はこれに特に限定されず、例えば角柱状のような部材としてもよい。 In 1st-5th embodiment mentioned above, although the holding member was demonstrated as a cylindrical member, this invention is not specifically limited to this, For example, it is good also as a member like prismatic shape.

また、上述した第1〜第5実施形態での弾性変形部の形状は、ゴムシートのような部材であったが、シート状の部材に限らず、弾性変形が可能な部品を一部品またはそれらを組み合わせて使用してもよい。   In addition, the shape of the elastic deformation portion in the first to fifth embodiments described above is a member such as a rubber sheet. However, the elastic deformation portion is not limited to a sheet-like member, and one or more components that can be elastically deformed are used. May be used in combination.

なお、上述した第1〜第5実施形態では、分割軸受体と弾性変形部の挿入方法は、例えば、4つの分割軸受体と弾性変形部で構成されている場合、2つの分割軸受体が第1実施形態で挿入した方法で、残りの2つが第2実施形態で挿入した方法で挿入するなど、その挿入方法を組み合わせて使用してもよい。 In the first to fifth embodiments described above, the split bearing body and the elastic deformation portion are inserted by, for example, four split bearing bodies and an elastic deformation portion. A combination of the insertion methods may be used, such as the method of inserting in the first embodiment and the remaining two inserted by the method of insertion in the second embodiment.

本発明は、分割軸受体の材質は、例えば分割軸受体が4部品ある場合、2部品を鉄、2部品をカーボンとし、交互に配置をしてもよい。これによりカーボンが潤滑材として役割をなし、より滑らかに軸体が動くことが可能になる。 In the present invention, the material of the split bearing body may be alternately arranged, for example, when there are four split bearing bodies, two parts are iron, and two parts are carbon. Thereby, carbon plays a role as a lubricant, and the shaft body can move more smoothly.

また、本発明では、上述した各分割軸受体の軸受面に溝部を設け、軸体に対する摩擦力を低減するようにしてもよい。なお、このような溝部は、軸体の軸受面に対してライン状に1つ設けてもよいし、十字状に交差させて2つ設けてもよい。これにより、摩擦力低減の他、ごみ避け、潤滑剤(グリス等)の溜り部としても活用できる。また、このような溝部は、各分割軸受体の裏面、すなわち、付勢手段側の面に設けてもよい。これにより、熱膨張時において自由な変形を促すことができる。   Moreover, in this invention, you may make it reduce the frictional force with respect to a shaft body by providing a groove part in the bearing surface of each division | segmentation bearing body mentioned above. In addition, such a groove part may be provided in the shape of a line with respect to the bearing surface of the shaft body, or may be provided so as to intersect with a cross shape. As a result, in addition to reducing the frictional force, it can also be used as a reservoir for avoiding dust and storing lubricant (such as grease). Moreover, such a groove part may be provided in the back surface of each division | segmentation bearing body, ie, the surface at the side of a biasing means. Thereby, free deformation can be promoted during thermal expansion.

なお、本発明の球面軸受は、例えば、事務機や産業機械などの軸受構造に適用することで、様々な使用環境においても、安定した軸受となることから、駆動安定性に貢献する。また、本発明の球面軸受は、広い可動範囲を実現できることから、流体などを噴射する可動ノズル(偏向型ノズルを含む)、または、各種モータ軸受など、様々な分野の軸受に適用することができる。   Note that the spherical bearing of the present invention contributes to driving stability because it is a stable bearing even in various usage environments by being applied to a bearing structure such as an office machine or an industrial machine. Further, since the spherical bearing of the present invention can realize a wide movable range, it can be applied to bearings in various fields such as movable nozzles (including deflection type nozzles) for ejecting fluid or the like, or various motor bearings. .

以上、本発明について詳細に説明したが、本発明は、下記の実施形態についても対象とする。例えば、本発明は、図13に示すような圧力容器710に挿入されるノズル部材720を球面滑り軸受で受けた可変ノズル装置700にも適用可能である。なお、図13は、本発明の一実施形態にかかる可変ノズル装置の概略断面図である。   As mentioned above, although this invention was demonstrated in detail, this invention also makes object also the following embodiment. For example, the present invention can also be applied to a variable nozzle device 700 in which a nozzle member 720 inserted into a pressure vessel 710 as shown in FIG. 13 is received by a spherical plain bearing. FIG. 13 is a schematic cross-sectional view of a variable nozzle device according to an embodiment of the present invention.

具体的には、図13に示すように、ノズル部材720は、内径が先端に向かって漸大するスカート部721と、このスカート部721に連通する小径部722と、この小径部722から延設されて巻き込むように湾曲した基端部となる環状リング部723とを備える。   Specifically, as shown in FIG. 13, the nozzle member 720 includes a skirt portion 721 having an inner diameter that gradually increases toward the tip, a small diameter portion 722 that communicates with the skirt portion 721, and an extension from the small diameter portion 722. And an annular ring portion 723 serving as a base end portion curved so as to be wound.

また、このようなノズル部材720の小径部722には、外周面の一部が球状面724aで形成された球状部724が外周方向に亘って設けられている。また、ノズル部材720のノズル孔(貫通孔)725のうち基端部側は、圧力容器710内の圧力空間711に連通している。すなわち、ノズル部材720は、ノズル部材720の基端部(環状リング部723)側のうち球状部724が実質的に圧力空間711内に配置されるように、圧力容器710内に挿入配置されている。   In addition, the small-diameter portion 722 of the nozzle member 720 is provided with a spherical portion 724 having a part of the outer peripheral surface formed by a spherical surface 724a in the outer peripheral direction. Further, the base end side of the nozzle hole (through hole) 725 of the nozzle member 720 communicates with the pressure space 711 in the pressure vessel 710. That is, the nozzle member 720 is inserted and arranged in the pressure vessel 710 such that the spherical portion 724 of the nozzle member 720 on the base end portion (annular ring portion 723) side is substantially disposed in the pressure space 711. Yes.

さらに、圧力容器710のうちノズル部材720の球状部724が装着されるノズル装着部712には、ノズル部材720の球状部724を受ける球面軸受730が設けられている。詳細には、この球面軸受730は、例えば、ノズル部材720の球状部724を受ける軸受体731と、この軸受体731を保持する保持部材732とから構成される。このような球面軸受730は、圧力容器710(圧力空間711)内に突出して設けられている。   Furthermore, a spherical bearing 730 that receives the spherical portion 724 of the nozzle member 720 is provided in the nozzle mounting portion 712 in which the spherical portion 724 of the nozzle member 720 is mounted in the pressure vessel 710. Specifically, the spherical bearing 730 includes, for example, a bearing body 731 that receives the spherical portion 724 of the nozzle member 720 and a holding member 732 that holds the bearing body 731. Such a spherical bearing 730 is provided so as to protrude into the pressure vessel 710 (pressure space 711).

また、ノズル部材720の環状リング部723の内周部には、球面軸受730が挿入配置される。この状態では、ノズル部材720の環状リング部723の内周部は、球面軸受730の外周部に摺接する。さらに、ここでは、球面軸受730の外周部には、溝部732aが外周方向に連続して設けられ、この溝部732aには、環状のシール部材(例えば、Oリング)740が配置されている。   A spherical bearing 730 is inserted and disposed in the inner peripheral portion of the annular ring portion 723 of the nozzle member 720. In this state, the inner peripheral portion of the annular ring portion 723 of the nozzle member 720 is in sliding contact with the outer peripheral portion of the spherical bearing 730. Further, here, a groove portion 732a is continuously provided in the outer peripheral direction of the spherical bearing 730, and an annular seal member (for example, an O-ring) 740 is disposed in the groove portion 732a.

すなわち、上述したノズル部材720における環状リング部723の内周部は、シール部材740を介在して球面軸受730の外周部に係合している。このようなノズル部材720の環状リング部723とシール部材740とは、ノズル部材720の回動中心と同心円上に摺接する。このため、ノズル部材720が可動(変位)しても、常に、シール部材740がノズル部材720と球面軸受730との間に介在するため、圧力容器710内の圧力変動を効果的に抑えることが可能となる。   That is, the inner peripheral portion of the annular ring portion 723 in the nozzle member 720 described above is engaged with the outer peripheral portion of the spherical bearing 730 with the seal member 740 interposed therebetween. The annular ring portion 723 and the seal member 740 of the nozzle member 720 are in sliding contact with the rotation center of the nozzle member 720 on a concentric circle. For this reason, even if the nozzle member 720 is movable (displaced), the seal member 740 is always interposed between the nozzle member 720 and the spherical bearing 730, so that the pressure fluctuation in the pressure vessel 710 can be effectively suppressed. It becomes possible.

上述した可変ノズル装置700における球面軸受740は、上述した第1乃至第6実施形態のような球面軸受の構造を採用してもよい。これにより、圧力容器710内の圧力変動を効果的に抑えながら、ノズル部材720の可動範囲を広く設定できる他、様々な使用環境にも適用できる。

The spherical bearing 740 in the variable nozzle device 700 described above may adopt the structure of a spherical bearing as in the first to sixth embodiments described above. Accordingly, the movable range of the nozzle member 720 can be set wide while effectively suppressing the pressure fluctuation in the pressure vessel 710, and can be applied to various usage environments.

Claims (11)

外周面が球状面で形成された部分を有する軸体と、
前記軸体の球状面を個々独立して受ける複数の分割軸受体と、
前記軸体の球状面に沿って配置される前記複数の分割軸受体を前記軸体側に付勢する付勢手段と、
前記付勢手段によって前記軸体側に付勢される前記複数の分割軸受体を保持する保持部材と、を備えたことを特徴とする球面軸受。
A shaft body having a portion having an outer peripheral surface formed of a spherical surface;
A plurality of split bearing bodies that individually receive the spherical surfaces of the shaft bodies;
Biasing means for biasing the plurality of split bearing bodies arranged along the spherical surface of the shaft body toward the shaft body;
A spherical bearing, comprising: a holding member that holds the plurality of split bearing bodies biased toward the shaft body by the biasing means.
前記軸体の球状面を3つ以上の前記分割軸受体で受けるよう構成され、
3つ以上の前記分割軸受体は、前記軸体の球状面に対して外周方向に均等配置されたことを特徴とする請求項1に記載の球面軸受。
The spherical surface of the shaft body is configured to be received by three or more of the divided bearing bodies,
The spherical bearing according to claim 1, wherein the three or more split bearing bodies are arranged uniformly in the outer circumferential direction with respect to the spherical surface of the shaft body.
前記保持手段は、前記軸体が挿入配置される空間を画成する挿入開口部を有し、
前記挿入開口部の開口周縁には、前記軸体との間で前記分割軸受体が挿入可能な挿入部が外周方向に複数設けられ、
複数の前記挿入部の間のそれぞれには、前記挿入部から挿入された前記分割軸受体を前記軸体の球状面の外周方向に滑らせて前記分割軸受体を保持する保持部が設けられたことを特徴とする請求項1又は2に記載の球面軸受。
The holding means has an insertion opening that defines a space in which the shaft body is inserted and arranged,
A plurality of insertion portions into which the split bearing body can be inserted between the shaft bodies are provided in the outer peripheral direction at the opening periphery of the insertion opening portion,
Each of the plurality of insertion portions is provided with a holding portion that holds the divided bearing body by sliding the divided bearing body inserted from the insertion portion in the outer peripheral direction of the spherical surface of the shaft body. The spherical bearing according to claim 1, wherein the spherical bearing is provided.
前記保持手段は、前記軸体が挿入配置される空間を画成する挿入開口部と、前記挿入開口部側とは反対側の外周部から前記挿入開口部に向けて貫通して設けられ、前記分割軸受体のそれぞれが挿入される複数の貫通孔と、を有することを特徴とする請求項1又は2に記載の球面軸受。   The holding means is provided penetrating from the outer periphery on the opposite side of the insertion opening to the insertion opening, defining the space in which the shaft body is inserted and arranged, The spherical bearing according to claim 1, further comprising: a plurality of through holes into which the divided bearing bodies are inserted. 前記保持部材は、前記軸体を取り囲み、前記付勢手段を介在させて複数の前記分割軸受体を保持する環状の保持面を有することを特徴とする請求項1乃至4のいずれか1項に記載の球面軸受。   The said holding member has the cyclic | annular holding surface which surrounds the said shaft body and hold | maintains the said some division | segmentation bearing body through the said biasing means, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. Spherical bearing as described. 前記付勢手段は、複数の前記分割軸受体毎に対応して個々独立して設けられた複数の弾性変形部を有することを特徴とする請求項1乃至5のいずれか1項に記載の球面軸受。   6. The spherical surface according to claim 1, wherein the urging means includes a plurality of elastically deforming portions provided independently for each of the plurality of divided bearing bodies. bearing. 前記付勢手段は、複数の前記分割軸受体のそれぞれに一体的に設けられた弾性変形部を有することを特徴とする請求項1乃至6のいずれか1項に記載の球面軸受。   The spherical bearing according to any one of claims 1 to 6, wherein the urging means includes an elastic deformation portion provided integrally with each of the plurality of divided bearing bodies. 複数の前記分割軸受体のそれぞれは、同一形状で設けられ、
前記付勢手段は、複数の前記分割軸受体のそれぞれを前記軸体に向けて均等な付勢力で付勢するようにしたことを特徴とする請求項1乃至7のいずれか1項に記載の球面軸受。
Each of the plurality of split bearing bodies is provided in the same shape,
8. The biasing means according to claim 1, wherein each of the plurality of divided bearing bodies is biased toward the shaft body with a uniform biasing force. 9. Spherical bearing.
請求項1乃至8のいずれか1項に記載の球面軸受を備えたことを特徴とする回転駆動装置。   A rotary drive device comprising the spherical bearing according to any one of claims 1 to 8. 外周面の一部が球状面で形成された球状部を有するノズル部材と、
前記ノズル部材のノズル孔に連通する圧力空間を画成する圧力容器と、を備え、
前記圧力容器のうち前記ノズル部材が装着されるノズル装着部には、前記ノズル部材の前記球状部を受ける球面軸受が前記圧力空間内に突出して接合され、
前記ノズル部材のうち前記球状部から前記圧力空間内に延設される基端部は、前記球面軸受の外周部に対してシール部材を介在させて摺接し、
前記ノズル部材の前記基端部と前記シール部材とは、前記ノズル部材の回動中心と同心円上で摺接するようにしたことを特徴とする可変ノズル装置。
A nozzle member having a spherical portion in which a part of the outer peripheral surface is formed of a spherical surface;
A pressure vessel defining a pressure space communicating with the nozzle hole of the nozzle member,
A spherical bearing that receives the spherical portion of the nozzle member is protruded into the pressure space and joined to a nozzle mounting portion to which the nozzle member is mounted in the pressure vessel.
A base end portion extending from the spherical portion into the pressure space of the nozzle member is in sliding contact with an outer peripheral portion of the spherical bearing with a seal member interposed therebetween,
The variable nozzle device, wherein the base end portion of the nozzle member and the seal member are in sliding contact with a rotation center of the nozzle member on a concentric circle.
前記球面軸受は、前記球状部の前記球状面を個々独立して受ける複数の分割軸受体と、前記軸体の球状面に沿って配置される前記複数の分割軸受体を前記軸体側に付勢する付勢手段と、前記付勢手段によって前記軸体側に付勢される前記複数の分割軸受体を保持する保持部材と、を有し、前記保持部材は、前記圧力容器に結合されていることを特徴とする請求項10に記載の可変ノズル装置。


The spherical bearing is configured to bias a plurality of divided bearing bodies that individually receive the spherical surfaces of the spherical portion, and the plurality of divided bearing bodies arranged along the spherical surface of the shaft body toward the shaft body side. And a holding member that holds the plurality of divided bearing bodies that are urged toward the shaft body by the urging means, and the holding member is coupled to the pressure vessel. The variable nozzle device according to claim 10.


JP2014260768A 2014-12-24 2014-12-24 Spherical bearing, rotary drive device and variable nozzle device Active JP6482858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260768A JP6482858B2 (en) 2014-12-24 2014-12-24 Spherical bearing, rotary drive device and variable nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260768A JP6482858B2 (en) 2014-12-24 2014-12-24 Spherical bearing, rotary drive device and variable nozzle device

Publications (2)

Publication Number Publication Date
JP2016121720A true JP2016121720A (en) 2016-07-07
JP6482858B2 JP6482858B2 (en) 2019-03-13

Family

ID=56327337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260768A Active JP6482858B2 (en) 2014-12-24 2014-12-24 Spherical bearing, rotary drive device and variable nozzle device

Country Status (1)

Country Link
JP (1) JP6482858B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640807U (en) * 1979-09-04 1981-04-15
JPS6213223U (en) * 1986-07-08 1987-01-27
JPH0425610A (en) * 1990-05-21 1992-01-29 Toyoda Gosei Co Ltd Spherical sliding bush
JP2007303609A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Penetrating member clamping structure for pressure double container, gasifying furnace, and penetrating member inclining method
JP2010275881A (en) * 2009-05-26 2010-12-09 Ihi Aerospace Co Ltd Ball joint device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640807U (en) * 1979-09-04 1981-04-15
JPS6213223U (en) * 1986-07-08 1987-01-27
JPH0425610A (en) * 1990-05-21 1992-01-29 Toyoda Gosei Co Ltd Spherical sliding bush
JP2007303609A (en) * 2006-05-12 2007-11-22 Mitsubishi Heavy Ind Ltd Penetrating member clamping structure for pressure double container, gasifying furnace, and penetrating member inclining method
JP2010275881A (en) * 2009-05-26 2010-12-09 Ihi Aerospace Co Ltd Ball joint device

Also Published As

Publication number Publication date
JP6482858B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US10006534B2 (en) Bearing holder, bearing mechanism, and strain wave gearing device
US9557835B2 (en) Trackball brake
US9851273B2 (en) Seal and bearing assembly including the seal
JP2015013562A (en) Steering device
JP5593654B2 (en) Robot joint
JP6482858B2 (en) Spherical bearing, rotary drive device and variable nozzle device
JP6403071B2 (en) Fluid pressure cylinder
JP5308280B2 (en) Static pressure gas bearing
JP6393496B2 (en) Linear motion guide unit with lubrication member
JP5059511B2 (en) Slider structure in robot actuator
JP2013203257A (en) Electric power steering device
JP6228503B2 (en) Ball screw nut
JP4295576B2 (en) Linear motion guidance unit
CN108138924B (en) Screw device
CN109312835B (en) Robot, motor unit, and coupling unit
JP2020041999A (en) Encoder and rotating device using the same
CN107690529B (en) Fluid pressure cylinder
US11655851B2 (en) Bearing device and rotating device
JP6613110B2 (en) Case structure of rotation resistance device
KR101469846B1 (en) Cartesian coordinate robot
JP2015137657A (en) Bearing and rack and pinion type steering gear unit
JP3195756U (en) Rotating mechanism
JP6560962B2 (en) Rotation resistance device
KR101314359B1 (en) Device for measuring displacement of main shaft in machining tools
JP7512103B2 (en) Vibration actuator and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190213

R150 Certificate of patent or registration of utility model

Ref document number: 6482858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250