JP2016120472A - Mixed gas purifier - Google Patents

Mixed gas purifier Download PDF

Info

Publication number
JP2016120472A
JP2016120472A JP2014263488A JP2014263488A JP2016120472A JP 2016120472 A JP2016120472 A JP 2016120472A JP 2014263488 A JP2014263488 A JP 2014263488A JP 2014263488 A JP2014263488 A JP 2014263488A JP 2016120472 A JP2016120472 A JP 2016120472A
Authority
JP
Japan
Prior art keywords
mixed gas
gas
heat
heat exchanger
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014263488A
Other languages
Japanese (ja)
Other versions
JP6415972B2 (en
Inventor
収 中山
Osamu Nakayama
収 中山
友章 小野塚
Tomoaki Onozuka
友章 小野塚
真志 大塚
Shinji Otsuka
真志 大塚
典子 大坂
Noriko Osaka
典子 大坂
安佐美 齋藤
Asami Saito
安佐美 齋藤
良和 白井
Yoshikazu Shirai
良和 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Original Assignee
Tokyo Gas Co Ltd
Tokyo Gas Engineering Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Gas Engineering Solutions Corp filed Critical Tokyo Gas Co Ltd
Priority to JP2014263488A priority Critical patent/JP6415972B2/en
Publication of JP2016120472A publication Critical patent/JP2016120472A/en
Application granted granted Critical
Publication of JP6415972B2 publication Critical patent/JP6415972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To realize a mixed gas purifier which effectively utilizes heat generated by gas compression for lowering the relative humidity of a mixed gas to achieve high energy utilization efficiency.SOLUTION: A mixed gas purifier 1 includes: a gas compressor 2 which adiabatically compresses a mixed gas to be subject to purification; a heat exchanger 3 which recovers heat of the mixed gas adiabatically compressed by the gas compressor 2; a cooler 4 which cools the mixed gas from which heat is recovered by the heat exchanger 3; a condenser 5 which removes a moisture content of the mixed gas cooled by the cooler 4 as drain; and a separation unit 6 which separates the mixed gas flowing thereinto via the condenser 5 into a refined gas. The mixed gas flowing via the condenser 5 is heated with the heat recovered by the heat exchanger 3 to be supplied to the separation unit 6.SELECTED DRAWING: Figure 2

Description

本発明は、バイオガスなどの炭酸ガスを含む混合ガスを精製する混合ガス精製装置に関するものである。   The present invention relates to a mixed gas purification apparatus for purifying a mixed gas containing carbon dioxide such as biogas.

バイオガスは、再生可能エネルギーの一つであり、エネルギー需要の一部を担う可能性がある資源として注目されている。廃物のメタン発酵により発生するバイオガスは、廃物中の有機物が嫌気性微生物によって分解されることで発生するもので、その成分の大半がメタンガスと炭酸ガスからなり、また、その発酵雰囲気に起因して水分が含まれる。バイオガスの成分比率は、廃物の種類や発酵条件などによって異なるが、その一例を示すと、メタンの割合が60%(容量%)程度であり、残余の40%程度が炭酸ガスになる。このため、バイオガスを燃料ガスとして利用するには、バイオガスから炭酸ガスなどを除去してメタンを主成分とするガスに精製することが必要になる。   Biogas is one of the renewable energies, and has attracted attention as a resource that may be part of energy demand. Biogas generated by methane fermentation of waste is generated when organic substances in the waste are decomposed by anaerobic microorganisms. Contains water. The component ratio of biogas varies depending on the type of waste and the fermentation conditions. For example, the ratio of methane is about 60% (volume%), and the remaining 40% is carbon dioxide. For this reason, in order to use biogas as a fuel gas, it is necessary to remove carbon dioxide from the biogas and refine it to a gas mainly composed of methane.

従来、バイオガスなどの混合ガスの精製には、分離膜の利用やPSA法による吸着を利用した分離装置が用いられる。このような分離装置は、装置内で結露があると分離性能が低下することが一般に知られている。特に、分離膜を利用する場合には、膜表面で結露が生じると水滴が分離膜表面を覆うことで分離性能が大きく低下する。   Conventionally, a separation apparatus using a separation membrane or adsorption by a PSA method is used for purifying a mixed gas such as biogas. It is generally known that such a separation apparatus has a reduced separation performance when condensation occurs in the apparatus. In particular, when a separation membrane is used, if dew condensation occurs on the membrane surface, water droplets cover the separation membrane surface, resulting in a significant reduction in separation performance.

このため、従来の混合ガス精製方法は、分離装置に精製対象の混合ガスを供給する前に、混合ガスの相対湿度を下げる工程が付加されている(例えば、下記特許文献1参照)。図1は、このような従来の混合ガス精製方法の一例を示している。この従来例では、混合ガスをガス圧縮機J1で圧縮し、その後冷却器J2で冷却してコンデンサJ3で水分(水蒸気)をドレン除去し、その後加熱ヒーターJ4で加熱することで、分離装置J5に供給する混合ガスの相対湿度を下げている。   For this reason, in the conventional mixed gas purification method, a process of lowering the relative humidity of the mixed gas is added before supplying the mixed gas to be purified to the separation device (see, for example, Patent Document 1 below). FIG. 1 shows an example of such a conventional mixed gas purification method. In this conventional example, the mixed gas is compressed by a gas compressor J1, then cooled by a cooler J2, drained of moisture (water vapor) by a condenser J3, and then heated by a heater J4, whereby a separation device J5 is obtained. The relative humidity of the supplied gas mixture is lowered.

特開2005−23211号公報JP-A-2005-23211

前述した従来例は、相対湿度の低い混合ガスを分離装置に供給することで、メタンリッチな精製ガスと炭酸ガスリッチなオフガスを分離する良好な分離性能が期待できる。しかしながら、分離装置に供給する前の工程で加熱や冷却に多くのエネルギーを使うので、エネルギー需要の一部を担うバイオガスの精製にエネルギーを消費することになり、エネルギーの利用効率を考えると改善の余地がある。特に、ガス圧縮機による断熱圧縮によって混合ガスはかなりの高温になるが、その熱を系外に放熱して、その後に加熱ヒーターによって系外から熱を加えているので、効率的な熱利用がなされていない問題がある。   The above-described conventional example can be expected to have a good separation performance for separating a methane-rich purified gas and a carbon dioxide-rich off-gas by supplying a mixed gas having a low relative humidity to the separation device. However, since a lot of energy is used for heating and cooling in the process before supplying to the separation device, energy is consumed for refining biogas that bears a part of energy demand, which is an improvement when considering the efficiency of energy use. There is room for. In particular, the mixed gas becomes considerably hot due to adiabatic compression by a gas compressor, but the heat is dissipated outside the system, and then heat is applied from outside the system by a heater, so efficient heat utilization is possible. There is a problem that has not been done.

また、分離装置として分離膜を用いる場合には、高分子材料からなる分離膜は熱に弱く、分離装置の使用温度が制限されている。これに対して、従来技術は、分離装置の直ぐ上流側で加熱ヒーターによって混合ガスを加熱するので、分離装置に供給する混合ガスの相対湿度を優先すると、混合ガスを加熱しすぎて分離装置の使用温度の限度を超える虞があり、分離装置の使用温度の限度を優先して加熱温度を低くすると、混合ガスの相対湿度が高めになって分離性能に悪影響を及ぼすことになる。このため、前述した従来例は、分離装置の使用温度と混合ガスの相対湿度の両方を考慮した混合ガスの温度管理がなされていない問題があった。   When a separation membrane is used as the separation device, the separation membrane made of a polymer material is vulnerable to heat, and the use temperature of the separation device is limited. On the other hand, in the prior art, the mixed gas is heated by the heater immediately upstream of the separation device. Therefore, if priority is given to the relative humidity of the mixed gas supplied to the separation device, the mixed gas is overheated and the separation device is heated. There is a possibility that the operating temperature limit will be exceeded, and if the heating temperature is lowered with priority given to the operating temperature limit of the separation device, the relative humidity of the mixed gas will be increased, and the separation performance will be adversely affected. For this reason, the above-described conventional example has a problem that the temperature management of the mixed gas is not performed in consideration of both the operating temperature of the separator and the relative humidity of the mixed gas.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、混合ガスの相対湿度を下げるためのガス圧縮で生じる熱を有効利用することで、エネルギーの利用効率が高い混合ガス精製装置を実現すること、また、分離装置に供給する混合ガスの相対湿度を下げながら、分離装置を適正な温度範囲で使用することで、良好な分離性能を確保すること、などが本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. In other words, by effectively using the heat generated by gas compression to lower the relative humidity of the mixed gas, it is possible to realize a mixed gas purification device with high energy use efficiency, and also the relative humidity of the mixed gas supplied to the separation device It is an object of the present invention to ensure good separation performance by using the separation device in an appropriate temperature range while lowering the temperature.

このような目的を達成するために、本発明による混合ガス精製装置は、以下の構成を具備するものである。
精製対象の炭酸ガスを含む混合ガスを断熱圧縮するガス圧縮機と、前記ガス圧縮機で断熱圧縮された混合ガスの熱を回収する熱交換器と、前記熱交換器で熱回収された混合ガスを冷却する冷却器と、前記冷却器で冷却された混合ガスの水分をドレン除去するコンデンサと、前記コンデンサを経由した混合ガスを精製ガスに分離する分離装置とを備え、前記コンデンサを経由した混合ガスが前記熱交換器で回収された熱で加熱されて前記分離装置に供給されることを特徴とする混合ガス精製装置。
In order to achieve such an object, the mixed gas purifier according to the present invention has the following configuration.
A gas compressor that adiabatically compresses a mixed gas containing carbon dioxide gas to be purified, a heat exchanger that recovers heat of the mixed gas that is adiabatically compressed by the gas compressor, and a mixed gas that is heat-recovered by the heat exchanger A condenser for cooling the mixed gas cooled by the cooler, and a separation device for separating the mixed gas that has passed through the condenser into purified gas, and mixing via the condenser. A mixed gas purification apparatus, wherein a gas is heated by heat recovered by the heat exchanger and supplied to the separation apparatus.

このような特徴を有する混合ガス精製装置は、ガス圧縮で生じる熱を有効利用することで、エネルギーの利用効率が高い混合ガス精製装置を実現することができ、また、分離装置に供給する混合ガスの相対湿度を下げながら、分離装置を適正な温度範囲で使用することで、良好な分離性能を確保することができる。
なお、本発明が対象とする混合ガスは、バイオガスのほかに、天然ガス井戸元、ランドフィルガスなど、炭酸ガスを含む混合ガスを精製対象としている。
The mixed gas purification apparatus having such a feature can realize a mixed gas purification apparatus with high energy use efficiency by effectively using heat generated by gas compression, and can also supply a mixed gas to the separation apparatus. Good separation performance can be secured by using the separation device in an appropriate temperature range while lowering the relative humidity.
In addition, the mixed gas which this invention makes object the mixed gas containing carbon dioxide gas, such as a natural gas well origin and landfill gas, in addition to biogas.

従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の実施形態に係る混合ガス精製装置を示した説明図である。It is explanatory drawing which showed the mixed gas purification apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る混合ガス精製装置を示した説明図である。It is explanatory drawing which showed the mixed gas purification apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る混合ガス精製装置を示した説明図である。It is explanatory drawing which showed the mixed gas purification apparatus which concerns on embodiment of this invention. 本発明の混合ガス精製装置の実施例を示した説明図である。It is explanatory drawing which showed the Example of the mixed gas refinement | purification apparatus of this invention.

以下、図2〜図5を参照して本発明の実施形態を説明する。図2に示すように、本発明の実施形態に係る混合ガス精製装置1は、ガス圧縮機2,熱交換器(第1熱交換器)3,冷却器(第2熱交換器)4,コンデンサ5,分離装置6を備えている。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. As shown in FIG. 2, the mixed gas purification apparatus 1 according to the embodiment of the present invention includes a gas compressor 2, a heat exchanger (first heat exchanger) 3, a cooler (second heat exchanger) 4, a condenser. 5, The separation device 6 is provided.

ガス圧縮機2は、精製対象となるバイオガスなどの混合ガス(以下、被精製ガスという)を断熱圧縮するものであり、この圧縮によって、被精製ガスは、圧力上昇と共に温度が上昇する。熱交換器3は、ガス圧縮機2で断熱圧縮された被精製ガスの熱を回収するもので、熱交換によって被精製ガスを一段階冷却し、ここで回収した熱で分離装置6に供給する被精製ガスを加熱する。   The gas compressor 2 adiabatically compresses a mixed gas such as biogas (hereinafter referred to as a gas to be purified) to be purified, and the temperature of the gas to be purified increases with an increase in pressure due to this compression. The heat exchanger 3 recovers the heat of the gas to be purified which is adiabatically compressed by the gas compressor 2, cools the gas to be purified in one stage by heat exchange, and supplies the recovered gas to the separation device 6 with the recovered heat. Heat the gas to be purified.

冷却器4とコンデンサ5は、熱交換器3で一段階冷却された被精製ガスを更に冷却して水分を除去するものであり、コンデンサ5は、冷却された被精製ガスの飽和水蒸気を結露させてドレン除去する気液分離器である。   The cooler 4 and the condenser 5 are for further cooling the gas to be refined that has been cooled in one stage by the heat exchanger 3 to remove moisture, and the condenser 5 condenses the saturated water vapor of the cooled gas to be refined. This is a gas-liquid separator that removes drainage.

コンデンサ5を経由した被精製ガスは、熱交換流路10を介して前述した熱交換器3に導かれ、熱交換器3でガス圧縮機2により断熱圧縮されて温度上昇した被精製ガスからの熱で加熱され、加熱されることで相対湿度が低下した被精製ガスが分離装置6に供給される。   The gas to be purified that has passed through the condenser 5 is guided to the heat exchanger 3 described above via the heat exchange flow path 10, and is adiabatically compressed by the gas compressor 2 in the heat exchanger 3, and from the gas to be purified whose temperature has risen. Heated by heat, and the gas to be purified whose relative humidity is reduced by being heated is supplied to the separation device 6.

分離装置6は、被精製ガスからメタンリッチの精製ガスを得るものであり、例えば、バイオガスから炭酸ガスを選択透過する分離膜を採用することができる。分離膜の一例としては、中空チューブ状の膜で、その構成材料として、ポリイミド、ポリスルホン、酢酸セルロース、またはポリアミドなどが用いられる。ここでの分離膜は、炭酸ガスの膜透過速度が大きく、メタンの膜透過速度が小さいものが用いられており、その透過速度の違いを利用してメタンリッチな精製ガスと炭酸ガスリッチなオフガスを有効に分離する。なお、分離装置6は、分離膜によるものに限らず、炭酸ガスを吸着除去するものなどであってもよい。   The separation device 6 obtains a methane-rich purified gas from the gas to be purified. For example, a separation membrane that selectively permeates carbon dioxide gas from biogas can be employed. An example of the separation membrane is a hollow tube-like membrane, and polyimide, polysulfone, cellulose acetate, polyamide, or the like is used as a constituent material thereof. The separation membrane here has a high carbon dioxide gas permeation rate and a low methane membrane permeation rate. By utilizing the difference in permeation rate, methane-rich purified gas and carbon dioxide-rich off-gas can be used. Separate effectively. The separation device 6 is not limited to a separation membrane, and may be a device that adsorbs and removes carbon dioxide gas.

このような混合ガス精製装置1は、ガス圧縮機2で断熱圧縮する際に、被精製ガスが温度上昇することで発生する熱を、その後の被精製ガスの加熱に再利用しており、熱の利用効率を高めることで、混合ガス精製装置1の稼働で消費するエネルギーを削減している。これによって、エネルギーの利用効率を改善した混合ガス精製装置1を実現することができる。   Such a mixed gas purification apparatus 1 recycles the heat generated when the gas to be purified rises in temperature when it is adiabatically compressed by the gas compressor 2 for the subsequent heating of the gas to be purified. The energy consumed by the operation of the mixed gas purification apparatus 1 is reduced by increasing the utilization efficiency of the gas. Thereby, the mixed gas refinement | purification apparatus 1 which improved the utilization efficiency of energy is realizable.

図3には、本発明の他の形態例を示している。前述した説明と同一部位には同一符号を付して重複説明を省略する。この混合ガス精製装置1Aは、コンデンサ5を経由した被精製ガスを分離装置6に供給する供給流路11を備えており、供給流路11には圧力調整弁7を設けている。そして、供給流路11の圧力調整弁7より上流側で熱交換流路10が分岐し、この熱交換流路10は熱交換器3を経由して供給流路11の圧力調整弁7より下流側で合流している。   FIG. 3 shows another embodiment of the present invention. The same parts as those described above are denoted by the same reference numerals, and redundant description is omitted. This mixed gas purification apparatus 1A includes a supply flow path 11 that supplies a gas to be purified via a condenser 5 to a separation apparatus 6, and a pressure adjustment valve 7 is provided in the supply flow path 11. The heat exchange channel 10 branches upstream of the pressure regulation valve 7 in the supply channel 11, and the heat exchange channel 10 is downstream from the pressure regulation valve 7 in the supply channel 11 via the heat exchanger 3. Meet on the side.

このような混合ガス精製装置1Aによると、圧力調整弁7を絞ると、コンデンサ5から熱交換流路10を介して分離装置6に供給される被精製ガスの流量が多くなり、圧力調整弁7を開放すると、逆に、コンデンサ5から供給流路11を介して分離装置6に供給される精製ガスの流量が多くなる。これにより、圧力調整弁7の調整によって、分離装置6に供給される被精製ガスの温度を調整することができる。   According to such a mixed gas purification apparatus 1A, when the pressure adjustment valve 7 is throttled, the flow rate of the gas to be purified supplied from the condenser 5 to the separation apparatus 6 via the heat exchange flow path 10 increases, and the pressure adjustment valve 7 On the contrary, the flow rate of the purified gas supplied from the condenser 5 to the separation device 6 via the supply flow path 11 increases. Thereby, the temperature of the to-be-purified gas supplied to the separation device 6 can be adjusted by adjusting the pressure regulating valve 7.

この混合ガス精製装置1Aによると、前述した形態例のように、エネルギーの利用効率を改善することができると共に、分離装置6に供給する被精製ガスの相対湿度を下げながら、分離装置6を適正な温度範囲で使用することができるので、良好な分離性能を確保することができる。   According to this mixed gas purification apparatus 1A, as in the above-described embodiment, the energy utilization efficiency can be improved, and the separation apparatus 6 can be appropriately operated while lowering the relative humidity of the gas to be purified supplied to the separation apparatus 6. Therefore, good separation performance can be ensured.

図4には、本発明の他の形態例を示している。前述した説明と同一部位には同一符号を付して重複説明を省略する。この混合ガス精製装置1Bは、熱交換流路10の合流箇所より下流側の供給流路11に、被精製ガスのガス温度を検出する温度検出器8を設け、温度検出器8が検出するガス温度によって圧力調整弁7を調整している。また、それに加えて、分離装置6で分離されたオフガスを再びガス圧縮機2で断熱圧縮する被精製ガスに合流させる帰還流路12を備えている。   FIG. 4 shows another embodiment of the present invention. The same parts as those described above are denoted by the same reference numerals, and redundant description is omitted. In this mixed gas purification apparatus 1B, a temperature detector 8 that detects the gas temperature of the gas to be purified is provided in the supply flow path 11 downstream from the junction of the heat exchange flow path 10, and the gas that the temperature detector 8 detects. The pressure regulating valve 7 is adjusted according to the temperature. In addition, a return flow path 12 is provided for joining the off-gas separated by the separation device 6 to the gas to be purified, which is adiabatically compressed again by the gas compressor 2.

この混合ガス精製装置1Bによると、分離装置6に供給される被精製ガスのガス温度を温度検出器8で検出して圧力調整弁7を調整することで、常に、分離装置6にとって最適な温度と相対湿度の状態で被精製ガスを分離装置6に供給することができる。これにより、分離装置6の分離性能を良好に維持することができる。それに加えて、分離装置6で分離されたオフガスを帰還流路12で帰還させて再精製するので、精製ガスのメタン回収率を更に向上させることができる。   According to this mixed gas purification device 1B, the temperature of the gas to be purified supplied to the separation device 6 is detected by the temperature detector 8 and the pressure regulating valve 7 is adjusted, so that the optimum temperature for the separation device 6 is always obtained. The gas to be purified can be supplied to the separation device 6 in a state of relative humidity. Thereby, the separation performance of the separation device 6 can be maintained satisfactorily. In addition, since the off-gas separated by the separation device 6 is returned and re-purified by the return flow path 12, the methane recovery rate of the purified gas can be further improved.

図5には、本発明の具体的な実施例を示している。前述した説明と同一部位には同一符号を付して重複説明を省略する。この実施例に係る混合ガス精製装置1Cは、入口弁20を備える入口流路21に原料の混合ガスが流入され、ガス圧縮機2で断熱圧縮された被精製ガスが被冷却流路22を介してコンデンサ(気液分離器)5に流入する。被冷却流路22には、熱交換器(第1熱交換器)3と冷却器(第2熱交換器)4が設けられ、それらで第1段階の冷却(熱回収)と第2段階の冷却が行われる。   FIG. 5 shows a specific embodiment of the present invention. The same parts as those described above are denoted by the same reference numerals, and redundant description is omitted. In the mixed gas purification apparatus 1 </ b> C according to this embodiment, a raw material mixed gas is introduced into an inlet channel 21 including an inlet valve 20, and the gas to be purified adiabatically compressed by the gas compressor 2 passes through the cooled channel 22. Into the condenser (gas-liquid separator) 5. The channel 22 to be cooled is provided with a heat exchanger (first heat exchanger) 3 and a cooler (second heat exchanger) 4, in which the first stage cooling (heat recovery) and the second stage cooling are performed. Cooling takes place.

コンデンサ5を経由した被精製ガスは、圧力調整弁7とミキサー13とフィルタ9が設けられた供給流路11を介して分離装置6に供給される。この例では、フィルタ9として、塵芥フィルタ9Aとミスト(オイル)フィルタ9Bが連設されている。分離装置6には、精製ガスを取り出す出口流路23が接続されており、出口流路23には出口弁25を設けている。この例では、分離装置6が、一次分離膜と二次分離膜を備えており、一次分離膜で分離された炭酸ガスが放散流路24を介して大気放散され、二次分離膜で分離されたオフガスは帰還流路12を介して入口流路21に合流する。   The gas to be purified that has passed through the condenser 5 is supplied to the separation device 6 via a supply passage 11 provided with a pressure regulating valve 7, a mixer 13, and a filter 9. In this example, a dust filter 9 </ b> A and a mist (oil) filter 9 </ b> B are connected as the filter 9. The separation device 6 is connected to an outlet channel 23 for taking out purified gas, and an outlet valve 25 is provided in the outlet channel 23. In this example, the separation device 6 includes a primary separation membrane and a secondary separation membrane, and carbon dioxide gas separated by the primary separation membrane is diffused into the atmosphere via the diffusion flow path 24 and separated by the secondary separation membrane. The off gas joins the inlet channel 21 via the return channel 12.

熱交換器(第1熱交換器)3は、前述したように、圧力調整弁7の開閉程度によって流量が制御されている熱交換流路10を介した熱交換が行われ、熱交換器3で回収した熱で分離装置6に供給する被精製ガスの温度調整がなされる。また、冷却器(第2熱交換器)4は、例えば、クーリングタワー40からの冷媒を送る冷媒流路41を介した熱交換が行われる。   As described above, the heat exchanger (first heat exchanger) 3 performs heat exchange through the heat exchange flow path 10 whose flow rate is controlled by the degree of opening and closing of the pressure regulating valve 7. The temperature of the gas to be purified supplied to the separation device 6 is adjusted with the heat recovered in step (b). The cooler (second heat exchanger) 4 performs heat exchange via a refrigerant flow path 41 that sends the refrigerant from the cooling tower 40, for example.

この混合ガス精製装置1Cは、その稼働状態を制御する制御部14を備えている。制御部14は、先ず、供給流路11に設けた温度検出器8の検出値によって圧力調整弁7の開閉を制御することで、前述したように分離装置6に供給される被精製ガスの温度と相対湿度を適正な状態に保っている。   The mixed gas purification apparatus 1C includes a control unit 14 that controls the operating state thereof. First, the control unit 14 controls the opening and closing of the pressure regulating valve 7 based on the detection value of the temperature detector 8 provided in the supply flow path 11, so that the temperature of the gas to be purified supplied to the separation device 6 as described above. And keep the relative humidity in a proper state.

また、制御部14は、入口流路21,帰還流路12,放散流路24,出口流路23にそれぞれ設けられる流量計F1,F2,F3,F4の計測値に基づいて、入口弁20の開度と冷媒流路41に設けたポンプ42の出力を制御することで、稼働負荷状況に応じて冷却性能を制御している。更に、制御部14は、ガス圧縮機2の出力側圧力を検出する圧力計P1の計測値に応じて、ガス圧縮機2に対してバイパス流路となる圧力調整流路31に設けた圧力調整弁30の開閉を制御することで、ガス圧縮機2の圧縮状態を適正に制御している。   Further, the control unit 14 controls the inlet valve 20 based on the measured values of the flow meters F1, F2, F3, and F4 provided in the inlet channel 21, the return channel 12, the diffusion channel 24, and the outlet channel 23, respectively. By controlling the opening degree and the output of the pump 42 provided in the refrigerant flow path 41, the cooling performance is controlled according to the operating load situation. Further, the control unit 14 adjusts the pressure provided in the pressure adjusting flow path 31 serving as a bypass flow path for the gas compressor 2 according to the measurement value of the pressure gauge P1 that detects the output side pressure of the gas compressor 2. The compression state of the gas compressor 2 is appropriately controlled by controlling the opening and closing of the valve 30.

以上説明したように、本発明の実施形態又は実施例に係る混合ガス精製装置1,1A,1B,1Cは、ガス圧縮で生じる熱を有効利用することで、エネルギーの利用効率が高い混合ガス精製装置を実現することができる。また、分離装置6に供給する混合ガスの相対湿度を下げながら、分離装置6を適正な温度範囲で使用することで、良好な分離性能を確保することができる。   As described above, the mixed gas purification apparatuses 1, 1A, 1B, and 1C according to the embodiments or examples of the present invention effectively use the heat generated by gas compression, so that the mixed gas purification has high energy use efficiency. An apparatus can be realized. Moreover, it is possible to ensure good separation performance by using the separation device 6 in an appropriate temperature range while lowering the relative humidity of the mixed gas supplied to the separation device 6.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.

1,1A,1B,1C:混合ガス精製装置,2:ガス圧縮機,
3:熱交換器(第1熱交換器),
4:冷却器(第2熱交換器),40:クーリングタワー,
41:冷媒流路,42:ポンプ,
5:コンデンサ,6:分離装置,7:圧力調整弁,8:温度検出器,
9:フィルタ,9A:塵芥フィルタ,9B:ミスト(オイル)フィルタ,
10:熱交換流路,11:供給流路,12:帰還流路,13:ミキサー,
14:制御部,20:入口弁,21:入口流路,22:被冷却流路,
23:出口流路,24:放散流路,25:出口弁,30:圧力調整弁,
31:圧力調整流路,F1,F2,F3,F4:流量計,P1:圧力計
1, 1A, 1B, 1C: mixed gas purifier, 2: gas compressor,
3: Heat exchanger (first heat exchanger),
4: Cooler (second heat exchanger), 40: Cooling tower,
41: refrigerant flow path, 42: pump,
5: capacitor, 6: separation device, 7: pressure regulating valve, 8: temperature detector,
9: filter, 9A: dust filter, 9B: mist (oil) filter,
10: heat exchange channel, 11: supply channel, 12: return channel, 13: mixer,
14: Control unit, 20: Inlet valve, 21: Inlet channel, 22: Cooled channel,
23: outlet channel, 24: diffusion channel, 25: outlet valve, 30: pressure regulating valve,
31: Pressure adjusting flow path, F1, F2, F3, F4: Flow meter, P1: Pressure gauge

Claims (5)

精製対象の炭酸ガスを含む混合ガスを断熱圧縮するガス圧縮機と、
前記ガス圧縮機で断熱圧縮された混合ガスの熱を回収する熱交換器と、
前記熱交換器で熱回収された混合ガスを冷却する冷却器と、
前記冷却器で冷却された混合ガスの水分をドレン除去するコンデンサと、
前記コンデンサを経由した混合ガスを精製ガスに分離する分離装置とを備え、
前記コンデンサを経由した混合ガスが前記熱交換器で回収された熱で加熱されて前記分離装置に供給されることを特徴とする混合ガス精製装置。
A gas compressor that adiabatically compresses a mixed gas containing carbon dioxide gas to be purified;
A heat exchanger that recovers heat of the mixed gas adiabatically compressed by the gas compressor;
A cooler for cooling the mixed gas recovered by heat in the heat exchanger;
A condenser for removing drainage of the mixed gas cooled by the cooler;
A separation device for separating the mixed gas via the condenser into purified gas,
The mixed gas purification apparatus, wherein the mixed gas passing through the condenser is heated by the heat recovered by the heat exchanger and supplied to the separation apparatus.
前記コンデンサを経由した混合ガスを前記分離装置に供給する供給流路を備え、
該供給流路には圧力調整弁が設けられ、
前記供給流路の前記圧力調整弁より上流側で分岐し、前記熱交換器を経由して前記供給流路の前記圧力調整弁より下流側で合流する熱交換流路を備えることを特徴とする請求項1記載の混合ガス精製装置。
A supply flow path for supplying mixed gas via the condenser to the separation device;
The supply channel is provided with a pressure regulating valve,
A heat exchange flow path is provided that branches upstream of the pressure regulation valve of the supply flow path and joins downstream of the pressure regulation valve of the supply flow path via the heat exchanger. The mixed gas purification apparatus according to claim 1.
前記熱交換流路の合流箇所より下流側の前記供給流路に、混合ガスのガス温度を検出する温度検出器を設け、該温度検出器が検出するガス温度によって前記圧力調整弁を調整することを特徴とする請求項2記載の混合ガス精製装置。   A temperature detector for detecting the gas temperature of the mixed gas is provided in the supply flow channel downstream from the joining point of the heat exchange flow channel, and the pressure regulating valve is adjusted according to the gas temperature detected by the temperature detector. The mixed gas purifier according to claim 2. 前記供給流路は、混合ガス中の夾雑物を除去するフィルタを備えることを特徴とする請求項2又は3に記載の混合ガス精製装置。   The mixed gas purifier according to claim 2 or 3, wherein the supply flow path includes a filter for removing impurities in the mixed gas. 前記分離装置は、混合ガスから炭酸ガスを選択透過する分離膜を備えることを特徴とする請求項1〜4のいずれか1項に記載された混合ガス精製装置。   The said separation apparatus is provided with the separation membrane which selectively permeate | transmits a carbon dioxide gas from mixed gas, The mixed gas refinement | purification apparatus described in any one of Claims 1-4 characterized by the above-mentioned.
JP2014263488A 2014-12-25 2014-12-25 Mixed gas purifier Active JP6415972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014263488A JP6415972B2 (en) 2014-12-25 2014-12-25 Mixed gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014263488A JP6415972B2 (en) 2014-12-25 2014-12-25 Mixed gas purifier

Publications (2)

Publication Number Publication Date
JP2016120472A true JP2016120472A (en) 2016-07-07
JP6415972B2 JP6415972B2 (en) 2018-10-31

Family

ID=56327831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014263488A Active JP6415972B2 (en) 2014-12-25 2014-12-25 Mixed gas purifier

Country Status (1)

Country Link
JP (1) JP6415972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474888A (en) * 2017-09-29 2017-12-15 国峰清源生物能源有限责任公司 Heat recovery system and heat recovery method based on biogas film purifying technique
CN110860176A (en) * 2019-11-27 2020-03-06 南京九思高科技有限公司 Device and process for recycling mixed gas in wine fermentation process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102710A (en) * 1988-10-07 1990-04-16 Union Carbide Corp Improved membrane separation system and method
JPH0639230A (en) * 1990-09-28 1994-02-15 Boc Group Inc:The Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JPH11333237A (en) * 1998-05-28 1999-12-07 Nishishiba Electric Co Ltd Separation membrane-type gas generation device
JP2005008434A (en) * 2003-06-16 2005-01-13 Honda Motor Co Ltd Method and apparatus for producing fuel gas
JP2005023211A (en) * 2003-07-03 2005-01-27 Tokyo Gas Chemicals Co Ltd Method for separating and recovering methane gas from biogas
US20050051029A1 (en) * 2003-09-09 2005-03-10 David Lloyd Pure vacuum swing adsorption system and apparatus
WO2005030367A1 (en) * 2003-10-01 2005-04-07 Atlas Copco Airpower, Naamloze Vennootschap Improved method for separating gases from a gas mixture and device for applying such a method
JP2008238171A (en) * 2008-06-06 2008-10-09 Mitsubishi Electric Corp Method for treating/recovering gaseous hydrocarbon

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102710A (en) * 1988-10-07 1990-04-16 Union Carbide Corp Improved membrane separation system and method
JPH0639230A (en) * 1990-09-28 1994-02-15 Boc Group Inc:The Method for recovering argon from waste gas produced in argon-oxygen-carbon removing process
JPH11333237A (en) * 1998-05-28 1999-12-07 Nishishiba Electric Co Ltd Separation membrane-type gas generation device
JP2005008434A (en) * 2003-06-16 2005-01-13 Honda Motor Co Ltd Method and apparatus for producing fuel gas
JP2005023211A (en) * 2003-07-03 2005-01-27 Tokyo Gas Chemicals Co Ltd Method for separating and recovering methane gas from biogas
US20050051029A1 (en) * 2003-09-09 2005-03-10 David Lloyd Pure vacuum swing adsorption system and apparatus
WO2005030367A1 (en) * 2003-10-01 2005-04-07 Atlas Copco Airpower, Naamloze Vennootschap Improved method for separating gases from a gas mixture and device for applying such a method
JP2007507330A (en) * 2003-10-01 2007-03-29 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Improved method for separating a gas from a gas mixture and apparatus for use in the method
JP2008238171A (en) * 2008-06-06 2008-10-09 Mitsubishi Electric Corp Method for treating/recovering gaseous hydrocarbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107474888A (en) * 2017-09-29 2017-12-15 国峰清源生物能源有限责任公司 Heat recovery system and heat recovery method based on biogas film purifying technique
CN107474888B (en) * 2017-09-29 2023-09-26 国峰清源生物能源有限责任公司 Heat recovery system and heat recovery method based on biogas membrane purification process
CN110860176A (en) * 2019-11-27 2020-03-06 南京九思高科技有限公司 Device and process for recycling mixed gas in wine fermentation process

Also Published As

Publication number Publication date
JP6415972B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US7582140B2 (en) Biogas fuel conditioning system
JP4022555B2 (en) Biogas purification method and biogas purification equipment
EP2703609B1 (en) Steam turbine plant and control method of the same
RU2648062C1 (en) Device of adsorption drying gases
JP2014159543A (en) Device for concentrating methane gas
CN206823510U (en) One kind CO suitable for cement kiln flue gas2The change system continuously trapped
JP6415972B2 (en) Mixed gas purifier
US8317899B2 (en) Shipboard hybrid system for making dry, oil-free, utility air and inert gas
CN107108244A (en) The apparatus and method of production ammonia and the remodeling method of correlation are purified for deep cooling
WO2007146281A2 (en) Biogas fuel conditioning system
CN211896828U (en) Step-by-step flow control depressurization and wastewater recycling system of supercritical water gasification system
CN208121053U (en) A kind of system that landfill gas purification produces natural gas
US11344842B2 (en) Apparatus and method for separating CO2 at low temperature comprising a step of separation by permeation
RU2527922C1 (en) Installation for hydrocarbon gas preparation
RU2625159C1 (en) Sulfur hydrocarbon gas steam conversion plant
CN206069361U (en) Hydrogen cooled generator group hydrogen cleaning purifying plant
RU169870U1 (en) Installation for the separation of high pressure gas mixtures
WO2024014494A1 (en) Gas separation system and enriched gas production method
CN111234881A (en) Step-by-step flow control depressurization and wastewater recycling system and method for supercritical water gasification system
CN219586052U (en) Membrane method biogas purification system for leachate treatment
JP2008063392A (en) Method for recovering methane and apparatus for purifying digestive gas
CN202021019U (en) Hot and cold compressed air mixing system for compressor
CN204311040U (en) A kind of biogas membrane sepn purifying carbon dioxide air supply heat pump system
CN109316891A (en) Tank&#39;s Breather Valve emission-control equipment
CN220696311U (en) Molecular sieve dewatering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6415972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250