JP2016119449A - Nonaqueous electrolyte storage element - Google Patents

Nonaqueous electrolyte storage element Download PDF

Info

Publication number
JP2016119449A
JP2016119449A JP2015184079A JP2015184079A JP2016119449A JP 2016119449 A JP2016119449 A JP 2016119449A JP 2015184079 A JP2015184079 A JP 2015184079A JP 2015184079 A JP2015184079 A JP 2015184079A JP 2016119449 A JP2016119449 A JP 2016119449A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
material layer
storage element
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015184079A
Other languages
Japanese (ja)
Inventor
英雄 柳田
Hideo Yanagida
英雄 柳田
中島 聡
Satoshi Nakajima
聡 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to US14/942,379 priority Critical patent/US10090554B2/en
Priority to EP15198989.4A priority patent/EP3035417A1/en
Priority to CN201510954001.4A priority patent/CN105720230A/en
Publication of JP2016119449A publication Critical patent/JP2016119449A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte storage element, which can realize a high energy density and a high load discharge performance, and has improved charge-discharge cycle characteristics.SOLUTION: A nonaqueous electrolyte storage element includes: a positive electrode including a positive electrode material layer which contains a positive electrode active material capable of reversibly accumulating and releasing anions; a negative electrode including a negative electrode material layer which contains a negative electrode active material capable of reversibly accumulating and releasing cations; a separator disposed between the positive electrode and the negative electrode; and a nonaqueous electrolyte containing an electrolyte salt. The nonaqueous electrolyte storage element satisfies the following formula: 0.5≤[(V1+V2+V3)/V4]≤0.61, where V1 is the volume of pores of the positive electrode material layer per unit area of the positive electrode, V2 is the volume of pores of the negative electrode material layer per unit area of the negative electrode, V3 is the volume of pores per unit area of the separator, and V4 is the total volume of the nonaqueous electrolyte storage element. The nonaqueous electrolyte storage element also satisfies the following formula: 0.14≤P1/P2≤0.84, where P1 is the porosity of the positive electrode material layer, and P2 is the porosity of the separator.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解液蓄電素子に関する。   The present invention relates to a non-aqueous electrolyte storage element.

近年、携帯機器の小型化、高性能化に伴い高いエネルギー密度を持つ非水電解液蓄電素子の特性が向上し、普及している。また、電動車両への応用展開を目指して非水電解液蓄電素子の高負荷放電性能の向上や、重量エネルギー密度向上の試みが進められている。   In recent years, with the miniaturization and high performance of portable devices, the characteristics of non-aqueous electrolyte storage elements having a high energy density have been improved and become widespread. In addition, attempts have been made to improve the high-load discharge performance of non-aqueous electrolyte storage elements and to improve the weight energy density with the aim of developing applications in electric vehicles.

従来より、非水電解液蓄電素子としては、リチウムコバルト複合酸化物等の正極と、炭素の負極と、非水溶媒にリチウム塩を溶解してなる非水電解液とを有するリチウムイオン非水電解液蓄電素子が多く使用されている。
一方、正極に導電性高分子、炭素質材料等の材料を用い、非水電解液中のアニオンが正極へ挿入乃至脱離し、非水電解液中のリチウムイオンが炭素質材料からなる負極へ挿入乃至脱離して充放電が行われる非水電解液蓄電素子(以下、このタイプの電池を「デュアルカーボン蓄電素子」と称することがある。)が存在する(例えば、特許文献1参照)。
Conventionally, as a non-aqueous electrolyte storage element, a lithium ion non-aqueous electrolysis having a positive electrode such as a lithium cobalt composite oxide, a carbon negative electrode, and a non-aqueous electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent. Many liquid storage elements are used.
On the other hand, using a material such as a conductive polymer or carbonaceous material for the positive electrode, anions in the non-aqueous electrolyte are inserted or removed from the positive electrode, and lithium ions in the non-aqueous electrolyte are inserted into the negative electrode made of a carbonaceous material. There is a non-aqueous electrolyte storage element (hereinafter, this type of battery may be referred to as a “dual carbon storage element”) that is charged and discharged by desorption (see, for example, Patent Document 1).

前記デュアルカーボン蓄電素子においては、下記反応式に示すように、非水電解液中から正極に、例えば、PF 等のアニオンが挿入され、非水電解液中から負極にLiが挿入されることにより充電が行われ、正極からPF 等のアニオン、負極からLiが非水電解液へ脱離することにより放電が行われる。
In the dual carbon electricity storage device, as shown in the following reaction formula, an anion such as PF 6 is inserted from the non-aqueous electrolyte to the positive electrode, and Li + is inserted from the non-aqueous electrolyte to the negative electrode. Thus, charging is performed, and discharging is performed by desorption of an anion such as PF 6 from the positive electrode and Li + from the negative electrode into the non-aqueous electrolyte.

前記デュアルカーボン蓄電素子の放電容量は、正極のアニオン吸蔵量、正極のアニオン放出可能量、負極のカチオン吸蔵量、負極のカチオン放出可能量、非水電解液中のアニオン量、及びカチオン量で決まる。このため、前記デュアルカーボン蓄電素子において放電容量を増加させるためには正極活物質及び負極活物質のほか、リチウム塩を含む非水電解液の量も増やす必要がある(例えば、非特許文献1参照)。   The discharge capacity of the dual carbon storage element is determined by the anion storage amount of the positive electrode, the anion release amount of the positive electrode, the cation storage amount of the negative electrode, the cation release amount of the negative electrode, the anion amount in the non-aqueous electrolyte, and the cation amount. . For this reason, in order to increase the discharge capacity in the dual carbon storage element, it is necessary to increase the amount of the non-aqueous electrolyte containing a lithium salt in addition to the positive electrode active material and the negative electrode active material (see, for example, Non-Patent Document 1). ).

このように非水電解液から正極にアニオンが蓄積され、非水電解液から負極にカチオンが蓄積されることにより充電が行われ、正極からアニオン、負極からカチオンが非水電解液へ放出することにより放電が行われる非水電解液蓄電素子においては十分な電解質塩量が必要になる。制限された非水電解液蓄電素子の体積中に非水電解液を入れることは蓄電素子の体積エネルギー密度向上のため重要であるが、十分な非水電解液量を入れるために、電極の気孔率を増やすと活物質粒子同士の接触が低下し、高負荷放電性能が低下するという問題がある。   In this way, anions are accumulated from the non-aqueous electrolyte to the positive electrode, and cations are accumulated from the non-aqueous electrolyte to the negative electrode, so that charging is performed, and the anion from the positive electrode and the cation from the negative electrode are released to the non-aqueous electrolyte. A sufficient amount of electrolyte salt is required in a non-aqueous electrolyte storage element that is discharged by the above. Although it is important to increase the volumetric energy density of the electricity storage device, it is important to put the nonaqueous electrolyte in the volume of the restricted nonaqueous electrolyte electricity storage device. If the rate is increased, there is a problem that the contact between the active material particles decreases, and the high-load discharge performance decreases.

複合酸化物正極に代表されるリチウム蓄積乃至放出型の正極と、グラファイトに代表されるリチウム蓄積乃至放出型の負極とを使用する非水電解液蓄電素子においては、充放電により電解質塩の濃度が実質的に変化しない。このため、蓄電素子内部に多くの蓄電物質を詰め込むために(蓄電素子のエネルギー密度を上げるために)、電極密度を高く設定するので、電極の気孔率が低くなる。このような充放電に従って電解質塩の濃度が実質的に変化しない蓄電素子と同様の構成にした場合、蓄電素子内部に入れられる非水電解液量が減少し、電解質塩の濃度が減少して十分な充電容量及び放電容量が得られないという問題がある。更にこの点を解決するために、セパレータの厚みを厚くしすぎて実質的に非水電解液の量を増やすと、蓄電に寄与しないセパレータが増えた分、非水電解液蓄電素子のエネルギー密度が低下してしまうという問題がある。
更に、正極にアニオンを蓄えるタイプの電極を用いた非水電解液蓄電素子において、電解質塩の濃度を3mol/L程度に濃くした場合及び高電圧充電した場合に蓄電素子容量が減少してしまうという不具合がある。
In a non-aqueous electrolyte storage element using a lithium storage or emission type positive electrode typified by a composite oxide positive electrode and a lithium storage or emission type negative electrode typified by graphite, the concentration of the electrolyte salt is reduced by charging and discharging. Does not change substantially. For this reason, since the electrode density is set high in order to pack a large amount of power storage material inside the power storage element (in order to increase the energy density of the power storage element), the porosity of the electrode is lowered. When the same configuration as that of the electricity storage device in which the concentration of the electrolyte salt does not substantially change according to such charge and discharge is reduced, the amount of the non-aqueous electrolyte placed in the electricity storage device is reduced, and the concentration of the electrolyte salt is sufficiently reduced. There is a problem that a sufficient charge capacity and discharge capacity cannot be obtained. Furthermore, in order to solve this point, if the thickness of the separator is made too thick to substantially increase the amount of the non-aqueous electrolyte, the amount of separators that do not contribute to storage increases, and the energy density of the non-aqueous electrolyte storage element increases. There is a problem that it falls.
Furthermore, in a non-aqueous electrolyte storage element using an electrode that stores anions on the positive electrode, the storage element capacity is reduced when the concentration of the electrolyte salt is increased to about 3 mol / L and when high voltage charging is performed. There is a bug.

したがって、充放電のサイクル特性を向上させることができると共に、高エネルギー密度及び高負荷放電性能を実現できる非水電解液蓄電素子の提供が望まれている。   Therefore, it is desired to provide a non-aqueous electrolyte storage element that can improve the charge / discharge cycle characteristics and realize high energy density and high load discharge performance.

本発明は、高エネルギー密度及び高負荷放電性能を実現でき、充放電のサイクル特性が向上した非水電解液蓄電素子を提供することを目的とする。   An object of the present invention is to provide a non-aqueous electrolyte storage element that can realize high energy density and high load discharge performance and improved cycle characteristics of charge and discharge.

前記課題を解決するための手段としての本発明の非水電解液蓄電素子は、アニオンを可逆的に蓄積乃至放出可能な正極活物質を含有する正極材層を含む正極と、カチオンを可逆的に蓄積乃至放出可能な負極活物質を含有する負極材層を含む負極と、前記正極と前記負極との間にセパレータと、電解質塩を含む非水電解液と、を有してなり、
アニオンを可逆的に蓄積乃至放出可能な正極活物質を含有する正極材層を含む正極と、カチオンを可逆的に蓄積乃至放出可能な負極活物質を含有する負極材層を含む負極と、前記正極と前記負極との間にセパレータと、電解質塩を含む非水電解液と、を有する非水電解液蓄電素子であって、
前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4とが、次式、0.5≦[(V1+V2+V3)/V4]≦0.61を満たし、
前記正極材層の気孔率P1と、前記セパレータの気孔率P2とが、次式、0.14≦P1/P2≦0.84を満たすことを特徴とする。
The non-aqueous electrolyte storage element of the present invention as a means for solving the above-described problems includes a positive electrode including a positive electrode material layer containing a positive electrode active material capable of reversibly storing or releasing anions, and a cation reversibly. A negative electrode including a negative electrode material layer containing a negative electrode active material that can be stored or released; a separator between the positive electrode and the negative electrode; and a non-aqueous electrolyte solution containing an electrolyte salt.
A positive electrode including a positive electrode material layer containing a positive electrode active material capable of reversibly accumulating or releasing anions, a negative electrode including a negative electrode material layer containing a negative electrode active material capable of reversibly accumulating or releasing cations, and the positive electrode A non-aqueous electrolyte storage element having a separator and a non-aqueous electrolyte containing an electrolyte salt between the negative electrode and the negative electrode,
The pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and the nonaqueous electrolyte storage element Satisfying the following formula, 0.5 ≦ [(V1 + V2 + V3) / V4] ≦ 0.61,
The porosity P1 of the positive electrode material layer and the porosity P2 of the separator satisfy the following expression: 0.14 ≦ P1 / P2 ≦ 0.84.

本発明によると、高エネルギー密度及び高負荷放電性能を実現でき、充放電のサイクル特性が向上した非水電解液蓄電素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, a high energy density and high load discharge performance can be implement | achieved, and the non-aqueous-electrolyte electrical storage element which improved the cycling characteristics of charging / discharging can be provided.

図1は、本発明の非水電解液蓄電素子の一例を示す概略図である。FIG. 1 is a schematic view showing an example of the nonaqueous electrolyte storage element of the present invention.

(非水電解液蓄電素子)
本発明の非水電解液蓄電素子は、正極と、負極と、非水電解液と、セパレータとを有してなり、更に必要に応じてその他の部材を有してなる。
(Non-aqueous electrolyte storage element)
The nonaqueous electrolyte storage element of the present invention includes a positive electrode, a negative electrode, a nonaqueous electrolyte, and a separator, and further includes other members as necessary.

前記非水電解液蓄電素子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、非水電解液二次電池、非水電解液キャパシタ、などが挙げられる。   There is no restriction | limiting in particular as said non-aqueous electrolyte electrical storage element, According to the objective, it can select suitably, For example, a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte capacitor, etc. are mentioned.

前記課題を解決するため本発明者らが鋭意検討を重ねた結果、特に、非水電解液の電解質塩濃度が充放電によって変化するアニオンインターカレーション型の蓄電素子において、高エネルギー密度及び高負荷放電性能を実現でき、充放電のサイクル特性を向上させるには電極の気孔率とセパレータの気孔率とを調整して、電極層内部の導電性を確保し、かつ十分な非水電解液量を保持し、正負極間の距離を調節する必要がある。したがって、特に、非水電解液の電解質塩濃度が充放電によって変化するアニオンインターカレーション蓄電素子においては、内部の非水電解液量を決定する素子の気孔率が重要であることを知見した。   As a result of repeated studies by the present inventors in order to solve the above problems, in particular, in an anion intercalation type storage element in which the electrolyte salt concentration of the nonaqueous electrolytic solution is changed by charging and discharging, a high energy density and a high load are obtained. In order to achieve the discharge performance and improve the charge / discharge cycle characteristics, adjust the porosity of the electrode and the porosity of the separator to ensure the conductivity inside the electrode layer, and to ensure a sufficient amount of non-aqueous electrolyte. It is necessary to hold and adjust the distance between the positive and negative electrodes. Therefore, it was found that the porosity of the element that determines the amount of the non-aqueous electrolyte inside is important particularly in an anion intercalation electricity storage element in which the electrolyte salt concentration of the non-aqueous electrolyte changes due to charge and discharge.

本発明において、高エネルギー密度及び高負荷放電性能を実現するためには、非水電解液中の電解質塩の含有量を多くすること、即ち、前記セパレータにおける非水電解液の蓄えられる体積を多くすることが必要である。
前記非水電解液は、正極材層の気孔(正極集電体は含まず)、負極材層の気孔(負極集電体は含まず)、及びセパレータに蓄えることが可能である。
したがって、前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4とが、次式、0.5≦[(V1+V2+V3)/V4]≦0.61を満たすことが必要である。
前記[(V1+V2+V3)/V4]が、0.5以上であると、非水電解液量が適正であり容量の増大を図ることができる。また、前記[(V1+V2+V3)/V4]が、0.61以下であると、高エネルギー密度及び高負荷放電性能を実現することができる。前記非水電解液の伝導度は電解質塩の濃度が高すぎても低すぎても十分な性能を発揮することができない。上記範囲を満たすように気孔率を設定することで非水電解液の電解質塩濃度変化を適切に調整することが可能となる。
前記[(V1+V2+V3)/V4]が、0.5未満であると、非水電解液中の電解質濃度が低下し、インターカレートするイオンが減少することで充電できなくなることがあり、0.61を超えると、非水電解液蓄電素子内部の空隙が大きくなり、電極間距離が離れることで抵抗が増大し、高出力での充放電ができなくなることがある。
前記負極の単位面積当りの前記負極材層の気孔体積とは、例えば、負極の負極集電体上に負極材層が塗布形成されている場合には、前記負極材層に含まれている気孔体積を意味する。前記正極の単位面積当りの前記正極材層の気孔体積及び前記セパレータの単位面積当りの気孔体積についても同様である。
ここで、前記負極の単位面積当りの負極材層の気孔体積、前記正極の単位面積当りの正極材層の気孔体積、及び前記セパレータの気孔体積は、例えば、水銀ポロシメーターやピクノメーター(ガス置換法)を用いて測定することができる。
In the present invention, in order to achieve high energy density and high load discharge performance, the content of the electrolyte salt in the non-aqueous electrolyte is increased, that is, the volume of the non-aqueous electrolyte stored in the separator is increased. It is necessary to.
The non-aqueous electrolyte can be stored in the pores of the positive electrode material layer (not including the positive electrode current collector), the pores of the negative electrode material layer (not including the negative electrode current collector), and the separator.
Therefore, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and the non-aqueous electrolyte The total volume V4 of the power storage elements needs to satisfy the following formula, 0.5 ≦ [(V1 + V2 + V3) / V4] ≦ 0.61.
When [(V1 + V2 + V3) / V4] is 0.5 or more, the amount of the non-aqueous electrolyte is appropriate and the capacity can be increased. Further, when [(V1 + V2 + V3) / V4] is 0.61 or less, high energy density and high load discharge performance can be realized. If the concentration of the electrolyte salt is too high or too low, the non-aqueous electrolyte cannot exhibit sufficient performance. By setting the porosity so as to satisfy the above range, it is possible to appropriately adjust the electrolyte salt concentration change of the non-aqueous electrolyte.
When [(V1 + V2 + V3) / V4] is less than 0.5, the electrolyte concentration in the non-aqueous electrolyte is lowered, and the intercalating ions are reduced, so that charging may not be possible. Exceeding may cause a gap in the non-aqueous electrolyte storage element to become large, increase the resistance due to the distance between the electrodes, and charge and discharge at high output may not be possible.
The pore volume of the negative electrode material layer per unit area of the negative electrode is, for example, the pores contained in the negative electrode material layer when the negative electrode material layer is applied and formed on the negative electrode current collector of the negative electrode It means volume. The same applies to the pore volume of the positive electrode material layer per unit area of the positive electrode and the pore volume per unit area of the separator.
Here, the pore volume of the negative electrode material layer per unit area of the negative electrode, the pore volume of the positive electrode material layer per unit area of the positive electrode, and the pore volume of the separator are, for example, a mercury porosimeter or a pycnometer (gas displacement method). ).

前記正極材層の気孔率P1と前記セパレータの気孔率P2との比(P1/P2)は、以下の範囲となることが必要である。
0.14≦P1/P2≦0.84
前記比(P1/P2)が、0.14以上であると、正極材層の非水電解液量及び正負極間の距離が適正であり出力及び寿命性能が向上することがあり、0.84以下であると、正極材層内の空孔数、正極材層内の導電性、及びセパレータ内への電解液量が適正となり出力性能が向上する。
前記比(P1/P2)が、0.14未満であると、正極内部の非水電解液量が少なくなり、放充電に関与する電解質不足が発生することがあり、0.84を超えると、正極活物質の粒子間距離が離れることで抵抗が増大し、高出力での充放電ができなくなることがある。
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator needs to be in the following range.
0.14 ≦ P1 / P2 ≦ 0.84
When the ratio (P1 / P2) is 0.14 or more, the amount of the non-aqueous electrolyte in the positive electrode material layer and the distance between the positive and negative electrodes may be appropriate, and the output and life performance may be improved. 0.84 When it is below, the number of holes in the positive electrode material layer, the conductivity in the positive electrode material layer, and the amount of the electrolyte solution in the separator become appropriate, and the output performance is improved.
When the ratio (P1 / P2) is less than 0.14, the amount of the non-aqueous electrolyte inside the positive electrode decreases, and an electrolyte shortage involved in discharge / charge may occur. When the ratio exceeds 0.84, When the inter-particle distance of the positive electrode active material is increased, the resistance may increase and charging / discharging at high output may not be possible.

前記正極材層の気孔率及び前記負極材層の気孔率は、特に制限はなく、目的に応じて適宜選択することができるが、いずれも、0.25以上0.65以下が好ましく、電解質塩の保持及び強度の確保の点から、0.25以上0.5以下がより好ましい。
前記気孔率が0.25以上であると、非水電解液を含ませる体積が増加する。このため、電解質塩の濃度を下げて蓄電素子容量の維持を行うことが必要になるが、電解質塩の濃度が下がることにより、抵抗が低下し、低温特性が良好となり、正極での電解質塩の分解が抑制できる。また、前記気孔率が0.65以下であると、電極自体の強度が良好である。
前記セパレータの気孔率は、特に制限はなく、目的に応じて適宜選択することができるが、0.3以上0.8以下が好ましい。
ここで、前記正極材層、前記負極材層、及び前記セパレータの気孔率とは、水銀ポロシメーターやピクノメーター等で得られた“気孔体積”を“幾何的な電極面積と電極材層厚みを乗じた体積”で割ることにより算出することができる。
The porosity of the positive electrode material layer and the porosity of the negative electrode material layer are not particularly limited and may be appropriately selected depending on the intended purpose. However, both are preferably 0.25 or more and 0.65 or less, and the electrolyte salt Is more preferably 0.25 or more and 0.5 or less from the viewpoint of maintaining the strength and securing the strength.
When the porosity is 0.25 or more, the volume in which the nonaqueous electrolytic solution is contained increases. For this reason, it is necessary to reduce the concentration of the electrolyte salt to maintain the storage element capacity.However, the decrease in the concentration of the electrolyte salt reduces the resistance and improves the low-temperature characteristics. Decomposition can be suppressed. Moreover, the intensity | strength of electrode itself is favorable in the said porosity being 0.65 or less.
There is no restriction | limiting in particular in the porosity of the said separator, Although it can select suitably according to the objective, 0.3 or more and 0.8 or less are preferable.
Here, the porosity of the positive electrode material layer, the negative electrode material layer, and the separator is obtained by multiplying the “pore volume” obtained by a mercury porosimeter, a pycnometer, or the like by “the geometric electrode area and the electrode material layer thickness”. It can be calculated by dividing by “volume”.

前記正極の単位面積当りのアニオン吸蔵放出量は、0.15mAh/cm以上0.60mAh/cm以下が好ましい。前記正極の単位面積当りのアニオン吸蔵放出量が、0.15mAh/cm以上であると、充放電サイクルの安定性が向上し、0.60mAh/cm以下であると、必要な電解液量が適正となり、出力性能が向上する。
前記正極の単位面積当りのアニオン吸蔵放出量は、例えば、負極に金属リチウムを使用して、前記正極をセパレータを介して対向させ、前記電解液中で充放電することにより測定することができる。
The anion storage / release amount per unit area of the positive electrode is preferably 0.15 mAh / cm 2 or more and 0.60 mAh / cm 2 or less. When the amount of anion storage / release per unit area of the positive electrode is 0.15 mAh / cm 2 or more, the stability of the charge / discharge cycle is improved, and when it is 0.60 mAh / cm 2 or less, the required amount of electrolyte Becomes appropriate and output performance is improved.
The amount of anion occlusion / release per unit area of the positive electrode can be measured, for example, by using metallic lithium for the negative electrode, facing the positive electrode through a separator, and charging / discharging in the electrolytic solution.

前記正極と前記負極の容量関係については、繰り返し充放電の安定性維持のためには、負極の劣化による容量の低下を低減することが重要であり、前記負極の単位面積当りの容量が前記正極の単位面積当りの容量より大きいことが、充放電の繰り返しサイクルに伴う放電容量の低下の改善に効果的である。
前記容量比(負極容量C1/正極容量C2)としては、負極の容量の方が大きければ特に制限はなく、目的に応じて適宜選択することができるが、1.05以上6以下が好ましい。前記容量比(負極容量C1/正極容量C2)が、1.05以下であると、Li析出を伴うサイクル劣化が防止できる。一方、前記容量比(負極容量C1/正極容量C2)が、6以下であると、非水電解液量の保持による容量向上やサイクル特性の維持が達成でき、蓄電素子自体のエネルギー密度が向上する。
ここで、前記正極の単位面積当りの容量及び負極の単位面積当りの容量は、例えば、市販の充放電装置により計測できる。単位面積当りの容量とは電極の幾何面積に対する容量である。前記正極の容量は、リチウムを対極として、規定の上限電圧まで充電したのち、所定の電圧まで放電することにより計測できる。前記所定の電圧とは、概ね本発明の非電解液蓄電素子が構成されたときの充放電方法に準ずるものである。前記負極の容量も同様に計測することができる。
Regarding the capacity relationship between the positive electrode and the negative electrode, in order to maintain the stability of repeated charge and discharge, it is important to reduce the decrease in capacity due to the deterioration of the negative electrode, and the capacity per unit area of the negative electrode is the positive electrode It is effective to improve the decrease in discharge capacity associated with repeated charge / discharge cycles.
The capacity ratio (negative electrode capacity C1 / positive electrode capacity C2) is not particularly limited as long as the capacity of the negative electrode is larger, and can be appropriately selected according to the purpose, but is preferably 1.05 or more and 6 or less. When the capacity ratio (negative electrode capacity C1 / positive electrode capacity C2) is 1.05 or less, cycle deterioration accompanied by Li precipitation can be prevented. On the other hand, when the capacity ratio (negative electrode capacity C1 / positive electrode capacity C2) is 6 or less, the capacity can be improved and the cycle characteristics can be maintained by maintaining the amount of the non-aqueous electrolyte, and the energy density of the power storage element itself is improved. .
Here, the capacity per unit area of the positive electrode and the capacity per unit area of the negative electrode can be measured by, for example, a commercially available charging / discharging device. The capacity per unit area is the capacity relative to the geometric area of the electrode. The capacity of the positive electrode can be measured by charging to a predetermined upper limit voltage using lithium as a counter electrode and then discharging to a predetermined voltage. The predetermined voltage generally corresponds to the charge / discharge method when the non-electrolyte storage element of the present invention is configured. The capacity of the negative electrode can be similarly measured.

以下、本発明の非水電解液蓄電素子の正極、負極、非水電解液、及びセパレータについて順次説明する。   Hereinafter, the positive electrode, the negative electrode, the non-aqueous electrolyte, and the separator of the non-aqueous electrolyte storage element of the present invention will be sequentially described.

<正極>
前記正極は、正極活物質を含んでいれば特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体上に正極活物質を含有する正極材層を備えた正極、などが挙げられる。
前記正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、などが挙げられる。
<Positive electrode>
The positive electrode is not particularly limited as long as it contains a positive electrode active material, and can be appropriately selected according to the purpose. For example, a positive electrode including a positive electrode material layer containing a positive electrode active material on a positive electrode current collector, Etc.
There is no restriction | limiting in particular as a shape of the said positive electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.

<<正極材層>>
前記正極材層としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、正極活物質を少なくとも含み、更に必要に応じて導電剤、バインダ、増粘剤、などを含んでなる。
<< Cathode Material Layer >>
There is no restriction | limiting in particular as said positive electrode material layer, According to the objective, it can select suitably, For example, it contains a positive electrode active material at least, and also contains a electrically conductive agent, a binder, a thickener, etc. as needed. Become.

−正極活物質−
前記正極活物質としては、アニオンを可逆的に蓄積乃至放出可能な物質であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、炭素質材料、導電性高分子、などが挙げられる。これらの中でも、エネルギー密度が高い点から炭素質材料が特に好ましい。
前記導電性高分子としては、例えば、ポリアニリン、ポリピロール、ポリパラフェニレン、などが挙げられる。
前記炭素質材料としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、などが挙げられる。これらの中でも、人造グラファイト、天然グラファイトが特に好ましい。
-Positive electrode active material-
The positive electrode active material is not particularly limited as long as it is a substance capable of reversibly accumulating or releasing anions, and can be appropriately selected according to the purpose. Examples thereof include carbonaceous materials and conductive polymers. Can be mentioned. Among these, a carbonaceous material is particularly preferable because of its high energy density.
Examples of the conductive polymer include polyaniline, polypyrrole, polyparaphenylene, and the like.
Examples of the carbonaceous material include graphite (graphite) such as coke, artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions. Among these, artificial graphite and natural graphite are particularly preferable.

前記炭素質材料としては、結晶性が高い炭素質材料であることが好ましい。前記結晶性はX線回折、ラマン分析などで評価することができ、例えば、CuKα線を用いた粉末X線回折パターンにおいて、2θ=22.3°における回折ピーク強度I2θ=22.3°と、2θ=26.4°における回折ピーク強度I2θ=26.4°の強度比I2θ=22.3°/I2θ=26.4°が0.4以下が好ましい。
前記炭素質材料の窒素吸着によるBET比表面積は、1m/g以上100m/g以下が好ましく、レーザー回折・散乱法により求めた平均粒径(メジアン径)は、0.1μm以上100μm以下が好ましい。
The carbonaceous material is preferably a carbonaceous material having high crystallinity. The crystallinity can be evaluated by X-ray diffraction, Raman analysis, and the like. For example, in a powder X-ray diffraction pattern using CuKα rays, the diffraction peak intensity I 2θ = 22.3 ° at 2θ = 22.3 ° The intensity ratio I 2θ = 22.3 ° / I 2θ = 26.4 ° of the diffraction peak intensity I 2θ = 26.4 ° at 2θ = 26.4 ° is preferably 0.4 or less.
The BET specific surface area by nitrogen adsorption of the carbonaceous material is preferably 1 m 2 / g or more and 100 m 2 / g or less, and the average particle size (median diameter) obtained by the laser diffraction / scattering method is 0.1 μm or more and 100 μm or less. preferable.

−バインダ−
前記バインダとしては、電極製造時に使用する溶媒や電解液に対して安定な材料であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Binder-
The binder is not particularly limited as long as it is a material that is stable with respect to the solvent and electrolyte used in the production of the electrode, and can be appropriately selected according to the purpose. For example, polyvinylidene fluoride (PVDF), polytetra Examples thereof include a fluorine-based binder such as fluoroethylene (PTFE), styrene-butadiene rubber (SBR), isoprene rubber, and the like. These may be used individually by 1 type and may use 2 or more types together.

−増粘剤−
前記増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸スターチ、カゼインなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Thickener-
Examples of the thickener include carboxymethyl cellulose (CMC), methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphate starch, and casein. These may be used individually by 1 type and may use 2 or more types together.

−導電剤−
前記導電剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック等の炭素質材料、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記正極材層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、20μm以上300μm以下が好ましく、40μm以上150μm以下がより好ましい。前記平均厚みが、20μm未満であると、エネルギー密度が下がることがあり、300μmを超えると、負荷特性が悪化することがある。
-Conductive agent-
Examples of the conductive agent include metal materials such as copper and aluminum, and carbonaceous materials such as carbon black and acetylene black. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular in the average thickness of the said positive electrode material layer, Although it can select suitably according to the objective, 20 micrometers or more and 300 micrometers or less are preferable, and 40 micrometers or more and 150 micrometers or less are more preferable. When the average thickness is less than 20 μm, the energy density may decrease, and when it exceeds 300 μm, the load characteristics may be deteriorated.

<<正極集電体>>
前記正極集電体の材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記正極集電体の材質としては、導電性材料で形成されたものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、ステンレススチール、アルミニウムが特に好ましい。
前記正極集電体の形状としては、特に制限はなく、目的に応じて適宜選択することができる。
前記正極集電体の大きさとしては、非水電解液蓄電素子に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
<< Positive electrode current collector >>
There is no restriction | limiting in particular as a material, a shape, a magnitude | size, and a structure of the said positive electrode electrical power collector, According to the objective, it can select suitably.
The material of the positive electrode current collector is not particularly limited as long as it is formed of a conductive material, and can be appropriately selected according to the purpose. For example, stainless steel, nickel, aluminum, copper, titanium And tantalum. Among these, stainless steel and aluminum are particularly preferable.
There is no restriction | limiting in particular as a shape of the said positive electrode electrical power collector, According to the objective, it can select suitably.
The size of the positive electrode current collector is not particularly limited as long as it is a size that can be used for a non-aqueous electrolyte storage element, and can be appropriately selected according to the purpose.

−正極の作製方法−
前記正極は、前記正極活物質に、必要に応じて前記バインダ、前記増粘剤、前記導電剤、溶媒等を加えてスラリー状とした正極材組成物を、前記正極集電体上に塗布し、乾燥することにより正極材層を形成することができる。前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水系溶媒、有機系溶媒、などが挙げられる。前記水系溶媒としては、例えば、水、アルコール、などが挙げられる。前記有機系溶媒としては、例えば、N−メチル−2−ピロリドン(NMP)、トルエン、などが挙げられる。
なお、前記正極活物質をそのままロール成形してシート電極としたり、圧縮成形によりペレット電極とすることもできる。
-Method for producing positive electrode-
The positive electrode is obtained by applying a positive electrode material composition in a slurry form by adding the binder, the thickener, the conductive agent, a solvent, and the like to the positive electrode active material as necessary. The positive electrode material layer can be formed by drying. There is no restriction | limiting in particular as said solvent, According to the objective, it can select suitably, For example, an aqueous solvent, an organic solvent, etc. are mentioned. Examples of the aqueous solvent include water, alcohol, and the like. Examples of the organic solvent include N-methyl-2-pyrrolidone (NMP), toluene, and the like.
In addition, the positive electrode active material can be roll-formed as it is to form a sheet electrode, or a pellet electrode by compression molding.

<負極>
前記負極は、負極活物質を含んでいれば特に制限はなく、目的に応じて適宜選択することができ、例えば、負極集電体上に負極活物質を含有する負極材層を備えた負極などが挙げられる。
前記負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状などが挙げられる。
<Negative electrode>
The negative electrode is not particularly limited as long as it contains a negative electrode active material, and can be appropriately selected according to the purpose. For example, a negative electrode including a negative electrode material layer containing a negative electrode active material on a negative electrode current collector, etc. Is mentioned.
There is no restriction | limiting in particular as a shape of the said negative electrode, According to the objective, it can select suitably, For example, flat form etc. are mentioned.

<<負極材層>>
前記負極材層としては、負極活物質を少なくとも含み、更に必要に応じてバインダ、導電剤などを含んでなる。
<< Anode Material Layer >>
The negative electrode material layer includes at least a negative electrode active material, and further includes a binder, a conductive agent, and the like as necessary.

−負極活物質−
前記負極活物質としては、カチオンを可逆的に蓄積乃至放出可能な物質であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ金属イオン、アルカリ土類金属又はそれを吸蔵乃至放出可能な金属酸化物;アルカリ金属イオン、アルカリ土類金属と合金化可能な金属と該金属を含む合金、複合合金化合物;高比表面積の炭素質材料等のイオンの物理吸着による非反応性電極などが挙げられる。これらの中でも、エネルギー密度の点ではリチウム及びリチウムイオンの少なくともいずれかを可逆的に蓄積乃至放出可能な物質が好ましく、サイクル特性の面では非反応性電極がより好ましい。
前記負極活物質としては、具体的には、炭素質材料、チタン酸リチウム、酸化アンチモン錫、一酸化珪素等のリチウムを吸蔵乃至放出可能な金属酸化物、アルミニウム、錫、珪素、亜鉛等のリチウムと合金化可能な金属又は金属合金、リチウムと合金化可能な金属と該金属を含む合金とリチウムとの複合合金化合物、チッ化コバルトリチウム等のチッ化金属リチウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、安全性とコストの点から、炭素質材料、又はチタン酸リチウムが特に好ましい。
前記炭素質材料としては、例えば、コークス、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)、様々な熱分解条件での有機物の熱分解物、非晶質カーボンなどが挙げられる。これらの中でも、人造グラファイト、天然グラファイト、非晶質カーボンが特に好ましい。チタン酸リチウムとしてはLiTi12、又はLiTi12を基本骨格として一部の元素を置換した類似化合物が特に好ましい。
-Negative electrode active material-
The negative electrode active material is not particularly limited as long as it is a substance capable of reversibly accumulating or releasing cations, and can be appropriately selected according to the purpose. For example, an alkali metal ion, an alkaline earth metal, or Metal oxides that can be occluded or released; alkali metal ions, metals that can be alloyed with alkaline earth metals, alloys containing these metals, composite alloy compounds; non-reactions due to physical adsorption of ions such as carbonaceous materials with a high specific surface area And the like. Among these, a substance capable of reversibly storing or releasing at least one of lithium and lithium ions is preferable in terms of energy density, and a non-reactive electrode is more preferable in terms of cycle characteristics.
Specific examples of the negative electrode active material include carbonaceous materials, lithium titanates, antimony tin oxides, metal oxides capable of inserting and extracting lithium such as silicon monoxide, and lithiums such as aluminum, tin, silicon, and zinc. And a metal alloy or metal alloy that can be alloyed with lithium, a composite alloy compound of lithium and a metal that can be alloyed with lithium and an alloy containing the metal, lithium metal nitride such as cobalt lithium nitride, and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, a carbonaceous material or lithium titanate is particularly preferable from the viewpoint of safety and cost.
Examples of the carbonaceous material include graphite (graphite) such as coke, artificial graphite, and natural graphite, organic pyrolysis products under various pyrolysis conditions, and amorphous carbon. Among these, artificial graphite, natural graphite, and amorphous carbon are particularly preferable. As lithium titanate, Li 4 Ti 5 O 12 or a similar compound in which some elements are substituted with Li 4 Ti 5 O 12 as a basic skeleton is particularly preferable.

−バインダ−
前記バインダとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、エチレン−プロピレン−ブタジエンゴム(EPBR)、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、カルボキシメチルセルロース(CMC)、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系バインダ、カルボキシメチルセルロース(CMC)が好ましく、繰り返し充放電回数が他のバインダに比べて向上する点から前記CMCが特に好ましい。
-Binder-
There is no restriction | limiting in particular as said binder, According to the objective, it can select suitably, For example, fluorine-type binders, such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), ethylene-propylene-butadiene rubber ( EPBR), styrene-butadiene rubber (SBR), isoprene rubber, carboxymethylcellulose (CMC), and the like. These may be used individually by 1 type and may use 2 or more types together.
Among these, fluorine-based binders such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (CMC) are preferable, and the CMC is more preferable because the number of repeated charging and discharging is improved as compared with other binders. Particularly preferred.

−導電剤−
前記導電剤としては、例えば、銅、アルミニウム等の金属材料、カーボンブラック、アセチレンブラック等の炭素質材料、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記負極材層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、10μm以上450μm以下が好ましく、20μm以上100μm以下がより好ましい。前記平均厚みが、10μm未満であると、サイクル特性が悪化することがあり、450μmを超えると、エネルギー密度が低下してしまうことがある。
-Conductive agent-
Examples of the conductive agent include metal materials such as copper and aluminum, and carbonaceous materials such as carbon black and acetylene black. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular in the average thickness of the said negative electrode material layer, Although it can select suitably according to the objective, 10 micrometers or more and 450 micrometers or less are preferable, and 20 micrometers or more and 100 micrometers or less are more preferable. If the average thickness is less than 10 μm, the cycle characteristics may be deteriorated, and if it exceeds 450 μm, the energy density may be lowered.

<<負極集電体>>
前記負極集電体の材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記負極集電体の材質としては、導電性材料で形成されたものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステンレススチール、ニッケル、アルミニウム、銅などが挙げられる。これらの中でも、ステンレススチール、銅が特に好ましい。
前記負極集電体の形状としては、特に制限はなく、目的に応じて適宜選択することができる。
前記負極集電体の大きさとしては、非水電解液蓄電素子に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
<< Negative electrode current collector >>
There is no restriction | limiting in particular as a material, a shape, a magnitude | size, and a structure of the said negative electrode collector, According to the objective, it can select suitably.
The material of the negative electrode current collector is not particularly limited as long as it is formed of a conductive material, and can be appropriately selected according to the purpose. Examples thereof include stainless steel, nickel, aluminum, and copper. Can be mentioned. Among these, stainless steel and copper are particularly preferable.
There is no restriction | limiting in particular as a shape of the said negative electrode electrical power collector, According to the objective, it can select suitably.
The size of the negative electrode current collector is not particularly limited as long as it is a size that can be used for a non-aqueous electrolyte storage element, and can be appropriately selected according to the purpose.

−負極の作製方法−
前記負極は、前記負極活物質に、必要に応じて前記バインダ、前記導電剤、溶媒等を加えてスラリー状とした負極材組成物を、前記負極集電体上に塗布し、乾燥することにより負極材層を形成することができる。前記溶媒としては、前記正極の作製方法と同様の溶媒を用いることができる。
また、前記負極活物質に前記バインダ、前記導電剤等を加えたものをそのままロール成形してシート電極としたり、圧縮成形によりペレット電極としたり、蒸着、スパッタ、メッキ等の手法で前記負極集電体上に前記負極活物質の薄膜を形成することもできる。
-Negative electrode manufacturing method-
The negative electrode is obtained by applying a negative electrode material composition in a slurry form by adding the binder, the conductive agent, a solvent, or the like to the negative electrode active material as necessary, and drying the negative electrode current collector. A negative electrode material layer can be formed. As the solvent, the same solvent as that for the positive electrode can be used.
Further, the negative electrode active material added with the binder, the conductive agent and the like is roll-formed as it is to form a sheet electrode, a pellet electrode by compression molding, the negative electrode current collector by techniques such as vapor deposition, sputtering, and plating. A thin film of the negative electrode active material can be formed on the body.

<非水電解液>
前記非水電解液は、非水溶媒、及び電解質塩を含有する電解液である。
<Non-aqueous electrolyte>
The nonaqueous electrolytic solution is an electrolytic solution containing a nonaqueous solvent and an electrolyte salt.

<<非水溶媒>>
前記非水溶媒としては、特に制限はなく、目的に応じて適宜選択することができるが、非プロトン性有機溶媒が好適である。
前記非プロトン性有機溶媒としては、鎖状カーボネート、環状カーボネート等のカーボネート系有機溶媒が用いられる。
前記鎖状カーボネートとしては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(EMC)、メチルプロピオネート(MP)などが挙げられる。
<< Non-aqueous solvent >>
There is no restriction | limiting in particular as said non-aqueous solvent, Although it can select suitably according to the objective, An aprotic organic solvent is suitable.
As the aprotic organic solvent, carbonate-based organic solvents such as chain carbonates and cyclic carbonates are used.
Examples of the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (EMC), and methyl propionate (MP).

前記環状カーボネートとしては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などが挙げられる。
前記環状カーボネートとしてエチレンカーボネート(EC)と、前記鎖状カーボネートとしてジメチルカーボネート(DMC)とを組み合わせた混合溶媒を用いる場合には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合割合は、特に制限はなく、目的に応じて適宜選択することができる。
なお、前記非水溶媒としては、必要に応じて、環状エステル、鎖状エステル等のエステル系有機溶媒、環状エーテル、鎖状エーテル等のエーテル系有機溶媒、などを用いることができる。
Examples of the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), vinylene carbonate (VC), and the like.
When a mixed solvent combining ethylene carbonate (EC) as the cyclic carbonate and dimethyl carbonate (DMC) as the chain carbonate is used, the mixing ratio of ethylene carbonate (EC) and dimethyl carbonate (DMC) is particularly There is no restriction | limiting, According to the objective, it can select suitably.
In addition, as said non-aqueous solvent, ester type organic solvents, such as cyclic ester and chain ester, ether type organic solvents, such as cyclic ether and chain ether, etc. can be used as needed.

前記環状エステルとしては、例えば、γ−ブチロラクトン(γBL)、2−メチル−γ−ブチロラクトン、アセチル−γ−ブチロラクトン、γ−バレロラクトン、などが挙げられる。
前記鎖状エステルとしては、例えば、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル(酢酸メチル(MA)、酢酸エチル等)、ギ酸アルキルエステル(ギ酸メチル(MF)、ギ酸エチル等)などが挙げられる。
前記環状エーテルとしては、例えば、テトラヒドロフラン、アルキルテトラヒドロフラン、アルコキシテトラヒドロフラン、ジアルコキシテトラヒドロフラン、1,3−ジオキソラン、アルキル−1,3−ジオキソラン、1,4−ジオキソランなどが挙げられる。
前記鎖状エーテルとしては、例えば、1,2−ジメトシキエタン(DME)、ジエチルエーテル、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテルなどが挙げられる。
Examples of the cyclic ester include γ-butyrolactone (γBL), 2-methyl-γ-butyrolactone, acetyl-γ-butyrolactone, and γ-valerolactone.
Examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, acetic acid alkyl ester (methyl acetate (MA), ethyl acetate, etc.), formic acid alkyl ester (methyl formate (MF), ethyl formate, etc.) and the like. Can be mentioned.
Examples of the cyclic ether include tetrahydrofuran, alkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolane, alkyl-1,3-dioxolane, 1,4-dioxolane, and the like.
Examples of the chain ether include 1,2-dimethoxyethane (DME), diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, triethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether.

<<電解質塩>>
前記電解質塩としては、ハロゲン原子を含み、非水溶媒に溶解し、高いイオン伝導度を示すものであれば特に制限はなく、下記のカチオンと、下記のアニオンとを組み合わせたものなどが使用可能である。
前記カチオンとしては、例えば、アルカリ金属イオン、アルカリ土類金属イオン、テトラアルキルアンモニウムイオン、スピロ系4級アンモニウムイオン、などが挙げられる。
前記アニオンとしては、例えば、Cl、Br、I、ClO 、BF 、PF 、SbF 、CFSO 、(CFSO、(CSO、などが挙げられる。
前記ハロゲン原子を含む電解質塩の中でも、電池容量を向上させる点から、リチウム塩が特に好ましい。
<< Electrolyte salt >>
The electrolyte salt is not particularly limited as long as it contains a halogen atom, dissolves in a non-aqueous solvent and exhibits high ionic conductivity, and a combination of the following cation and the following anion can be used. It is.
Examples of the cation include alkali metal ions, alkaline earth metal ions, tetraalkylammonium ions, spiro quaternary ammonium ions, and the like.
Examples of the anion include Cl , Br , I , ClO 4 , BF 4 , PF 6 , SbF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , and the like.
Among the electrolyte salts containing halogen atoms, lithium salts are particularly preferable from the viewpoint of improving battery capacity.

前記リチウム塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘキサフルオロリン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、塩化リチウム(LiCl)、ホウ弗化リチウム(LiBF)、六弗化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、リチウムビストリフルオロメチルスルホニルイミド(LiN(CSO)、リチウムビスファーフルオロエチルスルホニルイミド(LiN(CFSO)、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、炭素電極中へのアニオンの吸蔵量の大きさの観点から、LiPFが特に好ましい。 The lithium salt is not particularly limited and may be appropriately selected depending on the intended purpose. For example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium chloride (LiCl), boron Lithium fluoride (LiBF 4 ), lithium hexafluoride arsenic (LiAsF 6 ), lithium trifluorometasulfonate (LiCF 3 SO 3 ), lithium bistrifluoromethylsulfonylimide (LiN (C 2 F 5 SO 2 ) 2 ), Lithium bisfurfluoroethylsulfonylimide (LiN (CF 2 F 5 SO 2 ) 2 ), and the like. These may be used individually by 1 type and may use 2 or more types together. Among these, LiPF 6 is particularly preferable from the viewpoint of the amount of occlusion of anions in the carbon electrode.

前記電解質塩の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記非水溶媒中に、1.5mol/L以上4mol/L以下が好ましく、1.5mol/L以上3mol/L以下がより好ましく、蓄電素子の容量と出力の両立の点から、1.5mol/L以上2.5mol/L以下がより好ましい。   There is no restriction | limiting in particular as content of the said electrolyte salt, Although it can select suitably according to the objective, 1.5 mol / L or more and 4 mol / L or less are preferable in the said nonaqueous solvent, 1.5 mol / L L or more and 3 mol / L or less are more preferable, and 1.5 mol / L or more and 2.5 mol / L or less are more preferable from the point of coexistence of the capacity | capacitance and output of an electrical storage element.

<セパレータ>
前記セパレータは、正極と負極の短絡を防ぐために正極と負極の間に設けられる。
前記セパレータの材質、形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
前記セパレータの材質としては、例えば、クラフト紙、ビニロン混抄紙、合成パルプ混抄紙等の紙、セロハン、ポリエチレングラフト膜、ポリプロピレンメルトフロー不織布等のポリオレフィン不織布、ポリアミド不織布、ガラス繊維不織布、などが挙げられる。
これらの中でも、非水電解液保持の観点から、気孔率が50%以上のものが好ましい。
前記セパレータの形状としては、微多孔(マイクロポア)を有する薄膜タイプよりも、不織布タイプの方が、気孔率が高い点から好ましい。
前記セパレータの平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、20μm以上200μm以下が好ましく、20μm以上100μm以下がより好ましい。前記平均厚みが、20μm以上であると、電解液の保持量を多くすることができる。また、200μm以下であると、エネルギー密度が増加する。
前記セパレータの形状としては、例えば、シート状、などが挙げられる。
前記セパレータの大きさとしては、非水電解液蓄電素子に使用可能な大きさであれば、特に制限はなく、目的に応じて適宜選択することができる。
前記セパレータの構造は、単層構造であってもよく、積層構造であってもよい。
<Separator>
The separator is provided between the positive electrode and the negative electrode in order to prevent a short circuit between the positive electrode and the negative electrode.
There is no restriction | limiting in particular as a material of the said separator, a shape, a magnitude | size, and a structure, According to the objective, it can select suitably.
Examples of the material of the separator include paper such as kraft paper, vinylon mixed paper, synthetic pulp mixed paper, cellophane, polyethylene graft film, polyolefin nonwoven fabric such as polypropylene melt flow nonwoven fabric, polyamide nonwoven fabric, and glass fiber nonwoven fabric. .
Among these, those having a porosity of 50% or more are preferable from the viewpoint of holding the non-aqueous electrolyte.
As the shape of the separator, the non-woven fabric type is preferred from the point of high porosity than the thin-film type having micropores.
There is no restriction | limiting in particular in the average thickness of the said separator, Although it can select suitably according to the objective, 20 micrometers or more and 200 micrometers or less are preferable, and 20 micrometers or more and 100 micrometers or less are more preferable. When the average thickness is 20 μm or more, the retained amount of the electrolytic solution can be increased. Moreover, an energy density increases that it is 200 micrometers or less.
Examples of the shape of the separator include a sheet shape.
There is no restriction | limiting in particular as long as the magnitude | size of the said separator is a magnitude | size which can be used for a non-aqueous electrolyte electrical storage element, It can select suitably according to the objective.
The separator may have a single layer structure or a laminated structure.

<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、外装缶、電極取り出し線、などが挙げられる。
<Other members>
There is no restriction | limiting in particular as said other member, According to the objective, it can select suitably, For example, an armored can, an electrode extraction line, etc. are mentioned.

<非水電解液蓄電素子の製造方法>
本発明の非水電解液蓄電素子は、前記正極、前記負極、及び前記非水電解液と、セパレータを、適切な形状に組み立てることにより製造することができる。更に、必要に応じて外装缶等の他の構成部材を用いることも可能である。前記非水電解液蓄電素子を組み立てる方法としては、特に制限はなく、通常採用されている方法の中から適宜選択することができる。
<Method for Manufacturing Nonaqueous Electrolyte Storage Element>
The nonaqueous electrolyte storage element of the present invention can be manufactured by assembling the positive electrode, the negative electrode, the nonaqueous electrolyte, and a separator into an appropriate shape. Furthermore, it is also possible to use other components such as an outer can if necessary. There is no restriction | limiting in particular as a method of assembling the said non-aqueous electrolyte electrical storage element, It can select suitably from the methods employ | adopted normally.

本発明の非水電解液蓄電素子は、特に制限はなく、目的に応じて適宜選択することができるが、充放電時の正極の最高電圧が4.3V vs Li/Li以上6.0V vs Li/Li以下であることが好ましい。前記充放電時の正極の最高電圧が、4.3V vs Li/Li以上であると、アニオンの蓄積ができ、容量が増加する。また、6.0V vs Li/Li以下であると、溶媒や電解質塩の分解が起こらず、劣化を防止できる。
前記正極の最高電圧は、充電状態で正極を取り出し、金属リチウムを負極とし、負極と正極の間にリチウムイオンを透過することが可能なセパレータを配置し、非水溶媒に電解質塩を溶解してなる非水電解液に浸して測定することができる。
The nonaqueous electrolyte storage element of the present invention is not particularly limited and may be appropriately selected depending on the purpose. The maximum voltage of the positive electrode during charge / discharge is 4.3 V vs Li / Li + or more and 6.0 V vs. Li / Li + or less is preferable. When the maximum voltage of the positive electrode during charge / discharge is 4.3 V vs Li / Li + or more, anions can be accumulated and the capacity increases. Moreover, decomposition | disassembly of a solvent and electrolyte salt does not occur as it is 6.0V vs Li / Li + or less, and degradation can be prevented.
The maximum voltage of the positive electrode is obtained by taking out the positive electrode in a charged state, using metallic lithium as a negative electrode, placing a separator that can permeate lithium ions between the negative electrode and the positive electrode, and dissolving an electrolyte salt in a non-aqueous solvent. It can be measured by immersing in a non-aqueous electrolyte solution.

ここで、図1は、本発明の非水電解液蓄電素子の一例を示す概略図である。この非水電解液蓄電素子10は、外装缶4内に、アニオンを可逆的に蓄積乃至放出可能な正極活物質を含む正極1と、カチオンを可逆的に蓄積乃至放出可能な負極活物質を含む負極2と、正極1と負極2の間にセパレータ3とを収容してなり、これら正極1、負極2、及びセパレータ3は、非水溶媒に電解質塩を溶解してなる非水電解液(不図示)に浸っている。なお、5は負極引き出し線、6は正極引き出し線である。   Here, FIG. 1 is a schematic diagram showing an example of the nonaqueous electrolyte storage element of the present invention. This nonaqueous electrolyte storage element 10 includes a positive electrode 1 including a positive electrode active material capable of reversibly storing or releasing anions and a negative electrode active material capable of reversibly storing and releasing cations in an outer can 4. A negative electrode 2 and a separator 3 are accommodated between the positive electrode 1 and the negative electrode 2, and the positive electrode 1, the negative electrode 2, and the separator 3 are non-aqueous electrolytes (non-aqueous electrolytes) obtained by dissolving an electrolyte salt in a non-aqueous solvent. It is immersed in the figure. In addition, 5 is a negative electrode lead wire and 6 is a positive electrode lead wire.

−形状−
本発明の非水電解液蓄電素子の形状については、特に制限はなく、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。前記形状としては、例えば、ラミネートタイプ、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ、などが挙げられる。
-Shape-
There is no restriction | limiting in particular about the shape of the non-aqueous-electrolyte electrical storage element of this invention, According to the use, it can select suitably from the various shapes generally employ | adopted. Examples of the shape include a laminate type, a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked. .

<用途>
本発明の非水電解液蓄電素子の用途としては、特に制限はなく、各種用途に用いることができ、例えば、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ、モーター、照明器具、玩具、ゲーム機器、時計、ストロボ、カメラ等の電源などが挙げられる。
<Application>
The use of the non-aqueous electrolyte storage element of the present invention is not particularly limited and can be used for various purposes. For example, a notebook computer, pen input personal computer, mobile personal computer, electronic book player, mobile phone, mobile fax, mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, walkie-talkie, electronic notebook, calculator, memory card, portable tape recorder, radio, backup, motor, lighting equipment, toy, game machine , Power supplies for watches, strobes, cameras, etc.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

<正極材層、負極材層、及びセパレータの気孔率、並びにこれらの気孔体積の測定>
前記正極材層、前記負極材層及び前記セパレータの気孔率は、マルバーン社製ピクノメーター1200eにて電極内部へのガス吸収量(気孔体積)を計測し、前記ガス吸収量(気孔体積)を電極の幾何体積で割ることにより算出した。
<Measurement of Porosity of Positive Electrode Material Layer, Negative Electrode Material Layer, and Separator and Their Pore Volume>
The porosity of the positive electrode material layer, the negative electrode material layer, and the separator is measured by measuring the gas absorption amount (pore volume) into the electrode with a Malvern Pycnometer 1200e, and calculating the gas absorption amount (pore volume) as an electrode. It was calculated by dividing by the geometric volume.

<正極材層及び負極材層の平均厚み>
前記正極材層及び前記負極材層の平均厚みは、マイクロメーター(株式会社尾崎製作所製、G2−205)にて電極の厚みを計測し、集電体の厚みを差し引き、正極材層及び負極材層の厚みを求め、数箇所の厚みの平均値を平均厚みとした。
<Average thickness of positive electrode material layer and negative electrode material layer>
The average thickness of the positive electrode material layer and the negative electrode material layer is measured by measuring the thickness of the electrode with a micrometer (G2-205, manufactured by Ozaki Manufacturing Co., Ltd.), and subtracting the thickness of the current collector. The thickness of the layer was determined, and the average value of several thicknesses was taken as the average thickness.

<セパレータの平均厚み>
前記セパレータの平均厚みは、マイクロメーター(株式会社尾崎製作所製、G2−205)を用いて測定し、数箇所の厚みの平均値を平均厚みとした。
<Average thickness of separator>
The average thickness of the separator was measured using a micrometer (manufactured by Ozaki Mfg. Co., Ltd., G2-205), and the average value of the thickness at several locations was taken as the average thickness.

(正極の製造例1)
−正極Aの作製−
正極活物質として黒鉛粉末を用いた。この黒鉛粉末は窒素吸着によるBET比表面積3.0m/g、レーザー回折粒度分布計(株式会社島津製作所製、SALD−2200)により測定した平均粒径(メジアン径)は8.8μmであった。
黒鉛粉末及び導電剤(アセチレンブラック)に水を加えて混錬し、更に増粘剤としてカルボキシメチルセルロース(CMC)2質量%水溶液を加えて混練し、更に結着材(スチレン−ブタジエンゴム(SBR))を加えて、正極材層組成物(スラリー)を作製した。正極材層の固形分質量比は黒鉛粉末:導電助剤:増粘材:結着材=93:5:1:1とした。前記正極材組成物をアルミニウム箔に塗工して150℃で12時間真空乾燥させ、正極材層を形成した。これを直径16mmの丸型に打ち抜き加工して正極Aを作製した。このとき、直径16mmのアルミニウム(Al)箔に塗工された正極材層中の炭素粉末(黒鉛)の単位面積当たりの質量は10mg/cm、正極材層の平均厚みは125μm、正極材層の気孔率は0.65であった。
(Production Example 1 of positive electrode)
-Production of positive electrode A-
Graphite powder was used as the positive electrode active material. This graphite powder had a BET specific surface area of 3.0 m 2 / g by nitrogen adsorption and an average particle diameter (median diameter) measured by a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation, SALD-2200) was 8.8 μm. .
Water is added to the graphite powder and the conductive agent (acetylene black) and kneaded. Further, a 2% by weight aqueous solution of carboxymethyl cellulose (CMC) is added as a thickener and kneaded, and further a binder (styrene-butadiene rubber (SBR)). ) Was added to prepare a positive electrode material layer composition (slurry). The solid content mass ratio of the positive electrode material layer was graphite powder: conductive aid: thickening material: binder = 93: 5: 1: 1. The positive electrode material composition was applied to an aluminum foil and vacuum dried at 150 ° C. for 12 hours to form a positive electrode material layer. This was punched into a round shape with a diameter of 16 mm to produce a positive electrode A. At this time, the mass per unit area of the carbon powder (graphite) in the positive electrode material layer coated on the aluminum (Al) foil having a diameter of 16 mm is 10 mg / cm 2 , the average thickness of the positive electrode material layer is 125 μm, and the positive electrode material layer The porosity was 0.65.

(正極の製造例2)
−正極Bの作製−
前記作製した正極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが100μmとなる正極Bを作製した。正極材層の気孔率は0.56であった。
(Production Example 2 of positive electrode)
-Production of positive electrode B-
The produced positive electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode B having an average thickness of the positive electrode material layer of 100 μm. The porosity of the positive electrode material layer was 0.56.

(正極の製造例3)
−正極Cの作製−
前記作製した正極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが76.9μmの正極Cを作製した。正極材層の気孔率は0.42であった。
(Production Example 3 of Positive Electrode)
-Production of positive electrode C-
The produced positive electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode C having a positive electrode material layer with an average thickness of 76.9 μm. The porosity of the positive electrode material layer was 0.42.

(正極の製造例4)
−正極Dの作製−
前記作製した正極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが62.5μmの正極Cを作製した。正極材層の気孔率は0.29であった。
(Production Example 4 of Positive Electrode)
-Production of positive electrode D-
The produced positive electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode C having a positive electrode material layer with an average thickness of 62.5 μm. The porosity of the positive electrode material layer was 0.29.

(正極の製造例5)
−正極Eの作製−
前記作製した正極Aをプレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが58.8μmの正極Cを作製した。正極材層の気孔率は0.25であった。
(Production Example 5 of positive electrode)
-Production of positive electrode E-
The produced positive electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode C having a positive electrode material layer with an average thickness of 58.8 μm. The porosity of the positive electrode material layer was 0.25.

(正極の製造例6)
−正極Fの作製−
正極活物質として黒鉛粉末を用いた。この黒鉛粉末は窒素吸着によるBET比表面積3.0m/g、レーザー回折粒度分布計(株式会社島津製作所製、SALD−2200)により測定した平均粒径(メジアン径)は8.8μmであった。
黒鉛粉末及び導電剤(アセチレンブラック)に水を加えて混錬し、更に増粘剤としてカルボキシメチルセルロース(CMC)2質量%水溶液を加えて混練し、更に結着材(スチレン−ブタジエンゴム(SBR)を加えて、正極材層組成物(スラリー)を作製した。正極材層の固形分質量比は黒鉛粉末:導電助剤:増粘材:結着材=93:5:1:1とした。前記正極材組成物をアルミニウム箔に塗工して150℃で12時間真空乾燥させ、正極材層を形成した。これを直径16mmの丸型に打ち抜き加工して正極Fを作製した。
このとき、直径16mmのアルミニウム(Al)箔に塗工された正極材層中の炭素粉末(黒鉛)の単位面積当たりの質量は3mg/cm、正極材層の平均厚みは37.5μm、正極材層の気孔率は0.65であった。
(Production Example 6 of positive electrode)
-Production of positive electrode F-
Graphite powder was used as the positive electrode active material. This graphite powder had a BET specific surface area of 3.0 m 2 / g by nitrogen adsorption and an average particle diameter (median diameter) measured by a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation, SALD-2200) was 8.8 μm. .
Water is added to the graphite powder and the conductive agent (acetylene black) and kneaded. Further, a 2% by weight aqueous solution of carboxymethyl cellulose (CMC) is added as a thickener and kneaded, and further a binder (styrene-butadiene rubber (SBR)). A positive electrode material layer composition (slurry) was prepared, and the solid content mass ratio of the positive electrode material layer was set to graphite powder: conductive aid: thickening material: binder = 93: 5: 1: 1. The positive electrode material composition was applied to an aluminum foil and vacuum-dried at 150 ° C. for 12 hours to form a positive electrode material layer, which was punched into a round shape with a diameter of 16 mm to produce a positive electrode F.
At this time, the mass per unit area of the carbon powder (graphite) in the positive electrode material layer coated on the aluminum (Al) foil having a diameter of 16 mm is 3 mg / cm 2 , the average thickness of the positive electrode material layer is 37.5 μm, and the positive electrode The porosity of the material layer was 0.65.

(正極の製造例7)
−正極Gの作製−
前記作製した正極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが30μmとなる正極Gを作製した。正極材層の気孔率は0.56であった。
(Production Example 7 of positive electrode)
-Production of positive electrode G-
The produced positive electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode G having an average thickness of the positive electrode material layer of 30 μm. The porosity of the positive electrode material layer was 0.56.

(正極の製造例8)
−正極Hの作製−
前記作製した正極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが23.1μmの正極Hを作製した。正極材層の気孔率は0.42であった。
(Production Example 8 of positive electrode)
-Production of positive electrode H-
The produced positive electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode H having a positive electrode material layer having an average thickness of 23.1 μm. The porosity of the positive electrode material layer was 0.42.

(正極の製造例9)
−正極Iの作製−
前記作製した正極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが18.8μmの正極Dを作製した。正極材層の気孔率は0.29であった。
(Production Example 9 of positive electrode)
-Production of positive electrode I-
The produced positive electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode D having an average thickness of the positive electrode material layer of 18.8 μm. The porosity of the positive electrode material layer was 0.29.

(正極の製造例10)
−正極Jの作製−
前記作製した正極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、正極材層の平均厚みが17.6μmの正極Jを作製した。正極材層の気孔率は0.25であった。
(Production Example 10 of positive electrode)
-Production of positive electrode J-
The produced positive electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a positive electrode J having an average thickness of the positive electrode material layer of 17.6 μm. The porosity of the positive electrode material layer was 0.25.

(負極の製造例1)
−負極Aの作製−
負極活物質としてチタン酸リチウムを用いた。このチタン酸リチウム粉末は、窒素吸着によるBET比表面積7.0m/g、レーザー回折粒度分布計(株式会社島津製作所製、SALD−2200)により測定した平均粒径(メジアン径)は6.5μmであった。
前記チタン酸リチウム、及び導電剤(アセチレンブラック)に水を加えて混錬し、更に増粘剤としてカルボキシメチルセルロース(CMC)2質量%水溶液を加えて混練し、更に結着材(スチレン−ブタジエンゴム(SBR))を加えて、負極材層組成物(スラリー)を作製した。負極材層の固形分質量比はチタン酸リチウム:導電助剤:増粘材:結着材=93:5:1:1とした。前記負極材層組成物をAl箔に塗工して150℃で12時間真空乾燥させ、負極材層を形成した。これを直径16mmの丸型に打ち抜き加工して負極Aとした。
このとき、直径16mmのAl箔に塗工された負極材層中のチタン酸リチウム粉末の単位面積当たりの質量は10mg/cm、負極材層の平均厚みは76.9μm、負極材層の気孔率は0.63であった。
(Negative electrode production example 1)
-Production of negative electrode A-
Lithium titanate was used as the negative electrode active material. This lithium titanate powder has a BET specific surface area of 7.0 m 2 / g by nitrogen adsorption and an average particle diameter (median diameter) measured by a laser diffraction particle size distribution meter (SALD-2200, manufactured by Shimadzu Corporation) is 6.5 μm. Met.
Water is added to the lithium titanate and the conductive agent (acetylene black) and kneaded. Further, a 2% by weight aqueous solution of carboxymethyl cellulose (CMC) is added as a thickener and kneaded, and further a binder (styrene-butadiene rubber). (SBR)) was added to prepare a negative electrode material layer composition (slurry). The solid content mass ratio of the negative electrode material layer was lithium titanate: conducting aid: thickening material: binder = 93: 5: 1: 1. The negative electrode material layer composition was coated on an Al foil and vacuum dried at 150 ° C. for 12 hours to form a negative electrode material layer. This was punched into a round shape with a diameter of 16 mm to obtain a negative electrode A.
At this time, the mass per unit area of the lithium titanate powder in the negative electrode material layer coated on the Al foil having a diameter of 16 mm was 10 mg / cm 2 , the average thickness of the negative electrode material layer was 76.9 μm, and the pores of the negative electrode material layer The rate was 0.63.

(負極の製造例2)
−負極Bの作製−
前記作製した負極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが62.5μmとなる負極Bを作製した。負極材層の気孔率は0.54であった。
(Negative electrode production example 2)
-Production of negative electrode B-
The produced negative electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode B having an average thickness of the negative electrode material layer of 62.5 μm. The porosity of the negative electrode material layer was 0.54.

(負極の製造例3)
−負極Cの作製−
前記作製した負極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが55.6μmの負極Cを作製した。負極材層の気孔率は0.48であった。
(Negative electrode production example 3)
-Production of negative electrode C-
The produced negative electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode C having a negative electrode material layer with an average thickness of 55.6 μm. The porosity of the negative electrode material layer was 0.48.

(負極の製造例4)
−負極Dの作製−
前記作製した負極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが50.0μmの負極Dを作製した。負極材層の気孔率は0.43であった。
(Negative electrode production example 4)
-Production of negative electrode D-
The produced negative electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode D having a negative electrode material layer having an average thickness of 50.0 μm. The porosity of the negative electrode material layer was 0.43.

(負極の製造例5)
−負極Eの作製−
前記作製した負極Aを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが45.5μmの負極Eを作製した。負極材層の気孔率は0.37であった。
(Negative electrode production example 5)
-Production of negative electrode E-
The produced negative electrode A was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode E having a negative electrode material layer with an average thickness of 45.5 μm. The porosity of the negative electrode material layer was 0.37.

(負極の製造例6)
−負極Fの作製−
負極活物質としてチタン酸リチウムを用いた。このチタン酸リチウム粉末は、窒素吸着によるBET比表面積7.0m/g、レーザー回折粒度分布計(株式会社島津製作所製、SALD−2200)により測定した平均粒径(メジアン径)は6.5μmであった。
前記チタン酸リチウム、及び導電剤(アセチレンブラック)に水を加えて混錬し、更に増粘剤としてカルボキシメチルセルロース(CMC)2質量%水溶液を加えて混練し、更に結着材(スチレン−ブタジエンゴム(SBR))を加えて、負極材層組成物(スラリー)を作製した。負極材層の固形分質量比はチタン酸リチウム:導電助剤:増粘材:結着材=93:5:1:1とした。前記負極材層組成物をAl箔に塗工して150℃で12時間真空乾燥させ、負極材層を形成した。これを直径16mmの丸型に打ち抜き加工して負極Fとした。
このとき、直径16mmのAl箔に塗工された負極材層中のチタン酸リチウム粉末の単位面積当たりの質量は3mg/cm、負極材層の平均厚みは23.1μm、負極材層の気孔率は0.63であった。
(Negative electrode production example 6)
-Production of negative electrode F-
Lithium titanate was used as the negative electrode active material. This lithium titanate powder has a BET specific surface area of 7.0 m 2 / g by nitrogen adsorption and an average particle diameter (median diameter) measured by a laser diffraction particle size distribution meter (SALD-2200, manufactured by Shimadzu Corporation) is 6.5 μm. Met.
Water is added to the lithium titanate and the conductive agent (acetylene black) and kneaded. Further, a 2% by weight aqueous solution of carboxymethyl cellulose (CMC) is added as a thickener and kneaded, and further a binder (styrene-butadiene rubber). (SBR)) was added to prepare a negative electrode material layer composition (slurry). The solid content mass ratio of the negative electrode material layer was lithium titanate: conducting aid: thickening material: binder = 93: 5: 1: 1. The negative electrode material layer composition was coated on an Al foil and vacuum dried at 150 ° C. for 12 hours to form a negative electrode material layer. This was punched into a round shape with a diameter of 16 mm to obtain a negative electrode F.
At this time, the mass per unit area of the lithium titanate powder in the negative electrode material layer coated on the Al foil having a diameter of 16 mm was 3 mg / cm 2 , the average thickness of the negative electrode material layer was 23.1 μm, and the pores of the negative electrode material layer The rate was 0.63.

(負極の製造例7)
−負極Gの作製−
前記作製した負極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが18.8μmとなる負極Gを作製した。負極材層の気孔率は0.54であった。
(Negative electrode production example 7)
-Production of negative electrode G-
The produced negative electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode G having an average thickness of the negative electrode material layer of 18.8 μm. The porosity of the negative electrode material layer was 0.54.

(負極の製造例8)
−負極Hの作製−
前記作製した負極Fを、プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが16.7μmの負極Hを作製した。負極材層の気孔率は0.48であった。
(Negative electrode production example 8)
-Production of negative electrode H-
The produced negative electrode F was compressed using a press (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode H having a negative electrode material layer having an average thickness of 16.7 μm. The porosity of the negative electrode material layer was 0.48.

(負極の製造例9)
−負極Iの作製−
前記作製した負極Fを,プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが15.0μmの負極Iを作製した。負極材層の気孔率は0.43であった。
(Negative electrode production example 9)
-Production of negative electrode I-
The prepared negative electrode F was compressed using a press (manufactured by Tester Sangyo Co., Ltd.) to prepare a negative electrode I having a negative electrode material layer with an average thickness of 15.0 μm. The porosity of the negative electrode material layer was 0.43.

(負極の製造例10)
−負極Jの作製−
前記作製した負極Fを,プレス機(テスター産業株式会社製)を用いて圧縮し、負極材層の平均厚みが13.6μmの負極Jを作製した。負極材層の気孔率は0.37であった。
(Negative electrode production example 10)
-Production of negative electrode J-
The produced negative electrode F was compressed using a press machine (manufactured by Tester Sangyo Co., Ltd.) to produce a negative electrode J having an average thickness of the negative electrode material layer of 13.6 μm. The porosity of the negative electrode material layer was 0.37.

<非水電解液蓄電素子の作製>
コイン型蓄電素子作製用の缶(2032型、宝泉株式会社製)に前記正極、前記セパレータ、前記負極、及び前記非水電解液を入れ、缶をかしめ装置(宝泉株式会社)でかしめて、非水電解液蓄電素子を作製した。
<Preparation of nonaqueous electrolyte storage element>
The positive electrode, the separator, the negative electrode, and the non-aqueous electrolyte solution are placed in a coin-type electric storage element manufacturing can (2032 type, manufactured by Hosen Co., Ltd.), and the can is caulked with a caulking device (Hosen Co., Ltd.). A nonaqueous electrolyte storage element was produced.

<非水電解液蓄電素子の体積>
非水電解液蓄電素子の体積は、正極、負極、及びセパレータの最外周で囲まれた面を底面とし、底面の面積×厚みにより算出した。
<Volume of nonaqueous electrolyte storage element>
The volume of the nonaqueous electrolyte storage element was calculated from the area surrounded by the outermost periphery of the positive electrode, the negative electrode, and the separator as the bottom surface, and the area of the bottom surface × thickness.

(実施例1)
コイン缶中に前記正極B、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み140μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例1の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.60であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.60であった。
Example 1
Put the positive electrode B and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 140 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 1.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.60.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.60.

<評価方法1の50サイクル後の容量維持率>
得られた非水電解液蓄電素子に、室温(25℃)において0.2mA/cmの定電流で充電終止電圧3.5Vまで充電した。1回目の充電の後、0.2mA/cmの定電流で1.7Vまで放電して初期充放電を行った。そして、初期充放電後の蓄電素子について0.2mA/cmの定電流で3.5Vまで定電流充電を行い、次に、0.2mA/cmの定電流で1.7Vまで放電する定電流放電を1サイクルとし、50サイクルまで充放電サイクルを行った。この評価方法を評価方法1とした。なお、充放電測定装置(東洋システム株式会社製、TOSCAT3001)を用いて計測した。
前記50サイクル後の容量維持率は、2回目の放電容量を基準(100%)として算出し、下記基準で評価した。
[評価基準]
○:50サイクル後の容量維持率70%以上
×:50サイクル後の容量維持率70%未満
<Capacity maintenance rate after 50 cycles of Evaluation Method 1>
The obtained nonaqueous electrolyte storage element was charged to a charge end voltage of 3.5 V at a constant current of 0.2 mA / cm 2 at room temperature (25 ° C.). After the first charge, initial charge / discharge was performed by discharging to 1.7 V with a constant current of 0.2 mA / cm 2 . Then, the storage element after the initial charge / discharge is charged at a constant current of 0.2 mA / cm 2 to 3.5 V, and then discharged to 1.7 V at a constant current of 0.2 mA / cm 2. The current discharge was one cycle, and the charge / discharge cycle was performed up to 50 cycles. This evaluation method was designated as evaluation method 1. In addition, it measured using the charging / discharging measuring apparatus (Toyo System Co., Ltd. make, TOSCAT3001).
The capacity maintenance rate after 50 cycles was calculated based on the second discharge capacity as a reference (100%), and evaluated according to the following criteria.
[Evaluation criteria]
○: Capacity maintenance rate after 50 cycles 70% or more ×: Capacity maintenance rate after 50 cycles less than 70%

<評価方法2の50サイクル後の容量維持率>
実施例1の非水電解液蓄電素子を用いて、初期充放電後の蓄電素子について5.0mA/cmの定電流で3.5Vまで定電流充電を行い、次に、5.0mA/cmの定電流で1.7Vまで放電する定電流放電を1サイクルとし、50サイクルまで充放電サイクルを行った。この評価方法を評価方法2とした。なお、充放電測定装置(東洋システム株式会社製、TOSCAT3001)を用いて計測した。
前記50サイクル後の容量維持率は、2回目の放電容量を基準(100%)として算出し、下記基準で評価した。
[評価基準]
○:50サイクル後の容量維持率70%以上
×:50サイクル後の容量維持率70%未満
<Capacity maintenance rate after 50 cycles of Evaluation Method 2>
Using the nonaqueous electrolyte storage element of Example 1, the storage element after the initial charge / discharge was charged at a constant current of 5.0 mA / cm 2 to 3.5 V, and then 5.0 mA / cm. The constant current discharge which discharges to 1.7V with the constant current of 2 was made into 1 cycle, and the charging / discharging cycle was performed to 50 cycles. This evaluation method was referred to as Evaluation Method 2. In addition, it measured using the charging / discharging measuring apparatus (Toyo System Co., Ltd. make, TOSCAT3001).
The capacity maintenance rate after 50 cycles was calculated based on the second discharge capacity as a reference (100%), and evaluated according to the following criteria.
[Evaluation criteria]
○: Capacity maintenance rate after 50 cycles 70% or more ×: Capacity maintenance rate after 50 cycles less than 70%

結果は、前記評価方法1で求めた50サイクル後の容量維持率は93.0%であった。また、前記評価方法2で求めた50サイクル後の容量維持率は72.1%であった。結果を表2に示す。   As a result, the capacity retention rate after 50 cycles determined by the evaluation method 1 was 93.0%. The capacity retention ratio after 50 cycles determined by the evaluation method 2 was 72.1%. The results are shown in Table 2.

(実施例2)
コイン缶中に前記正極C、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み170μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例2の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.58であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.29であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.4%、評価方法2の50サイクル後の容量維持率は78.2%であった。結果を表2に示す。
(Example 2)
Put the positive electrode C and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 170 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 2.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.58.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.29.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.4%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 78.2%. The results are shown in Table 2.

(実施例3)
コイン缶中に前記正極D、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み180μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例3の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.56であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.15であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.8%、評価方法2の50サイクル後の容量維持率は82.2%であった。結果を表2に示す。
(Example 3)
Put the positive electrode D and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 180 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 3.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.56.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.15.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.8%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 82.2%. The results are shown in Table 2.

(実施例4)
コイン缶中に前記正極B、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み150μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例4の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.60であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.56であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は89.8%、評価方法2の50サイクル後の容量維持率は75.3%であった。結果を表2に示す。
Example 4
Put the positive electrode B and the negative electrode C in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 150 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 4.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.60.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.56.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 89.8%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 75.3%. The results are shown in Table 2.

(実施例5)
コイン缶中に前記正極C、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み170μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例5の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.57であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.29であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.7%、評価方法2の50サイクル後の容量維持率は80.1%であった。結果を表2に示す。
(Example 5)
Put the positive electrode C and the negative electrode C in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 170 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 5.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.57.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.29.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.7%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 80.1%. The results are shown in Table 2.

(実施例6)
コイン缶中に前記正極D、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み190μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例6の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.56であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.14であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は93.3%、評価方法2の50サイクル後の容量維持率は84.6%であった。結果を表2に示す。
(Example 6)
Put the positive electrode D and the negative electrode C in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 190 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 6.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.56.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.14.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 93.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 84.6%. The results are shown in Table 2.

(実施例7)
コイン缶中に前記正極B、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み160μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例7の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.59であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.52であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.5%、評価方法2の50サイクル後の容量維持率は78.4%であった。結果を表2に示す。
(Example 7)
Put the positive electrode B and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 160 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 7.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.59.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.52.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.5%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 78.4%. The results are shown in Table 2.

(実施例8)
コイン缶中に前記正極C、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み180μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例8の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.57であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.27であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は92.2%、評価方法2の50サイクル後の容量維持率は83.1%であった。結果を表2に示す。
(Example 8)
Put the positive electrode C and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 180 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 8.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.57.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.27.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 92.2%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 83.1%. The results are shown in Table 2.

(実施例9)
コイン缶中に前記正極D、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み200μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例9の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.14であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.1%、評価方法2の50サイクル後の容量維持率は83.8%であった。結果を表2に示す。
Example 9
Put the positive electrode D and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 200 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 9.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.14.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.1%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 83.8%. The results are shown in Table 2.

(比較例1)
コイン缶中に前記正極A、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み140μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例1の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.63であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.87であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.6%、評価方法2の50サイクル後の容量維持率は67.1%であった。結果を表2に示す。
(Comparative Example 1)
Put the positive electrode A and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 140 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 1.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.63.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.87.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention rate after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.6%, and the capacity retention rate after 50 cycles of Evaluation Method 2 was 67.1%. The results are shown in Table 2.

(比較例2)
コイン缶中に前記正極B、及び前記負極Aを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み140μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例2の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.62であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.60であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は74.3%、評価方法2の50サイクル後の容量維持率は68.3%であった。結果を表2に示す。
(Comparative Example 2)
Put the positive electrode B and the negative electrode A in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 140 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 2.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.62.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.60.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 74.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 68.3%. The results are shown in Table 2.

(比較例3)
コイン缶中に前記正極E、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み200μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例3の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.11であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は74.3%、評価方法2の50サイクル後の容量維持率は68.3%であった。結果を表2に示す。
(Comparative Example 3)
Put the positive electrode E and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 200 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 3.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.11.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 74.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 68.3%. The results are shown in Table 2.

(比較例4)
コイン缶中に前記正極E、及び前記負極Eを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み200μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例4の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.54であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.11であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は65.1%、評価方法2の50サイクル後の容量維持率は55.2%であった。結果を表2に示す。
(Comparative Example 4)
Put the positive electrode E and the negative electrode E in a coin can and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 200 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 4.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid electricity storage element was 0.54.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.11.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 65.1%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 55.2%. The results are shown in Table 2.

(比較例5)
コイン缶中に前記正極D、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み700μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例5の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.62であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.04であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は89.2%、評価方法2の50サイクル後の容量維持率は69.1%であった。結果を表2に示す。
(Comparative Example 5)
Put the positive electrode D and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 700 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble a nonaqueous electrolyte storage element of Comparative Example 5.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.62.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.04.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 89.2%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 69.1%. The results are shown in Table 2.

(実施例10)
コイン缶中に前記正極G、及び前記負極Gを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み50μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例10の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.61であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.50であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、評価方法1で求めた50サイクル後の容量維持率は90.2%であった。また評価方法2で求めた50サイクル後の容量維持率は74.1%であった。結果を表2に示す。
(Example 10)
Put the positive electrode G and the negative electrode G in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 50 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 10.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.61.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.50.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention rate after 50 cycles determined by Evaluation Method 1 was 90.2%. Further, the capacity retention rate after 50 cycles determined by Evaluation Method 2 was 74.1%. The results are shown in Table 2.

(実施例11)
コイン缶中に前記正極H、及び前記負極Gを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み50μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例11の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.58であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.29であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は93.3%、評価方法2の50サイクル後の容量維持率は79.2%であった。結果を表2に示す。
(Example 11)
Put the positive electrode H and the negative electrode G in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 50 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 11.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.58.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.29.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 93.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 79.2%. The results are shown in Table 2.

(実施例12)
コイン缶中に前記正極I、及び前記負極Gを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例12の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.57であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.14であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は93.1%、評価方法2の50サイクル後の容量維持率は84.8%であった。結果を表2に示す。
(Example 12)
Put the positive electrode I and the negative electrode G in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 12.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.57.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.14.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 93.1%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 84.8%. The results are shown in Table 2.

(実施例13)
コイン缶中に前記正極G、及び前記負極Hを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み50μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例13の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.60であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.50であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.1%、評価方法2の50サイクル後の容量維持率は76.1%であった。結果を表2に示す。
(Example 13)
Put the positive electrode G and the negative electrode H in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 50 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 13.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.60.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.50.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.1%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 76.1%. The results are shown in Table 2.

(実施例14)
コイン缶中に前記正極H、及び前記負極Hを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例14の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.58であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.25であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.5%、評価方法2の50サイクル後の容量維持率は81.4%であった。結果を表2に示す。
(Example 14)
Put the positive electrode H and the negative electrode H in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 14.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.58.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.25.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.5%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 81.4%. The results are shown in Table 2.

(実施例15)
コイン缶中に前記正極I、及び前記負極Hを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例15の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.56であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.14であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.7%、評価方法2の50サイクル後の容量維持率は86.6%であった。結果を表2に示す。
(Example 15)
Put the positive electrode I and the negative electrode H in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 15.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.56.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.14.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.7%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 86.6%. The results are shown in Table 2.

(実施例16)
コイン缶中に前記正極G、及び前記負極Iを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み50μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例16の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.59であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.50であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は92.2%、評価方法2の50サイクル後の容量維持率は79.3%であった。結果を表2に示す。
(Example 16)
Put the positive electrode G and the negative electrode I in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 50 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 16.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.59.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.50.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 92.2%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 79.3%. The results are shown in Table 2.

(実施例17)
コイン缶中に前記正極H、及び前記負極Iを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例17の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.57であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.25であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.6%、評価方法2の50サイクル後の容量維持率は84.4%であった。結果を表2に示す。
(Example 17)
Put the positive electrode H and the negative electrode I in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 17.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.57.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.25.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.6%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 84.4%. The results are shown in Table 2.

(実施例18)
コイン缶中に前記正極I、及び前記負極Iを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例18の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.14であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.8%、評価方法2の50サイクル後の容量維持率は85.3%であった。結果を表2に示す。
(Example 18)
Put the positive electrode I and the negative electrode I in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 18.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.14.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.8%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 85.3%. The results are shown in Table 2.

(比較例6)
コイン缶中に前記正極F、及び前記負極Gを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み100μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例6の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.65であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.36であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は89.3%、評価方法2の50サイクル後の容量維持率は68.9%であった。結果を表2に示す。
(Comparative Example 6)
Put the positive electrode F and the negative electrode G in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 100 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 6.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.65.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.36.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 89.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 68.9%. The results are shown in Table 2.

(比較例7)
コイン缶中に前記正極G、及び前記負極Fを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み100μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例7の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.64であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.25であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.4%、評価方法2の50サイクル後の容量維持率は69.2%であった。結果を表2に示す。
(Comparative Example 7)
Put the positive electrode G and the negative electrode F in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 100 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 7.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.64.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.25.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.4%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 69.2%. The results are shown in Table 2.

(比較例8)
コイン缶中に前記正極J、及び前記負極Iを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例8の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.11であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は79.4%、評価方法2の50サイクル後の容量維持率は68.7%であった。結果を表2に示す。
(Comparative Example 8)
Put the positive electrode J and the negative electrode I in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 8.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.11.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 79.4%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 68.7%. The results are shown in Table 2.

(比較例9)
コイン缶中に前記正極J、及び前記負極Jを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み60μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、比較例9の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.54であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.11であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は68.7%、評価方法2の50サイクル後の容量維持率は58.3%であった。結果を表2に示す。
(Comparative Example 9)
Put the positive electrode J and the negative electrode J in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having a mean thickness of 60 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Comparative Example 9.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid electricity storage element was 0.54.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.11.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 68.7%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 58.3%. The results are shown in Table 2.

(実施例19)
コイン缶中に前記正極G、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み30μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例19の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.58であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.84であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は93.4%、評価方法2の50サイクル後の容量維持率は73.3%であった。結果を表2に示す。
(Example 19)
Put the positive electrode G and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 30 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 19.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.58.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.84.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 93.4%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 73.3%. The results are shown in Table 2.

(実施例20)
コイン缶中に前記正極H、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み30μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例20の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.49であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は92.6%、評価方法2の50サイクル後の容量維持率は78.7%であった。結果を表2に示す。
(Example 20)
Put the positive electrode H and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 30 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 20.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.49.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 92.6%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 78.7%. The results are shown in Table 2.

(実施例21)
コイン缶中に前記正極I、及び前記負極Bを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み30μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例21の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.53であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.27であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.4%、評価方法2の50サイクル後の容量維持率は83.7%であった。結果を表2に示す。
(Example 21)
Put the positive electrode I and the negative electrode B in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 30 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 21.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.53.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.27.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.4%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 83.7%. The results are shown in Table 2.

(実施例22)
コイン缶中に前記正極G、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み30μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例22の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.55であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.84であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は92.7%、評価方法2の50サイクル後の容量維持率は75.8%であった。結果を表2に示す。
(Example 22)
Put the positive electrode G and the negative electrode C in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 30 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 22.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid electricity storage element was 0.55.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.84.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 92.7%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 75.8%. The results are shown in Table 2.

(実施例23)
コイン缶中に前記正極H、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み40μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例23の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.53であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.37であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.3%、評価方法2の50サイクル後の容量維持率は81.2%であった。結果を表2に示す。
(Example 23)
Put the positive electrode H and the negative electrode C in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 40 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 23.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.53.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.37.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 81.2%. The results are shown in Table 2.

(実施例24)
コイン缶中に前記正極I、及び前記負極Cを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み40μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例24の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.52であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.21であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.7%、評価方法2の50サイクル後の容量維持率は86.0%であった。結果を表2に示す。
(Example 24)
Put the positive electrode I and the negative electrode C in a coin can, and add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 40 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 24.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] to the total volume V4 of the liquid storage element was 0.52.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.21.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.7%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 86.0%. The results are shown in Table 2.

(実施例25)
コイン缶中に前記正極G、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み30μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例25の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.53であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.84であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.3%、評価方法2の50サイクル後の容量維持率は78.3%であった。結果を表2に示す。
(Example 25)
Put the positive electrode G and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 30 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 25.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.53.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.84.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.3%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 78.3%. The results are shown in Table 2.

(実施例26)
コイン缶中に前記正極H、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み40μm、気孔率0.67のセルロースを前記正極と前記負極の間に挿入して、実施例26の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.51であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.37であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は91.1%、評価方法2の50サイクル後の容量維持率は84.1%であった。結果を表2に示す。
(Example 26)
Put the positive electrode H and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A separator having an average thickness of 40 μm and a porosity of 0.67 was inserted between the positive electrode and the negative electrode to assemble the nonaqueous electrolyte storage element of Example 26.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.51.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.37.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 91.1%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 84.1%. The results are shown in Table 2.

(実施例27)
コイン缶中に前記正極I、及び前記負極Dを入れ、2mol/LのLiPFを溶解させた非水溶媒(PC:DMC=1:1(体積比))からなる非水電解液を加え、セパレータは平均厚み50μm、気孔率0.67%のセルロースセパレータを前記正極と前記負極の間に挿入して、実施例27の非水電解液蓄電素子を組み立てた。
このときの前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4との比[(V1+V2+V3)/V4]は、0.51であった。
前記正極材層の気孔率P1と、前記セパレータの気孔率P2との比(P1/P2)は0.16であった。
得られた非水電解液蓄電素子について、実施例1と同様にして充放電サイクルを行った。結果は、実施例1と同様にして求めた評価方法1の50サイクル後の容量維持率は90.8%、評価方法2の50サイクル後の容量維持率は86.1%であった。結果を表2に示す。
(Example 27)
Put the positive electrode I and the negative electrode D in a coin can, add a non-aqueous electrolyte composed of a non-aqueous solvent (PC: DMC = 1: 1 (volume ratio)) in which 2 mol / L LiPF 6 is dissolved, A non-aqueous electrolyte storage element of Example 27 was assembled by inserting a cellulose separator having an average thickness of 50 μm and a porosity of 0.67% between the positive electrode and the negative electrode.
At this time, the pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and non-aqueous electrolysis The ratio [(V1 + V2 + V3) / V4] with the total volume V4 of the liquid storage element was 0.51.
The ratio (P1 / P2) between the porosity P1 of the positive electrode material layer and the porosity P2 of the separator was 0.16.
About the obtained non-aqueous electrolyte electrical storage element, it carried out similarly to Example 1, and performed the charging / discharging cycle. As a result, the capacity retention ratio after 50 cycles of Evaluation Method 1 obtained in the same manner as in Example 1 was 90.8%, and the capacity retention ratio after 50 cycles of Evaluation Method 2 was 86.1%. The results are shown in Table 2.

以下の表1−1〜表1−3において、実施例1〜27及び比較例1〜9の非水電解液蓄電素子の条件などをまとめて示した。   In the following Tables 1-1 to 1-3, the conditions of the nonaqueous electrolyte storage elements of Examples 1 to 27 and Comparative Examples 1 to 9 are collectively shown.

実施例1〜27において、正極の容量は、1mg/cmあたり、0.05mAh/cm〜0.06mAh/cmであった。正極の面積密度が3mg/cm〜10mg/cmであることから、正極の単位面積当りのアニオン吸蔵放出量は0.15mAh/cm〜0.60mAh/cmであった。 In Example 1-27, the capacity of the positive electrode, 1 mg / cm 2 per was 0.05mAh / cm 2 ~0.06mAh / cm 2 . Since the area density of the positive electrode is 3mg / cm 2 ~10mg / cm 2 , the anion adsorption emission amount per unit area of the positive electrode was 0.15mAh / cm 2 ~0.60mAh / cm 2 .

実施例1〜27において、負極の容量は、1mg/cm当り、0.170mAh/cmであった。上述したとおり、正極の容量は、1mg/cmあたり、0.05mAh/cm〜0.06mAh/cmであり、前記負極の単位面積当りの容量は、前記正極の単位面積当りの容量より大きかった。
前記負極の単位面積当りの容量C1と、前記正極の単位面積当りの容量C2とが、容量比(C1/C2)=0.170mAh/cm/0.05mAh/cm〜0.170mAh/cm/0.06mAh/cm=3.4〜2.8であった。
In Examples 1 to 27, the capacity of the negative electrode was 0.170 mAh / cm 2 per 1 mg / cm 2 . As described above, the capacity of the positive electrode, 1 mg / cm 2 per a 0.05mAh / cm 2 ~0.06mAh / cm 2 , the capacity per unit area of the negative electrode, than the capacitance per unit area of the positive electrode It was big.
Wherein a capacitance C1 per unit area of the negative electrode, wherein the capacitance C2 per unit area of the positive electrode, the capacitance ratio (C1 / C2) = 0.170mAh / cm 2 /0.05mAh/cm 2 ~0.170mAh / cm 2 / 0.06 mAh / cm 2 = 3.4 to 2.8.

本発明の態様は、例えば、以下のとおりである。
<1> アニオンを可逆的に蓄積乃至放出可能な正極活物質を含有する正極材層を含む正極と、カチオンを可逆的に蓄積乃至放出可能な負極活物質を含有する負極材層を含む負極と、前記正極と前記負極との間にセパレータと、電解質塩を含む非水電解液と、を有する非水電解液蓄電素子であって、
前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4とが、次式、0.5≦[(V1+V2+V3)/V4]≦0.61を満たし、
前記正極材層の気孔率P1と、前記セパレータの気孔率P2とが、次式、0.14≦P1/P2≦0.84を満たすことを特徴とする非水電解液蓄電素子である。
<2> 前記正極材層の気孔率P1及び前記負極材層の気孔率が、いずれも、0.25以上0.65以下である前記<1>に記載の非水電解液蓄電素子である。
<3> 前記正極の単位面積当りのアニオン吸蔵放出量が、0.15mAh/cm以上0.60mAh/cm以下である前記<1>から<2>のいずれかに記載の非水電解液蓄電素子である。
<4> 前記負極の単位面積当りの容量が、前記正極の単位面積当りの容量より大きい前記<1>から<3>のいずれかに記載の非水電解液蓄電素子である。
<5> 前記負極の単位面積当りの容量C1と、前記正極の単位面積当りの容量C2とが、容量比(C1/C2)=1.05以上6以下である前記<4>に記載の非水電解液蓄電素子である。
<6> 前記電解質塩が、リチウム塩である前記<1>から<5>のいずれかに記載の非水電解液蓄電素子である。
<7> 前記非水電解液における電解質塩の含有量が、1.5mol/L以上3.0mol/L以下である前記<1>から<6>のいずれかに記載の非水電解液蓄電素子である。
<8> 前記正極活物質が、炭素質材料である前記<1>から<7>のいずれかに記載の非水電解液蓄電素子である。
<9> 前記負極活物質が、炭素質材料及びチタン酸リチウムのいずれかである前記<1>から<8>のいずれかに記載の非水電解液蓄電素子である。
<10> 前記セパレータの平均厚みが、20μm以上200μm以下である前記<1>から<9>のいずれかに記載の非水電解液蓄電素子である。
Aspects of the present invention are as follows, for example.
<1> A positive electrode including a positive electrode material layer containing a positive electrode active material capable of reversibly accumulating or releasing anions, and a negative electrode including a negative electrode material layer containing a negative electrode active material capable of reversibly accumulating or releasing cations. A non-aqueous electrolyte storage element having a separator and a non-aqueous electrolyte containing an electrolyte salt between the positive electrode and the negative electrode,
The pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and the nonaqueous electrolyte storage element Satisfying the following formula, 0.5 ≦ [(V1 + V2 + V3) / V4] ≦ 0.61,
The non-aqueous electrolyte storage element is characterized in that the porosity P1 of the positive electrode material layer and the porosity P2 of the separator satisfy the following formula: 0.14 ≦ P1 / P2 ≦ 0.84.
<2> The nonaqueous electrolyte storage element according to <1>, wherein a porosity P1 of the positive electrode material layer and a porosity of the negative electrode material layer are both 0.25 or more and 0.65 or less.
<3> The nonaqueous electrolytic solution according to any one of <1> to <2>, wherein the amount of anion storage / release per unit area of the positive electrode is 0.15 mAh / cm 2 or more and 0.60 mAh / cm 2 or less. It is a power storage element.
<4> The nonaqueous electrolyte storage element according to any one of <1> to <3>, wherein a capacity per unit area of the negative electrode is larger than a capacity per unit area of the positive electrode.
<5> The capacity C1 per unit area of the negative electrode and the capacity C2 per unit area of the positive electrode are such that the capacity ratio (C1 / C2) is 1.05 or more and 6 or less. It is a water electrolyte storage element.
<6> The nonaqueous electrolyte storage element according to any one of <1> to <5>, wherein the electrolyte salt is a lithium salt.
<7> The nonaqueous electrolyte storage element according to any one of <1> to <6>, wherein a content of the electrolyte salt in the nonaqueous electrolyte is 1.5 mol / L or more and 3.0 mol / L or less. It is.
<8> The nonaqueous electrolyte storage element according to any one of <1> to <7>, wherein the positive electrode active material is a carbonaceous material.
<9> The nonaqueous electrolyte storage element according to any one of <1> to <8>, wherein the negative electrode active material is any one of a carbonaceous material and lithium titanate.
<10> The nonaqueous electrolyte storage element according to any one of <1> to <9>, wherein the separator has an average thickness of 20 μm to 200 μm.

前記<1>から<10>のいずれかに記載の非水電解液蓄電素子によると、従来における前記諸問題を解決し、前記本発明の目的を達成することができる。   According to the non-aqueous electrolyte storage element according to any one of <1> to <10>, the conventional problems can be solved and the object of the present invention can be achieved.

1 正極
2 負極
3 セパレータ
4 外装缶
5 負極引き出し線
6 正極引き出し線
10 非水電解液蓄電素子
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Exterior can 5 Negative electrode lead wire 6 Positive electrode lead wire 10 Nonaqueous electrolyte storage element

特開2014−130717号公報JP 2014-130717 A

Journal of The ElectrochemicalSociety,147(3) 899−901(2000)Journal of The Electrochemical Society, 147 (3) 899-901 (2000)

Claims (10)

アニオンを可逆的に蓄積乃至放出可能な正極活物質を含有する正極材層を含む正極と、カチオンを可逆的に蓄積乃至放出可能な負極活物質を含有する負極材層を含む負極と、前記正極と前記負極との間にセパレータと、電解質塩を含む非水電解液と、を有する非水電解液蓄電素子であって、
前記正極の単位面積当りの正極材層の気孔体積V1と、前記負極の単位面積当りの負極材層の気孔体積V2と、前記セパレータの単位面積当りの気孔体積V3と、非水電解液蓄電素子の全体積V4とが、次式、0.5≦[(V1+V2+V3)/V4]≦0.61を満たし、
前記正極材層の気孔率P1と、前記セパレータの気孔率P2とが、次式、0.14≦P1/P2≦0.84を満たすことを特徴とする非水電解液蓄電素子。
A positive electrode including a positive electrode material layer containing a positive electrode active material capable of reversibly accumulating or releasing anions, a negative electrode including a negative electrode material layer containing a negative electrode active material capable of reversibly accumulating or releasing cations, and the positive electrode A non-aqueous electrolyte storage element having a separator and a non-aqueous electrolyte containing an electrolyte salt between the negative electrode and the negative electrode,
The pore volume V1 of the positive electrode material layer per unit area of the positive electrode, the pore volume V2 of the negative electrode material layer per unit area of the negative electrode, the pore volume V3 per unit area of the separator, and the nonaqueous electrolyte storage element Satisfying the following formula, 0.5 ≦ [(V1 + V2 + V3) / V4] ≦ 0.61,
The non-aqueous electrolyte storage element, wherein the porosity P1 of the positive electrode material layer and the porosity P2 of the separator satisfy the following formula: 0.14 ≦ P1 / P2 ≦ 0.84.
前記正極材層の気孔率P1及び前記負極材層の気孔率が、いずれも、0.25以上0.65以下である請求項1に記載の非水電解液蓄電素子。   2. The nonaqueous electrolyte storage element according to claim 1, wherein a porosity P1 of the positive electrode material layer and a porosity of the negative electrode material layer are both 0.25 or more and 0.65 or less. 前記正極の単位面積当りのアニオン吸蔵放出量が、0.15mAh/cm以上0.60mAh/cm以下である請求項1から2のいずれかに記載の非水電解液蓄電素子。 3. The non-aqueous electrolyte storage element according to claim 1, wherein an anion storage / release amount per unit area of the positive electrode is 0.15 mAh / cm 2 or more and 0.60 mAh / cm 2 or less. 前記負極の単位面積当りの容量が、前記正極の単位面積当りの容量より大きい請求項1から3のいずれかに記載の非水電解液蓄電素子。   4. The nonaqueous electrolyte storage element according to claim 1, wherein a capacity per unit area of the negative electrode is larger than a capacity per unit area of the positive electrode. 前記負極の単位面積当りの容量C1と、前記正極の単位面積当りの容量C2とが、容量比(C1/C2)=1.05以上6以下である請求項4に記載の非水電解液蓄電素子。   5. The nonaqueous electrolyte storage according to claim 4, wherein a capacity C1 per unit area of the negative electrode and a capacity C2 per unit area of the positive electrode are a capacity ratio (C1 / C2) = 1.05 or more and 6 or less. element. 前記電解質塩が、リチウム塩である請求項1から5のいずれかに記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to claim 1, wherein the electrolyte salt is a lithium salt. 前記非水電解液における電解質塩の含有量が、1.5mol/L以上3.0mol/L以下である請求項1から6のいずれかに記載の非水電解液蓄電素子。   7. The non-aqueous electrolyte storage element according to claim 1, wherein the content of the electrolyte salt in the non-aqueous electrolyte is 1.5 mol / L or more and 3.0 mol / L or less. 前記正極活物質が、炭素質材料である請求項1から7のいずれかに記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to claim 1, wherein the positive electrode active material is a carbonaceous material. 前記負極活物質が、炭素質材料及びチタン酸リチウムのいずれかである請求項1から8のいずれかに記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to any one of claims 1 to 8, wherein the negative electrode active material is any one of a carbonaceous material and lithium titanate. 前記セパレータの平均厚みが、20μm以上200μm以下である請求項1から9のいずれかに記載の非水電解液蓄電素子。   The non-aqueous electrolyte storage element according to claim 1, wherein an average thickness of the separator is 20 μm or more and 200 μm or less.
JP2015184079A 2014-12-18 2015-09-17 Nonaqueous electrolyte storage element Pending JP2016119449A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/942,379 US10090554B2 (en) 2014-12-18 2015-11-16 Non-aqueous electrolyte storage element
EP15198989.4A EP3035417A1 (en) 2014-12-18 2015-12-10 Non-aqueous electrolyte storage element
CN201510954001.4A CN105720230A (en) 2014-12-18 2015-12-17 Non-aqueous electrolyte storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014255826 2014-12-18
JP2014255826 2014-12-18

Publications (1)

Publication Number Publication Date
JP2016119449A true JP2016119449A (en) 2016-06-30

Family

ID=56244431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184079A Pending JP2016119449A (en) 2014-12-18 2015-09-17 Nonaqueous electrolyte storage element

Country Status (1)

Country Link
JP (1) JP2016119449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024127668A1 (en) * 2022-12-16 2024-06-20 株式会社 東芝 Non-aqueous electrolyte battery and battery pack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130717A (en) * 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014130717A (en) * 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024127668A1 (en) * 2022-12-16 2024-06-20 株式会社 東芝 Non-aqueous electrolyte battery and battery pack

Similar Documents

Publication Publication Date Title
KR101732292B1 (en) Nonaqueous electrolytic storage element
JP5758753B2 (en) Non-aqueous electrolyte secondary battery
US10090554B2 (en) Non-aqueous electrolyte storage element
JP2014130719A (en) Nonaqueous electrolyte storage element
JP6617817B2 (en) Porous carbon and electrode
JP2013243127A (en) Nonaqueous electrolyte electricity storage element
JP6155638B2 (en) Non-aqueous electrolyte storage element
JP2017050131A (en) Nonaqueous electrolyte power storage device and charging/discharging method thereof
JP2016091652A (en) Nonaqueous electrolyte power storage device
JP2016167443A (en) Nonaqueous electrolyte power storage element
JP2014235884A (en) Nonaqueous electrolyte electricity-storage device, and method for manufacturing the same
JP2016081801A (en) Electrode for positive electrode, and nonaqueous electrolyte power storage device
JP2016058252A (en) Nonaqueous electrolyte power storage device and lithium ion secondary battery
JP2018041636A (en) Power storage element
JP6915798B2 (en) Non-aqueous power storage element
JP2016119449A (en) Nonaqueous electrolyte storage element
JP6863413B2 (en) Non-aqueous electrolyte storage element
CN108878954B (en) Nonaqueous electrolyte accumulator element
JP2018060652A (en) Power storage element
JP6967473B2 (en) Non-aqueous electrolyte storage element
JP2017016829A (en) Nonaqueous electrolyte power storage element
JP2017092000A (en) Nonaqueous electrolyte power storage device
JP2014127656A (en) Nonaqueous electrolyte storage element
JP2018147795A (en) Nonaqueous power storage element and operational method thereof
JP2018081766A (en) Nonaqueous electrolyte power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191217