JP2016118398A - Decontamination treatment method for contaminated water storage tank - Google Patents

Decontamination treatment method for contaminated water storage tank Download PDF

Info

Publication number
JP2016118398A
JP2016118398A JP2014256237A JP2014256237A JP2016118398A JP 2016118398 A JP2016118398 A JP 2016118398A JP 2014256237 A JP2014256237 A JP 2014256237A JP 2014256237 A JP2014256237 A JP 2014256237A JP 2016118398 A JP2016118398 A JP 2016118398A
Authority
JP
Japan
Prior art keywords
contaminated water
storage tank
tank
water
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014256237A
Other languages
Japanese (ja)
Other versions
JP6367700B2 (en
Inventor
岳史 山下
Takeshi Yamashita
岳史 山下
田中 良明
Yoshiaki Tanaka
良明 田中
雅光 仲谷
Masamitsu Nakaya
雅光 仲谷
郁夫 中井
Ikuo Nakai
郁夫 中井
浅井 克彦
Katsuhiko Asai
克彦 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014256237A priority Critical patent/JP6367700B2/en
Publication of JP2016118398A publication Critical patent/JP2016118398A/en
Application granted granted Critical
Publication of JP6367700B2 publication Critical patent/JP6367700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination treatment method for a contaminated water storage tank, which enables a radiation level in a contaminated water storage tank to be reduced at relatively low cost and easily without causing increase in the quantity of contaminated water.SOLUTION: The decontamination treatment method for a contaminated water storage tank is provided that is for use in n (n is two or more) tanks in which contaminated water containing radioactive substance is stored. The method comprises a first step of discharging contaminated water from a first storage tank, clarifying and introducing it to a substitute tank and a second step of discharging contaminated water from a k-th storage tank, clarifying and causing it to flow into a k-1-th storage tank, and the second step is repeated until k, which is 2 at first, reaches n. It is preferable that the method further comprises a third step of introducing low-concentration contaminated water in the storage tank after having been used in the second step to the substitute tank. It is also preferable that the method further comprises a fourth step of causing the low-concentration contaminated water in the storage tank after having been used in the second step or water in the substitute tank to flow in the n-th storage tank after having been used in the second step, and introducing diluted low-concentration contaminated water to the substitute tank.SELECTED DRAWING: Figure 1

Description

本発明は、汚染水貯留タンクの除染処理方法に関する。   The present invention relates to a decontamination processing method for a contaminated water storage tank.

放射性セシウム、放射性ストロンチウム等の放射性物質を含有する汚染水、例えば廃水、事故原発炉心冷却用循環水等は、環境破壊を防止するために放射性物質を除去しなければ排出することが許されない。   Contaminated water containing radioactive substances such as radioactive cesium and radioactive strontium, such as waste water, accident core water cooling circulation water, etc., is not allowed to be discharged unless the radioactive substances are removed in order to prevent environmental destruction.

このため、事故原発において、余剰となった原子炉冷却水等を回収した汚染水が多数の貯留タンクに貯留されており、その量が日々増大している。これらの貯留タンクの多くは、複数の板状部材をボルト締めすることにより現地で接合して形成されたボルト締め型タンクである。このようなボルト締め型タンクでは、部材間の締結部のパッキン等の劣化により漏れが生じ得るため、数年が寿命と考えられる。   For this reason, in the accident nuclear power plant, the contaminated water which collected surplus reactor cooling water etc. is stored in many storage tanks, and the quantity is increasing every day. Many of these storage tanks are bolt-tight tanks formed by joining a plurality of plate-like members on-site by bolting. In such a bolt-clamped tank, leakage may occur due to deterioration of the packing or the like of the fastening portion between the members.

そこで、このようなボルト締め型タンクから、複数の板状部材を溶接により接合して形成され、より寿命の長い溶接型タンクに置き換えることが望ましい。しかしながら、ボルト締め型タンクから汚染水を排出しても、タンクの内壁に付着した放射能やタンク底部のボルト締結用フランジ間に残留する汚染水のために、さらに除染処理をしなければボルト締め型タンクを容易に解体処分することができない。   Therefore, it is desirable to replace such a bolted tank with a welded tank that is formed by welding a plurality of plate-like members and has a longer life. However, even if polluted water is discharged from the bolted tank, the bolts must be further decontaminated due to radioactivity adhering to the inner wall of the tank and contaminated water remaining between the bolt fastening flanges at the bottom of the tank. The clamped tank cannot be easily dismantled.

このような貯留タンクに貯留されている汚染水の典型的な放射性物質含有量は、100,000Bq/ccオーダーであると考えられており、内部の汚染水を排出しても貯留タンクの内壁面には放射性物質が付着した状態となり、その放射能レベルとしては、表面汚染濃度が1,000Bq/cm程度になると予想される。これでは、放射線量が大きすぎ、解体作業を行う作業員の被爆量が短時間で被爆限度に達してしまうため、多数の貯留タンクを汚染水排出後そのまま解体することは現実的ではない。 The typical radioactive substance content of the contaminated water stored in such a storage tank is considered to be on the order of 100,000 Bq / cc, and even if the internal contaminated water is discharged, the inner wall surface of the storage tank In this state, a radioactive substance is attached, and as a radioactivity level, the surface contamination concentration is expected to be about 1,000 Bq / cm 2 . In this case, since the radiation dose is too large and the exposure amount of the worker who performs the dismantling operation reaches the exposure limit in a short time, it is not realistic to dismantle a large number of storage tanks as they are after discharging contaminated water.

従って、上記汚染水排出後の貯留タンクについては、内壁面を除染してから解体することが検討されるが、除染作業も解体作業と同様に作業員の被爆が問題となり、非常に困難である。そこで、作業員が貯留タンク内に立ち入ることなく、貯留タンクの内壁面を除染することが望まれる。   Therefore, it is considered to decontaminate the storage tank after discharging the contaminated water after decontamination of the inner wall surface. However, the decontamination work is also very difficult due to the exposure of workers as well as the demolition work. It is. Therefore, it is desired to decontaminate the inner wall surface of the storage tank without an operator entering the storage tank.

一案として、汚染水を排出した貯留タンクに非汚染水である新しい水を供給すれば、放射能レベルをさらに低下させられる。しかしながら、非汚染水を使用すると、低濃度とはいえども新たな汚染水が発生することになり、その処理が問題となる。従って、非汚染水を使用して貯留タンクの除染を行うことは好ましくない。   As a suggestion, if new water, which is non-polluted water, is supplied to a storage tank that has discharged polluted water, the radioactivity level can be further reduced. However, when non-contaminated water is used, new contaminated water is generated even at a low concentration, and its treatment becomes a problem. Therefore, it is not preferable to decontaminate the storage tank using non-contaminated water.

また、そのような汚染レベルの高い貯留タンクを除染することなく解体できたとしても、解体された鋼板等の解体物の表面汚染濃度が高く、その処分方法が問題となる。   Further, even if the storage tank having such a high contamination level can be disassembled without decontamination, the dismantled material such as the disassembled steel plate has a high surface contamination concentration, and the disposal method becomes a problem.

また、放射能汚染設備の解体法方法としては、放射能汚染設備を覆う上屋を建設し、この上屋の天井付近に遠隔操作可能なクレーンを配設し、このクレーンを使用して人が上屋内に立ち入ることなく設備の解体及び除染を行うことが提案されている(例えば特開2013−181921号公報参照)。しかしながら、上屋の建設には大きなコストが必要である上、事故原発では多数の貯留タンクが密集して配設されており、上屋の建設は技術的にも極めて困難である。   Also, as a method of dismantling radioactive contamination facilities, a roof that covers the radioactive contamination facilities is constructed, a remotely operable crane is installed near the ceiling of the roof, and a person using this crane can use it. It has been proposed to dismantle and decontaminate equipment without entering the indoor area (see, for example, JP-A-2013-181921). However, the construction of a roof requires a large cost, and a large number of storage tanks are densely arranged at the accident nuclear power plant, so that the construction of a roof is extremely difficult technically.

特開2013−181921号公報JP2013-181921A

上記不都合に鑑みて、本発明は、汚染水量の増加を抑制しつつ、比較的安価かつ容易に汚染水貯留タンクの放射能レベルを低下できる汚染水貯留タンクの除染処理方法を提供することを課題とする。   In view of the above inconveniences, the present invention provides a decontamination treatment method for a contaminated water storage tank that can easily reduce the radioactivity level of the contaminated water storage tank while suppressing an increase in the amount of contaminated water. Let it be an issue.

上記課題を解決するためになされた発明は、放射性物質を含む汚染水が貯留されたn基(nは2以上)の貯留タンクの除染処理方法であって、1番目の貯留タンクから汚染水を排出及び浄化し、代替タンクに導入する第1工程と、k番目の貯留タンクから汚染水を排出及び浄化し、k−1番目の貯留タンクに流入する第2工程とを備え、上記第2工程をkが2からnまで繰り返し行うことを特徴とする汚染水貯留タンクの除染処理方法である。   The invention made in order to solve the above-mentioned problem is a decontamination processing method for n storage tanks (n is 2 or more) in which contaminated water containing radioactive substances is stored, and the contaminated water is discharged from the first storage tank. And a second step of discharging and purifying the contaminated water from the kth storage tank and flowing into the k−1th storage tank, and the second step. It is a decontamination processing method of a contaminated water storage tank characterized by repeating a process from k to 2 to n.

当該汚染水貯留タンクの除染処理方法は、先に汚染水を排出した貯留タンクに次の貯留タンクから排出した汚染水を浄化して得られる浄化水を流入することによって、先に汚染水を排出した貯留タンク内に残留する放射性物質を希釈する。これにより、新たな水を使用して汚染水量を増加させることなく、比較的安価かつ容易に1番目からn−1番目の貯留タンクの放射能レベルを低下できる。なお、「浄化水」とは、浄化により放射性物質含有量が低減された汚染水を意味し、海洋等の管理区域外に放出できる程度まで浄化されていることを要求しない。   The method for decontamination of the contaminated water storage tank is to first supply the contaminated water by flowing purified water obtained by purifying the contaminated water discharged from the next storage tank into the storage tank from which the contaminated water was discharged first. Dilute radioactive material remaining in the drained storage tank. Thereby, the radioactivity level of the 1st to (n-1) th storage tank can be reduced comparatively cheaply and easily, without using new water and increasing the amount of contaminated water. “Purified water” means contaminated water whose radioactive substance content has been reduced by purification, and does not require purification to such an extent that it can be discharged outside a management area such as the ocean.

上記第2工程後における貯留タンク中の低濃度汚染水を代替タンクに導入する第3工程をさらに備えるとよい。このように、第2工程で放射能レベルを低下させた貯留タンク中の低濃度汚染水を排出することで、貯留タンクの解体処理を可能にできる。   It is preferable to further include a third step of introducing the low concentration contaminated water in the storage tank after the second step into the alternative tank. In this manner, the storage tank can be disassembled by discharging the low-concentration contaminated water in the storage tank whose radioactivity level has been reduced in the second step.

上記第2工程後における貯留タンク中の低濃度汚染水又は上記代替タンク中の水を第2工程後のn番目の貯留タンクに流入し、希釈後の低濃度汚染水を上記代替タンクに導入する第4工程をさらに備えるとよい。このように、第2工程で貯留タンク中の汚染水を希釈した低濃度汚染水又は第1工程若しくは第3工程で代替タンクに導入された浄化水若しくは低濃度汚染水を使用して最後に汚染水を排出した貯留タンクに残留する放射性物質を希釈することによって、新たな水を使用して汚染水量を増加させることなく、比較的安価かつ容易に最後の貯留タンクの放射能レベルも低下することができる。   The low concentration contaminated water in the storage tank after the second step or the water in the alternative tank flows into the nth storage tank after the second step, and the diluted low concentration contaminated water is introduced into the alternative tank. A fourth step may be further provided. In this way, the low-concentration contaminated water obtained by diluting the contaminated water in the storage tank in the second step or the purified water or low-concentration contaminated water introduced into the alternative tank in the first step or the third step is finally used for contamination. By diluting the radioactive material remaining in the storage tank that drained the water, the radioactivity level of the last storage tank can be lowered relatively cheaply and easily without using new water to increase the amount of contaminated water Can do.

上記汚染水の排出をポンプにより行い、所定の水位からは低水位ポンプにより行うとよい。このように、上記汚染水の排出をポンプにより行い、所定の水位からは低水位ポンプにより行うことによって、貯留タンクの底に残される汚染水の水量を少なくすることができ、浄化水又は低濃度汚染水による放射性物質の希釈がより確実となる。また、この希釈のために導入する浄化水又は低濃度汚染水の水量を少なくすることができるので、希釈後の貯留タンクを解体する前に低濃度汚染水を排出する際の費用及び時間を低減することができる。   The contaminated water may be discharged by a pump, and from a predetermined water level, a low water level pump may be used. In this way, the amount of contaminated water remaining at the bottom of the storage tank can be reduced by discharging the contaminated water using a pump and starting from a predetermined water level using a low water level pump. Dilution of radioactive materials with contaminated water is more reliable. In addition, since the amount of purified water or low-concentration contaminated water introduced for dilution can be reduced, the cost and time for discharging low-concentration contaminated water before dismantling the diluted storage tank can be reduced. can do.

上記貯留タンクが複数の部材をボルト締めにより締結したものであり、上記代替タンクが複数の部材を溶接により接合したものであるとよい。このように、比較的寿命が短いボルト締め型の貯留タンクの放射能レベルを低下させると共に、残される浄化水又は低濃度汚染水を比較的寿命が長い溶接型のタンクに流入することによって、タンクの漏れによる汚染の拡大を防止できる。   The storage tank may be a member in which a plurality of members are fastened by bolting, and the alternative tank may be a member in which a plurality of members are joined by welding. In this way, by reducing the radioactivity level of the bolted storage tank having a relatively short life, and flowing the remaining purified water or low-concentration contaminated water into the welded tank having a relatively long life, the tank The spread of contamination due to leakage of water can be prevented.

上記浄化に、移動可能な架台に搭載され、ストロンチウムを選択的に吸着する吸着剤が充填された1又は複数の吸着塔を用いるとよい。このように、移動可能な架台に搭載される吸着塔を用いることによって、貯留タンクの近傍に簡単かつ確実に汚染水浄化設備を配設することができる。また、ストロンチウムを選択的に吸着する吸着剤が充填された吸着塔を用いることによって、SARRY(単純型汚染水処理システム:Simplified Active Water Retrieve and Recovery System)等により処理されて、貯留タンクに貯留されている汚染水に残留する放射性物質中の多くを占めるストロンチウムを効率よく除去して放射能レベルをより確実に低下させることができる。なお、「架台」とは、その上に吸着塔が配設される基台を意味し、高さの小さい板状又はフレーム状のものを含む。   For the purification, it is preferable to use one or a plurality of adsorption towers that are mounted on a movable frame and are filled with an adsorbent that selectively adsorbs strontium. As described above, by using the adsorption tower mounted on the movable gantry, the contaminated water purification facility can be easily and reliably disposed near the storage tank. In addition, by using an adsorption tower filled with an adsorbent that selectively adsorbs strontium, it is processed by SARRY (Simply Active Water Retrieve and Recovery System) or the like and stored in a storage tank. It is possible to efficiently remove strontium occupying most of the radioactive material remaining in the contaminated water, thereby reducing the radioactivity level more reliably. The “stand” means a base on which the adsorption tower is disposed, and includes a plate or frame having a small height.

上記貯留タンクへの浄化水の流入が、貯留タンク内で乱流を生じるように行われるとよい。このように、浄化水の流入により貯留タンク内で乱流を生じるようにすることで、貯留タンクの内壁面に付着した放射性物質を効率よく洗い落として希釈し、放射能レベルをより確実に低下させられる。   The inflow of purified water into the storage tank may be performed so as to generate turbulent flow in the storage tank. In this way, by generating turbulent flow in the storage tank due to the inflow of purified water, radioactive substances adhering to the inner wall surface of the storage tank can be efficiently washed away and diluted to reduce the radioactivity level more reliably. It is done.

以上のように、本発明の汚染水貯留タンクの除染処理方法は、汚染水量を増加させることなく、比較的安価かつ容易に汚染水貯留タンクの放射能レベルを低下できる。   As described above, the decontamination processing method for a contaminated water storage tank according to the present invention can lower the radioactivity level of the contaminated water storage tank relatively easily and inexpensively without increasing the amount of contaminated water.

本発明の一実施形態の汚染水貯留タンクの除染処理方法を適用する汚染水貯留タンクと除染処理に使用する代替タンク及び汚染水浄化設備を示す模式図である。It is a schematic diagram which shows the contaminated water storage tank to which the decontamination processing method of the contaminated water storage tank of one Embodiment of this invention is applied, the alternative tank used for a decontamination process, and contaminated water purification equipment. 図2の汚染水浄化設備の詳細な構成を示す模式図である。It is a schematic diagram which shows the detailed structure of the contaminated water purification equipment of FIG. 本発明の一実施形態の汚染水貯留タンクの除染処理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the decontamination processing method of the contaminated water storage tank of one Embodiment of this invention. 図3の第1工程を説明する模式図である。It is a schematic diagram explaining the 1st process of FIG. 図3の第2工程の最初のサイクルを説明する模式図である。It is a schematic diagram explaining the first cycle of the 2nd process of FIG. 図3の第2工程の次のサイクルを説明する模式図である。It is a schematic diagram explaining the next cycle of the 2nd process of FIG. 図3の第2工程の最後のサイクルを説明する模式図である。It is a schematic diagram explaining the last cycle of the 2nd process of FIG. 図3の第3工程の最初のサイクルを説明する模式図である。It is a schematic diagram explaining the first cycle of the 3rd process of FIG. 図3の第3工程の最後のサイクルを説明する模式図である。It is a schematic diagram explaining the last cycle of the 3rd process of FIG. 図3の第4工程の最初の工程を説明する模式図である。It is a schematic diagram explaining the first process of the 4th process of FIG. 図3の第4工程の図10の次の工程を説明する模式図である。It is a schematic diagram explaining the process following FIG. 10 of the 4th process of FIG. 図3の第2工程と第3工程とを同時に行う例を説明する模式図である。It is a schematic diagram explaining the example which performs the 2nd process and 3rd process of FIG. 3 simultaneously.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[第一実施形態]
図1に、本発明の一実施形態に係る汚染水貯留タンクの除染処理方法によって除染処理される貯留タンクTs1〜Ts4と、当該汚染水貯留タンクの除染処理方法に用いる代替タンクTr1〜Tr4及び汚染水浄化設備Uを模式的に示す。なお、図において、汚染水にはハッチングを施し、汚染レベルが高いほどハッチングの密度を大きく図示する。
[First embodiment]
FIG. 1 shows storage tanks Ts1 to Ts4 that are decontaminated by the decontamination processing method for a contaminated water storage tank according to an embodiment of the present invention, and alternative tanks Tr1 to Tr1 that are used in the decontamination processing method for the contaminated water storage tank. Tr4 and contaminated water purification equipment U are typically shown. In the figure, the contaminated water is hatched, and the higher the contamination level, the larger the hatching density.

当該汚染水貯留タンクの除染処理方法は、放射性物質を含む汚染水が貯留されたn基(nは2以上)の貯留タンクの除染処理方法であるが、以降の説明では、図1に示すように、n=4、つまり4基の貯留タンクTs1〜Ts4の除染処理を行う例を示す。なお、本実施形態では、貯留タンクTs1〜Ts4及び代替タンクTr1〜Tr4からの汚染水の排出は、ポンプPによって行う。   The decontamination processing method for the contaminated water storage tank is a decontamination processing method for n storage tanks (n is 2 or more) in which contaminated water containing radioactive substances is stored. In the following description, FIG. As shown, an example in which n = 4, that is, the decontamination process of the four storage tanks Ts1 to Ts4 is performed. In the present embodiment, the pump P discharges contaminated water from the storage tanks Ts1 to Ts4 and the alternative tanks Tr1 to Tr4.

(汚染水)
貯留タンクの除染処理方法が適用される貯留タンクTs1〜Ts4に貯留されている汚染水としては、放射性物質を一定量以上含むものであり、汚染水を排水しても貯留タンクTs1〜Ts4の表面汚染密度が表面密度限度(α線放出核種で4Bq/cm、α線放出核種以外の核種で40Bq/cm)を超えると予想されるような濃度の放射性物質を含むものとされる。このような汚染水の放射性物質濃度としては、特に限定されないが、目安として10,000Bq/cc以上、典型的には100,000Bq/cc以上である。
(Contaminated water)
The contaminated water stored in the storage tanks Ts1 to Ts4 to which the storage tank decontamination processing method is applied includes a certain amount of radioactive material. Even if the contaminated water is drained, the storage tanks Ts1 to Ts4 It is assumed that the surface contamination density contains a radioactive substance at a concentration that is expected to exceed the surface density limit (4 Bq / cm 2 for α-ray emitting nuclides and 40 Bq / cm 2 for nuclides other than α-emitting nuclides). The concentration of radioactive material in such contaminated water is not particularly limited, but as a guide, it is 10,000 Bq / cc or more, typically 100,000 Bq / cc or more.

(貯留タンク)
貯留タンクTs1〜Ts4は、特に限定されないが、小さく解体して処分される汚染水タンクであることが想定され、特に寿命が残り少ないことにより処分が必要となった汚染水タンクであることが想定される。このように処分が必要な汚染水タンクとしては、典型的には、板材の周縁にフランジを配設した複数の部材をボルト締めにより締結したボルト締め型タンクが挙げられる。
(Storage tank)
The storage tanks Ts1 to Ts4 are not particularly limited. However, the storage tanks Ts1 to Ts4 are assumed to be contaminated water tanks that are dismantled and disposed of, and are particularly assumed to be contaminated water tanks that need to be disposed of due to a short remaining life. The As such a contaminated water tank that needs to be disposed of, typically, there is a bolted tank in which a plurality of members having flanges arranged on the periphery of a plate material are fastened by bolting.

また、貯留タンクTs1〜Ts4の容積としては、特に限定されないが、一般的には100m以上、典型的には1,000m以上とされる。貯留タンクTs1〜Ts4の容積が上記下限に満たない場合、貯留タンクTs1〜Ts4を移動して処理する場合と比べて却って不経済となるおそれがある。 Further, the volume of the storage tanks Ts1 to Ts4 is not particularly limited, but is generally 100 m 3 or more, typically 1,000 m 3 or more. When the volume of the storage tanks Ts1 to Ts4 is less than the lower limit, it may be uneconomical compared to the case where the storage tanks Ts1 to Ts4 are moved and processed.

(代替タンク)
代替タンクTr1〜Tr4としては、汚染水が漏えいしないものであればよいが、好ましくは、複数の板材を溶接により接合した溶接型タンクとされる。また、代替タンクTr1〜Tr4としては、新品で空のタンクを用いることが好ましい。この溶接型タンクは、例えばSS400等の一般構造用圧延鋼板を用いて製造することができるが、内面を樹脂等でコーティングすることが好ましい。このように、代替タンクTr1〜Tr4として比較的寿命が長い溶接型タンクを使用すれば、汚染水の漏えい防止が長期にわたって担保される。
(Alternative tank)
The alternative tanks Tr1 to Tr4 may be any tank that does not leak contaminated water, but is preferably a welded tank in which a plurality of plate members are joined by welding. Moreover, it is preferable to use a new and empty tank as the alternative tanks Tr1 to Tr4. This welded tank can be manufactured using a general structural rolled steel plate such as SS400, for example, but the inner surface is preferably coated with a resin or the like. In this way, if welded tanks having a relatively long life are used as the alternative tanks Tr1 to Tr4, prevention of leakage of contaminated water is ensured for a long time.

また、代替タンクTr1〜Tr4の容積としては、特に限定されないが、対応する貯留タンクTs1〜Ts4の容積以上とすることが好ましく、対応する貯留タンクTs1〜Ts4の容積と略等しいことが空間効率の観点からより好ましい。代替タンクTr1〜Tr4の容積が対応する貯留タンクTs1〜Ts4の容積よりも小さい場合、いずれか1基の貯留タンクTs1〜Ts4から複数の代替タンクTr1〜Tr4に汚染水を移送する必要が生じるため、作業が煩雑となるおそれがある。   Further, the volume of the alternative tanks Tr1 to Tr4 is not particularly limited, but is preferably equal to or larger than the volume of the corresponding storage tank Ts1 to Ts4, and is substantially equal to the volume of the corresponding storage tank Ts1 to Ts4. More preferable from the viewpoint. When the volume of the alternative tanks Tr1 to Tr4 is smaller than the volume of the corresponding storage tank Ts1 to Ts4, it is necessary to transfer the contaminated water from any one of the storage tanks Ts1 to Ts4 to the plurality of alternative tanks Tr1 to Tr4. The work may become complicated.

(汚染水浄化設備)
汚染水浄化設備Uは、図2に図示するように、車輪を有し自走可能な架台1の上に、複数のフィルター2と、ストロンチウムを選択的に吸着する吸着剤が充填された複数の吸着塔3とが搭載されている。
(Contaminated water purification equipment)
As shown in FIG. 2, the contaminated water purification facility U has a plurality of filters 2 and a plurality of adsorbents that selectively adsorb strontium on a stand 1 that has wheels and is capable of self-propelling. An adsorption tower 3 is mounted.

このように汚染水浄化設備Uは、架台1上に複数のフィルター2及び複数の吸着塔3を搭載して移動可能に構成されることによって、貯留タンクの近傍に簡単かつ確実に配設することができ、汚染水浄化設備Uからの汚染水の漏れ等のリスクも低減できる。   In this way, the contaminated water purification facility U can be easily and reliably disposed in the vicinity of the storage tank by mounting the plurality of filters 2 and the plurality of adsorption towers 3 on the gantry 1 so as to be movable. The risk of leakage of contaminated water from the contaminated water purification facility U can be reduced.

フィルター2は、吸着塔3における吸着処理の前に、汚染水中の浮遊物質及び油分を濾し取るために配設される。このようなフィルターとしては、例えば平均開口径0.2μm程度のメンブレンフィルター等が好適に用いられる。   The filter 2 is arranged to filter out suspended substances and oil in the contaminated water before the adsorption treatment in the adsorption tower 3. As such a filter, for example, a membrane filter having an average opening diameter of about 0.2 μm is preferably used.

複数のフィルター2は、直列に接続され、任意の1つを除外して汚染水を流通しながら、切り離したフィルター2を新しいものと交換し、交換後の新しいフィルター2を最下流に接続することができるよう配管されている。   The plurality of filters 2 are connected in series, and while exchanging contaminated water except for any one, replace the separated filter 2 with a new one, and connect the new filter 2 after the replacement to the most downstream side. It is piped so that it can.

複数の吸着塔3は、フィルター2と同様に、直列に接続され、任意の1つを除外して汚染水を流通しながら、切り離した吸着塔3を新しいものと交換し、交換後の新しい吸着塔3を最下流に接続することができるよう配管されている。   The plurality of adsorption towers 3 are connected in series like the filter 2, exchanging the separated adsorption towers 3 with new ones while circulating contaminated water excluding any one, and new adsorption after exchange It is piped so that the tower 3 can be connected to the most downstream side.

このように複数のフィルター2及び複数の吸着塔3をそれぞれ順次新しいものに入れ替え可能に構成することにより、貯留タンクTs1〜Ts4の除染処理を滞ることなく行うことができる。   As described above, the plurality of filters 2 and the plurality of adsorption towers 3 can be sequentially replaced with new ones, so that the decontamination processing of the storage tanks Ts1 to Ts4 can be performed without delay.

吸着塔3は、ストロンチウムを選択的に吸着する吸着剤が充填されているので、SARRY(単純型汚染水処理システム:Simplified Active Water Retrieve and Recovery System)等により処理されてから貯留タンクTs1〜Ts4に貯留されている汚染水に残留する放射性物質中の多くを占めるストロンチウムを効率よく除去できる。これにより、貯留タンクTs1〜Ts4の放射能レベルを容易に低下できる。   Since the adsorption tower 3 is filled with an adsorbent that selectively adsorbs strontium, it is treated in the storage tanks Ts1 to Ts4 after being treated by SARRY (Simply Active Water Retrieve and Recovery System) or the like. Strontium, which occupies most of the radioactive material remaining in the stored contaminated water, can be efficiently removed. Thereby, the radioactivity level of storage tank Ts1-Ts4 can be reduced easily.

上記ストロンチウムを選択的に吸着する吸着剤としては、カルシウム及びマグネシウムの共存下でもストロンチウムに対して高い吸着性能を有する材料、例えばA型ゼオライト、X型ゼオライト等が挙げられる。   Examples of the adsorbent that selectively adsorbs strontium include materials having high adsorption performance for strontium even in the presence of calcium and magnesium, such as A-type zeolite and X-type zeolite.

(ポンプ)
ポンプPとしては、貯留タンクTs1〜Ts4及び代替タンクTr1〜Tr4中の水を排出できるものであればよく、特に限定されないが、貯留タンクTs1〜Ts4及び代替タンクTr1〜Tr4の底部、つまり板面上又はフランジ上に着床して配置され、その下部から周囲の水を吸い込んで送出する低水位ポンプつまり低水位排水用の水中ポンプが好適に使用される。このような低水位ポンプは、貯留タンクTs1〜Ts4及び代替タンクTr1〜Tr4の上部の開口からワイヤー等で吊り下ろされて汚染水中に浸漬される。
(pump)
The pump P is not particularly limited as long as it can discharge water in the storage tanks Ts1 to Ts4 and the alternative tanks Tr1 to Tr4. However, the bottoms of the storage tanks Ts1 to Ts4 and the alternative tanks Tr1 to Tr4, that is, plate surfaces A low water level pump that is disposed on the top or on the flange and sucks and sends out surrounding water from the lower part thereof, that is, a submersible pump for low water level drainage is preferably used. Such a low water level pump is suspended by a wire etc. from the upper opening of storage tank Ts1-Ts4 and alternative tank Tr1-Tr4, and is immersed in contaminated water.

ポンプP、特に低水位ポンプを使用することによって、貯留タンクTs1〜Ts4及び代替タンクTr1〜Tr4から汚染水を排出した後に不可避的に残留する汚染水量を少なくすることができ、貯留タンクTs1〜Ts4の除染効率を向上できる。ポンプPとして、一般的なポンプ等のポンプを使用した後、さらに低水位ポンプを使用してもよい。   By using the pump P, particularly the low water level pump, the amount of contaminated water inevitably remaining after the contaminated water is discharged from the storage tanks Ts1 to Ts4 and the alternative tanks Tr1 to Tr4 can be reduced, and the storage tanks Ts1 to Ts4. The decontamination efficiency can be improved. After using a pump such as a general pump as the pump P, a low water level pump may be further used.

<汚染水貯留タンクの除染処理方法>
図3に、当該汚染水貯留タンクの除染処理方法の手順を示す。また、当該汚染水貯留タンクの除染処理方法を分かり易く説明するため、図4乃至図11に、図3の各工程を模式的に図示する。
<Decontamination method for contaminated water storage tank>
In FIG. 3, the procedure of the decontamination processing method of the said contaminated water storage tank is shown. Further, in order to explain the decontamination processing method for the contaminated water storage tank in an easy-to-understand manner, FIG. 4 to FIG.

図3の汚染水貯留タンクの除染処理方法は、1番目の貯留タンクTs1から汚染水を排出及び除染し、1番目の代替タンクTr1に導入する第1工程(ステップS1)と、k番目(kは自然数)の貯留タンクTskから汚染水を排出及び浄化し、k−1番目の貯留タンクTs(k−1)に流入する工程であって、kが2からn=4まで繰り返し行われる第2工程(ステップS2)と、上記第2工程後における貯留タンクTs1〜Ts3中の低濃度汚染水を代替タンクTr2〜Tr4に導入する第3工程(ステップS3)と、第2工程後の1若しくは複数の貯留タンクTs1〜Ts3中の低濃度汚染水、又は1若しくは複数の上記代替タンクTr1〜Tr4中の水を第2工程後のn=4番目の貯留タンクTs4に流入し、希釈後の低濃度汚染水を1又は複数の代替タンクTr1〜Tr4に導入する第4工程(ステップS4)とを備える。   The decontamination processing method of the contaminated water storage tank in FIG. 3 includes a first step (step S1) in which the contaminated water is discharged and decontaminated from the first storage tank Ts1 and introduced into the first alternative tank Tr1, and the k th (K is a natural number) This is a step of discharging and purifying contaminated water from the storage tank Tsk and flowing into the k−1th storage tank Ts (k−1), and k is repeatedly performed from 2 to n = 4. A second step (step S2), a third step (step S3) for introducing low-concentration contaminated water in the storage tanks Ts1 to Ts3 after the second step into the alternative tanks Tr2 to Tr4, and a post-second step 1 Alternatively, the low concentration contaminated water in the plurality of storage tanks Ts1 to Ts3 or the water in the one or more alternative tanks Tr1 to Tr4 flows into the n = 4th storage tank Ts4 after the second step, Low concentration contaminated water And a fourth step of introducing (step S4) to one or more alternative tanks Tr1 to Tr4.

<第1工程>
ステップS1の第1工程では、図4に示すように、先ず、1番目の貯留タンクTs1からポンプPにより汚染水を排出して汚染水浄化設備Uに供給する。そしてこの汚染水を汚染水浄化設備Uにより浄化して得られる浄化水を1番目の代替タンクTr1に導入する。
<First step>
In the first step of step S1, as shown in FIG. 4, first, the contaminated water is discharged from the first storage tank Ts1 by the pump P and supplied to the contaminated water purification facility U. Then, purified water obtained by purifying the contaminated water by the contaminated water purification facility U is introduced into the first alternative tank Tr1.

これにより、1番目の貯留タンクTs1から汚染水が排出されるが、貯留タンクTs1の内部の汚染水全量を完全に排出することは困難である。このため、汚染水を排出した後の貯留タンクTs1は、底部に僅かに汚染水が残留し、かつ内壁面に放射性物質が付着した状態となる。   Thereby, the contaminated water is discharged from the first storage tank Ts1, but it is difficult to completely discharge the entire amount of the contaminated water inside the storage tank Ts1. For this reason, in the storage tank Ts1 after discharging the contaminated water, the contaminated water slightly remains at the bottom and the radioactive substance adheres to the inner wall surface.

代替タンクTr1に導入される浄化水の放射性物質含有量は、汚染水浄化設備Uの能力に依存するが、100Bq/cc程度とされることが好ましい。   The radioactive substance content of the purified water introduced into the alternative tank Tr1 depends on the capability of the contaminated water purification facility U, but is preferably about 100 Bq / cc.

<第2工程>
ステップS2の第2工程では、先に汚染水を排出した貯留タンクTs(k−1)内に残留する放射性物質を次の貯留タンクTskに貯留されている汚染水を排出及び浄化した浄化水によって希釈する。この第2工程は、kが2からnまで繰り返し行われる。
<Second step>
In the second step of step S2, the radioactive material remaining in the storage tank Ts (k-1) from which the contaminated water has been discharged is purified water that has been discharged and purified from the contaminated water stored in the next storage tank Tsk. Dilute. This second step is repeated from k to 2 to n.

最初の第2工程では、図5に示すように、先ず、2番目の貯留タンクTs2からポンプPにより汚染水を排出し、この汚染水を汚染水浄化設備Uにおいて浄化した浄化水を1番目の貯留タンクTs1に流入する。   In the first second step, as shown in FIG. 5, first, the contaminated water is discharged from the second storage tank Ts2 by the pump P, and the purified water obtained by purifying the contaminated water in the contaminated water purification facility U is the first. It flows into the storage tank Ts1.

これにより、1番目の貯留タンクTs1に残留する汚染水が流入された浄化水によって希釈され、内壁面に付着していた放射性物質が洗い落とされて浄化水に溶け込む。従って、1番目の貯留タンクTs1は、底部や内壁面に残留していた放射性物質が希釈された低濃度汚染水を貯留する状態となる。   As a result, the contaminated water remaining in the first storage tank Ts1 is diluted with the purified water that has flowed in, and the radioactive material adhering to the inner wall surface is washed away and dissolved in the purified water. Therefore, the 1st storage tank Ts1 will be in the state which stores the low concentration contaminated water in which the radioactive substance which remained on the bottom part and the inner wall surface was diluted.

2番目の貯留タンクTs2の汚染水略全量を浄化して1番目の貯留タンクTs1に流入した場合、1番目の貯留タンクTs1の低濃度汚染水の放射性物質含有量としては、5,000Bq/cc程度となると予想される。   When almost all the contaminated water in the second storage tank Ts2 is purified and flows into the first storage tank Ts1, the radioactive substance content of the low concentration contaminated water in the first storage tank Ts1 is 5,000 Bq / cc. Expected to be about.

次の第2工程では、図6に示すように、3番目の貯留タンクTs3からポンプPにより汚染水を排出し、この汚染水を汚染水浄化設備Uにおいて浄化した浄化水を2番目の貯留タンクTs2に流入する。さらに、この第2工程、つまり先に汚染水を排出した貯留タンク内に残留する放射性物質を次の貯留タンクに貯留されている汚染水を排出及び浄化した浄化水によって希釈する処理を順番に繰り返す。   In the next second step, as shown in FIG. 6, the contaminated water is discharged from the third storage tank Ts3 by the pump P, and the purified water purified by the contaminated water purification facility U is used as the second storage tank. It flows into Ts2. Further, the second step, that is, the process of diluting the radioactive material remaining in the storage tank from which the contaminated water has been discharged first with the purified water that has been discharged and purified from the next storage tank is repeated in order. .

従って、この第2工程の繰り返しが終わると、図7に示すように、最後の貯留タンクTs4(一般的には最後の貯留タンク)には少量の汚染水が残留し、他の貯留タンクTs1〜Ts3が内部の放射性物質が希釈された低濃度汚染水を貯留する状態となる。   Therefore, when this second step is repeated, a small amount of contaminated water remains in the last storage tank Ts4 (generally the last storage tank) as shown in FIG. Ts3 will be in the state which stores the low concentration contaminated water in which the radioactive substance inside was diluted.

この第2工程における貯留タンクTs1〜Ts3への浄化水の流入は貯留タンクTs1〜Ts3の内壁面に付着した放射性物質を洗い流す効果を促進するために、例えばスプレーノズル等を用いて貯留タンクTs1〜Ts3の内部で乱流を生じるよう行われることが好ましい。なお、「乱流」とは、貯留タンクTs1〜Ts3の内壁面に浄化水が直接吹き付けられる流れの他、貯留タンクTs1〜Ts3内で大きな渦を形成するような流れを創生して、内壁面での浄化水の剪断、剥離等を含む乱流を生じさせるものであってもよい。   The inflow of purified water into the storage tanks Ts1 to Ts3 in the second step promotes the effect of washing away radioactive substances adhering to the inner wall surfaces of the storage tanks Ts1 to Ts3, for example, using a spray nozzle or the like. It is preferable that the turbulence is generated inside Ts3. The “turbulent flow” refers to a flow that forms a large vortex in the storage tanks Ts1 to Ts3 in addition to a flow in which purified water is sprayed directly on the inner wall surfaces of the storage tanks Ts1 to Ts3. A turbulent flow including shearing of the purified water on the wall surface, separation, and the like may be generated.

<第3工程>
ステップS3の第3工程では、図8及び図9に示すように、ポンプPを用いて貯留タンクTs1〜Ts3の低濃度汚染水を代替タンクTr2〜Tr4に導入、つまり移し替えを行う。貯留タンクTs1〜Ts3の底部には少量の低濃度汚染水が残留するが、低濃度汚染水は放射線量が低いので、防護服を着用した作業員が手作業で排出又は拭き取りすることができる。
<Third step>
In the third step of step S3, as shown in FIGS. 8 and 9, the low-concentration contaminated water in the storage tanks Ts1 to Ts3 is introduced into the alternative tanks Tr2 to Tr4 using the pump P, that is, transferred. Although a small amount of low-concentration contaminated water remains at the bottom of the storage tanks Ts1 to Ts3, since the low-concentration contaminated water has a low radiation dose, an operator wearing protective clothing can discharge or wipe it off manually.

これにより、貯留タンクTs1〜Ts3の内壁面の表面汚染密度は、例えば400Bq/cm程度までに低減されると考えられる。この程度の放射能レベルであれば、防護服を着用した作業員が解体作業を行うことができる。 Thereby, it is considered that the surface contamination density of the inner wall surfaces of the storage tanks Ts1 to Ts3 is reduced to, for example, about 400 Bq / cm 2 . At this level of radioactivity, workers wearing protective clothing can perform dismantling work.

<第4工程>
ステップS4の第4工程では、図10に示すように1番目の代替タンクTr1中の浄化水又は他の代替タンクTr2〜Tr4中の低濃度汚染水を、ポンプPを用いて4番目の貯留タンクTs4に流入し、残留する放射性物質を希釈する。
<4th process>
In the fourth step of step S4, purified water in the first alternative tank Tr1 or low-concentration contaminated water in the other alternative tanks Tr2 to Tr4 as shown in FIG. It flows into Ts4 and dilutes the remaining radioactive material.

これにより4番目の貯留タンクTs4内に形成される低濃度汚染水は、図11に示すように、ポンプPを用いて代替タンクTr1〜Tr4の少なくともいずれか、典型的には4番目の貯留タンクTs4に流入した浄化水又は低濃度汚染水を排出した代替タンク(図11では1番目の代替タンクTr1)に導入される。   As a result, the low concentration contaminated water formed in the fourth storage tank Ts4 is at least one of the alternative tanks Tr1 to Tr4, typically the fourth storage tank, as shown in FIG. It is introduced into an alternative tank (first alternative tank Tr1 in FIG. 11) from which purified water or low-concentration contaminated water that has flowed into Ts4 is discharged.

これにより、最後の貯留タンクTs4内に残留する放射性物質も希釈されて低濃度汚染水となり、この最後の貯留タンクTs4内の低濃度汚染水が排出されることにより、防護服を着用した作業員が解体作業を行うことができる。   Thereby, the radioactive substance remaining in the last storage tank Ts4 is also diluted to become low-concentration contaminated water, and the low-concentration contaminated water in the last storage tank Ts4 is discharged, so that the worker wearing protective clothing Can be dismantled.

なお、一度他の貯留タンクTs1〜Ts3に残留する放射性物質を希釈して形成された低濃度汚染水であっても、最後の貯留タンクTs4内に残留する放射性物質を希釈するには十分に放射性物質含有量が低いと考えられる。このため、この第4工程では、代替タンクTr2〜Tr4中の低濃度汚染水を貯留タンクTs4に流入してもよい。   Even if the low-concentration contaminated water is formed by diluting the radioactive substance remaining in the other storage tanks Ts1 to Ts3, the radioactive substance remaining in the final storage tank Ts4 is sufficiently radioactive. The substance content is considered low. For this reason, in this 4th process, you may flow the low concentration contaminated water in alternative tank Tr2-Tr4 into storage tank Ts4.

また、当該汚染水貯留タンクの除染処理方法において、貯留タンクTs1〜Ts4からの汚染水の排出は、先ず、ポンプPとして一般的なポンプを用いて貯留タンク内の汚染水が一定の水位となるまで汚染水の排出を行い続いて、ポンプPとして低水位ポンプを用いてさらに汚染水の排出を行うことが好ましい。上記一定水位までの汚染水の排出は、例えば貯留タンクの側面に配設されたノズル等を通して、ポンプPとして例えば遠心ポンプ等の比較的汎用かつ大容量のポンプを使用して行うことができる。   In the decontamination processing method for the contaminated water storage tank, the contaminated water is discharged from the storage tanks Ts1 to Ts4 by first using a general pump as the pump P so that the contaminated water in the storage tank has a certain level. It is preferable to discharge the contaminated water until it reaches the end, and then further discharge the contaminated water using a low water level pump as the pump P. The polluted water can be discharged up to the certain water level using, for example, a relatively general-purpose and large-capacity pump such as a centrifugal pump as the pump P through a nozzle or the like disposed on the side surface of the storage tank.

<利点>
当該汚染水貯留タンクの除染処理方法は、先に汚染水を排出したk−1番目の貯留タンクTs(k−1)に次のk番目の貯留タンクTskから排出した汚染水を浄化して得られる浄化水を流入することによって、先に汚染水を排出した貯留タンクTs(k−1)内に残留する放射性物質を希釈する。これにより、新たな水を使用して汚染水量を増加させることなく、比較的安価かつ容易に1番目からn−1番目の貯留タンクTs1〜Ts(n−1)の放射能レベルを低下させることができる。
<Advantages>
The decontamination method for the contaminated water storage tank purifies the contaminated water discharged from the next k-th storage tank Tsk into the k-1th storage tank Ts (k-1) from which the contaminated water was discharged first. By flowing in the purified water obtained, the radioactive material remaining in the storage tank Ts (k-1) from which the contaminated water has been discharged is diluted. Accordingly, the radioactivity level of the first to (n-1) th storage tanks Ts1 to Ts (n-1) can be reduced relatively easily and inexpensively without increasing the amount of contaminated water using new water. Can do.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.

当該汚染水貯留タンクの除染処理方法に使用する代替タンクは、貯留タンクに一対一に対応しなくてもよい。例えば複数の貯留タンクに対して1つの大きな代替タンクを対応させてもよい。また、第3工程で各貯留タンクから複数の代替タンクに振り分けて低濃度汚染水を移送することで、汚染レベルを均等化することもできる。また、代替タンクに導入した低濃度汚染水を逐次さらなる処理工程に供して、海洋等に放出できるまで最終処理する場合、代替タンクは貯留タンクと同等の大きさを有するもの1つでもよい。   The alternative tank used for the decontamination method for the contaminated water storage tank does not have to correspond one-to-one with the storage tank. For example, one large alternative tank may correspond to a plurality of storage tanks. In addition, it is possible to equalize the contamination level by transferring the low-concentration contaminated water from each storage tank to a plurality of alternative tanks in the third step. In addition, when the low-concentration contaminated water introduced into the alternative tank is sequentially subjected to further processing steps and finally processed until it can be released to the ocean or the like, the alternative tank may be one having the same size as the storage tank.

また、当該汚染水貯留タンクの除染処理方法において、第3工程は必須ではない。つまり、貯留タンクの汚染レベルを低下させるために第1工程で浄化水を受け入れる1基の代替タンクがあれば、複数の貯留タンク内の汚染水を希釈して低濃度汚染水とすることができる。その後、万が一、貯留タンクから漏出した場合にも人手によりピットから回収する等の対応が容易となり、放射能汚染拡大のリスクを低減できる。   In the decontamination processing method for the contaminated water storage tank, the third step is not essential. In other words, if there is one alternative tank that receives purified water in the first step in order to reduce the contamination level of the storage tank, the contaminated water in the plurality of storage tanks can be diluted into low-concentration contaminated water. . After that, in the unlikely event that it leaks from the storage tank, it becomes easy to manually recover from the pit, and the risk of expanding radioactive contamination can be reduced.

また、当該汚染水貯留タンクの除染処理方法において、第2工程と第3工程とは、並行して行ってもよい。具体例としては、図12に示すように、k番目の貯留タンクTskから汚染水を排出及び浄化し、k−1番目の貯留タンクTs(k−1)に流入する第2工程と同時に、k−2番目の貯留タンクTs(k−2)中の低濃度汚染水を代替タンクTr(k−1)に導入する第3工程を行うことができる。これによって、複数の貯留タンクの除染を迅速化できる。   Moreover, in the decontamination processing method for the contaminated water storage tank, the second step and the third step may be performed in parallel. As a specific example, as shown in FIG. 12, simultaneously with the second step of discharging and purifying contaminated water from the kth storage tank Tsk and flowing into the k−1th storage tank Ts (k−1), k A third step of introducing the low-concentration contaminated water in the second storage tank Ts (k-2) into the alternative tank Tr (k-1) can be performed. Thereby, decontamination of a plurality of storage tanks can be speeded up.

また、当該汚染水貯留タンクの除染処理方法において、第4工程を第3工程より先に行ってもよい。   In the decontamination processing method for the contaminated water storage tank, the fourth step may be performed prior to the third step.

また、当該汚染水貯留タンクの除染処理方法において、第4工程は必須ではない。例えば複数の貯留タンクの中に漏れが発生する可能性が小さい溶接型タンクがある場合、この溶接型タンクを希釈せず最後に残すことができる。また、多数の貯留タンクを除染処理する場合において、最後の貯留タンクに残留する汚染水だけ非汚染水で薄めても、汚染水の増加は大きくないものと評価できる。   In the decontamination method for the contaminated water storage tank, the fourth step is not essential. For example, when there is a weld type tank with a small possibility of occurrence of leakage in a plurality of storage tanks, this weld type tank can be left undiluted at the end. Further, when a large number of storage tanks are decontaminated, even if only the contaminated water remaining in the last storage tank is diluted with non-contaminated water, it can be evaluated that the increase in the contaminated water is not large.

また、第2工程において、先に汚染水を排出した貯留タンク内に残留する放射性物質を希釈するために流入される浄化水は、後の貯留タンクから排出及び浄化して得られる浄化水の一部であってもよい。つまり、第2工程において、放射性物質の希釈を必要最小限にとどめ、その余の浄化水を直接代替タンクに導入することで、先に汚染水を排出した貯留タンクへの浄化水の流入及びこの貯留タンクから代替タンクへの低濃度汚染水の導入の時間及びエネルギーコストを低減することができる。   Further, in the second step, the purified water that is introduced to dilute the radioactive material remaining in the storage tank from which the contaminated water has been discharged first is one of the purified water obtained by discharging and purifying from the subsequent storage tank. Part. In other words, in the second step, the radioactive material is diluted to the minimum necessary and the remaining purified water is directly introduced into the alternative tank, so that the purified water flows into the storage tank from which the contaminated water has been discharged and this The time and energy cost for introducing low-concentration contaminated water from the storage tank to the alternative tank can be reduced.

また、当該汚染水貯留タンクの除染処理方法において使用する代替タンクは、使用済みのタンクを再利用してもよく、既に汚染水等が貯留されているタンクの空き容量を使用してもよい。代替タンクとして使用済みタンクを用いる場合、貯留タンクの汚染水を浄化した浄化水又は貯留タンクの汚染水を希釈した低濃度汚染水の導入によって汚染レベルを十分低下させられる程度に内壁面に放射性汚染物質が付着又は底部に汚染水が残留しているものを使用してもよい。さらに、代替タンクが溶接型タンク等の漏えいの危険性が小さいタンクであれば、代替タンクに先に高濃度の汚染水が貯留されており、貯留タンクから浄化水又は低濃度汚染水を導入した後の汚染レベルが貯留タンクよりも高くなるものであってもよい。   Moreover, as for the alternative tank used in the decontamination processing method for the contaminated water storage tank, the used tank may be reused, or the free capacity of the tank in which the contaminated water is already stored may be used. . When a used tank is used as an alternative tank, radioactive contamination is caused on the inner wall to such an extent that the contamination level can be sufficiently reduced by introducing purified water purified from the contaminated water in the storage tank or low-concentration contaminated water diluted from the contaminated water in the storage tank. You may use the thing to which the substance adhered or the contaminated water remained in the bottom part. Furthermore, if the alternative tank is a tank with a low risk of leakage, such as a welded tank, high-concentration contaminated water is stored in the alternative tank, and purified water or low-concentration contaminated water is introduced from the storage tank. The later contamination level may be higher than the storage tank.

また、当該汚染水貯留タンクの除染処理方法において使用する汚染水浄化設備は、ブースターポンプや、クッションタンク及びこのクッションタンクから浄化水を送出するポンプ等の送出手段を有してもよい。   Moreover, the contaminated water purification equipment used in the decontamination processing method for the contaminated water storage tank may have a sending unit such as a booster pump, a cushion tank, and a pump for sending purified water from the cushion tank.

また、汚染水浄化設備は、上記実施形態のようにストロンチウムを選択的に吸着する吸着剤が充填された1又は複数の吸着塔を有するものが特に好ましいが、放射能レベルを十分に低下させられるものであればよく、放射性ストロンチウムを除去できるものが好ましい。   In addition, the contaminated water purification facility is particularly preferable to have one or a plurality of adsorption towers filled with an adsorbent that selectively adsorbs strontium as in the above embodiment, but the radioactivity level can be sufficiently reduced. Any material can be used as long as it can remove radioactive strontium.

また、汚染水浄化設備は、1又は複数の吸着塔のみを有するものであってもよい。   Moreover, the contaminated water purification equipment may have only one or a plurality of adsorption towers.

また、汚染水浄化設備の架台は、車輪を有せず、例えばフォークリフト、ユニック車等を用いて移動可能なものであってもよい。また、汚染水浄化設備は、架台を有せず、分解して搬送され、現場で組み立てられるものであってもよい。   Further, the frame of the contaminated water purification facility may have no wheels, and may be movable using, for example, a forklift or a unic car. Further, the contaminated water purification facility may be one that does not have a mount, is disassembled and transported, and is assembled on site.

当該汚染水貯留タンクの除染処理方法は、複数の放射能汚染水貯留タンクがある場合、これらの貯留タンクの除染を行うために広く適用可能であるが、特に事故原発に配設された複数の貯留タンクを処理するために好適に利用することができる。   The decontamination treatment method for the contaminated water storage tank is widely applicable to decontamination of these storage tanks when there are multiple radioactively contaminated water storage tanks, but is particularly arranged at the accident nuclear power plant. It can utilize suitably in order to process a plurality of storage tanks.

1 架台
2 フィルター
3 吸着塔
P ポンプ
S1 第1工程
S2 第2工程
S3 第3工程
S4 第4工程
Tr1〜Tr4 代替タンク
Ts1〜Ts4 貯留タンク
U 汚染水浄化設備
1 stand 2 filter 3 adsorption tower P pump S1 1st process S2 2nd process S3 3rd process S4 4th process Tr1-Tr4 alternative tank Ts1-Ts4 storage tank U contaminated water purification equipment

Claims (7)

放射性物質を含む汚染水が貯留されたn基(nは2以上)の貯留タンクの除染処理方法であって、
1番目の貯留タンクから汚染水を排出及び浄化し、代替タンクに導入する第1工程と、
k番目の貯留タンクから汚染水を排出及び浄化し、k−1番目の貯留タンクに流入する第2工程と
を備え、
上記第2工程をkが2からnまで繰り返し行うことを特徴とする汚染水貯留タンクの除染処理方法。
A decontamination method for n storage tanks (n is 2 or more) in which contaminated water containing radioactive substances is stored,
A first step of discharging and purifying the contaminated water from the first storage tank and introducing it into an alternative tank;
a second step of discharging and purifying the contaminated water from the kth storage tank and flowing into the k-1th storage tank,
A decontamination treatment method for a contaminated water storage tank, wherein the second step is repeated from k to 2 to n.
上記第2工程後における貯留タンク中の低濃度汚染水を代替タンクに導入する第3工程をさらに備える請求項1に記載の汚染水貯留タンクの除染処理方法。   The decontamination processing method for a contaminated water storage tank according to claim 1, further comprising a third step of introducing the low-concentration contaminated water in the storage tank after the second step into the alternative tank. 上記第2工程後における貯留タンク中の低濃度汚染水又は上記代替タンク中の水を第2工程後のn番目の貯留タンクに流入し、希釈後の低濃度汚染水を上記代替タンクに導入する第4工程をさらに備える請求項1又は請求項2に記載の汚染水貯留タンクの除染処理方法。   The low concentration contaminated water in the storage tank after the second step or the water in the alternative tank flows into the nth storage tank after the second step, and the diluted low concentration contaminated water is introduced into the alternative tank. The decontamination processing method for a contaminated water storage tank according to claim 1 or 2, further comprising a fourth step. 上記汚染水の排出をポンプにより行い、所定の水位からは低水位ポンプにより行う請求項1、請求項2又は請求項3に記載の汚染水貯留タンクの除染処理方法。   The method for decontamination of a contaminated water storage tank according to claim 1, wherein the contaminated water is discharged by a pump, and from a predetermined water level by a low water level pump. 上記貯留タンクが複数の部材をボルト締めにより締結したものであり、上記代替タンクが複数の部材を溶接により接合したものである請求項1から請求項4のいずれか1項に記載の汚染水貯留タンクの除染処理方法。   The contaminated water storage according to any one of claims 1 to 4, wherein the storage tank has a plurality of members fastened by bolting, and the alternative tank has a plurality of members joined by welding. Decontamination method for tanks. 上記浄化に、移動可能な架台に搭載され、ストロンチウムを選択的に吸着する吸着剤が充填された1又は複数の吸着塔を用いる請求項1から請求項5のいずれか1項に記載の汚染水貯留タンクの除染処理方法。   The contaminated water according to any one of claims 1 to 5, wherein the purification uses one or more adsorption towers mounted on a movable frame and filled with an adsorbent that selectively adsorbs strontium. Decontamination method for storage tanks. 上記貯留タンクへの浄化水の流入が、貯留タンク内で乱流を生じるように行われる請求項1から請求項6のいずれか1項に記載の汚染水貯留タンクの除染処理方法。   The method for decontamination treatment of a contaminated water storage tank according to any one of claims 1 to 6, wherein the purified water flows into the storage tank so that turbulent flow is generated in the storage tank.
JP2014256237A 2014-12-18 2014-12-18 Decontamination method for contaminated water storage tank Active JP6367700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014256237A JP6367700B2 (en) 2014-12-18 2014-12-18 Decontamination method for contaminated water storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014256237A JP6367700B2 (en) 2014-12-18 2014-12-18 Decontamination method for contaminated water storage tank

Publications (2)

Publication Number Publication Date
JP2016118398A true JP2016118398A (en) 2016-06-30
JP6367700B2 JP6367700B2 (en) 2018-08-01

Family

ID=56242324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014256237A Active JP6367700B2 (en) 2014-12-18 2014-12-18 Decontamination method for contaminated water storage tank

Country Status (1)

Country Link
JP (1) JP6367700B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191080A (en) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 Decontamination treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282295A (en) * 1997-04-07 1998-10-23 Ing:Kk Method and device for cleaning storage tank
US20130098483A1 (en) * 2010-07-01 2013-04-25 Taihei Dengyo Kaisha, Ltd. Residual radioactive sludge liquid suction apparatus
JP2014104420A (en) * 2012-11-27 2014-06-09 Toshiba Corp Dehydrating concentration method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282295A (en) * 1997-04-07 1998-10-23 Ing:Kk Method and device for cleaning storage tank
US20130098483A1 (en) * 2010-07-01 2013-04-25 Taihei Dengyo Kaisha, Ltd. Residual radioactive sludge liquid suction apparatus
JP2014104420A (en) * 2012-11-27 2014-06-09 Toshiba Corp Dehydrating concentration method and apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"福島第一原子力発電所 モバイル型ストロンチウム除去装置の運転開始について", [ONLINE], vol. p.1-3, JPN6017023189, 2 October 2014 (2014-10-02), JP, ISSN: 0003711368 *
"福島第一原子力発電所の汚染水の状況と対策について", [ONLINE], JPN6017023187, 2 December 2014 (2014-12-02), JP, pages 1 - 62, ISSN: 0003711367 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191080A (en) * 2016-04-15 2017-10-19 株式会社神戸製鋼所 Decontamination treatment method

Also Published As

Publication number Publication date
JP6367700B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6446428B2 (en) Apparatus and method for removing radionuclides in liquids
JP6367700B2 (en) Decontamination method for contaminated water storage tank
JP6616585B2 (en) System, mobile device and method for reducing the deposition of contaminants
JP2008309703A (en) Nuclear reactor removal method
EP3491652B1 (en) Tank closure cesium removal
US20150041378A1 (en) Device for purifying a water sink
JP2014052244A (en) Nuclear reactor removal method
JP2006313134A (en) Drum conceal type ion-exchange resin column
JP6266466B2 (en) Debris reduction system in reactor safety system
KR101726974B1 (en) A after applying the Passive cooling storage facility of light water reactor spent nuclear fuel container
JP2012242092A (en) Processing method of radioactive cesium containing contaminated water
JP2016133362A (en) Decontamination method for radioactive contaminated water storage tank and decontamination system for radioactive decontaminated water storage tank
JP6466766B2 (en) Decontamination evaluation method
JP6427012B2 (en) Tank decontamination method
KR20040013784A (en) Chemical decontamination device for contaminated equipment by radioactive substance
JP6284864B2 (en) Contaminated water treatment method and contaminated water treatment system
JP6434318B2 (en) Tank decontamination method
JP6577406B2 (en) Decontamination method
JP5579781B2 (en) High-dose radionuclide waste liquid treatment equipment
KR20050010734A (en) Chemical decontamination device for contaminated equipment by radioactive substance
JP6452038B2 (en) Groundwater purification system and groundwater purification method
JP2014052251A (en) Water treatment method for pressure suppression chamber pool water
JP2015059884A (en) Emergency exhaust system
WO2016056538A1 (en) Recombination device
DE2622670A1 (en) DEVICE FOR TRANSPORTING RADIOACTIVE MEDIA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6367700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150