JP2016117946A - Environmentally friendly gold electroplating compositions and methods - Google Patents

Environmentally friendly gold electroplating compositions and methods Download PDF

Info

Publication number
JP2016117946A
JP2016117946A JP2015224497A JP2015224497A JP2016117946A JP 2016117946 A JP2016117946 A JP 2016117946A JP 2015224497 A JP2015224497 A JP 2015224497A JP 2015224497 A JP2015224497 A JP 2015224497A JP 2016117946 A JP2016117946 A JP 2016117946A
Authority
JP
Japan
Prior art keywords
gold
electroplating
antimony
cyanide
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015224497A
Other languages
Japanese (ja)
Other versions
JP6073450B2 (en
Inventor
アドルフ・フォイェット
Adolphe Foyet
マルギト・クラウス
Margit Clauss
レト・ブフス
Buchs Reto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials LLC
Publication of JP2016117946A publication Critical patent/JP2016117946A/en
Application granted granted Critical
Publication of JP6073450B2 publication Critical patent/JP6073450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/62Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/005Jewels; Clockworks; Coins

Abstract

PROBLEM TO BE SOLVED: To provide pure gold electroplating solutions substantially free of environmentally toxic substances such as lead and free cyanide.SOLUTION: A gold electroplating composition free of free cyanide comprises gold cyanide, a phosphate ion, a phosphonic acid ion, sodium potassium tartrate, and trivalent antimony. The phosphonic acid ion is a compound represented by formula (I).SELECTED DRAWING: None

Description

本発明は、環境に優しい金電気めっき組成物及び方法を対象とする。より具体的には、本発明は、広い電流密度範囲にわたって軟質金を電気めっきして、ジェット及びパルス電流めっき条件下でさえも光沢軟質金堆積物を提供し得る、環境に優しい金電気めっき組成物及び方法を対象とする。   The present invention is directed to environmentally friendly gold electroplating compositions and methods. More specifically, the present invention provides an environmentally friendly gold electroplating composition that can electroplate soft gold over a wide current density range to provide a bright soft gold deposit even under jet and pulse current plating conditions. Intended for objects and methods.

電解金は、典型的には、コネクタ及び電子機器の仕上げにおいて、これらの特定の使用に対する金の並外れた性能が理由で使用される。金は、その耐食特性、導電性、及び熱安定性が理由で、電子部品のための最も信頼性の高い材料のうちの1つである。実質的に純粋の金は、一般的に、いくつかの添加剤及び金属光沢剤を含有するシアン電解めっき浴から電気めっきされる。ヒドラジンなどのそれらの添加剤の一部は、有毒であり、現在では、多くの国家及び国際規定により規制されている。大半の市販の純金浴は、遊離シアン、ならびに環境にとって有害であることが知られているヒ素、タリウム、及び鉛などの1つ以上の結晶粒微細化剤を含有するため、そのような金めっき浴由来の廃棄物の処理は、分離されなければならず、また、この産業にとっては、時間がかかり、かつ高価である。加えて、そのような金電気めっき浴は、浴を使用する労働者に過度な危険をもたらす。   Electrolytic gold is typically used in the finishing of connectors and electronics because of the extraordinary performance of gold for these specific uses. Gold is one of the most reliable materials for electronic components because of its corrosion resistance, electrical conductivity, and thermal stability. Substantially pure gold is typically electroplated from a cyan electroplating bath containing several additives and a metallic brightener. Some of those additives, such as hydrazine, are toxic and are now regulated by many national and international regulations. Most commercial pure gold baths contain free cyanide and one or more grain refiners such as arsenic, thallium, and lead that are known to be harmful to the environment, so such gold plating The treatment of waste from the bath must be separated and is time consuming and expensive for the industry. In addition, such gold electroplating baths pose excessive danger to workers using the baths.

Morrisseyに対する米国特許第5,277,790号は、金が可溶性の亜硫酸塩錯体として提供される、シアンを含まない金電気めっき浴を開示する。この金電気めっき浴は、シアンを含まないが、高温度で二酸化硫黄を不必要に生成する。二酸化硫黄は、刺激臭のある有毒ガスである。この問題を解決するために、さらに多くの亜硫酸塩をめっき溶液に添加する。加えて、金は、0近く〜30mA/cmの比較的低いめっき速度でめっきされる。したがって、環境に優しく、かつ広い電流密度範囲にわたってめっきすることのできる、改善された金電気めっき浴が必要とされている。 US Pat. No. 5,277,790 to Morrissey discloses a cyan-free gold electroplating bath in which gold is provided as a soluble sulfite complex. This gold electroplating bath does not contain cyan, but unnecessarily produces sulfur dioxide at high temperatures. Sulfur dioxide is a toxic gas with an irritating odor. To solve this problem, more sulfite is added to the plating solution. In addition, gold is plated with a relatively low plating rate near zero ~30mA / cm 2. Therefore, there is a need for an improved gold electroplating bath that is environmentally friendly and can be plated over a wide current density range.

シアン化金塩由来の1つ以上の金イオン源、1つ以上のリン酸イオン源、1つ以上のホスホン酸源またはその塩、酒石酸ナトリウムカリウム、及び1つ以上のアンチモン(III)イオン源を含む金電気めっき組成物であって、実質的に遊離シアンを含まない、金電気めっき組成物。   One or more gold ion sources derived from a gold cyanide salt, one or more phosphate ion sources, one or more phosphonic acid sources or salts thereof, potassium sodium tartrate, and one or more antimony (III) ion sources A gold electroplating composition comprising: a gold electroplating composition substantially free of free cyanide.

金を電気めっきする方法は、シアン化金塩由来の1つ以上の金イオン源、1つ以上のリン酸イオン源、1つ以上のホスホン酸源またはその塩、酒石酸ナトリウムカリウム、及び1つ以上のアンチモン(III)イオン源を含む金電気めっき組成物であって、遊離シアンを実質的に含まない、金電気めっき組成物を提供することと、基材を本金電気めっき組成物と接触させることと、0.03ASD以上の電流密度で直流またはパルス電流を使用して基材上に金を電気めっきすることと、を含む。   The method of electroplating gold includes one or more gold ion sources derived from a gold cyanide salt, one or more phosphate ion sources, one or more phosphonic acid sources or salts thereof, potassium sodium tartrate, and one or more A gold electroplating composition comprising a source of antimony (III) ions substantially free of cyanide and contacting the substrate with the gold electroplating composition And electroplating gold onto the substrate using direct current or pulsed current at a current density of 0.03 ASD or higher.

本金電気めっき組成物は、環境に優しく、高速ジェットめっき条件下を含め、広い電流密度範囲にわたって光沢軟質金堆積物をめっきし得る。本軟質金堆積物はまた、微粒子構造を有する。本電気めっき金組成物は電子部品に金ストライク層をめっきするために使用され得、コネクタ用の接点、及びスイッチまたはプリント回路基板上の金層の形成において軟質金層を電気めっきするために使用され得る。本金電気めっき組成物はまた、装飾物品に軟質金層を堆積させるために使用され得る。本金堆積物はまた、微粒子構造を有する。小粒径は、薄膜内の多孔を減少させる。堆積物の光度もまた、この小粒径の直接的な結果である。一般的に、マットまたは半光沢堆積物の粗度は、滑らかな光沢堆積物と比較して高い。   The gold electroplating composition is environmentally friendly and can plate bright soft gold deposits over a wide current density range, including high speed jet plating conditions. The soft gold deposit also has a particulate structure. The electroplated gold composition can be used to plate a gold strike layer on electronic components, and is used to electroplate a soft gold layer in the formation of contacts for connectors and gold layers on switches or printed circuit boards. Can be done. The gold electroplating composition can also be used to deposit a soft gold layer on a decorative article. The gold deposit also has a particulate structure. Small particle size reduces porosity within the thin film. The luminous intensity of the deposit is also a direct result of this small particle size. In general, the roughness of a matte or semi-gloss deposit is high compared to a smooth gloss deposit.

アンチモン(III)イオンを含有する金電気めっき組成物で電気めっきされた軟質金堆積物の微細構造を示す、倍率20,000でのSEMである。1 is a SEM at a magnification of 20,000 showing the microstructure of a soft gold deposit electroplated with a gold electroplating composition containing antimony (III) ions. 結晶粒微細化剤として鉛を含有する従来の金電気めっき浴で電気めっきされた金堆積物の微細構造を示す、倍率20,000でのSEMである。1 is a SEM at a magnification of 20,000 showing the microstructure of a gold deposit electroplated with a conventional gold electroplating bath containing lead as a grain refiner.

本明細書を通して使用されるとき、以下の略語は、文脈により別途明確に示されない限り、以下の意味を有するものとする:℃=セ氏温度、g=グラム、mg=ミリグラム、L=リットル、mL=ミリリットル、cm=センチメートル、mm=ミリメートル、μm=ミクロン=ミクロメートル、ppb=10億分の1、ms=ミリ秒、DC=直流、ASD=アンペア/デシメートル四方=A/dm、及びASTM=米国標準試験法。 As used throughout this specification, the following abbreviations shall have the following meanings unless the context clearly indicates otherwise: ° C = Celsius temperature, g = grams, mg = milligrams, L = liters, mL = Milliliter, cm = centimeter, mm = millimeter, μm = micron = micrometer, ppb = parts per billion, ms = millisecond, DC = direct current, ASD = ampere / decimeter square = A / dm 2 , and ASTM = US standard test method.

「電気めっき」及び「めっき」という用語は、本明細書を通して互換的に使用される。「組成物」、「溶液」、「浴」という用語は、本明細書を通して互換的に使用される。「a(1つの)」及び「an(1つの)」という用語は、単数及び複数の両方を指す。   The terms “electroplating” and “plating” are used interchangeably throughout this specification. The terms “composition”, “solution”, “bath” are used interchangeably throughout this specification. The terms “a” and “an” refer to both singular and plural.

全てのパーセンテージは、別途記載のない限り、重量%である。全ての数値範囲は、そのような数値範囲が合計100%となることが制約されることが論理的である場合を除き、包括的であり、任意の順で組み合わせ可能である。   All percentages are by weight unless otherwise stated. All numerical ranges are inclusive and combinable in any order, except where it is logical that such numerical ranges are constrained to add up to 100%.

組成物は、シアン化金カリウム、シアン化金ナトリウム、及びシアン化金アンモニウムなどのアルカリシアン化金化合物などの1つ以上のシアン化金塩由来の金イオンを含む。好ましくは、アルカリシアン化金化合物は、シアン化金カリウムである。金イオンはシアン化金塩によって提供されるが、遊離シアンリガンドを提供し得る金塩を除く、シアンアルカリ金属塩または任意の塩などの金電気めっき組成物に遊離シアンは添加されない。   The composition comprises one or more gold cyanide derived gold ions, such as an alkaline gold cyanide compound such as potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide. Preferably, the alkali gold cyanide compound is potassium gold cyanide. Gold ions are provided by a gold cyanide salt, but no free cyanide is added to the gold electroplating composition, such as a cyanogen alkali metal salt or any salt, except gold salts that can provide a free cyan ligand.

シアン化金塩に加え、追加の金イオンが、チオ硫酸化三ナトリウム金及びチオ硫酸化三カリウム金などのチオ硫酸化アルカリ金化合物、塩化金などのハロゲン化金、テトラクロロ金酸水素、ならびに三塩化金によって提供され得る。好ましくは、金イオンは、シアン化金塩からのみ提供される。そのような金化合物は、一般的に、様々な供給業者より市販されているか、または当該技術分野において周知の方法によって調製され得る。   In addition to the gold cyanide salt, additional gold ions include thiosulfated alkali gold compounds such as trisodium thiosulfate gold and tripotassium gold thiosulfate, gold halides such as gold chloride, hydrogen tetrachloroaurate, and May be provided by gold trichloride. Preferably, gold ions are provided only from a gold cyanide salt. Such gold compounds are generally commercially available from various suppliers or can be prepared by methods well known in the art.

本組成物に添加された金塩の量は、所望の濃度で金イオンを提供する量である。一般に、金イオンは、4g/L〜20g/L、好ましくは、8g/L〜20g/L、より好ましくは、15g/L〜20g/Lの量である。電気めっき組成物中の金イオンの量は、ジェット、ラック、またはバレルめっきなどのめっきの種類に依存する。   The amount of gold salt added to the composition is that amount that provides gold ions at the desired concentration. In general, gold ions are in an amount of 4 g / L to 20 g / L, preferably 8 g / L to 20 g / L, more preferably 15 g / L to 20 g / L. The amount of gold ions in the electroplating composition depends on the type of plating such as jet, rack, or barrel plating.

伝導性無機酸及びその塩が、本金電気めっき組成物内に含まれる。そのような伝導性酸は、リン酸、硫酸、及び塩酸、ならびにそれらの塩を含むが、それらに限定されない。好ましくは、伝導性無機酸及びその塩は、リン酸、及びリン酸二水素カリウム、リン酸二水素ナトリウム、リン酸カリウム、リン酸ナトリウム、ならびにそれらの混合物から選択される。好ましくは、リン酸は、リン酸カリウムを使用するときに添加される。   Conductive inorganic acids and salts thereof are included in the gold electroplating composition. Such conductive acids include, but are not limited to, phosphoric acid, sulfuric acid, and hydrochloric acid, and salts thereof. Preferably, the conductive inorganic acid and its salt are selected from phosphoric acid and potassium dihydrogen phosphate, sodium dihydrogen phosphate, potassium phosphate, sodium phosphate, and mixtures thereof. Preferably, phosphoric acid is added when using potassium phosphate.

アルカリ化合物もまた、本組成物のpHを5〜6.8、好ましくは、5.8〜6.7、より好ましくは、6〜6.3の所望のレベルに維持するために添加され得る。そのようなアルカリ化合物は、水酸化物、炭酸塩、ならびにナトリウム、カリウム、及びマグネシウムの他の塩を含むが、それらに限定されない。例えば、NaOH、KOH、KCO、NaCO、NaHCO、及びそれらの混合物は、好適なアルカリ化合物である。典型的には、アルカリ材料は、1g/L〜100g/Lの量で含まれる。 Alkaline compounds can also be added to maintain the pH of the composition at the desired level of 5 to 6.8, preferably 5.8 to 6.7, more preferably 6 to 6.3. Such alkaline compounds include, but are not limited to hydroxides, carbonates, and other salts of sodium, potassium, and magnesium. For example, NaOH, KOH, K 2 CO 3 , Na 2 CO 3 , NaHCO 3 , and mixtures thereof are suitable alkaline compounds. Typically, the alkaline material is included in an amount of 1 g / L to 100 g / L.

有機リン化合物は、金イオンのためのキレート剤として本金電気めっき組成物内に含まれる。それらは、脱プロトン化して、金電気めっき組成物のpH範囲内で金イオンとキレート化し、これらの化合物のキレート能力は、シアン化カリウムまたはシアン化ナトリウム由来の遊離シアンが添加されず、金組成物を安定化するように、十分に良好である。   An organophosphorus compound is included in the gold electroplating composition as a chelating agent for gold ions. They are deprotonated and chelated with gold ions within the pH range of the gold electroplating composition, the chelating ability of these compounds is that no free cyanide from potassium cyanide or sodium cyanide is added and the gold composition is It is good enough to stabilize.

本有機リン化合物は、以下の式を有するそれらの化合物を含み、   The organophosphorus compounds include those compounds having the formula:

式中、nは2〜3の整数であり(2と3を含む)、M及びMは、同一または異なってもよく、水素、アンモニウム、1〜9個の炭素原子、好ましくは、1〜5個の炭素原子を有する低級アルキルアミン、またはナトリウム、カリウム、リチウムなどのアルカリ金属陽イオンから選択され、好ましくは、アルカリ金属陽イオンはカリウムもしくはナトリウムであり、Zは、価数がnと等しいラジカルであり、直鎖もしくは分岐鎖の置換もしくは非置換(C−C12)アルキル、またはN−置換(C−C)アルキルであり、Zラジカルは、式(I)のリン原子に結合した炭素原子を有する。好ましくは、Zは、置換基がヒドロキシルである、直鎖または分岐鎖の置換または非置換(C−C)アルキルである。そのような化合物は、5g/l〜200g/L、好ましくは、20g/L〜150g/L、より好ましくは、50g/l〜120g/Lの量で含まれる。 Where n is an integer from 2 to 3 (including 2 and 3), M 1 and M 2 may be the same or different and are hydrogen, ammonium, 1 to 9 carbon atoms, preferably 1 Selected from lower alkyl amines having ˜5 carbon atoms, or alkali metal cations such as sodium, potassium, lithium, etc., preferably the alkali metal cation is potassium or sodium, Z is a valence of n and Are equal radicals, straight or branched chain substituted or unsubstituted (C 1 -C 12 ) alkyl, or N-substituted (C 2 -C 3 ) alkyl, and the Z radical is a phosphorus atom of formula (I) Has a carbon atom bonded to. Preferably Z is a linear or branched substituted or unsubstituted (C 1 -C 4 ) alkyl, wherein the substituent is hydroxyl. Such compounds are included in amounts of 5 g / l to 200 g / L, preferably 20 g / L to 150 g / L, more preferably 50 g / l to 120 g / L.

上の一般式内に入る化合物群は、アミノトリ(低級アルキリデンホスホン酸)を含む。そのような化合物の例としては、アミノトリ(メチレンホスホン酸)、アミノトリ(エチリデンホスホン酸)、アミノトリ(イソプロピリデンホスホン酸)、アミノジ(メチレンホスホン酸)モノ(エチリデンホスホン酸)、アミノジ(メチレンホスホン酸)モノ(イソプロピリデンホスホン酸)、アミノモノ(メチレンホスホン酸)ジ(エチリデンホスホン酸)、及びアミノモノ(メチレンホスホン酸)ジイソプロピリデンホスホン酸が挙げられる。   A group of compounds falling within the general formula above includes aminotris (lower alkylidene phosphonic acids). Examples of such compounds include aminotri (methylenephosphonic acid), aminotri (ethylidenephosphonic acid), aminotri (isopropylidenephosphonic acid), aminodi (methylenephosphonic acid) mono (ethylidenephosphonic acid), aminodi (methylenephosphonic acid) Mono (isopropylidenephosphonic acid), aminomono (methylenephosphonic acid) di (ethylidenephosphonic acid), and aminomono (methylenephosphonic acid) diisopropylidenephosphonic acid.

上の式の範囲内の低級アルキリデンジホスホン酸化合物は、メチレンジホスホン酸、エチリデンジホスホン酸、イソプロピレンジホスホン酸、イソプロピリデンジホスホン酸、1−ヒドロキシエチリデンジホスホン酸、1−ヒドロキシプロピリデンジホスホン酸、ブチリデンジホスホン酸である。   Lower alkylidene diphosphonic acid compounds within the above formula are methylene diphosphonic acid, ethylidene diphosphonic acid, isopropylene diphosphonic acid, isopropylidene diphosphonic acid, 1-hydroxyethylidene diphosphonic acid, 1-hydroxypropylidenedi Phosphonic acid and butylidene diphosphonic acid.

特に好ましい有機リン化合物は、テトラカリウム1−ヒドロキシエチリデンジホスホネート、テトラナトリウム1−ヒドロキシエチリデンジホスホネート、及びヒドロキシエチレン−1,1−ジホスホン酸である。   Particularly preferred organophosphorus compounds are tetrapotassium 1-hydroxyethylidene diphosphonate, tetrasodium 1-hydroxyethylidene diphosphonate, and hydroxyethylene-1,1-diphosphonic acid.

アンチモン(III)イオンは、酒石酸ナトリウムカリウムと組み合わせて酒石酸カリウムアンチモンとして含まれる。アンチモン(III)イオンは、塩化アンチモンまたは硫酸アンチモンとして添加され得るが、アンチモン(III)は、好ましくは、酒石酸アンチモンとして添加される。アンチモン(III)の塩は、1mg/L〜20mg/L、好ましくは、5mg/L〜15mg/Lのアンチモン(III)イオンを提供する量で、本金電気めっき組成物に添加される。酒石酸ナトリウムカリウムは、10g/l〜50g/L、好ましくは、15g/l〜35g/Lの量で本金電気めっき組成物に添加される。追加の酒石酸は、酒石酸(tartaric acid)、酒石酸カリウム、または他の水溶性酒石酸塩及び化合物として、酒石酸ナトリウムカリウムについて指定された量で本金電気めっき組成物に添加され得るが、最も好ましい酒石酸源は、アンチモン(III)イオンが酸化してアンチモン(V)イオンになるのを防ぐための酒石酸ナトリウムカリウムである。理論に拘束されないが、アンチモン(III)イオンの存在は、ジェットめっき条件下でさえも光沢金堆積物を提供し得る。加えて、アンチモンは、軟質金堆積物を提供し得る。   Antimony (III) ions are included as potassium antimony tartrate in combination with potassium sodium tartrate. Antimony (III) ions can be added as antimony chloride or antimony sulfate, but antimony (III) is preferably added as antimony tartrate. The salt of antimony (III) is added to the gold electroplating composition in an amount that provides 1 mg / L to 20 mg / L, preferably 5 mg / L to 15 mg / L of antimony (III) ions. Sodium potassium tartrate is added to the gold electroplating composition in an amount of 10 g / l to 50 g / L, preferably 15 g / l to 35 g / L. Additional tartaric acid can be added to the gold electroplating composition in the amounts specified for sodium potassium tartrate as tartaric acid, potassium tartrate, or other water soluble tartrate salts and compounds, although the most preferred tartaric acid source Is sodium potassium tartrate for preventing antimony (III) ions from oxidizing to antimony (V) ions. Without being bound by theory, the presence of antimony (III) ions can provide bright gold deposits even under jet plating conditions. In addition, antimony can provide a soft gold deposit.

任意に、本金めっき組成物は、クエン酸、リンゴ酸、シュウ酸、ギ酸、もしくはポリエチレンアミノ酢酸などの1つ以上の有機酸、またはリン酸などの無機酸を含み得る。そのような酸は、本組成物のpHを所望の範囲に維持するのを助ける。典型的には、酸は、1g/L〜200g/Lの量で含まれる。   Optionally, the gold plating composition may include one or more organic acids such as citric acid, malic acid, oxalic acid, formic acid, or polyethyleneaminoacetic acid, or an inorganic acid such as phosphoric acid. Such acids help maintain the pH of the composition in the desired range. Typically, the acid is included in an amount of 1 g / L to 200 g / L.

任意に、幅広い種類の追加の金キレートまたは錯化剤が本組成物内に含まれ得る。好適な金錯化剤としては、チオ硫酸、チオ硫酸ナトリウム、チオ硫酸カリウム、ソルビン酸カリウム、及びチオ硫酸アンモニウムなどのチオ硫酸塩、エチレンジアミンテトラ酢酸及びその塩、イミノ二酢酸、ならびにニトリロ三酢酸が挙げられるが、これらに限定されない。   Optionally, a wide variety of additional gold chelates or complexing agents can be included in the composition. Suitable gold complexing agents include thiosulfates such as thiosulfuric acid, sodium thiosulfate, potassium thiosulfate, potassium sorbate, and ammonium thiosulfate, ethylenediaminetetraacetic acid and its salts, iminodiacetic acid, and nitrilotriacetic acid. However, it is not limited to these.

1つ以上の追加のキレートまたは錯化剤は、慣習的な量、または1g/L〜100g/Lの量など、または10g/L〜50g/Lなどで添加され得る。1つ以上の錯化剤は、一般的に市販されているか、または当該技術分野において周知の方法により調製され得る。   One or more additional chelates or complexing agents may be added in conventional amounts, such as in amounts of 1 g / L to 100 g / L, or in amounts of 10 g / L to 50 g / L. One or more complexing agents are generally commercially available or can be prepared by methods well known in the art.

本組成物はまた、1つ以上の界面活性剤も含み得る。任意の好適な界面活性剤が本組成物内に使用され得る。そのような界面活性剤は、アルコキシアルキル硫酸(アルキルエーテル硫酸)、及びアルコキシアルキルリン酸(アルキルエーテルリン酸)を含むが、これらに限定されない。アルキル及びアルコキシ基は、典型的には、10〜20個の炭素原子を含有する。そのような界面活性剤の例は、ラウリル硫酸ナトリウム、カプリル硫酸ナトリウム、ミリスチル硫酸ナトリウム、C12−C18直鎖アルコールのエーテル硫酸ナトリウム、ラウリルエーテルリン酸ナトリウム、及び対応するカリウム塩である。 The composition may also include one or more surfactants. Any suitable surfactant can be used in the composition. Such surfactants include, but are not limited to, alkoxyalkyl sulfuric acid (alkyl ether sulfuric acid) and alkoxyalkyl phosphoric acid (alkyl ether phosphoric acid). Alkyl and alkoxy groups typically contain from 10 to 20 carbon atoms. Examples of such surfactants are sodium lauryl sulfate, sodium capryl sulfate, sodium myristyl sulfate, sodium ether sulfate of C 12 -C 18 linear alcohols, sodium lauryl ether phosphate, and the corresponding potassium salts.

使用され得る他の好適な界面活性剤は、N−オキシド界面活性剤を含むが、これに限定されない。そのようなN−オキシド界面活性剤は、ココジメチルアミンN−オキシド、ラウリルジメチルアミンN−オキシド、オレイルジメチルアミンN−オキシド、ドデシルジメチルアミンN−オキシド、オクチルジメチルアミンN−オキシド、ビス−(ヒドロキシエチル)イソデシルオキシプロピルアミンN−オキシド、デシルジメチルアミンN−オキシド、コカミドプロピルジメチルアミンN−オキシド、ビス(ヒドロキシエチル)C12−C15アルコキシプロピルアミンN−オキシド、ラウラミンN−オキシド、ラウラミ−ドプロピルジメチルアミンN−オキシド、C14−C16アルキルジメチルアミンN−オキシド、N、N−ジメチル(水素化タローアルキル)アミンN−オキシド、イソステアルアミドプロピルモルホリンN−オキシド、及びイソステアルアミドプロピルピリジンN−オキシドを含むが、これらに限定されない。 Other suitable surfactants that can be used include, but are not limited to, N-oxide surfactants. Such N-oxide surfactants include cocodimethylamine N-oxide, lauryldimethylamine N-oxide, oleyldimethylamine N-oxide, dodecyldimethylamine N-oxide, octyldimethylamine N-oxide, bis- (hydroxy Ethyl) isodecyloxypropylamine N-oxide, decyldimethylamine N-oxide, cocamidopropyldimethylamine N-oxide, bis (hydroxyethyl) C 12 -C 15 alkoxypropylamine N-oxide, lauramine N-oxide, laurami - de propyldimethylamine N- oxide, C 14 -C 16 alkyldimethylamine N- oxides, N, N- dimethyl (hydrogenated tallow alkyl) amine N- oxides, isostearamide propyl morpholine N- Oki De, and including isostearamide propyl pyridine N- oxides thereof.

他の好適な界面活性剤は、ベタイン、及びエチレンオキシド/プロピレンオキシド(EO/PO)化合物などのアルコキシレートを含むが、これらに限定されない。そのような界面活性剤は、当該技術分野において周知である。   Other suitable surfactants include, but are not limited to, betaines and alkoxylates such as ethylene oxide / propylene oxide (EO / PO) compounds. Such surfactants are well known in the art.

界面活性剤の多くは、市販により入手され得るか、または文献内に記載される方法によって作製され得る。典型的には、界面活性剤は、0.1g/L〜20g/Lの量で本組成物内に含まれる。   Many of the surfactants can be obtained commercially or can be made by methods described in the literature. Typically, the surfactant is included in the composition in an amount of 0.1 g / L to 20 g / L.

本組成物の構成成分は、当該技術分野において周知の任意の好適な方法によって化合され得る。典型的には、本構成成分は、任意の順序で混合され、本組成物は、十分な水を添加することによって所望の容量にされる。特定の組成物構成成分を可溶化するためには、いくらかの加熱が必要とされ得る。本金電気めっき組成物は、ヒ素、鉛、タリウム、ヒドラジン、及び亜硫酸塩を実質的に含まない。一般に、実質的に含まないとは、金属、ヒドラジン、及び亜硫酸塩が、大半の従来の分析装置で容易に検出可能でないか、検出可能である場合は、それらが100ppb以下のレベルであることを意味する。   The components of the composition can be combined by any suitable method known in the art. Typically, the components are mixed in any order and the composition is brought to the desired volume by adding sufficient water. Some heating may be required to solubilize certain composition components. The gold electroplating composition is substantially free of arsenic, lead, thallium, hydrazine, and sulfite. In general, substantially free means that metals, hydrazine, and sulfites are not readily detectable with most conventional analyzers, or if they are detectable, they are at a level of 100 ppb or less. means.

一般に、電流密度は、DCまたはパルスめっきを使用して、0.03ASD〜それ以上の範囲に及び得る。バレルめっき適用の場合、電流密度は、DC電流を使用して、0.05ASD〜2.5ASDであり得る。金イオン濃度は、好ましくは、4g/L〜8g/Lの範囲に及ぶ。ラックめっき適用の場合、電流密度は、DC電流を使用して、0.05ASD〜4ASDの範囲に及び得る。金イオン濃度は、好ましくは、8g/L〜12g/Lの範囲に及ぶが、適用可能な電流密度は、オン:オフ時間が1:3ミリ秒のパルス電流を使用する時、ラックめっきでは6ASDまで拡大され得る。ジェットめっき設備を有するジェットめっきの場合、金イオン濃度は、好ましくは、12g/L〜20g/Lの範囲に及ぶ。光沢堆積物は、2ASD〜70ASDのパルスピーク電流、及び1:1〜1:4ミリ秒のオン:オフパルスパラメータから得られる。ジェット撹拌は、適用された電流密度によって、100L/時間〜1000L/時間と様々であり得る。より高いパルスピーク電流では高撹拌を使用することが好ましい。本軟質金電気めっき組成物は、金濃度及びめっきパラメータを調節することによって、ラックめっき、バレルめっき、及び高速ジェットめっきにおいて使用され得る。多くの従来の純金電気めっき組成物とは異なり、本金電気めっき組成物は、高速金堆積のためのジェットめっき設備と共に使用することができる。ジェットめっき、または高い電流密度でのめっきは、低い電流密度でのめっきよりも、素早く、かつ生産ラインにおける高められた電気めっき効率を提供する。そのような高速ジェットめっき法は、大量生産にとって非常に望ましい。   In general, the current density can range from 0.03 ASD to higher using DC or pulse plating. For barrel plating applications, the current density can be 0.05 ASD to 2.5 ASD using DC current. The gold ion concentration preferably ranges from 4 g / L to 8 g / L. For rack plating applications, the current density can range from 0.05 ASD to 4 ASD using DC current. The gold ion concentration preferably ranges from 8 g / L to 12 g / L, but the applicable current density is 6 ASD for rack plating when using a pulsed current with an on: off time of 1: 3 milliseconds. Can be expanded. In the case of jet plating with a jet plating facility, the gold ion concentration preferably ranges from 12 g / L to 20 g / L. The glossy deposit is obtained from a pulse peak current of 2 ASD to 70 ASD and an on: off pulse parameter of 1: 1 to 1: 4 milliseconds. Jet agitation can vary from 100 L / hr to 1000 L / hr depending on the applied current density. It is preferred to use high agitation at higher pulse peak currents. The present soft gold electroplating composition can be used in rack plating, barrel plating, and high speed jet plating by adjusting the gold concentration and plating parameters. Unlike many conventional pure gold electroplating compositions, the gold electroplating composition can be used with jet plating equipment for high speed gold deposition. Jet plating or high current density plating provides faster and higher electroplating efficiency in the production line than low current density plating. Such a high speed jet plating process is highly desirable for mass production.

高電流密度で光沢堆積物を提供することに加えて、本軟質金電気めっき組成物堆積物は、実質的に均一の軟質金堆積物である。金の硬度は、典型的には、ヌープ硬度値と表現され、25グラム圧子を使用した多数の試験の平均を示す。ヌープ硬度値は、めっきされた際は、ASTM B488−11に従って、91〜129の金等級Bである。アニーリング後、ヌープ硬度値は、78または金等級Aである。金堆積物の純度は、99.9%であり、タイプIII純度である。   In addition to providing a bright deposit at a high current density, the present soft gold electroplating composition deposit is a substantially uniform soft gold deposit. Gold hardness is typically expressed as a Knoop hardness value and represents the average of a number of tests using a 25 gram indenter. The Knoop hardness value, when plated, is a gold grade B of 91-129 according to ASTM B488-11. After annealing, the Knoop hardness value is 78 or gold grade A. The purity of the gold deposit is 99.9%, which is type III purity.

めっき時間は様々であり得る。時間量は、基材上の金の所望の厚さに依存する。典型的には、金の厚さは、0.01ミクロン〜50ミクロン、または0.1ミクロン〜2ミクロンなど、または0.2ミクロン〜0.5ミクロンなどである。   The plating time can vary. The amount of time depends on the desired thickness of gold on the substrate. Typically, the gold thickness is from 0.01 microns to 50 microns, such as from 0.1 microns to 2 microns, or from 0.2 microns to 0.5 microns.

従来の金めっき装置を使用して、基材上に金を電気めっきすることができる。アノードは、ステンレス鋼、白金、白金−クラッドタンタル、白金めっきチタン、及び黒鉛などの不溶性アノードである。好ましくは、アノードは、白金めっきチタンアノードである。   Conventional gold plating equipment can be used to electroplate gold onto the substrate. The anode is an insoluble anode such as stainless steel, platinum, platinum-clad tantalum, platinized titanium, and graphite. Preferably, the anode is a platinized titanium anode.

本軟質金電気めっき組成物を、ニッケル、ニッケル合金、銅、銅合金、スズ、及びスズ合金などの金属に金層を電気めっきするために使用してもよい。好ましくは、本金電気めっき組成物を、接点、コネクタ、スイッチ、及びプリント回路基板などのニッケル及びニッケル合金上に金を電気めっきするために使用する。本金電気めっき組成物はまた、宝飾品などの装飾物品に金層をめっきするためにも使用され得る。本金電気めっき組成物はまた、基材上にストライク層をめっきして金属層間の付着を高めるためにも使用され得る。   The soft gold electroplating composition may be used to electroplate gold layers on metals such as nickel, nickel alloys, copper, copper alloys, tin, and tin alloys. Preferably, the gold electroplating composition is used to electroplate gold on nickel and nickel alloys such as contacts, connectors, switches, and printed circuit boards. The gold electroplating composition can also be used to plate a gold layer on decorative articles such as jewelry. The gold electroplating composition can also be used to plate a strike layer on a substrate to enhance adhesion between metal layers.

本軟質金電気めっき組成物は、環境に優しく、DCまたはパルス電流を使用し、及びバレル、ラックまたはジェットめっき条件下で、適用可能な電流密度範囲にわたって光沢金堆積物をめっきし得る。本金堆積物はまた、微粒子構造を有する。小粒径は、薄膜内の多孔を減少させる。堆積物の光度もまた、この小粒径の直接的な結果である。一般的に、マットまたは半光沢堆積物の粗度は、滑らかな光沢堆積物と比較して高い。   The present soft gold electroplating composition is environmentally friendly and can deposit bright gold deposits over an applicable current density range using DC or pulsed current and under barrel, rack or jet plating conditions. The gold deposit also has a particulate structure. Small particle size reduces porosity within the thin film. The luminous intensity of the deposit is also a direct result of this small particle size. In general, the roughness of a matte or semi-gloss deposit is high compared to a smooth gloss deposit.

以下の実施例は、本発明を例証することを意図するものであり、その範囲を制限することを意図しない。   The following examples are intended to illustrate the invention and are not intended to limit its scope.

実施例1
以下の組成物を有する水溶性の軟質金電気めっき浴を調製した。
Example 1
A water-soluble soft gold electroplating bath having the following composition was prepared.

15×20mmの両面をニッケルでプレめっきした銅の試験パネル5枚を、500mL浴の本軟質金電気めっき浴に3分間浸漬し、ニッケルに金をめっきした。アノードは、白金めっきチタン電極であった。この浴を、全3分間、マグネチックスターラを使用して撹拌した。浴は、pH6.2を有し、浴の温度は55℃であった。DC電流を、1ASDの電流密度で印加した。3分後、クーポンを浴から取り出し、脱イオン水ですすぎ、空気乾燥させた。金堆積物は光沢であった。金堆積物の厚さを、FISHERSCOPE(商標)X線装置、モデルXDV−SDで測定し、1.7ミクロンであると決定した。次いでこのパネルを、倍率20,000のSEM顕微鏡を使用して、金堆積物の微細構造を分析した。図1は、この顕微鏡で得られたSEMのうちの1つを示す。SEMは、小粒構造を示した。 Five test panels of copper pre-plated with 15 × 20 mm 2 on both sides with nickel were immersed in a 500 mL bath of this soft gold electroplating bath for 3 minutes, and gold was plated on nickel. The anode was a platinized titanium electrode. The bath was stirred for 3 minutes using a magnetic stirrer. The bath had a pH of 6.2 and the bath temperature was 55 ° C. DC current was applied at a current density of 1 ASD. After 3 minutes, the coupon was removed from the bath, rinsed with deionized water and allowed to air dry. The gold deposit was glossy. The thickness of the gold deposit was measured with a FISCHERSCOPE ™ X-ray instrument, model XDV-SD, and determined to be 1.7 microns. The panel was then analyzed for the microstructure of the gold deposit using a SEM microscope at a magnification of 20,000. FIG. 1 shows one of the SEMs obtained with this microscope. SEM showed a small grain structure.

実施例2(比較)
以下の式を有する水溶性の金電気めっき浴を調製した。
Example 2 (comparison)
A water-soluble gold electroplating bath having the following formula was prepared.

15×20mmの両面をニッケルでプレめっきした銅の試験パネル5枚を、500mL浴の金電気めっき浴に3分間浸漬し、ニッケルに金をめっきした。アノードは、白金めっきチタン電極であった。この浴を、全3分間、マグネチックスターラを使用して撹拌した。浴は、pH6.2を有し、浴の温度は55℃であった。DC電流を、1ASDの電流密度で印加した。3分後、クーポンを浴から取り出し、脱イオン水ですすぎ、空気乾燥させた。金堆積物の厚さは1.7ミクロンであった。次いでこのパネルを、倍率20,000のSEM顕微鏡を使用して、金堆積物の微細構造を分析した。図2は、この顕微鏡で得られたSEMのうちの1つを示す。SEMは、粗粒構造を示した。この微細構造は、半光沢であった堆積物の光学式外観と一致した。表2からめっきされた金の粒構造及び光学式外観は、酒石酸ナトリウムカリウムと共に酒石酸カリウムアンチモン由来のアンチモン(III)を含有し、かつ鉛を含まない電気めっき浴由来の金で試験パネルを電気めっきした実施例1の金電気めっき組成物のものに劣っていた。 Five copper test panels pre-plated with nickel on both sides of 15 × 20 mm 2 were immersed in a 500 mL gold electroplating bath for 3 minutes, and gold was plated on nickel. The anode was a platinized titanium electrode. The bath was stirred for 3 minutes using a magnetic stirrer. The bath had a pH of 6.2 and the bath temperature was 55 ° C. DC current was applied at a current density of 1 ASD. After 3 minutes, the coupon was removed from the bath, rinsed with deionized water and allowed to air dry. The gold deposit thickness was 1.7 microns. The panel was then analyzed for the microstructure of the gold deposit using a SEM microscope at a magnification of 20,000. FIG. 2 shows one of the SEMs obtained with this microscope. SEM showed a coarse grain structure. This microstructure was consistent with the optical appearance of the deposit that was semi-glossy. The grain structure and optical appearance of the gold plated from Table 2 includes the antimony (III) derived from potassium antimony tartrate together with sodium potassium tartrate, and electroplating the test panel with gold derived from an electroplating bath that does not contain lead. It was inferior to that of the gold electroplating composition of Example 1.

実施例3
15×20mmの両面をニッケルでプレめっきした銅の試験パネル8枚を、実施例1の表1内の製剤を有する金電気めっき浴を含有する500mL浴に別々に浸漬した。アノードは、白金めっきチタン電極であった。ニッケルへの金の電気めっきは、各浴で3分間行った。この浴を、全めっき時間の間、マグネチックスターラを使用して撹拌した。浴は、pH6.2を有し、浴の温度は55℃であった。DC電流を、各パネルによって様々な電流密度で印加した。電流密度は、0.5ASD、1.2ASD、1.5ASD、2ASD、2.5ASD、3ASD、3.5ASD、及び4ASDであった。めっき後、パネルを浴から取り出し、脱イオン水ですすぎ、空気乾燥させた。全ての金堆積物は、光沢の外観を有した。
Example 3
Eight copper test panels pre-plated with 15 × 20 mm 2 of nickel on both sides were separately immersed in a 500 mL bath containing a gold electroplating bath having the formulation in Table 1 of Example 1. The anode was a platinized titanium electrode. Electroplating of gold on nickel was performed for 3 minutes in each bath. The bath was stirred using a magnetic stirrer for the entire plating time. The bath had a pH of 6.2 and the bath temperature was 55 ° C. DC current was applied at various current densities by each panel. The current densities were 0.5 ASD, 1.2 ASD, 1.5 ASD, 2 ASD, 2.5 ASD, 3 ASD, 3.5 ASD, and 4 ASD. After plating, the panel was removed from the bath, rinsed with deionized water and allowed to air dry. All gold deposits had a glossy appearance.

実施例2の表2の金電気めっき浴を使用したことを除き、上に記載される電気めっきプロセスを繰り返した。めっき後、0.5ASD〜3ASDで電気めっきされた金堆積物は半光沢堆積物を有したが、3.5ASD及び4ASDでめっきされた金は、曇ったマットの外観を有した。結果は、表1の金電気めっき浴が、適用可能な電流密度及び外観に関して、表2の金電気めっき浴を含有する鉛よりも改善されためっき性能を有することを示した。   The electroplating process described above was repeated except that the gold electroplating bath of Table 2 of Example 2 was used. After plating, gold deposits electroplated at 0.5 ASD to 3 ASD had semi-gloss deposits, while gold plated at 3.5 ASD and 4 ASD had a hazy matte appearance. The results showed that the gold electroplating baths in Table 1 have improved plating performance over the lead containing the gold electroplating baths in Table 2 with respect to applicable current density and appearance.

実施例4
以下の表に示されるような軟質金電解めっき浴を調製した。
Example 4
A soft gold electroplating bath as shown in the table below was prepared.

15×20mmの両面をニッケルでプレめっきした銅の試験パネルを、表3の軟質金電気めっき浴1000mLを含むジェットめっき設備に装着した。アノードは、白金めっきチタン電極であった。浴は、pH6.2を有し、浴の温度は60℃であった。パルス電流を、オン:オフ時間が1:3ミリ秒の50ASDのピーク電流密度で印加した。これは、平均電流密度12.5ASDに相当した。ジェット撹拌または流量を、800L/時間に設定した。10秒のめっき期間後、パネルを浴から取り出し、脱イオン水ですすぎ、空気乾燥させた。全てのパネルは、光沢の金堆積物を有した。 A copper test panel pre-plated with nickel on both sides of 15 × 20 mm 2 was installed in a jet plating facility including 1000 mL of the soft gold electroplating bath shown in Table 3. The anode was a platinized titanium electrode. The bath had a pH of 6.2 and the bath temperature was 60 ° C. The pulse current was applied at a peak current density of 50 ASD with an on: off time of 1: 3 milliseconds. This corresponded to an average current density of 12.5 ASD. Jet agitation or flow rate was set at 800 L / hour. After a 10 second plating period, the panel was removed from the bath, rinsed with deionized water, and allowed to air dry. All panels had a shiny gold deposit.

金イオンの量が20g/L金であったことを除き、このプロセスを表2の金電気めっき浴で繰り返した。上に記載された同一のジェット撹拌及びめっきパラメータを使用した。金堆積物の外観は、かなりマットであったか、または焦げていた。パルスピーク電流密度が上と同じ流量で30ASDであったことを除き、この試験を繰り返した。これは、平均電流密度7.5ASDに相当した。全ての堆積物はマットであった。表2の電気めっき浴は、ジェット撹拌下、高電流密度で、光沢、または半光沢の金堆積物でさえも提供せず、それ故に、この金浴は、表3の金めっき浴よりも性能が劣っていた。   This process was repeated with the gold electroplating baths in Table 2 except that the amount of gold ions was 20 g / L gold. The same jet agitation and plating parameters described above were used. The appearance of the gold deposit was quite matte or burnt. This test was repeated except that the pulse peak current density was 30 ASD at the same flow rate as above. This corresponded to an average current density of 7.5 ASD. All deposits were matte. The electroplating baths in Table 2 do not provide high current density, bright or semi-glossy gold deposits under jet agitation and therefore this gold bath performs better than the gold plating baths in Table 3. Was inferior.

Claims (14)

シアン化金塩由来の1つ以上の金イオン源、1つ以上のリン酸イオン源、1つ以上のホスホン酸源またはその塩、酒石酸ナトリウムカリウム、及び1つ以上のアンチモン(III)イオン源を含む金電気めっき組成物であって、遊離シアンを含まない、前記金電気めっき組成物。   One or more gold ion sources derived from a gold cyanide salt, one or more phosphate ion sources, one or more phosphonic acid sources or salts thereof, potassium sodium tartrate, and one or more antimony (III) ion sources A gold electroplating composition comprising, wherein the gold electroplating composition does not contain free cyanide. 前記シアン化金塩が、シアン化金カリウム、シアン化金ナトリウム、及びシアン化金アンモニウムから選択される、請求項1に記載の前記金電気めっき組成物。   The gold electroplating composition according to claim 1, wherein the gold cyanide salt is selected from potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide. 前記1つ以上のリン酸イオン源が、リン酸、リン酸二水素化(dihydrogenate)ナトリウム、及びリン酸二水素化カリウムから選択される、請求項1に記載の前記金電気めっき組成物。   The gold electroplating composition of claim 1, wherein the one or more phosphate ion sources are selected from phosphoric acid, sodium dihydrogenate, and potassium dihydrogen phosphate. 前記1つ以上のホスホン酸が、式:
を有し、式中、nは2〜3の整数であり、M及びMは、同一または異なってもよく、水素、アンモニウム、低級アルキルアミン、もしくはアルカリ金属陽イオンから選択され、Zは、価数がnと等しいラジカルであり、直鎖もしくは分岐鎖の置換もしくは非置換(C−C12)アルキル、またはN−置換(C−C)アルキルであり、前記Zラジカルが、式(I)のリン原子に結合した炭素原子を有する、請求項1に記載の前記金電気めっき組成物。
The one or more phosphonic acids have the formula:
Wherein n is an integer from 2 to 3, M 1 and M 2 may be the same or different and are selected from hydrogen, ammonium, lower alkylamine, or alkali metal cation, and Z is A radical having a valence equal to n, a linear or branched substituted or unsubstituted (C 1 -C 12 ) alkyl, or N-substituted (C 2 -C 3 ) alkyl, wherein the Z radical is The said gold electroplating composition of Claim 1 which has the carbon atom couple | bonded with the phosphorus atom of Formula (I).
前記1つ以上のアンチモン(III)イオン源が、酒石酸カリウムアンチモン、酒石酸ナトリウムアンチモン、硫酸アンチモン、及び塩化アンチモンから選択される、請求項1に記載の前記金電気めっき組成物。   2. The gold electroplating composition of claim 1, wherein the one or more antimony (III) ion sources are selected from potassium antimony tartrate, antimony sodium tartrate, antimony sulfate, and antimony chloride. 前記金電気めっき組成物が、鉛、ヒ素、タリウム、ヒドラジン、及び亜硫酸塩を実質的に含まない、請求項1に記載の前記金電気めっき組成物。   The gold electroplating composition of claim 1, wherein the gold electroplating composition is substantially free of lead, arsenic, thallium, hydrazine, and sulfite. 金を電気めっきする方法であって、
a.シアン化金塩由来の1つ以上の金イオン源、1つ以上のリン酸イオン源、1つ以上のホスホン酸源またはその塩、酒石酸ナトリウムカリウム、及び1つ以上のアンチモン(III)イオン源を含む金電気めっき組成物であって、遊離シアンを実質的に含まない、金電気めっき組成物を提供することと、
b.基材を前記金電気めっき組成物と接触させることと、
c.0.03ASD以上の電流密度で直流またはパルス電流を使用して前記基材上に金を電気めっきすることと、を含む、前記方法。
A method of electroplating gold,
a. One or more gold ion sources derived from a gold cyanide salt, one or more phosphate ion sources, one or more phosphonic acid sources or salts thereof, potassium sodium tartrate, and one or more antimony (III) ion sources A gold electroplating composition comprising: a gold electroplating composition substantially free of free cyanide;
b. Contacting a substrate with the gold electroplating composition;
c. Electroplating gold onto the substrate using direct current or pulsed current at a current density of 0.03 ASD or higher.
前記電流密度が、1ASD〜50ASDである、請求項7に記載の前記金を電気めっきする方法。   The method of electroplating the gold according to claim 7, wherein the current density is 1 ASD to 50 ASD. 前記シアン化金塩が、シアン化金カリウム、シアン化金ナトリウム、及びシアン化金アンモニウムから選択される、請求項7に記載の前記金を電気めっきする方法。   The method of electroplating gold according to claim 7, wherein the gold cyanide salt is selected from potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide. 前記1つ以上のリン酸イオン源が、リン酸、リン酸二水素化ナトリウム、及びリン酸二水素化カリウムから選択される、請求項7に記載の前記金を電気めっきする方法。   8. The method of electroplating gold according to claim 7, wherein the one or more phosphate ion sources are selected from phosphoric acid, sodium dihydrogen phosphate, and potassium dihydrogen phosphate. 前記1つ以上のホスホン酸が、式:
を有し、式中、nは2〜3の整数であり、M及びMは、同一または異なってもよく、水素、アンモニウム、低級アルキルアミン、もしくはアルカリ金属陽イオンから選択され、Zは、価数がnと等しいラジカルであり、直鎖もしくは分岐鎖の置換もしくは非置換(C−C12)アルキル、またはN−置換(C−C)アルキルであり、前記Zラジカルが、式(I)のリン原子に結合した炭素原子を有する、請求項7に記載の前記金を電気めっきする方法。
The one or more phosphonic acids have the formula:
Wherein n is an integer from 2 to 3, M 1 and M 2 may be the same or different and are selected from hydrogen, ammonium, lower alkylamine, or alkali metal cation, and Z is A radical having a valence equal to n, a linear or branched substituted or unsubstituted (C 1 -C 12 ) alkyl, or N-substituted (C 2 -C 3 ) alkyl, wherein the Z radical is The method of electroplating gold according to claim 7, wherein the gold atom has a carbon atom bonded to a phosphorus atom of formula (I).
前記1つ以上のアンチモン(III)イオン源が、酒石酸カリウムアンチモン、酒石酸ナトリウムアンチモン、硫酸アンチモン、及び塩化アンチモンから選択される、請求項7に記載の前記金を電気めっきする方法。   8. The method of electroplating gold according to claim 7, wherein the one or more antimony (III) ion sources are selected from potassium antimony tartrate, antimony sodium antitartrate, antimony sulfate, and antimony chloride. 前記金電気めっき組成物が、遊離シアン、鉛、ヒ素、タリウム、ヒドラジン、及び亜硫酸塩を実質的に含まない、請求項7に記載の前記金を電気めっきする方法。   8. The method of electroplating gold according to claim 7, wherein the gold electroplating composition is substantially free of free cyanide, lead, arsenic, thallium, hydrazine, and sulfite. 前記基材が、プリント回路基板、コネクタ用の接点、スイッチ、または装飾物品である、請求項7に記載の前記金を電気めっきする方法。   8. The method of electroplating gold according to claim 7, wherein the substrate is a printed circuit board, a contact for a connector, a switch, or a decorative article.
JP2015224497A 2014-11-21 2015-11-17 Eco-friendly gold electroplating composition and method Active JP6073450B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/549,571 US20160145756A1 (en) 2014-11-21 2014-11-21 Environmentally friendly gold electroplating compositions and methods
US14/549,571 2014-11-21

Publications (2)

Publication Number Publication Date
JP2016117946A true JP2016117946A (en) 2016-06-30
JP6073450B2 JP6073450B2 (en) 2017-02-01

Family

ID=54478664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015224497A Active JP6073450B2 (en) 2014-11-21 2015-11-17 Eco-friendly gold electroplating composition and method

Country Status (6)

Country Link
US (1) US20160145756A1 (en)
EP (1) EP3023520B1 (en)
JP (1) JP6073450B2 (en)
KR (1) KR101712970B1 (en)
CN (1) CN105624745B (en)
TW (1) TWI600805B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778270A (en) * 2019-03-18 2019-05-21 杭州埃迷丽珠宝有限公司 Mist gold process is electroplated
CN110129843A (en) * 2019-06-05 2019-08-16 深圳市华乐珠宝首饰有限公司 A kind of hard golden mirror photoelectricity casting process of no cyanogen
CN110205654A (en) * 2019-06-05 2019-09-06 深圳市尚美金品有限公司 A kind of manufacture craft of hollow jewelry piece
CN110106537A (en) * 2019-06-26 2019-08-09 浙江金卓首饰有限公司 A kind of preparation method of the electroforming solution being used to prepare the hard gold of 3D and the hard gold of 3D
CN110306211A (en) * 2019-08-06 2019-10-08 深圳市凯恩特珠宝首饰有限公司 A kind of electromoulding K gold technique
KR102605141B1 (en) 2022-11-29 2023-11-22 김기형 Plating processing method for surface treatment of metal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723910A1 (en) * 1976-06-01 1977-12-15 Systeme De Traitements De Surf ADDITIONAL MIXTURE FOR ELECTROLYSIS BATTERIES
JPS5684495A (en) * 1979-12-12 1981-07-09 Electroplating Eng Of Japan Co Pure gold plating liquid
JPH0853791A (en) * 1994-02-26 1996-02-27 Sung-Soo Moon Palladium alloy plating composition,plating method and plating article
JPH10317183A (en) * 1997-05-16 1998-12-02 Daiwa Kasei Kenkyusho:Kk Non-cyan gold electroplating bath
JPH1150295A (en) * 1997-07-28 1999-02-23 Daiwa Kasei Kenkyusho:Kk Plating bath
JP2012112004A (en) * 2010-11-25 2012-06-14 Rohm & Haas Denshi Zairyo Kk Gold plating solution
JP2014139348A (en) * 2008-08-25 2014-07-31 Electroplating Eng Of Japan Co Hard gold-based plating solution

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496916B1 (en) * 1964-09-22 1969-10-23 Monsanto Co Cyanide-free, galvanic bath and process for the deposition of galvanic coatings
US3427231A (en) * 1965-07-21 1969-02-11 Litton Systems Inc Method of electroplating and electroforming gold in an ultrasonic field
US3672969A (en) * 1970-10-26 1972-06-27 Lea Ronal Inc Electrodeposition of gold and gold alloys
BE791401A (en) * 1971-11-15 1973-05-14 Monsanto Co ELECTROCHEMICAL COMPOSITIONS AND PROCESSES
US3902977A (en) * 1973-12-13 1975-09-02 Engelhard Min & Chem Gold plating solutions and method
CH606502A5 (en) * 1974-11-15 1978-10-31 Oxy Metal Industries Corp
BR8001854A (en) * 1979-04-04 1980-11-18 Engelhard Min & Chem SILVER OR ALLOY COATING BATH AND THEIR STABILIZATION PROCESS
US4238300A (en) * 1979-05-25 1980-12-09 Bell Telephone Laboratories, Incorporated Gold electroplating process
US5277790A (en) 1992-07-10 1994-01-11 Technic Incorporated Non-cyanide electroplating solution for gold or alloys thereof
DE19845506A1 (en) * 1998-10-02 2000-04-06 Wieland Edelmetalle Process for the production of prosthetic molded parts for the dental field and prosthetic molded part
EP1693484A3 (en) * 2005-02-15 2007-06-20 Rohm and Haas Electronic Materials, L.L.C. Plating Method
JP5513784B2 (en) * 2008-08-25 2014-06-04 日本エレクトロプレイテイング・エンジニヤース株式会社 Hard gold plating solution
US8608931B2 (en) * 2009-09-25 2013-12-17 Rohm And Haas Electronic Materials Llc Anti-displacement hard gold compositions
TW201319328A (en) * 2011-08-23 2013-05-16 Electroplating Eng Gold plating solution
ITFI20120103A1 (en) * 2012-06-01 2013-12-02 Bluclad Srl GALVANIC BATHROOMS FOR THE ACHIEVEMENT OF A LEAGUE OF LOW-CARATHED GOLD AND GALVANIC PROCESS THAT USES THESE BATHROOMS.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2723910A1 (en) * 1976-06-01 1977-12-15 Systeme De Traitements De Surf ADDITIONAL MIXTURE FOR ELECTROLYSIS BATTERIES
JPS5684495A (en) * 1979-12-12 1981-07-09 Electroplating Eng Of Japan Co Pure gold plating liquid
JPH0853791A (en) * 1994-02-26 1996-02-27 Sung-Soo Moon Palladium alloy plating composition,plating method and plating article
JPH10317183A (en) * 1997-05-16 1998-12-02 Daiwa Kasei Kenkyusho:Kk Non-cyan gold electroplating bath
JPH1150295A (en) * 1997-07-28 1999-02-23 Daiwa Kasei Kenkyusho:Kk Plating bath
JP2014139348A (en) * 2008-08-25 2014-07-31 Electroplating Eng Of Japan Co Hard gold-based plating solution
JP2012112004A (en) * 2010-11-25 2012-06-14 Rohm & Haas Denshi Zairyo Kk Gold plating solution

Also Published As

Publication number Publication date
US20160145756A1 (en) 2016-05-26
CN105624745A (en) 2016-06-01
CN105624745B (en) 2018-11-06
TW201619446A (en) 2016-06-01
TWI600805B (en) 2017-10-01
EP3023520A1 (en) 2016-05-25
KR20160061268A (en) 2016-05-31
EP3023520B1 (en) 2019-01-30
JP6073450B2 (en) 2017-02-01
KR101712970B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6073450B2 (en) Eco-friendly gold electroplating composition and method
JP4832962B2 (en) Improved gold alloy electrolyte
JP4263363B2 (en) Cyanide-free aqueous alkaline bath for plating deposition of zinc or zinc alloy coatings
TWI485292B (en) Anti-displacement hard gold compositions
KR102315943B1 (en) Composition, use thereof and method for electrodepositing gold containing layers
TW201014935A (en) Improved copper-tin electrolyte and process for the deposition of bronze layers
US4144141A (en) Ammonia free palladium deposition using aminoacetic acid
EP1930478B1 (en) Electrolyte composition and method for the deposition of quaternary copper alloys
US3879270A (en) Compositions and process for the electrodeposition of metals
TWI674341B (en) Environmentally friendly nickel electroplating compositions and methods
JPS60500296A (en) Palladium-silver alloy electroplating bath
NL8001999A (en) BATH FOR SILVER PLATING WITH AN ALLOY OF GOLD AND SILVER AND A METHOD FOR PLATING THEREOF.
JP2004512429A (en) Lead-free chemical nickel alloy
JPH09272995A (en) Non-acidic bath for tin plating and tin-lead alloy plating and plating method using the same
JP2007023324A (en) Electroless hard gold plating liquid
CA1272160A (en) Gold alloy plating bath and process
RU2334830C2 (en) Method of preparation of phosphonic electrolytes and solutions
JPH07166392A (en) Gold plating solution and gold plating method
JP5263775B2 (en) Strike copper plating solution for articles made of zinc-containing metal or magnesium-containing metal
KR20220166969A (en) The organic additive for displacement tin alloy plating chemical
KR20130079233A (en) Copper electroplating solution and method of copper electroplating

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170104

R150 Certificate of patent or registration of utility model

Ref document number: 6073450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250