JP2016117354A - Power supply management apparatus - Google Patents

Power supply management apparatus Download PDF

Info

Publication number
JP2016117354A
JP2016117354A JP2014257372A JP2014257372A JP2016117354A JP 2016117354 A JP2016117354 A JP 2016117354A JP 2014257372 A JP2014257372 A JP 2014257372A JP 2014257372 A JP2014257372 A JP 2014257372A JP 2016117354 A JP2016117354 A JP 2016117354A
Authority
JP
Japan
Prior art keywords
battery
soc
priority
batteries
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014257372A
Other languages
Japanese (ja)
Other versions
JP6237606B2 (en
Inventor
和仁 江島
Kazuhito Ejima
和仁 江島
亨裕 宮下
Michihiro Miyashita
亨裕 宮下
康平 栃木
Kohei Tochigi
康平 栃木
健明 鈴木
Takeaki Suzuki
健明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014257372A priority Critical patent/JP6237606B2/en
Publication of JP2016117354A publication Critical patent/JP2016117354A/en
Application granted granted Critical
Publication of JP6237606B2 publication Critical patent/JP6237606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To appropriately manage an SOC while suppressing the frequent switching of a relay for connecting batteries.SOLUTION: A power supply management apparatus (100) comprises: detection means (20) detecting an SOC of each of two or more batteries mounted in a vehicle; priority setting means (20) setting a charge/discharge priority of each of the two or more batteries on the basis of the detected SOC; and control means (20) setting a demanded voltage related to the battery given the highest set priority as a power generation voltage of power supply means (11) of the vehicle. The priority setting means sets higher each priority as the detected SOC for each of the two or more batteries is closer to an upper limit value or a lower limit value of an appropriate range of the SOC set in advance for each of the two or more batteries.SELECTED DRAWING: Figure 2

Description

本発明は、例えば自動車等の車両の電源管理装置の技術分野に関する。   The present invention relates to a technical field of a power management device for a vehicle such as an automobile.

この種の装置として、例えば、鉛蓄電池とリチウム蓄電池とが並列接続されており、発電機とリチウム蓄電池との通電及び遮断を切り替えるMOS−FETと、該MOS−FETとリチウム蓄電池との間に配置され、リチウム蓄電池に対する通電及び遮断を切り替えるリレーと、を備える装置において、リチウム蓄電池の残存容量が適正範囲よりも高い場合に、MOS−FETにより発電機とリチウム蓄電池との通電を遮断すると共に、リレーを通電させることによりリチウム蓄電池を放電する装置が提案されている(特許文献1参照)。   As this type of device, for example, a lead storage battery and a lithium storage battery are connected in parallel, and a MOS-FET that switches between energization and shutoff between the generator and the lithium storage battery, and the MOS-FET and the lithium storage battery are disposed between the MOS-FET and the lithium storage battery. And a relay that switches between energization and interruption of the lithium storage battery, and when the remaining capacity of the lithium storage battery is higher than the appropriate range, the MOS-FET interrupts the energization between the generator and the lithium storage battery, and the relay Has been proposed (see Patent Document 1).

或いは、複数の電池を備え、定期的又は任意のタイミングでシステム全体としての充放電電力値を各電池に配分するシステムであって、複数の電池各々のSOC(State Of Charge)に関する劣化特性に基づいて、各時点で複数の電池各々に優先順位付けを行い、該優先順位に従い、充放電電力値を配分するシステムが提案されている(特許文献2参照)。   Alternatively, the system includes a plurality of batteries, and distributes the charge / discharge power value of the entire system to each battery periodically or at an arbitrary timing, and is based on deterioration characteristics relating to SOC (State Of Charge) of each of the plurality of batteries. Thus, there has been proposed a system that prioritizes each of a plurality of batteries at each time point and distributes charge / discharge power values according to the priorities (see Patent Document 2).

特開2011−176958号公報JP 2011-176958 A 特開2014−171335号公報JP 2014-171335 A

特許文献1に記載の技術によれば、例えば、リチウム蓄電池の残存容量が適正範囲の境界値近傍で変動する場合に、リレー開閉の切り替えが比較的頻繁に生じ、該リレーの劣化が早く進む可能性があるという技術的問題点がある。特許文献2に記載の技術では、この問題点を解決することはできない。   According to the technology described in Patent Document 1, for example, when the remaining capacity of a lithium storage battery fluctuates in the vicinity of the boundary value of the appropriate range, switching of the relay opening / closing occurs relatively frequently, and the deterioration of the relay can proceed quickly. There is a technical problem that there is. The technique described in Patent Document 2 cannot solve this problem.

本発明は、例えば上記問題点に鑑みてなされたものであり、リレーの切り替え頻度を抑制しつつ、電池のSOCを適切に管理することができる電源管理装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a power management apparatus capable of appropriately managing the SOC of a battery while suppressing the switching frequency of relays.

本発明の電源管理装置は、上記課題を解決するために、2以上の電池と、発電手段と、前記2以上の電池に夫々対応し、対応する電池と前記発電手段との通電及び遮断を切り替える複数のリレーと、を備える車両の電源管理装置であって、前記2以上の電池各々に係るSOCを検出する検出手段と、前記検出されたSOCに基づいて、前記2以上の電池各々の充放電の優先度を設定する優先度設定手段と、前記車両の減速時以外のときに、前記設定された優先度の最も高い電池に係る要求電圧を前記発電手段の発電電圧として設定する制御手段と、を備え、前記優先度設定手段は、前記2以上の電池各々について、前記検出されたSOCが、前記2以上の電池各々について予め定められたSOCの適正範囲の上限値に近づくほど又は下限値に近づくほど、前記優先度を高く設定する。   In order to solve the above-described problem, the power management device of the present invention corresponds to two or more batteries, a power generation unit, and the two or more batteries, and switches between energization and cutoff of the corresponding battery and the power generation unit. A power management apparatus for a vehicle, comprising: a plurality of relays; a detecting means for detecting an SOC related to each of the two or more batteries; and charging / discharging of each of the two or more batteries based on the detected SOC Priority setting means for setting the priority, and control means for setting, as a power generation voltage of the power generation means, a required voltage related to the battery having the highest priority set when the vehicle is not decelerated, The priority setting means, for each of the two or more batteries, the detected SOC approaches the upper limit value of the appropriate range of SOC predetermined for each of the two or more batteries, or the lower limit value. Zukuhodo, it sets higher the priority.

本発明の電源管理装置によれば、当該電源管理装置は、2以上の電池と、発電手段と、該2以上の電池に夫々対応し、対応する電池と発電手段との通電及び遮断を切り替える複数のリレーと、を備える車両に搭載される。つまり、該車両では、各電池と発電手段との間にリレーが配置されている。   According to the power management device of the present invention, the power management device corresponds to each of two or more batteries, a power generation unit, and the two or more batteries, and switches between energization and cutoff of the corresponding battery and the power generation unit. And a relay. That is, in the vehicle, a relay is disposed between each battery and the power generation means.

当該電源管理装置は、検出手段と、優先度設定手段及び制御手段を備えて構成されている。   The power management apparatus includes a detection unit, a priority setting unit, and a control unit.

検出手段は、2以上の電池各々に係るSOCを検出する。SOCの検出方法には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   The detection means detects the SOC related to each of the two or more batteries. Since various known modes can be applied to the SOC detection method, a detailed description thereof will be omitted.

例えばメモリ、プロセッサ等を備えてなる優先度設定手段は、検出されたSOCに基づいて、2以上の電池各々の充放電の優先度を設定する。ここで特に、優先度設定手段は、2以上の電池各々について、検出されたSOCが、該2以上の電池各々について予め定められたSOCの適正範囲の上限値に近づくほど又は下限値に近づくほど、優先度を高く設定する。   For example, the priority setting means including a memory, a processor, etc. sets the charge / discharge priority of each of the two or more batteries based on the detected SOC. Here, in particular, the priority setting means, for each of the two or more batteries, as the detected SOC approaches the upper limit value of the appropriate range of the SOC determined in advance for each of the two or more batteries, or approaches the lower limit value. Set the priority higher.

つまり、本発明では、過充電状態又は過放電状態になる可能性の高い電池ほど、優先度が高く設定される。   That is, in the present invention, the higher the priority is set for a battery that is more likely to be in an overcharged state or an overdischarged state.

尚、各バ電池のSOCの適正範囲の設定方法には、公知の各種態様を適用可能であるが、例えば電池のSOCと開路電圧との関係を示す特性曲線に基づいて設定すればよい。   Note that various known modes can be applied to the method for setting the appropriate SOC range of each battery. For example, it may be set based on a characteristic curve indicating the relationship between the SOC of the battery and the open circuit voltage.

例えばメモリ、プロセッサ等を備えてなる制御手段は、車両の減速時以外のときに、設定された優先度の最も高い電池に係る要求電圧を発電手段の発電電圧として設定する。   For example, the control means including a memory, a processor, etc. sets the required voltage related to the set battery with the highest priority as the power generation voltage of the power generation means when the vehicle is not decelerated.

ここで、「要求電圧」は、優先度の最も高い電池のSOCに応じて決定される。具体的には例えば、該電池のSOCが、適正範囲の上限値近傍の値であった場合、要求電圧は、該電池が放電するような電圧とされる。他方、該電池のSOCが、適正範囲の下限値近傍の値であった場合、要求電圧は、該電池が充電されるような電圧とされる。   Here, the “required voltage” is determined according to the SOC of the battery with the highest priority. Specifically, for example, when the SOC of the battery is a value in the vicinity of the upper limit value of the appropriate range, the required voltage is set to a voltage at which the battery is discharged. On the other hand, when the SOC of the battery is a value near the lower limit value of the appropriate range, the required voltage is set to a voltage that charges the battery.

優先度の最も高い電池に係る要求電圧が、発電手段の発電電圧として設定された場合、その他の電池は、その端子電圧と発電電圧との関係に応じて充電又は放電される。   When the required voltage related to the battery with the highest priority is set as the power generation voltage of the power generation means, the other batteries are charged or discharged according to the relationship between the terminal voltage and the power generation voltage.

本願発明者の研究によれば、以下の事項が判明している。即ち、電池が過放電状態や過充電状態となる可能性が高い場合、リレーにより、該電池と発電手段とを遮断する(即ち、該電池が切り離される)ことが多い。つまり、リレーにより電池の通電と遮断とを切り替えることにより、該電池のSOCが管理されることが多い。すると、リレーの開閉頻度が比較的高くなり、該リレーの劣化が早く進む可能性がある。   According to the inventor's research, the following matters have been found. That is, when there is a high possibility that the battery will be in an overdischarged state or an overcharged state, the battery and the power generation means are often shut off by the relay (that is, the battery is disconnected). That is, the SOC of the battery is often managed by switching between energization and interruption of the battery by a relay. Then, the frequency of opening and closing of the relay becomes relatively high, and there is a possibility that deterioration of the relay progresses quickly.

しかるに本発明では、優先度設定手段により電池毎に優先度が設定され、制御手段により設定された優先度の最も高い電池に係る要求電圧が発電手段の発電電圧として設定される。優先度は、上述の如く、過充電状態又は過放電状態になる可能性の高い電池ほど、高くなるように設定される。   However, in the present invention, the priority is set for each battery by the priority setting means, and the required voltage for the battery with the highest priority set by the control means is set as the power generation voltage of the power generation means. As described above, the priority is set to be higher as the battery is more likely to be in an overcharged state or an overdischarged state.

優先度の最も高い電池(言い換えれば、過充電状態又は過放電状態になる可能性の比較的高い電池)に係る要求電圧が、発電手段の発電電圧として設定されることにより、該電池を切り離すことなく、該電池のSOCを適切に制御することができる。この結果、リレーの開閉頻度を抑制することができるので、該リレーの劣化の進行を抑制することができる。   The required voltage related to the battery with the highest priority (in other words, a battery that is relatively likely to be in an overcharged state or an overdischarged state) is set as the generated voltage of the power generation means, thereby disconnecting the battery. In addition, the SOC of the battery can be appropriately controlled. As a result, since the switching frequency of the relay can be suppressed, the progress of the deterioration of the relay can be suppressed.

以上の結果、本発明の電源管理装置によれば、リレーの切り替え頻度を抑制しつつ、電池のSOCを適切に管理することができる。   As a result, according to the power management device of the present invention, it is possible to appropriately manage the SOC of the battery while suppressing the switching frequency of the relay.

本発明の電源管理装置の一態様では、前記2以上の電池は、鉛蓄電池と、ニッケル水素電池又はリチウムイオン電池とを含み、前記優先度設定手段は、前記2以上の電池に夫々対応し、SOCと優先度との関係を規定する複数のマップを有し、前記複数のマップのうち前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の下限値近傍の優先度は、前記複数のマップのうち前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の下限値近傍の優先度よりも高く、前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の上限値近傍の優先度は、前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の上限値近傍の優先度よりも高く、前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の中央領域の優先度は、前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の中央領域の優先度よりも低い。   In one aspect of the power management device of the present invention, the two or more batteries include a lead storage battery and a nickel metal hydride battery or a lithium ion battery, and the priority setting means corresponds to the two or more batteries, An appropriate range of SOC of the nickel-metal hydride battery or lithium-ion battery in a map corresponding to the nickel-metal hydride battery or lithium-ion battery among the plurality of maps having a plurality of maps that define the relationship between the SOC and the priority The priority in the vicinity of the lower limit value is higher than the priority in the vicinity of the lower limit value of the appropriate SOC range of the lead storage battery in the map corresponding to the lead storage battery among the plurality of maps, and the nickel hydrogen battery or the lithium ion In the map corresponding to the battery, the priority in the vicinity of the upper limit value of the appropriate range of the SOC of the nickel metal hydride battery or the lithium ion battery is The nickel hydride battery or lithium ion battery in the map corresponding to the nickel hydride battery or lithium ion battery is higher than the priority in the vicinity of the upper limit value of the appropriate range of the SOC of the lead storage battery in the map corresponding to the lead acid battery. The priority of the central region of the appropriate range of the SOC is lower than the priority of the central region of the proper range of the SOC of the lead storage battery in the map corresponding to the lead storage battery.

この態様によれば、優先度設定手段は、電池毎に、SOCと優先度との関係を規定するマップを有している。このように構成すれば、比較的容易にして、各電池の優先度を、検出されたSOCに応じて決定することができ、実用上非常に有利である。   According to this aspect, the priority setting means has a map that defines the relationship between the SOC and the priority for each battery. If comprised in this way, it will be comparatively easy and the priority of each battery can be determined according to detected SOC, and it is very advantageous practically.

本発明では特に、ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の下限値近傍の優先度は、鉛蓄電池に対応するマップにおける、鉛蓄電池のSOCの適正範囲の下限値近傍の優先度よりも高い。   In the present invention, in particular, the priority in the vicinity of the lower limit of the appropriate range of the SOC of the nickel metal hydride battery or lithium ion battery in the map corresponding to the nickel metal hydride battery or lithium ion battery is the priority of the lead acid battery in the map corresponding to the lead acid battery. It is higher than the priority in the vicinity of the lower limit value of the appropriate SOC range.

このように構成すれば、ニッケル水素電池又はリチウムイオン電池と、鉛蓄電池との両方が過放電状態となる可能性が高まった場合に、比較的高価なニッケル水素電池又はリチウムイオン電池が優先的に保護されるので、実用上非常に有利である。   If comprised in this way, when possibility that both a nickel metal hydride battery or a lithium ion battery and a lead acid battery will be in an overdischarge state increases, a comparatively expensive nickel metal hydride battery or a lithium ion battery is given priority. Since it is protected, it is very advantageous in practice.

また、ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、ニッケル水素電池又はリチウムイオン電池のSOCの上限値近傍の優先度は、鉛蓄電池に対応するマップにおける、鉛蓄電池のSOCの適正範囲の上限値近傍の優先度よりも高い。   Moreover, the priority in the vicinity of the upper limit value of the SOC of the nickel metal hydride battery or the lithium ion battery in the map corresponding to the nickel metal hydride battery or the lithium ion battery is the upper limit of the appropriate range of the SOC of the lead acid battery in the map corresponding to the lead acid battery. It is higher than the priority in the vicinity of the value.

このように構成すれば、ニッケル水素電池又はリチウムイオン電池と、鉛蓄電池との両方が過充電状態となる可能性が高まった場合に、比較的高価なニッケル水素電池又はリチウムイオン電池が優先的に保護されるので、実用上非常に有利である。   If comprised in this way, when possibility that both a nickel metal hydride battery or a lithium ion battery and a lead acid battery will be in an overcharge state increases, a comparatively expensive nickel metal hydride battery or a lithium ion battery is given priority. Since it is protected, it is very advantageous in practice.

ここで、SOCの適正範囲は電池毎に異なるので、ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の下限値又は上限値に対応するSOCの値と、鉛蓄電池のSOCの適正範囲の下限値又は上限値に対応するSOCの値とは、異なることに留意されたい。つまり、ニッケル水素電池又はリチウムイオン電池のSOCと、鉛蓄電池のSOCとが同一である場合の優先度の大小関係ではないことに留意されたい。   Here, since the appropriate range of SOC differs for each battery, the SOC value corresponding to the lower limit value or upper limit value of the appropriate range of SOC of a nickel metal hydride battery or a lithium ion battery and the lower limit value of the proper range of SOC of a lead storage battery It should be noted that the SOC value corresponding to the upper limit value is different. In other words, it should be noted that the relationship is not a priority relationship when the SOC of the nickel metal hydride battery or the lithium ion battery is the same as the SOC of the lead storage battery.

尚、「下限値近傍」は、下限値を含む所定のSOCの範囲を意味してよい、或いは、適正範囲の中央(例えば、適正範囲の上限値及び下限値の平均値)よりも下限値に近いSOCを意味してよい。同様に、「上限値近傍」は、上限値を含む所定のSOCの範囲を意味してよい、或いは、適正範囲の中央よりも上限値に近いSOCを意味してよい。   The “near the lower limit value” may mean a predetermined SOC range including the lower limit value, or may be lower than the center of the appropriate range (for example, the average value of the upper limit value and the lower limit value of the appropriate range). It may mean near SOC. Similarly, “near the upper limit value” may mean a predetermined SOC range including the upper limit value, or may mean an SOC closer to the upper limit value than the center of the appropriate range.

他方で、ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の中央領域の優先度は、鉛蓄電池に対応するマップにおける、鉛蓄電池のSOCの適正範囲の中央領域の優先度よりも低い。   On the other hand, in the map corresponding to the nickel metal hydride battery or lithium ion battery, the priority of the central area of the appropriate range of the SOC of the nickel metal hydride battery or lithium ion battery is the appropriateness of the SOC of the lead acid battery in the map corresponding to the lead acid battery. Lower than the priority of the center area of the range.

このように構成すれば、過充電状態又は過放電状態となる可能性が比較的低いSOCの領域では、例えば車両のメインバッテリとして用いられることの多い鉛蓄電池が優先的に保護されるので、実用上非常に有利である。   If comprised in this way, in the SOC area | region where possibility of becoming an overcharge state or an overdischarge state is comparatively low, since the lead storage battery often used, for example as a main battery of a vehicle is protected preferentially, it is practical. Very advantageous.

尚、「適正範囲の中央領域」は、適正範囲の上限値及び下限値の平均値を含む所定のSOCの範囲を意味してよい、或いは、適正範囲の上限値又は下限値よりも該平均値に近いSOCを意味してよい。   The “central area of the appropriate range” may mean a predetermined SOC range including the average value of the upper limit value and the lower limit value of the appropriate range, or the average value may be higher than the upper limit value or the lower limit value of the appropriate range. May mean an SOC close to.

本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。   The effect | action and other gain of this invention are clarified from the form for implementing demonstrated below.

実施形態に係る電源管理装置の概要を示す概略構成図である。It is a schematic structure figure showing an outline of a power management device concerning an embodiment. 実施形態に係る電源管理処理を示すフローチャートである。It is a flowchart which shows the power management process which concerns on embodiment. SOCと優先度との関係を規定するマップの具体例である。It is a specific example of the map which prescribes | regulates the relationship between SOC and a priority.

本発明の電源管理装置に係る実施形態を、図面に基づいて説明する。   An embodiment according to a power management apparatus of the present invention will be described with reference to the drawings.

(電源管理装置の構成)
実施形態に係る電源管理装置の構成について、図1を参照して説明する。図1は、実施形態に係る電源管理装置の概要を示す概略構成図である。尚、図1では、本実施形態に関連しない部材については、適宜図示を省略している。
(Configuration of power management device)
The configuration of the power management apparatus according to the embodiment will be described with reference to FIG. FIG. 1 is a schematic configuration diagram illustrating an overview of a power management apparatus according to the embodiment. In addition, in FIG. 1, illustration is abbreviate | omitted suitably about the member which is not related to this embodiment.

図1において、電源管理装置100が搭載される車両は、発電機11、第1電源系統12、第2電源系統13、及び第3電源系統14を備えて構成されている。   In FIG. 1, the vehicle on which the power management device 100 is mounted includes a generator 11, a first power system 12, a second power system 13, and a third power system 14.

ここで、第1電源系統12は、例えばスタータモータ(図示せず)の作動に起因して生じる電圧降下等の、電力の瞬間的な大きな変動が生じたとしても、作動に影響のない又殆どない負荷(図1における“補機負荷1”参照)に対して電力を供給する系統である。第1電源系統12のリレー(図1における“1st用リレー”参照)は、発電機11と電池15との通電及び遮断を切り替える。   Here, the first power supply system 12 has almost no influence on the operation even if a large instantaneous fluctuation of power occurs, such as a voltage drop caused by the operation of a starter motor (not shown). This is a system that supplies power to a load that is not present (see “auxiliary load 1” in FIG. 1). The relay of the first power supply system 12 (see “1st relay” in FIG. 1) switches between energization and disconnection between the generator 11 and the battery 15.

第2電源系統13は、電力の瞬間的な大きな変動の影響を受ける負荷、或いは電源バックアップを必要とする負荷(図1における“補機負荷2”参照)に対して電力を供給する系統である。第2電源系統13のリレー(図1における“2nd用リレー”参照)は、発電機11と電池16との通電及び遮断を切り替える。   The second power supply system 13 is a system that supplies electric power to a load that is affected by a large fluctuation of electric power or a load that requires power supply backup (see “auxiliary load 2” in FIG. 1). . The relay of the second power supply system 13 (see “2nd relay” in FIG. 1) switches between energization and interruption of the generator 11 and the battery 16.

第3電源系統14は、例えば電力の回生効率を高め、燃費の向上を図るために用いられる電池17や負荷(図1における“補機負荷3”参照)を備える系統である。第3電源系統14のリレー(図1における“3rd用リレー”参照)は、発電機11と電池17との通電及び遮断を切り替える。   The third power supply system 14 is a system including, for example, a battery 17 and a load (see “auxiliary load 3” in FIG. 1) used for improving the regeneration efficiency of electric power and improving fuel consumption. The relay of the third power supply system 14 (see “3rd relay” in FIG. 1) switches between energization and interruption of the generator 11 and the battery 17.

各リレーは、電池15、16及び17各々のSOCや、補機負荷の作動状態に応じて適宜開閉される。尚、各リレーの制御には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   Each relay is appropriately opened and closed according to the SOC of each of the batteries 15, 16 and 17 and the operating state of the auxiliary load. In addition, since various well-known aspects are applicable to control of each relay, the description about the detail is omitted.

本実施形態では、電池15は、例えば鉛蓄電池であり、電池16は、例えばニッケル水素電池又はリチウムイオン電池であるとする。尚、電源系統は、第1電源系統12及び第2電源系統13のみであってもよいし、或いは、4以上の電源系統を備えていてもよい。   In the present embodiment, the battery 15 is, for example, a lead storage battery, and the battery 16 is, for example, a nickel metal hydride battery or a lithium ion battery. The power supply system may be only the first power supply system 12 and the second power supply system 13, or may include four or more power supply systems.

本実施形態に係る電源管理装置100は、ECU(Electronic Control Unit:電子制御ユニット)20を備えて構成されている。つまり、本実施形態では、車両の各種電子制御に用いられるECU20の機能の一部を、電源管理装置100の一部として用いている。   The power management apparatus 100 according to the present embodiment includes an ECU (Electronic Control Unit) 20. That is, in the present embodiment, a part of the function of the ECU 20 used for various electronic controls of the vehicle is used as a part of the power management apparatus 100.

(電源管理処理)
次に、電源管理装置100が、主に車両の走行中に実施する電源管理処理について、図2のフローチャートを参照して説明する。
(Power management process)
Next, the power management process performed by the power management apparatus 100 while the vehicle is traveling will be described with reference to the flowchart of FIG.

図2において、先ず、電源管理装置100の一部としてのECU20は、電池15、16及び17各々のSOCを算出(検出)する(ステップS101)。SOCの算出方法には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   In FIG. 2, first, the ECU 20 as a part of the power management apparatus 100 calculates (detects) the SOC of each of the batteries 15, 16 and 17 (step S101). Since various known modes can be applied to the SOC calculation method, a detailed description thereof will be omitted.

次に、ECU20は、電池15、16及び17各々のSOCに基づいて、電池15、16及び17各々の充放電に係る優先度を決定する(ステップS102)。   Next, ECU20 determines the priority which concerns on charging / discharging of each of batteries 15, 16, and 17 based on SOC of each of batteries 15, 16, and 17 (step S102).

ここで、優先度の決定方法について、図3を参照して説明を加える。尚、図3において、「上限」及び「下限」は、SOCの適正範囲(以降、適宜“適正SOC範囲”と称する)の「上限値」及び「下限値」を意味する。図3において、「中心」は、適正SOC範囲の「中心(つまり、適正SOC範囲の上限値と下限値との平均値)」を意味する。また、図3の各マップの縦軸(即ち、“優先度”)のスケールは同じである。   Here, the priority determination method will be described with reference to FIG. In FIG. 3, “upper limit” and “lower limit” mean “upper limit value” and “lower limit value” of an appropriate SOC range (hereinafter referred to as “appropriate SOC range” as appropriate). In FIG. 3, “center” means “center (that is, an average value of the upper limit value and the lower limit value of the appropriate SOC range)” of the appropriate SOC range. Also, the scale of the vertical axis (ie, “priority”) of each map in FIG. 3 is the same.

ECU20には、電池15、16及び17に夫々対応し、SOCと優先度との関係を規定する複数のマップ(図3参照)が予め格納されている。SOCと優先度との関係(つまり、マップ)は、例えば電池の種類、及び/又は該電池が電気的に接続されている電源系統とにより決定される。   The ECU 20 stores in advance a plurality of maps (see FIG. 3) that correspond to the batteries 15, 16 and 17, respectively, and define the relationship between the SOC and the priority. The relationship (that is, the map) between the SOC and the priority is determined by, for example, the type of battery and / or the power supply system to which the battery is electrically connected.

具体的には例えば、定常的に使用できるSOCが比較的広い電池の場合は、図3(a)に示すような、適正SOC範囲の中心値からある程度の範囲内では優先度は変化せず、適正SOC範囲の上限値近傍及び下限値近傍で、優先度が上昇するマップとなる。このように構成すれば、電池が、過放電状態や過充電状態となることを少なくとも抑制することができる。   Specifically, for example, in the case of a battery having a relatively wide SOC that can be used regularly, the priority does not change within a certain range from the center value of the appropriate SOC range, as shown in FIG. This is a map in which the priority increases in the vicinity of the upper limit value and the lower limit value of the appropriate SOC range. If comprised in this way, it can suppress at least that a battery will be in an overdischarge state and an overcharge state.

或いは、バックアップ電源としての機能を果たすために低SOCを回避する必要がある電池(即ち、第2電源系統13に用いられる電池)や、過放電に比較的弱い電池の場合は、図3(b)に示すような、SOCが、適正SOC範囲の中心値から下限値に近づくにつれて、優先度が急激に上昇するマップとなる。尚、どの程度まで低SOCを許容できるかによって、優先度の上昇の程度(即ち、傾き)を設定すればよい。このように構成すれば、電池が低SOCや過放電状態となることを防止することができる。   Alternatively, in the case of a battery that needs to avoid low SOC in order to function as a backup power supply (that is, a battery used in the second power supply system 13) or a battery that is relatively vulnerable to overdischarge, FIG. As the SOC approaches the lower limit from the center value of the appropriate SOC range, the priority is rapidly increased. Note that the degree of increase in priority (that is, the slope) may be set depending on how much low SOC can be tolerated. If comprised in this way, it can prevent that a battery will be in low SOC or an overdischarge state.

電池の過充電に対して、例えばガス発生対策等の措置が車両側で採られている場合、図3(c)に示すような、SOCが、適正SOC範囲の中心値から上限値側に多少変化したとしても、優先度が変わらないマップが適用されてよい。   When measures such as gas generation countermeasures are taken on the vehicle side against overcharge of the battery, the SOC is slightly higher from the center value of the appropriate SOC range to the upper limit side as shown in FIG. Even if it changes, a map whose priority does not change may be applied.

本実施形態では、図3(a)に示すマップが、電池15としての鉛蓄電池のマップに設定されており、図3(b)に示すマップが、電池16としてのニッケル水素電池又はリチウムイオン電池のマップに設定されているものとする。この場合、図3(a)のマップのSOCの上限値及び下限値は、夫々、例えば100%及び90%である。図3(b)のマップのSOCの上限値及び下限値は、夫々、例えば70%及び30%である。   In this embodiment, the map shown in FIG. 3A is set to the map of the lead storage battery as the battery 15, and the map shown in FIG. 3B is a nickel metal hydride battery or a lithium ion battery as the battery 16. It is assumed that it is set in the map. In this case, the upper limit value and the lower limit value of the SOC in the map of FIG. 3A are, for example, 100% and 90%, respectively. The upper limit value and lower limit value of the SOC in the map of FIG. 3B are, for example, 70% and 30%, respectively.

ECU20は、電池15、16及び17各々のSOCに基づいて、該電池15、16及び17に夫々対応するマップから、電池15、16及び17各々の優先度を決定する。   Based on the SOC of each of the batteries 15, 16 and 17, the ECU 20 determines the priority of each of the batteries 15, 16 and 17 from the map corresponding to each of the batteries 15, 16 and 17.

再び図2に戻り、ECU20は、電池15、16及び17のうち、優先度の最も高い電池に係る要求電圧を設定する(ステップS103)。尚、該「要求電圧」は、優先度の最も高い電池の特性(例えば、SOCと開路電圧との関係を示す特性曲線や、優先度が決定された時点のSOC等)により決定される。要求電圧の設定方法には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   Returning to FIG. 2 again, the ECU 20 sets a required voltage related to the battery having the highest priority among the batteries 15, 16 and 17 (step S103). The “required voltage” is determined by the characteristics of the battery having the highest priority (for example, a characteristic curve indicating the relationship between the SOC and the open circuit voltage, the SOC at the time when the priority is determined, etc.). Since various known modes can be applied to the method for setting the required voltage, a detailed description thereof is omitted.

車両の減速時以外のときは、要求電圧が、電池の端子電圧よりも低く設定されることが、燃費向上の観点からは望ましい。優先度の最も高い電池のSOCが、適正SOC範囲の下限値に近づいたことにより該電池の優先度が高い場合、要求電圧は、優先度の最も高い電池が放電しないような電圧であって、他の電池の端子電圧よりも低い電圧とすればよい。このように構成すれば、優先度の最も高い電池の保護と、燃費向上との両方を図ることができる。   When the vehicle is not decelerating, it is desirable from the viewpoint of improving fuel efficiency that the required voltage is set lower than the terminal voltage of the battery. When the SOC of the battery with the highest priority is close to the lower limit value of the appropriate SOC range and the priority of the battery is high, the required voltage is a voltage that does not discharge the battery with the highest priority, The voltage may be lower than the terminal voltage of other batteries. If comprised in this way, both protection of the battery with the highest priority and improvement in fuel consumption can be achieved.

次に、ECU20は、車両の電源系が正常であるか否か、及び、電池15、16及び17各々のSOCが、夫々対応する適正SOC範囲内であるか否か、を判定する(ステップS104)。   Next, the ECU 20 determines whether or not the power supply system of the vehicle is normal, and whether or not the SOC of each of the batteries 15, 16 and 17 is within the corresponding appropriate SOC range (step S104). ).

車両の電源系が正常であり、電池15、16及び17各々のSOCが、夫々対応する適正SOC範囲内であると判定された場合(ステップS104:Yes)、ECU20は、車両が減速中であるか否かを判定する(ステップS105)。   When it is determined that the power supply system of the vehicle is normal and the SOC of each of the batteries 15, 16 and 17 is within the corresponding appropriate SOC range (step S104: Yes), the ECU 20 is decelerating the vehicle. Whether or not (step S105).

車両が減速中であると判定された場合(ステップS105:Yes)、ECU20は、発電機11の発電電圧を、回生時の要求電圧に設定する(ステップS106)。尚、「回生時の要求電圧」は、リレーを介して発電機11に電気的に接続されている全ての電池の端子電圧よりも高い電圧である。   When it is determined that the vehicle is decelerating (step S105: Yes), the ECU 20 sets the power generation voltage of the generator 11 to the required voltage during regeneration (step S106). The “required voltage during regeneration” is a voltage higher than the terminal voltages of all the batteries that are electrically connected to the generator 11 via a relay.

他方、車両が減速中でないと判定された場合(ステップS105:No)、ECU20は、発電機11の発電電圧を、上記ステップS103の処理で設定された、優先度の最も高い電池に係る要求電圧に設定する(ステップS107)。   On the other hand, when it is determined that the vehicle is not decelerating (step S105: No), the ECU 20 sets the generated voltage of the generator 11 to the required voltage related to the battery with the highest priority set in the process of step S103. (Step S107).

このように構成すれば、優先度の最も高い(言い換えれば、最優先で保護すべき)電池に適した発電電圧となるので、例えばリレーにより該電池を発電機11から切り離すことなく、該電池のSOC管理を適切に行うことができる。   With this configuration, the power generation voltage is suitable for the battery having the highest priority (in other words, to be protected with the highest priority). Therefore, the battery is disconnected from the generator 11 by a relay, for example. It is possible to appropriately perform SOC management.

具体的には例えば、優先度の最も高い電池のSOCが、適正SOC範囲の下限値近傍である場合(即ち、過放電状態となる可能性が高い場合)、優先度の最も高い電池が、それ以上放電しない又は充電される発電電圧とされるので、該電池が過放電状態となることに起因して該電池に接続されたリレーが開状態となることを防止することができる。   Specifically, for example, when the SOC of the battery with the highest priority is near the lower limit value of the appropriate SOC range (that is, when there is a high possibility of being in an overdischarge state), the battery with the highest priority is Since the generated voltage is not discharged or charged, the relay connected to the battery can be prevented from being opened due to the battery being overdischarged.

或いは、優先度の最も高い電池のSOCが、適正SOC範囲の上限値近傍である場合(即ち、過充電状態となる可能性が高い場合)、優先度の最も高い電池が、それ以上充電されない又は放電する発電電圧とされるので、該電池が過充電状態となることに起因して該電池に接続されたリレーが開状態となることを防止することができる。   Alternatively, when the SOC of the battery with the highest priority is near the upper limit value of the appropriate SOC range (that is, when there is a high possibility of being in an overcharge state), the battery with the highest priority is not charged any more or Since the generated voltage is discharged, it is possible to prevent the relay connected to the battery from being opened due to the battery being overcharged.

この結果、リレーの開閉頻度を低減することができ、リレーの劣化を抑制することができる。加えて、リレーの開閉頻度が比較的低いので、例えば比較的高価な半導体リレーに代えて、機械式リレーを採用することができ、例えば製造コストの低減を図ることができる。   As a result, the frequency of opening and closing of the relay can be reduced, and the deterioration of the relay can be suppressed. In addition, since the frequency of opening and closing of the relay is relatively low, for example, a mechanical relay can be employed instead of a relatively expensive semiconductor relay, and the manufacturing cost can be reduced, for example.

本実施形態では特に、電池16に対応するマップ(図3(b)参照)のSOCの下限値の優先度が、電池15に対応するマップ(図3(a)参照)のSOCの下限値の優先度よりも高くなる。このため、電池16としてのニッケル水素電池又はリチウムイオン電池が、過放電状態になる可能性が比較的高い場合には、電池15としての鉛蓄電池が過放電状態になる可能性が比較的高い場合であっても、優先的に保護されることとなる。   Particularly in the present embodiment, the priority of the lower limit value of the SOC of the map corresponding to the battery 16 (see FIG. 3B) is the lower limit value of the SOC of the map corresponding to the battery 15 (see FIG. 3A). Be higher than priority. For this reason, when the possibility that the nickel hydride battery or the lithium ion battery as the battery 16 is in an overdischarged state is relatively high, the possibility that the lead storage battery as the battery 15 is in an overdischarged state is relatively high Even so, it will be preferentially protected.

また、電池16に対応するマップ(図3(b)参照)のSOCの上限値の優先度が、電池15に対応するマップ(図3(a)参照)のSOCの上限値の優先度よりも高くなる。このため、電池16としてのニッケル水素電池又はリチウムイオン電池が、過充電状態になる可能性が比較的高い場合には、電池15としての鉛蓄電池が過充電状態になる可能性が比較的高い場合であっても、優先的に保護される。   Further, the priority of the upper limit value of the SOC in the map corresponding to the battery 16 (see FIG. 3B) is higher than the priority of the upper limit value of the SOC in the map corresponding to the battery 15 (see FIG. 3A). Get higher. For this reason, when the nickel hydride battery or the lithium ion battery as the battery 16 is relatively highly likely to be in an overcharged state, the lead storage battery as the battery 15 is relatively likely to be in an overcharged state. Even preferential protection.

つまり、本実施形態では、鉛蓄電池よりも高価なニッケル水素電池又はリチウムイオン電池が、過放電状態又は過充電状態となることを確実に防止することができる。このため、例えばニッケル水素電池又はリチウムイオン電池の劣化を抑制することができ、実用上非常に有利である。   That is, in this embodiment, it is possible to reliably prevent a nickel-metal hydride battery or a lithium ion battery that is more expensive than a lead storage battery from being overdischarged or overcharged. For this reason, for example, deterioration of a nickel metal hydride battery or a lithium ion battery can be suppressed, which is very advantageous in practice.

他方で、電池15に対応するマップ(図3(a)参照)のSOCの中央領域の優先度は、電池16に対応するマップ(図3(b)参照)のSOCの中央領域の優先度よりも高い。このため、電池15、16及び17のいずれもが、過充電状態又は過放電状態となる可能性が比較的低い場合には、電池15としての鉛蓄電池が優先的に保護される。   On the other hand, the priority of the central region of the SOC of the map corresponding to the battery 15 (see FIG. 3A) is higher than the priority of the central region of the SOC of the map corresponding to the battery 16 (see FIG. 3B). Is also expensive. For this reason, when all of the batteries 15, 16 and 17 are relatively unlikely to be in an overcharged state or an overdischarged state, the lead storage battery as the battery 15 is preferentially protected.

上述したステップS104の処理において、車両の電源系に異常がある、或いは、電池15、16及び17のうち少なくとも一つの電池のSOCが、該電池に対応する適正SOC範囲から外れている(即ち、該電池が過充電状態又は過放電状態である)と判定された場合(ステップS104:No)、ECU20は、発電機11の発電電圧を、予め定められた電源系の異常時の要求電圧、或いは、過充電状態又は過放電状態である電池に応じた要求電圧に設定する(ステップS108)。   In the process of step S104 described above, there is an abnormality in the power supply system of the vehicle, or the SOC of at least one of the batteries 15, 16, and 17 is out of the appropriate SOC range corresponding to the battery (ie, When it is determined that the battery is in an overcharged state or an overdischarged state (step S104: No), the ECU 20 sets the power generation voltage of the generator 11 to a predetermined voltage required when the power supply system is abnormal, or Then, the required voltage is set according to the battery in the overcharged state or the overdischarged state (step S108).

尚、電源系の異常時の要求電圧、及び、過充電状態又は過放電状態である電池に応じた要求電圧の設定方法には、公知の各種態様を適用可能であるので、その詳細についての説明は割愛する。   It should be noted that various known modes can be applied to the required voltage when the power supply system is abnormal and the required voltage setting method according to the overcharged or overdischarged battery. Will be omitted.

実施形態に係る「ECU20」は、本発明に係る「検出手段」、「優先度設定手段」及び「制御手段」の一例である。実施形態に係る「電池15、16及び17」は、本発明に係る「2以上の電池」の一例である。実施形態に係る「発電機11」は、本発明に係る「発電手段」の一例である。   The “ECU 20” according to the embodiment is an example of the “detection unit”, the “priority setting unit”, and the “control unit” according to the present invention. “Batteries 15, 16 and 17” according to the embodiment are examples of “two or more batteries” according to the present invention. The “generator 11” according to the embodiment is an example of the “power generation means” according to the present invention.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電源管理装置もまた本発明の技術的範囲に含まれるものである。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. Is also included in the technical scope of the present invention.

11…発電機、12…第1電源系統、13…第2電源系統、14…第3電源系統、15、16、17…電池、20…ECU、100…電源管理装置   DESCRIPTION OF SYMBOLS 11 ... Generator, 12 ... 1st power supply system, 13 ... 2nd power supply system, 14 ... 3rd power supply system, 15, 16, 17 ... Battery, 20 ... ECU, 100 ... Power supply management apparatus

Claims (2)

2以上の電池と、発電手段と、前記2以上の電池に夫々対応し、対応する電池と前記発電手段との通電及び遮断を切り替える複数のリレーと、を備える車両の電源管理装置であって、
前記2以上の電池各々に係るSOCを検出する検出手段と、
前記検出されたSOCに基づいて、前記2以上の電池各々の充放電の優先度を設定する優先度設定手段と、
前記車両の減速時以外のときに、前記設定された優先度の最も高い電池に係る要求電圧を前記発電手段の発電電圧として設定する制御手段と、
を備え、
前記優先度設定手段は、前記2以上の電池各々について、前記検出されたSOCが、前記2以上の電池各々について予め定められたSOCの適正範囲の上限値に近づくほど又は下限値に近づくほど、前記優先度を高く設定する
ことを特徴とする電源管理装置。
A power management device for a vehicle comprising two or more batteries, power generation means, and a plurality of relays corresponding to the two or more batteries and switching between energization and interruption of the corresponding batteries and the power generation means,
Detecting means for detecting SOC relating to each of the two or more batteries;
Priority setting means for setting the priority of charge / discharge of each of the two or more batteries based on the detected SOC;
Control means for setting, as a power generation voltage of the power generation means, a required voltage related to the battery having the highest priority set when the vehicle is not decelerated;
With
The priority setting means, for each of the two or more batteries, as the detected SOC approaches the upper limit value of the appropriate range of SOC predetermined for each of the two or more batteries, or approaches the lower limit value, The power management apparatus characterized in that the priority is set high.
前記2以上の電池は、鉛蓄電池と、ニッケル水素電池又はリチウムイオン電池とを含み、
前記優先度設定手段は、前記2以上の電池に夫々対応し、SOCと優先度との関係を規定する複数のマップを有し、
前記複数のマップのうち前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の下限値近傍の優先度は、前記複数のマップのうち前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の下限値近傍の優先度よりも高く、
前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の上限値近傍の優先度は、前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の上限値近傍の優先度よりも高く、
前記ニッケル水素電池又はリチウムイオン電池に対応するマップにおける、前記ニッケル水素電池又はリチウムイオン電池のSOCの適正範囲の中央領域の優先度は、前記鉛蓄電池に対応するマップにおける、前記鉛蓄電池のSOCの適正範囲の中央領域の優先度よりも低い
ことを特徴とする請求項1に記載の電源管理装置。
The two or more batteries include a lead storage battery and a nickel metal hydride battery or a lithium ion battery,
The priority setting means corresponds to each of the two or more batteries, and has a plurality of maps that define the relationship between the SOC and the priority,
In the map corresponding to the nickel metal hydride battery or lithium ion battery among the plurality of maps, the priority in the vicinity of the lower limit value of the appropriate range of the SOC of the nickel metal hydride battery or lithium ion battery is the lead among the plurality of maps. Higher than the priority near the lower limit of the appropriate range of the SOC of the lead storage battery in the map corresponding to the storage battery,
In the map corresponding to the nickel metal hydride battery or lithium ion battery, the priority in the vicinity of the upper limit of the appropriate range of the SOC of the nickel metal hydride battery or lithium ion battery is the SOC of the lead acid battery in the map corresponding to the lead acid battery. Higher than the priority near the upper limit of the appropriate range of
In the map corresponding to the nickel metal hydride battery or lithium ion battery, the priority of the central region of the appropriate range of the SOC of the nickel metal hydride battery or lithium ion battery is the SOC of the lead acid battery in the map corresponding to the lead acid battery. The power management apparatus according to claim 1, wherein the power management apparatus is lower than the priority of the central area of the appropriate range.
JP2014257372A 2014-12-19 2014-12-19 Power management device Active JP6237606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257372A JP6237606B2 (en) 2014-12-19 2014-12-19 Power management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257372A JP6237606B2 (en) 2014-12-19 2014-12-19 Power management device

Publications (2)

Publication Number Publication Date
JP2016117354A true JP2016117354A (en) 2016-06-30
JP6237606B2 JP6237606B2 (en) 2017-11-29

Family

ID=56242773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257372A Active JP6237606B2 (en) 2014-12-19 2014-12-19 Power management device

Country Status (1)

Country Link
JP (1) JP6237606B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107901744A (en) * 2017-11-24 2018-04-13 北京华田汽车科技有限公司 A kind of more electrokinetic cell system frameworks of pure electric vehicle special-purpose vehicle
WO2020203826A1 (en) * 2019-04-03 2020-10-08 株式会社Gsユアサ Power supply system, and method for controlling power supply system
CN113013958A (en) * 2021-04-17 2021-06-22 深圳市鑫嘉恒科技有限公司 Balance control system and method of energy storage battery and storage medium
JP7447854B2 (en) 2021-03-23 2024-03-12 トヨタ自動車株式会社 Battery management system and battery management method
JP7456408B2 (en) 2021-03-23 2024-03-27 トヨタ自動車株式会社 Battery management system and battery management method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132190A (en) * 2003-10-29 2005-05-26 Denso Corp Power supply system for vehicle
JP2008037239A (en) * 2006-08-04 2008-02-21 Nissan Motor Co Ltd Vehicular power source control device
WO2011089708A1 (en) * 2010-01-22 2011-07-28 トヨタ自動車株式会社 Battery charging control system
JP2011176958A (en) * 2010-02-25 2011-09-08 Denso Corp In-vehicle power supply
JP2012165589A (en) * 2011-02-08 2012-08-30 Toyota Motor Corp Power generation control system of vehicle
JP2014171335A (en) * 2013-03-04 2014-09-18 Toshiba Corp Secondary battery system comprising a plurality of batteries and distribution method for charge/discharge power and the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132190A (en) * 2003-10-29 2005-05-26 Denso Corp Power supply system for vehicle
JP2008037239A (en) * 2006-08-04 2008-02-21 Nissan Motor Co Ltd Vehicular power source control device
WO2011089708A1 (en) * 2010-01-22 2011-07-28 トヨタ自動車株式会社 Battery charging control system
JP2011176958A (en) * 2010-02-25 2011-09-08 Denso Corp In-vehicle power supply
JP2012165589A (en) * 2011-02-08 2012-08-30 Toyota Motor Corp Power generation control system of vehicle
JP2014171335A (en) * 2013-03-04 2014-09-18 Toshiba Corp Secondary battery system comprising a plurality of batteries and distribution method for charge/discharge power and the like

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107901744A (en) * 2017-11-24 2018-04-13 北京华田汽车科技有限公司 A kind of more electrokinetic cell system frameworks of pure electric vehicle special-purpose vehicle
WO2020203826A1 (en) * 2019-04-03 2020-10-08 株式会社Gsユアサ Power supply system, and method for controlling power supply system
JP2020170629A (en) * 2019-04-03 2020-10-15 株式会社Gsユアサ Power supply system and method for controlling power supply system
JP7211217B2 (en) 2019-04-03 2023-01-24 株式会社Gsユアサ Power system, power system control method
JP7447854B2 (en) 2021-03-23 2024-03-12 トヨタ自動車株式会社 Battery management system and battery management method
JP7456408B2 (en) 2021-03-23 2024-03-27 トヨタ自動車株式会社 Battery management system and battery management method
CN113013958A (en) * 2021-04-17 2021-06-22 深圳市鑫嘉恒科技有限公司 Balance control system and method of energy storage battery and storage medium

Also Published As

Publication number Publication date
JP6237606B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6540781B2 (en) Power storage device
US9933491B2 (en) Electric storage system
JP6237606B2 (en) Power management device
JP6308301B2 (en) Secondary battery charging system and charging method
EP2983268B1 (en) Battery system
EP2068420A2 (en) Secondary battery charging method and device
JP2011135657A (en) Battery system and vehicle with the same, and method for detecting current limit state of the battery system
JP2011015516A (en) In-vehicle power supply device
US11728660B2 (en) Energy storage apparatus and control method of energy storage devices
JP2018026923A (en) Power storage device and charge control method therefor
JP2014225942A (en) Power storage system
KR20170002085A (en) Battery Pack and Charge Controlling System for Electric Vehicle Including Thereof
CN108808762B (en) Power supply control system
JP2009261230A (en) Electric vehicle charging system
US10391880B2 (en) Battery pack and electric vehicle including the same
JP2008312282A (en) Method of controlling power unit for vehicle
KR20160078872A (en) Power supply apparatus
JP5626190B2 (en) Power storage system
US20160118818A1 (en) Lithium Battery System and Control Method Therefor
JP2012060757A (en) Charging control method and charging controller
JP6379866B2 (en) Power supply
JP6036521B2 (en) Power storage device
JP2015061505A (en) Power storage system
JP6668210B2 (en) Power supply control device and power supply system
KR101866059B1 (en) System and method for charging vehicle battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R151 Written notification of patent or utility model registration

Ref document number: 6237606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151