JP2016114455A - Measuring apparatus - Google Patents

Measuring apparatus Download PDF

Info

Publication number
JP2016114455A
JP2016114455A JP2014252924A JP2014252924A JP2016114455A JP 2016114455 A JP2016114455 A JP 2016114455A JP 2014252924 A JP2014252924 A JP 2014252924A JP 2014252924 A JP2014252924 A JP 2014252924A JP 2016114455 A JP2016114455 A JP 2016114455A
Authority
JP
Japan
Prior art keywords
pipe
laser
longitudinal direction
measuring
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014252924A
Other languages
Japanese (ja)
Inventor
栄郎 松村
Shigeo Matsumura
栄郎 松村
秀高 西田
Hidetaka Nishida
秀高 西田
啓司 森下
Keiji Morishita
啓司 森下
大輔 荒川
Daisuke Arakawa
大輔 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2014252924A priority Critical patent/JP2016114455A/en
Publication of JP2016114455A publication Critical patent/JP2016114455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring apparatus capable of consecutively and quantitatively measuring the degree of creep damage of piping.SOLUTION: A measuring apparatus comprises an electromagnetic ultrasonic sensor T1 which measures the wall thickness of piping P, a mobile body K to which the electromagnetic ultrasonic sensor T1 is attached so that the measurement surface of the electromagnetic ultrasonic sensor T1 faces the outer peripheral surface of the piping P, and which moves along the longitudinal direction of the piping P; and guide members T102-T105 which are interposed between the electromagnetic ultrasonic sensor T1 and the piping P to guide the mobile body K so that the distance between the electromagnetic ultrasonic sensor T1 and the piping P is held at a constant distance when the mobile body K moves along the longitudinal direction of the piping P.SELECTED DRAWING: Figure 5

Description

本発明は、測定装置に関する。   The present invention relates to a measuring apparatus.

火力発電所のボイラー内には、過熱器、再熱器の伝熱管等、蒸気を循環させる細い配管(例えば、直径50mm)が多数通っている。これらの配管は、高温高圧(例えば、580℃、3MPa)の水蒸気等が流入出するとともに、高温環境下におかれるため、クリープ損傷や酸化減肉が生じることがある。これらの配管がクリープ損傷や酸化減肉による強度低下により破断した場合、大事故につながるため、定期的な余寿命検査がなされ、余寿命に応じて交換、修繕がなされている。   In the boiler of a thermal power plant, many thin pipes (for example, diameter 50 mm) which circulate steam, such as a superheater and a heat exchanger tube of a reheater, pass. These pipes are subjected to high-temperature and high-pressure (for example, 580 ° C., 3 MPa) steam and the like, and are placed in a high-temperature environment, so that creep damage and oxidation thinning may occur. If these pipes break due to creep damage or reduced strength due to oxidation thinning, they will lead to major accidents. Therefore, periodic remaining life inspections are conducted, and replacement and repair are performed according to the remaining life.

しかし、これらの配管の内部及び外部には、蒸気により形成された酸化被膜や、ボイラー内で燃料を燃焼し発生した燃焼ガスに起因する付着物が付着しており、これらに起因して局所的に温度上昇し、クリープ損傷や酸化減肉が進行する場合がある。このようなクリープ損傷や酸化減肉は、損傷箇所を予測するのは困難であるため、現状では、作業員が目視やリング状の治具を用いて、クリープ損傷の度合いを示す指標の一つである配管の膨出の度合いを、長手方向の複数箇所に亘って確認するという作業を行っている。しかし、配管の膨出の度合いを目視や治具を用いて判断するのは限界があり、又、クリープ損傷は一定量を超えてから急激に進行することを考慮すると、判断に誤りのない定量的な測定方法が求められている。加えて、これらの配管は、密集して無数に配置されているため、大型の測定装置は、使用が困難である。   However, the inside and outside of these pipes are attached with oxide films formed by steam and deposits resulting from combustion gas generated by burning fuel in the boiler. When the temperature rises, creep damage and oxidation thinning may progress. Such creep damage and oxidation thinning are difficult to predict the damage location, so at present, one of the indicators that the worker uses the visual or ring-shaped jig to indicate the degree of creep damage. The work of confirming the degree of bulging of the pipe over a plurality of locations in the longitudinal direction is performed. However, there is a limit to judging the degree of bulging of the pipe using visual inspection or a jig, and considering that creep damage proceeds rapidly after exceeding a certain amount, quantitative determination without error Is needed. In addition, since these pipes are densely arranged innumerably, it is difficult to use a large measuring device.

このような背景にあって、ボイラーに用いられる配管のクリープ損傷を連続的に測定する方法について、種々検討がなされており、例えば、特許文献1には、超音波端子を利用して、配管の肉厚を連続的に測定するための装置が記載されている。   Against this background, various studies have been made on methods for continuously measuring creep damage of pipes used in boilers. For example, Patent Document 1 discloses the use of ultrasonic terminals to An apparatus for continuously measuring wall thickness is described.

特開2007−187593号公報JP 2007-187593 A

しかし、特許文献1等では、接触式の超音波センサを用いて配管の肉厚を測定することを前提としているため、配管の表面に付着した酸化被膜や付着物を洗浄により除去した後に測定を行う必要があり、長手方向の複数箇所に亘って連続的に測定するのに適した測定装置とは言えない。   However, in Patent Document 1 and the like, since it is assumed that the thickness of the pipe is measured using a contact-type ultrasonic sensor, the measurement is performed after removing the oxide film and deposits attached to the surface of the pipe by washing. It is necessary to carry out, and it cannot be said that it is a measuring apparatus suitable for continuous measurement over a plurality of locations in the longitudinal direction.

そこで、本発明は、配管のクリープ損傷の度合いを、連続的、かつ、定量的に測定することを可能とする測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring apparatus that can continuously and quantitatively measure the degree of creep damage of piping.

前述した課題を解決する主たる本発明は、配管の肉厚を測定する電磁超音波センサと、前記電磁超音波センサの測定面が前記配管の外周面と対向するように前記電磁超音波センサが取り付けられ、前記配管の長手方向に沿って移動する移動体と、前記移動体が前記配管の長手方向に沿って移動する際に、前記電磁超音波センサと前記配管との間の距離が一定の距離に保持されるように、前記電磁超音波センサと前記配管との間に介在して前記移動体を案内する第1案内部材と、を備えたことを特徴とする測定装置である。本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。   The main present invention for solving the above-mentioned problems is an electromagnetic ultrasonic sensor for measuring the thickness of a pipe, and the electromagnetic ultrasonic sensor is attached so that the measurement surface of the electromagnetic ultrasonic sensor faces the outer peripheral surface of the pipe. And when the moving body moves along the longitudinal direction of the pipe, the distance between the electromagnetic ultrasonic sensor and the pipe is a constant distance. And a first guide member that is interposed between the electromagnetic ultrasonic sensor and the pipe and guides the moving body. Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

本発明に係る測定装置によれば、配管のクリープ損傷や酸化減肉の度合いを、連続的、かつ、定量的に測定することが可能となる。特に、本発明に係る測定装置は、電磁超音波センサの測定面が、配管の長手方向の各地点で、配管の測定位置の表面に対して一定の距離に維持され、かつ、配管の測定位置の表面に対して略平行に対向する構成とすることができるため、配管に洗浄、研磨などの前処理を行うことなく、高い精度で、配管の肉厚を連続測定することが可能となる。   According to the measuring apparatus according to the present invention, it is possible to continuously and quantitatively measure the degree of creep damage and oxidative thinning of piping. In particular, the measuring device according to the present invention is such that the measurement surface of the electromagnetic ultrasonic sensor is maintained at a certain distance from the surface of the measurement position of the pipe at each point in the longitudinal direction of the pipe, and the measurement position of the pipe Therefore, the thickness of the pipe can be continuously measured with high accuracy without performing pretreatment such as cleaning and polishing on the pipe.

本発明の第1実施形態における測定対象の配管の構成を示す図である。It is a figure which shows the structure of piping of the measuring object in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す斜視図である。It is a perspective view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す側面図である。It is a side view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す側面図である。It is a side view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における肉厚測定部の構成を示す図である。It is a figure which shows the structure of the thickness measurement part in 1st Embodiment of this invention. 本発明の第1実施形態における肉厚測定部の構成を示す図である。It is a figure which shows the structure of the thickness measurement part in 1st Embodiment of this invention. 本発明の第1実施形態における第1外径測定部の構成を示す図である。It is a figure which shows the structure of the 1st outer diameter measurement part in 1st Embodiment of this invention. 本発明の第1実施形態における第2外径測定部の構成を示す図である。It is a figure which shows the structure of the 2nd outer diameter measurement part in 1st Embodiment of this invention. 本発明の第1実施形態における測定装置の構成を示す平面図である。It is a top view which shows the structure of the measuring apparatus in 1st Embodiment of this invention.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

<第1実施形態>
本実施形態では、測定装置を用いて、ボイラーに用いられる配管(以下、単に「配管」と言う)の肉厚及び外径を長手方向に、連続的に測定する態様について説明する。
<First Embodiment>
In the present embodiment, a mode in which the thickness and outer diameter of a pipe (hereinafter simply referred to as “pipe”) used in a boiler is continuously measured in the longitudinal direction using a measuring apparatus will be described.

図1に、本実施形態に係る測定対象である配管の一例を示す。ボイラーに用いられる配管は、多数の略平行に伸延する細い配管(例えば、直径50mm)から構成され、夫々の配管同士の間隔も配管の径と同程度で、配管が密集した状態となっている。測定対象の配管Pは、図1で示す密集したボイラーに用いられる配管のいずれか一であり、例えば、低合金鋼等の材料から構成され、クリープ損傷が生じた場合、減肉したり、長手方向と略垂直な方向の断面の径が広がる(以下、「膨出」と言う)という特性を有する。そのため、これらの配管の肉厚や外径を測定することにより、クリープ損傷や酸化減肉を検出することができる。   In FIG. 1, an example of piping which is a measuring object which concerns on this embodiment is shown. The piping used for the boiler is composed of a large number of thin pipes (for example, 50 mm in diameter) extending substantially in parallel, and the intervals between the pipes are approximately the same as the pipe diameter, and the pipes are in a dense state. . The pipe P to be measured is one of the pipes used in the dense boiler shown in FIG. 1, and is made of, for example, a material such as low alloy steel. The cross-sectional diameter in a direction substantially perpendicular to the direction is widened (hereinafter referred to as “bulging”). Therefore, creep damage and oxidation thinning can be detected by measuring the thickness and outer diameter of these pipes.

本実施形態に係る測定装置は、配管Pに洗浄、研磨などの前処理を行うことなく、配管の肉厚の変化を連続的に測定するべく、非接触で超音波を送受信して肉厚の測定を行うことができる電磁超音波センサ(Electro Magnetic Acoustic Transducer:EMAT)を用いるとともに、当該センサを用いた連続測定に適した台車機構を備える。更に、本実施形態に係る測定装置は、配管Pの肉厚に加えて、配管Pの外径も連続的に測定可能とするべく、レーザ寸法測定装置等により構成される外径測定部を備えるものである。   The measuring apparatus according to the present embodiment transmits and receives ultrasonic waves in a non-contact manner to continuously measure changes in the thickness of the pipe without performing pretreatment such as cleaning and polishing on the pipe P. An electromagnetic ultrasonic sensor (Electro Magnetic Acoustic Transducer: EMAT) capable of performing measurement is used, and a cart mechanism suitable for continuous measurement using the sensor is provided. Furthermore, the measuring apparatus according to the present embodiment includes an outer diameter measuring unit configured by a laser dimension measuring apparatus or the like so that the outer diameter of the pipe P can be continuously measured in addition to the thickness of the pipe P. Is.

尚、配管の材料、又は、配管への応力のかかり方によっては、肉厚の減肉量、あるいは外径の膨出量のいずれかでしかクリープ損傷が検出できない場合がある。そのため、本実施形態に係る測定装置は、配管Pの長手方向の各地点に亘って肉厚及び外径をともに連続的に測定できる構成として、その測定結果に基づいて、クリープ損傷や酸化減肉の検出を可能としている。   Depending on the material of the pipe or how the stress is applied to the pipe, the creep damage may be detected only by the thickness reduction amount or the outer diameter bulge amount. Therefore, the measurement apparatus according to the present embodiment has a configuration in which both the thickness and the outer diameter can be continuously measured over each point in the longitudinal direction of the pipe P, and based on the measurement result, creep damage and oxidation thinning Can be detected.

===測定装置の構成===
以下、図2〜図4を参照して、本実施形態に係る測定装置の構成の一例を示す。図2は測定装置の斜視図、図3A〜図3Bは測定装置の側面図、図4A〜図4Cは測定装置の平面図を表す。尚、図4A、図4B、図4Cは、夫々、図3AにおけるA―A’、B―B’、C―C’で切断したときの測定装置の平面図を示す図である。又、図2では、配管Pを省略して測定装置の斜視図を表している。
=== Configuration of measuring device ===
Hereinafter, an example of the configuration of the measuring apparatus according to the present embodiment will be described with reference to FIGS. 2 is a perspective view of the measuring device, FIGS. 3A to 3B are side views of the measuring device, and FIGS. 4A to 4C are plan views of the measuring device. 4A, FIG. 4B, and FIG. 4C are plan views of the measuring device when cut along AA ′, BB ′, and CC ′ in FIG. 3A, respectively. Moreover, in FIG. 2, the piping P is abbreviate | omitted and the perspective view of the measuring apparatus is represented.

図2、図3A〜図3B、図4A〜図4Cにおいて、Z軸は、測定対象の配管Pの長手方向に沿う軸である。又、X軸、Y軸は、夫々、測定対象の配管Pの長手方向と垂直な方向を示す軸である(X軸とY軸も垂直な方向を示す関係にある)。以下の説明では、夫々、単に「X方向」、「Y方向」、「Z方向」と表し、矢印の示す方向を+方向、矢印と逆の方向を−方向を表す。又、測定装置は、配管Pに沿って+Z方向に進むものとして、+Z方向を「前側」、−Z方向を「後側」と言う。   2, 3 </ b> A to 3 </ b> B, and 4 </ b> A to 4 </ b> C, the Z axis is an axis along the longitudinal direction of the pipe P to be measured. Further, the X axis and the Y axis are axes indicating directions perpendicular to the longitudinal direction of the pipe P to be measured (the X axis and the Y axis are also in a relationship indicating a direction perpendicular to each other). In the following description, they are simply expressed as “X direction”, “Y direction”, and “Z direction”, respectively, the direction indicated by the arrow indicates the + direction, and the direction opposite to the arrow indicates the − direction. Further, the measuring apparatus is assumed to advance in the + Z direction along the pipe P, and the + Z direction is referred to as “front side” and the −Z direction is referred to as “rear side”.

本実施形態に係る測定装置は、肉厚測定部T1、第1外径測定部T2、T3、第2外径測定部T4、T5、ミラーM1、M2が配管Pの長手方向に沿って移動する移動体Kに取り付けられて構成される。そして、測定装置は、移動体Kが配管Pの長手方向に沿って移動しながら、肉厚測定部T1により配管Pの肉厚を測定し、第1外径測定部T2、T3、第2外径測定部T4、T5により、配管Pの外径(膨出)を測定する。   In the measuring apparatus according to the present embodiment, the thickness measuring unit T1, the first outer diameter measuring units T2, T3, the second outer diameter measuring units T4, T5, and the mirrors M1, M2 move along the longitudinal direction of the pipe P. It is configured to be attached to the moving body K. Then, the measuring device measures the thickness of the pipe P by the thickness measuring unit T1 while the moving body K moves along the longitudinal direction of the pipe P, and the first outer diameter measuring units T2, T3, second outer The outer diameter (swelling) of the pipe P is measured by the diameter measuring units T4 and T5.

肉厚測定部T1は、電磁超音波を配管Pに出力するとともに、配管Pの内部から反射される電磁超音波を検出することにより、配管Pの肉厚を測定する電磁超音波センサである。   The thickness measuring unit T1 is an electromagnetic ultrasonic sensor that measures the thickness of the pipe P by outputting electromagnetic ultrasonic waves to the pipe P and detecting the electromagnetic ultrasonic waves reflected from the inside of the pipe P.

第1外径測定部T2、T3は、夫々、出射部T2A、T3Aから配管Pの測定位置に対して一定の幅を有するレーザ平行光線を出射し、配管Pを挟んで対向するように配設された受光部T2B、T3Bが受光したレーザ平行光線に応じて、配管Pの外径を測定するレーザ寸法測定装置である。第1外径測定部T2、T3は、X方向に配管Pを挟んで対向するように出射部T2A、T3Aと受光部T2B、T3Bを配設し、受光部T2B、T3Bが出射部T2A、T3Aから出射されるレーザ平行光線L2、L3を受光することにより、配管PのY方向の幅を測定し、第1外径測定部T2の測定結果と、第1外径測定部T3の測定結果に基づいて、配管PのY方向の外径、即ち膨出量を測定する。尚、図中の矢印L2、L3は、出射部T2A、T3Aから出射するレーザ平行光線を表す。   The first outer diameter measuring portions T2 and T3 are arranged so as to emit laser parallel beams having a certain width with respect to the measurement position of the pipe P from the emitting portions T2A and T3A, respectively, and face each other across the pipe P. This is a laser dimension measuring device that measures the outer diameter of the pipe P in accordance with the laser parallel rays received by the received light receiving portions T2B and T3B. The first outer diameter measuring portions T2 and T3 are provided with the emitting portions T2A and T3A and the light receiving portions T2B and T3B so as to face each other across the pipe P in the X direction, and the light receiving portions T2B and T3B are the emitting portions T2A and T3A. By receiving the laser parallel rays L2 and L3 emitted from the laser beam, the width in the Y direction of the pipe P is measured, and the measurement result of the first outer diameter measurement unit T2 and the measurement result of the first outer diameter measurement unit T3 are measured. Based on this, the outer diameter of the pipe P in the Y direction, that is, the bulging amount is measured. Note that arrows L2 and L3 in the figure represent laser parallel rays emitted from the emission portions T2A and T3A.

第2外径測定部T4、T5は、夫々、出射部T4A、T5Aから配管Pの測定位置に対して直線状のレーザ光線を出射し、出射部T4A、T5Aと略同位置に配設された受光部T4B、T5Bが受光した配管Pの表面からの反射レーザに基づいて、対向する位置の配管Pとの距離を測定するレーザ距離測定装置である。そして、第2外径測定部T4と第2外径測定部T5とは、X方向に配管Pを挟んで対向するように配設され、第2外径測定部T4の測定結果と、第2外径測定部T5の測定結果に基づいて、配管PのX方向の外径、即ち膨出量を測定する。尚、図中では、出射部T4A、T5Aと受光部T4B、T5Bはレーザ距離測定装置T4、T5夫々の筐体内に設置されるものとして、出射部と受光部とを区別せずに表している。図中の矢印L4、L5は、出射部T4A、T5Aから出射するレーザ光線を表す。   The second outer diameter measuring portions T4 and T5 emit linear laser beams with respect to the measurement position of the pipe P from the emitting portions T4A and T5A, respectively, and are arranged at substantially the same positions as the emitting portions T4A and T5A. This is a laser distance measuring device that measures the distance to the pipe P at the opposite position based on the reflected laser from the surface of the pipe P received by the light receiving portions T4B and T5B. The second outer diameter measuring unit T4 and the second outer diameter measuring unit T5 are arranged so as to face each other with the pipe P sandwiched in the X direction, and the second outer diameter measuring unit T4 and the second measurement result Based on the measurement result of the outer diameter measuring portion T5, the outer diameter of the pipe P in the X direction, that is, the bulging amount is measured. In the drawing, the emitting portions T4A and T5A and the light receiving portions T4B and T5B are installed in the respective housings of the laser distance measuring devices T4 and T5, and the emitting portion and the light receiving portion are not distinguished from each other. . Arrows L4 and L5 in the figure represent laser beams emitted from the emission portions T4A and T5A.

ミラーM1、M2は、第1外径測定部T2、T3、及び第2外径測定部T4、T5の出射部T2A、T3A、T4A、T5Aが出射するレーザL2、L3、L4、L5を反射して、夫々の受光部T2B、T3B、T4B、T5BにレーザL2、L3、L4、L5を到達させるための構成である。   The mirrors M1 and M2 reflect the lasers L2, L3, L4, and L5 emitted from the emission portions T2A, T3A, T4A, and T5A of the first outer diameter measurement units T2 and T3 and the second outer diameter measurement units T4 and T5. Thus, the lasers L2, L3, L4, and L5 are made to reach the respective light receiving portions T2B, T3B, T4B, and T5B.

尚、肉厚測定部T1、第1外径測定部T2、T3、第2外径測定部T4、T5の構成の詳細は後述する。   The details of the configuration of the thickness measuring unit T1, the first outer diameter measuring units T2, T3, and the second outer diameter measuring units T4, T5 will be described later.

移動体Kは、測定対象の配管Pの長手方向と略垂直な方向の断面の周囲(以下、「配管の周囲」と言う)を囲むように配設された車輪R1〜R4を介して、その周囲を挟持しながら、配管Pの長手方向(Z方向)に沿って移動する台車である。   The moving body K is arranged through wheels R1 to R4 disposed so as to surround the periphery of the cross section in the direction substantially perpendicular to the longitudinal direction of the pipe P to be measured (hereinafter referred to as “the periphery of the pipe”). It is a cart that moves along the longitudinal direction (Z direction) of the pipe P while pinching the periphery.

詳細には、移動体Kは、第1枠部材K1、第2枠部材K2、連結部材K3、車輪R1〜R4を備えて構成される(図2を参照)。   Specifically, the moving body K includes a first frame member K1, a second frame member K2, a connecting member K3, and wheels R1 to R4 (see FIG. 2).

第1枠部材K1は、配管Pの+X方向の側に配置された、棒状部材が骨組みされてなる枠部材であり、又、第2枠部材K2は、配管Pの−X方向の側に配置された、棒状部材が骨組みされてなる枠部材である。そして、第1枠部材K1と第2枠部材K2が、配管Pを挟んで対向するように配置され、連結部材K3により接続されることにより、配管Pの全周囲を囲む枠体を形成する(以下、単に「枠体K1、K2」とも言う)。そして、枠体K1、K2は、配管Pの周囲に対して一定の間隔を有するように、配管Pの周囲を囲む形状を呈する。尚、第1枠部材K1、第2枠部材K2は、外形が変形しにくい任意の材料により構成される。   The first frame member K1 is a frame member that is arranged on the + X direction side of the pipe P and is formed by framing a rod-shaped member, and the second frame member K2 is arranged on the −X direction side of the pipe P. This is a frame member in which a rod-shaped member is framed. And the 1st frame member K1 and the 2nd frame member K2 are arrange | positioned so that it may oppose on both sides of the piping P, and the frame surrounding the circumference | surroundings of the piping P is formed by connecting with the connection member K3. Hereinafter, it is also simply referred to as “frames K1, K2”). And the frame bodies K1 and K2 exhibit the shape surrounding the circumference | surroundings of the piping P so that it may have a fixed space | interval with respect to the circumference | surroundings of the piping P. FIG. In addition, the 1st frame member K1 and the 2nd frame member K2 are comprised by the arbitrary materials which an external shape does not change easily.

連結部材K3は、例えば、第1枠部材K1と第2枠部材K2とを配管Pを挟んで対向するように配置したとき、これらが対向する部分を任意の長さ位置で接続して、螺子固定することが可能な固定部材である。そして、第1枠部材K1と第2枠部材K2とは、配管Pを挟んで対向するように配置したとき、配管Pを挟むその両側(配管Pに対して+Y方向の側と−Y方向の側)で連結部材K3により固定される。又、第1枠部材K1と第2枠部材K2とは、測定装置の前側(+Z方向)と後側(−Z方向)において、連結部材K3により固定される。即ち、YZ平面で見たとき、第1枠部材K1と第2枠部材K2は、夫々、長方形の形状を呈し、その四隅に第1枠部材K1は−X方向に伸延する棒状部材を、第2枠部材K2は+X方向に伸延する棒状部材を有して、それらが連結部材K3により任意の長さ位置で固定される。そして、移動体Kを配管Pに取り付ける際には、第1枠部材K1と第2枠部材K2とが車輪R1〜R4を介して配管Pの周囲を挟持するように、連結部材K3により接続される。尚、「挟持」とは、移動体Kを配管Pの所定の位置に保持し得るように、枠体K1、K2で配管Pの周囲を押圧した状態を意味する。   For example, when the connecting member K3 is arranged so that the first frame member K1 and the second frame member K2 are opposed to each other with the pipe P interposed therebetween, the opposing portions are connected at an arbitrary length position to It is a fixing member that can be fixed. And when the 1st frame member K1 and the 2nd frame member K2 arrange | position so that it may oppose on both sides of the piping P, the both sides (the side of + Y direction with respect to the piping P, and -Y direction) Side) and is fixed by the connecting member K3. The first frame member K1 and the second frame member K2 are fixed by the connecting member K3 on the front side (+ Z direction) and the rear side (−Z direction) of the measuring apparatus. That is, when viewed in the YZ plane, each of the first frame member K1 and the second frame member K2 has a rectangular shape, and the first frame member K1 has rod-shaped members extending in the −X direction at its four corners. The two-frame member K2 has a rod-like member extending in the + X direction, and they are fixed at an arbitrary length position by the connecting member K3. And when attaching the mobile body K to the piping P, the 1st frame member K1 and the 2nd frame member K2 are connected by the connection member K3 so that the circumference | surroundings of the piping P may be clamped via wheel R1-R4. The Note that “clamping” means a state in which the periphery of the pipe P is pressed by the frame bodies K1 and K2 so that the movable body K can be held at a predetermined position of the pipe P.

車輪R1と車輪R2は、枠体K1、K2の前側(+Z方向)の位置に、X方向に配管Pを跨いで対向するように取り付けられ、又、車輪R3と車輪R4は、枠体K1、K2の後側(−Z方向)の位置に、X方向に配管Pを跨いで対向するように取り付けられる。そして、車輪R1〜R4が配管Pの長手方向に沿う方向(Z方向)に回転運動することにより、移動体Kは長手方向(Z方向)に沿って移動する。   The wheel R1 and the wheel R2 are attached to the front side (+ Z direction) of the frame bodies K1, K2 so as to face each other across the pipe P in the X direction, and the wheel R3 and the wheel R4 are attached to the frame body K1, It is attached to the rear side (−Z direction) of K2 so as to face across the pipe P in the X direction. And the moving body K moves along a longitudinal direction (Z direction) by the wheel R1-R4 rotating in the direction (Z direction) along the longitudinal direction of the piping P. As shown in FIG.

車輪R1〜R4は、リム部に配管Pの周囲の外形に沿う湾曲した凹形状を呈する。そして、車輪R1〜R4は、当該配管Pの周囲の外形に沿う形状が、配管Pに当接するように枠体K1、K2に配設され、夫々、枠体K1、K2のY方向に延びる車軸に回転自在に支持されている。又、車輪R1〜R4は、弾性部材、例えば、弾性ゴム材により構成され、配管Pの膨出箇所等において、配管Pの外形に応じて変形する。即ち、移動体Kは、これらの車輪R1〜R4を配管Pに当接した状態で、配管Pを挟持しながら移動することにより、枠体K1、K2の形状が保持された状態で、配管Pの長手方向の中心軸に沿って、X方向及びY方向にずれることなく移動する。尚、車輪R1〜R4は、移動体Kが配管Pの長手方向に沿って移動するように、配管Pの外周面を挟持しながら移動体Kを案内する案内部材(第2案内部材)の一例である。   The wheels R <b> 1 to R <b> 4 exhibit a curved concave shape along the outer shape of the pipe P at the rim portion. The wheels R1 to R4 are arranged on the frame bodies K1 and K2 so that the shape along the outer periphery of the pipe P is in contact with the pipe P, and the axles extend in the Y direction of the frame bodies K1 and K2, respectively. Is supported rotatably. The wheels R <b> 1 to R <b> 4 are made of an elastic member, for example, an elastic rubber material, and are deformed according to the outer shape of the pipe P at the bulging portion of the pipe P. That is, the moving body K moves while holding the pipe P in a state where these wheels R1 to R4 are in contact with the pipe P, so that the shape of the frame bodies K1 and K2 is maintained. It moves along the central axis in the longitudinal direction of the lens without shifting in the X direction and the Y direction. The wheels R1 to R4 are examples of a guide member (second guide member) that guides the moving body K while sandwiching the outer peripheral surface of the pipe P so that the moving body K moves along the longitudinal direction of the pipe P. It is.

===肉厚測定部について===
以下、図5、図6、及び上記した図3〜図4を参照して、肉厚測定部T1の構成について説明する。
=== About thickness measurement part ===
Hereinafter, the configuration of the thickness measuring unit T1 will be described with reference to FIGS. 5 and 6 and FIGS. 3 to 4 described above.

肉厚測定部T1は、電磁超音波センサであり(以下、「電磁超音波センサT1」とも言う)、電磁超音波送受信部T101、ローラーT102〜T105、付勢バネT106〜T109、制御部T110(図示せず)を備えて構成される。尚、図5中の点線は、電磁超音波センサT1の筐体を表す。   The thickness measuring unit T1 is an electromagnetic ultrasonic sensor (hereinafter also referred to as “electromagnetic ultrasonic sensor T1”), an electromagnetic ultrasonic transmitting / receiving unit T101, rollers T102 to T105, biasing springs T106 to T109, and a control unit T110 ( (Not shown). In addition, the dotted line in FIG. 5 represents the housing | casing of electromagnetic ultrasonic sensor T1.

電磁超音波センサT1は、電磁的方法により、配管Pの内周面に対して所定の周波数の超音波を送信するとともに、配管Pの内周面で反射して跳ね返ってきた超音波を受信し、共振が発生するときの周波数を検出することによって配管Pの肉厚を測定するセンサである。   The electromagnetic ultrasonic sensor T1 transmits an ultrasonic wave having a predetermined frequency to the inner peripheral surface of the pipe P and receives an ultrasonic wave reflected and bounced off the inner peripheral surface of the pipe P by an electromagnetic method. The sensor measures the wall thickness of the pipe P by detecting the frequency at which resonance occurs.

より詳細には、電磁超音波送受信部T101は、送信コイルT101A、受信コイルT101B、永久磁石T101Cを有し、これらを用いて、配管Pの内周面に超音波を送信するとともに、配管Pの内周面で反射して跳ね返ってきた超音波を受信する。送信コイルT101A及び受信コイルT101Bは、導電線を外周方向に巻き回して構成される平面コイルであり、導電線を巻き回して形成される面(以下、「測定面」と言う)が、配管Pの測定位置の表面に対して、一定の間隔を有し、かつ、略平行に対向するように配設される(以下、「送受信コイルT101A、T101B」とも言う)。尚、本実施形態では、送信コイルT101Aと受信コイルT101Bは、同一のコイルを用いる態様を示しているが、別のコイルを用いるものであってもよい。   More specifically, the electromagnetic ultrasonic transmission / reception unit T101 includes a transmission coil T101A, a reception coil T101B, and a permanent magnet T101C. These are used to transmit ultrasonic waves to the inner peripheral surface of the pipe P, and The ultrasonic wave reflected and bounced off the inner peripheral surface is received. The transmission coil T101A and the reception coil T101B are planar coils configured by winding a conductive wire in the outer peripheral direction, and a surface formed by winding the conductive wire (hereinafter referred to as “measurement surface”) is a pipe P. Are arranged so as to oppose the surface of the measurement position at a certain interval and substantially in parallel (hereinafter also referred to as “transmission / reception coils T101A, T101B”). In the present embodiment, the transmission coil T101A and the reception coil T101B are shown using the same coil, but different coils may be used.

永久磁石T101Cは、中心の磁石(N極を配管Pの側に向ける磁石)の周囲を、非磁性体を介して、磁極のN極・S極が反対の磁石(S極を配管Pの側に向ける磁石)で囲んで構成される。そして、永久磁石T101Cは、当該磁極のN極・S極が互い違いとなった面が、送受信コイルT101A、T101Bを挟んで配管Pの測定位置の表面に対して、一定の間隔を有し、かつ、略平行に対向するように配設される。   The permanent magnet T101C is a magnet (the S pole on the pipe P side) around the center magnet (the N pole facing the pipe P side) through a non-magnetic material and the N and S poles of the magnetic poles are opposite to each other. The magnet is surrounded by a magnet). The surface of the permanent magnet T101C in which the N and S poles of the magnetic poles are staggered has a certain interval with respect to the surface of the measurement position of the pipe P across the transmission / reception coils T101A and T101B, and Are arranged so as to face each other substantially in parallel.

電磁超音波送受信部T101は、制御部T110に制御されて、送信コイルT101Aに交流電流を印加することにより、配管Pの表面に周期的に変動する渦電流を誘起し、当該渦電流と永久磁石T101Cの磁界によるローレンツ力によって配管Pの内周面(深さ方向)に対して縦波の超音波を送信する。一方、電磁超音波送受信部T101は、配管Pの内周面に対して送信した超音波が、配管Pの内周面で反射して生じる配管Pの表面の振動を、送信とは逆の原理により、受信コイルT101Bで起電力として検出する。   The electromagnetic ultrasonic transmission / reception unit T101 is controlled by the control unit T110 to induce an eddy current that periodically fluctuates on the surface of the pipe P by applying an alternating current to the transmission coil T101A, and the eddy current and the permanent magnet Longitudinal ultrasonic waves are transmitted to the inner peripheral surface (depth direction) of the pipe P by the Lorentz force generated by the magnetic field of T101C. On the other hand, the electromagnetic ultrasonic wave transmitting / receiving unit T101 is configured to reverse the vibration of the surface of the pipe P that is generated when the ultrasonic wave transmitted to the inner peripheral surface of the pipe P is reflected by the inner peripheral surface of the pipe P. Thus, it is detected as an electromotive force by the receiving coil T101B.

制御部T110は、コンピュータプログラムに従って、電磁超音波センサT1を制御するCPUである。制御部T110は、所定の周波数の交流電流を送信コイルT101Aに供給する。又、制御部T110は、受信コイルT101Bを介して検出される起電力を取得する。そして、制御部T110は、送信コイルT101Aに供給する交流電流の周波数を変化させ、共振が発生するときの周波数を検出することによって配管Pの肉厚を測定する。   The control unit T110 is a CPU that controls the electromagnetic ultrasonic sensor T1 according to a computer program. The control unit T110 supplies an alternating current having a predetermined frequency to the transmission coil T101A. Further, the control unit T110 acquires an electromotive force detected through the reception coil T101B. And control part T110 changes the frequency of the alternating current supplied to transmitting coil T101A, and measures the thickness of piping P by detecting the frequency when resonance occurs.

電磁超音波センサT1は、電磁的方法により、超音波の送受信を行うため、測定対象の配管Pとの間に振動媒体を何ら介在させることなく、配管Pの肉厚を測定することができる点に特徴を有する。即ち、本実施形態では、電磁超音波センサT1を用いることにより、配管Pの表面に付着した付着物や酸化被膜を除去し研磨するなどの前処理を行うことなく、超音波の送受信を行うことが可能とする。一方、送受信コイルT101A、T101Bの測定面と、配管Pの測定位置の表面との位置関係に応じて、その測定精度は不安定なものとなる。   Since the electromagnetic ultrasonic sensor T1 transmits and receives ultrasonic waves by an electromagnetic method, the thickness of the pipe P can be measured without any vibration medium interposed between the pipe P to be measured. It has the characteristics. That is, in this embodiment, by using the electromagnetic ultrasonic sensor T1, ultrasonic waves can be transmitted and received without performing pretreatment such as removal and polishing of deposits and oxide films adhering to the surface of the pipe P. Is possible. On the other hand, depending on the positional relationship between the measurement surfaces of the transmission / reception coils T101A and T101B and the surface of the measurement position of the pipe P, the measurement accuracy becomes unstable.

そこで、本実施形態に係る電磁超音波センサT1は、送受信コイルT101A、T101Bの測定面が配管Pの長手方向の各地点で、配管Pの測定位置の表面に対して一定の距離(図5中ではSで表す)で、かつ、配管Pの測定位置の表面に対して略平行に対向するように、移動体Kに取り付けられている。そして、当該構成により、電磁超音波センサT1は、配管Pの肉厚を高い精度で連続測定することが可能としている。   Therefore, in the electromagnetic ultrasonic sensor T1 according to this embodiment, the measurement surfaces of the transmission / reception coils T101A and T101B are at a certain distance from the surface of the measurement position of the pipe P at each point in the longitudinal direction of the pipe P (in FIG. 5). And is attached to the movable body K so as to face the surface of the measurement position of the pipe P substantially in parallel. With this configuration, the electromagnetic ultrasonic sensor T1 can continuously measure the thickness of the pipe P with high accuracy.

詳細には、電磁超音波センサT1は、配管Pの測定対象の位置の表面の方向に押圧するように付勢バネT106〜T109を介して移動体Kの枠体K1、K2に取り付けられる。そして、電磁超音波センサT1の筐体の配管Pと対向する面には、送受信コイルT101A、T101Bを囲むとともに、配管Pに当接するように、高剛性材料、例えば、ステンレス鋼により形成されるローラーT102〜T105が取り付けられる。送受信コイルT101A、T101Bは、当該付勢バネT106〜T109と当該ローラーT102〜T105とにより、配管Pの長手方向の各地点で、配管Pの測定位置の表面に対して一定の距離となるように維持される。又、移動体Kは、車輪R1〜R4を配管Pに当接した状態で、配管Pを挟持しながら移動することにより、配管Pの長手方向の中心軸に沿って、即ち、X方向及びY方向にずれることなく移動する。そのため、移動体Kに取り付けられた電磁超音波センサT1の送受信コイルT101A、T101Bも、配管Pの測定位置の表面に対して略平行に対向するように移動することになる。尚、ローラーT102〜T105は、電磁超音波センサT1の測定面が、配管Pの測定位置の表面に対して一定の距離となるように維持するため、配管Pに当接させる案内部材(第1案内部材)の一例である。   Specifically, the electromagnetic ultrasonic sensor T1 is attached to the frame bodies K1 and K2 of the moving body K via biasing springs T106 to T109 so as to press in the direction of the surface of the position to be measured on the pipe P. The surface of the housing of the electromagnetic ultrasonic sensor T1 facing the pipe P surrounds the transmission / reception coils T101A and T101B, and is a roller formed of a highly rigid material such as stainless steel so as to contact the pipe P. T102 to T105 are attached. The transmission / reception coils T101A and T101B are at a certain distance from the surface of the measurement position of the pipe P at each point in the longitudinal direction of the pipe P by the biasing springs T106 to T109 and the rollers T102 to T105. Maintained. The moving body K moves while holding the pipe P in a state where the wheels R1 to R4 are in contact with the pipe P, so that the moving body K moves along the central axis in the longitudinal direction of the pipe P, that is, in the X direction and the Y direction. Move without shifting in the direction. Therefore, the transmission / reception coils T101A and T101B of the electromagnetic ultrasonic sensor T1 attached to the moving body K also move so as to face the surface of the measurement position of the pipe P substantially in parallel. The rollers T102 to T105 are guide members that contact the pipe P (first) in order to maintain the measurement surface of the electromagnetic ultrasonic sensor T1 at a certain distance from the surface of the measurement position of the pipe P. It is an example of a guide member.

尚、本実施形態では、配管Pの長手方向の測定位置(Z座標)を把握するため、肉厚測定部T1のローラーT102〜T105のいずれかにロータリーエンコーダが設けられており(図示せず)、電磁超音波センサT1は、当該ロータリーエンコーダの測定データを取得することにより、Z方向の測定位置を検出することができる構成となっている。   In this embodiment, in order to grasp the measurement position (Z coordinate) in the longitudinal direction of the pipe P, a rotary encoder is provided on any of the rollers T102 to T105 of the wall thickness measurement unit T1 (not shown). The electromagnetic ultrasonic sensor T1 is configured to be able to detect a measurement position in the Z direction by acquiring measurement data of the rotary encoder.

===外径測定部について===
以下、図7A、図7B及び上記した図3〜図4を参照して、第1外径測定部T2、T3、第2外径測定部T4、T5の構成について説明する。尚、理解を容易にするため、図7A、図7Bでは、ミラーM1、M2を省略して表す。
=== About the outer diameter measuring part ===
Hereinafter, with reference to FIGS. 7A and 7B and FIGS. 3 to 4 described above, configurations of the first outer diameter measuring units T2 and T3 and the second outer diameter measuring units T4 and T5 will be described. For ease of understanding, the mirrors M1 and M2 are omitted in FIGS. 7A and 7B.

=第1外径測定部=
第1外径測定部T2と第1外径測定部T3は、夫々独立したレーザ寸法測定装置であり(以下、「レーザ寸法測定装置T2、T3」とも言う)、夫々、出射部T2A、T3A、受光部T2B、T3B、制御部T2C、T3C(図示せず)を備えて構成される。
= 1st outer diameter measuring part =
The first outer diameter measuring section T2 and the first outer diameter measuring section T3 are independent laser dimension measuring apparatuses (hereinafter also referred to as “laser dimension measuring apparatuses T2, T3”), and the emission sections T2A, T3A, Light receiving units T2B and T3B and control units T2C and T3C (not shown) are provided.

出射部T2A、T3Aは、例えば、半導体発光素子、レーザ拡散ユニット、コリメータレンズを含んで構成され、半導体発光素子により発生させたGaNレーザを、レーザ拡散ユニットにより拡散し、コリメータレンズを介してY方向に一定の幅を有するレーザ平行光線L2、L3として、配管Pの長手方向に垂直な方向(+X方向)に対して出射する。又、受光部T2B、T3Bは、例えば、光検出器、テレセントリック光学系を含んで構成され、レーザ平行光線L2、L3のうち配管Pの影になった部分以外のレーザ(通過したレーザ)を、テレセントリック光学系により集光し、光検出器により当該通過したレーザを測定する。又、制御部T2C、T3Cは、夫々、コンピュータプログラムに従って、第1外径測定部T2と第1外径測定部T3を制御するCPUであり、出射部T2A、T3A及び受光部T2B、T3Bの動作を制御するとともに、受光部T2B、T3Bが受光したレーザの幅を算出する。そして、レーザ寸法測定装置T2の測定結果と、レーザ寸法測定装置T3の測定結果とを合成することにより、配管PのY方向の外径Pyが算出される。   The emitting portions T2A and T3A are configured to include, for example, a semiconductor light emitting element, a laser diffusion unit, and a collimator lens. The GaN laser generated by the semiconductor light emitting element is diffused by the laser diffusion unit, and is transmitted in the Y direction via the collimator lens. Are emitted in a direction perpendicular to the longitudinal direction of the pipe P (+ X direction) as laser parallel rays L2 and L3 having a certain width. The light receiving portions T2B and T3B are configured to include, for example, a photodetector and a telecentric optical system, and lasers (lasers that have passed through) other than the portion of the laser parallel rays L2 and L3 that are shaded by the pipe P, The laser beam condensed by the telecentric optical system is measured by the photodetector. The control units T2C and T3C are CPUs for controlling the first outer diameter measuring unit T2 and the first outer diameter measuring unit T3 according to the computer program, respectively, and the operations of the emitting units T2A and T3A and the light receiving units T2B and T3B. And the width of the laser received by the light receiving portions T2B and T3B is calculated. And the outer diameter Py of the Y direction of the piping P is calculated by synthesize | combining the measurement result of laser dimension measuring apparatus T2, and the measurement result of laser dimension measuring apparatus T3.

より詳細には、レーザ寸法測定装置T2の出射部T2Aと受光部T2Bは、配管Pに対して−Y側の位置において、X方向に配管Pを挟んで対向するように、枠体K1、K2に取り付けられる。又、レーザ寸法測定装置T3の出射部T3Aと受光部T3Bは、枠体K1、K2の配管Pに対して+Y側の位置において、X方向に配管Pを挟んで対向するように取り付けられる。そして、受光部T2Bが出射部T2Aから、配管Pに対して+X方向に出射されるレーザ平行光線L2を受光することにより配管Pの−Y側の寸法を測定し、受光部T3Bが出射部T3Aから、配管Pに対して+X方向に出射されるレーザ平行光線L3を受光することにより配管Pの+Y側の寸法を測定する構成となっている。尚、後述するように、出射部T2A、出射部T3Aは、ミラーM1を介してレーザ平行光線L2、L3の経路を変更して、配管Pに対して−X方向から、Y方向に一定の幅を有するレーザ平行光線L2、L3を出射している。   More specifically, the frames K1 and K2 are arranged such that the emitting part T2A and the light receiving part T2B of the laser dimension measuring apparatus T2 are opposed to the pipe P at the −Y side position with the pipe P in the X direction. Attached to. Further, the emitting part T3A and the light receiving part T3B of the laser dimension measuring device T3 are attached to the pipes P of the frames K1 and K2 so as to face each other with the pipe P interposed in the X direction at a position on the + Y side. Then, the light receiving unit T2B receives the laser parallel beam L2 emitted from the emitting unit T2A in the + X direction with respect to the pipe P, thereby measuring the dimension on the −Y side of the pipe P, and the light receiving unit T3B is used as the emitting unit T3A. Therefore, by receiving a laser parallel beam L3 emitted in the + X direction with respect to the pipe P, the dimension on the + Y side of the pipe P is measured. As will be described later, the emission part T2A and the emission part T3A change the path of the laser parallel rays L2 and L3 via the mirror M1, and have a constant width from the −X direction to the Y direction with respect to the pipe P. The laser parallel rays L2 and L3 having

配管PのY方向の外径Pyの算出は、例えば、レーザ寸法測定装置T2、T3が配管Pの長手方向の各地点で測定を行った後、夫々の測定データ(Z方向の位置、出射部T2A、T3Aの出射したレーザ平行光線L2、L3のY方向の幅、受光部T2B、T3Bの受光したレーザ平行光線L2、L3のY方向の幅)を演算装置(図示せず)に送信して、演算装置により行う。このとき、演算装置は、当該測定データのうちZ方向の位置データに基づいて、レーザ寸法測定装置T2、T3の配管Pの長手方向の同じ地点での測定データを抽出し、出射部T2A、T3Aの出射したレーザ平行光線L2、L3のY方向の幅と、レーザ寸法測定装置T2とレーザ寸法測定装置T3の間の所定の間隔(出射部T2Aと出射部T3Aの間隔、又、受光部T2Bと受光部T3Bの間隔)と、を加算したY方向の幅から、受光部T2B、T3Bの受光したレーザ平行光線L2、L3のY方向の幅を減算することにより、配管Pの長手方向の各地点におけるY方向の外径Pyを算出する。尚、レーザ寸法測定装置T2、T3の夫々は、上記した肉厚測定部T1のローラーT102〜T105のいずれかに設けられたロータリーエンコーダの測定データを取得することにより、Z方向の測定位置を検出することができる構成となっている。   The calculation of the outer diameter Py in the Y direction of the pipe P is performed, for example, after the laser dimension measuring devices T2 and T3 perform measurement at each point in the longitudinal direction of the pipe P, and then the respective measurement data (position in the Z direction, emission part) The laser parallel rays L2 and L3 emitted from T2A and T3A are transmitted in the Y direction, and the laser parallel rays L2 and L3 received by the light receiving portions T2B and T3B are transmitted to the arithmetic unit (not shown). , Using an arithmetic unit. At this time, the arithmetic device extracts measurement data at the same point in the longitudinal direction of the pipe P of the laser dimension measurement devices T2 and T3 based on the position data in the Z direction among the measurement data, and the emission portions T2A and T3A. Of the parallel laser beams L2 and L3 emitted in the Y direction and a predetermined interval between the laser dimension measuring device T2 and the laser dimension measuring device T3 (the interval between the emitting portion T2A and the emitting portion T3A, and the light receiving portion T2B). By subtracting the width in the Y direction of the laser parallel rays L2 and L3 received by the light receiving portions T2B and T3B from the width in the Y direction obtained by adding the interval between the light receiving portions T3B), each point in the longitudinal direction of the pipe P The outer diameter Py in the Y direction at is calculated. Each of the laser dimension measuring devices T2 and T3 detects the measurement position in the Z direction by acquiring the measurement data of the rotary encoder provided on any of the rollers T102 to T105 of the above-described thickness measuring unit T1. It is the structure which can do.

=第2外径測定部=
第2外径測定部T4と第2外径測定部T5とは、夫々独立したレーザ距離測定装置であり(以下、「レーザ距離測定装置T4、T5」とも言う)、夫々、出射部T4A、T5A、受光部T4B、T5B、制御部T4C、T5Cを備えて構成される。
= 2nd outer diameter measuring part =
The second outer diameter measuring unit T4 and the second outer diameter measuring unit T5 are independent laser distance measuring devices (hereinafter also referred to as “laser distance measuring devices T4 and T5”), and the emitting units T4A and T5A, respectively. , Light receiving units T4B and T5B, and control units T4C and T5C.

出射部T4A、T5Aは、夫々、例えば、変調信号発振器、半導体発光素子を含んで構成され、高周波で強度変調をかけた直線状のHe−Neレーザ光線L4、L5を配管Pの測定位置に向けて出射する。又、受光部T4B、T5Bは、夫々、例えば、光検出器、位相計を含んで構成され、光検出器により配管Pの測定位置から反射されるレーザ光線L4、L5と、内部の参照基準のレーザ光線とを受光し、位相計により、これらの間における変調波の位相差を測定する。又、制御部T4C、T5Cは、夫々、コンピュータプログラムに従って、第2外径測定部T4と第2外径測定部T5を制御するCPUであり、出射部T4A、T5A及び受光部T4B、T5Bの動作を制御するとともに、測定された位相差に基づいて、配管Pのレーザ光線L4、L5を反射した地点とレーザ距離測定装置T4、T5の距離を算出する(位相差方式)。そして、レーザ距離測定装置T4の測定結果と、レーザ距離測定装置T5の測定結果とを合成することにより、配管PのX方向の外径Pxが算出される。   The emitting portions T4A and T5A are each configured to include a modulation signal oscillator and a semiconductor light emitting element, for example, and direct linear He-Ne laser beams L4 and L5 subjected to intensity modulation at a high frequency toward the measurement position of the pipe P. And exit. Each of the light receiving portions T4B and T5B includes, for example, a photodetector and a phase meter. The laser beams L4 and L5 reflected from the measurement position of the pipe P by the photodetector and the internal reference standard The laser beam is received, and the phase difference of the modulated wave between them is measured by a phase meter. The control units T4C and T5C are CPUs for controlling the second outer diameter measuring unit T4 and the second outer diameter measuring unit T5 according to the computer program, respectively, and the operations of the emitting units T4A and T5A and the light receiving units T4B and T5B. Are controlled, and the distance between the point where the laser beams L4 and L5 of the pipe P are reflected and the laser distance measuring devices T4 and T5 is calculated based on the measured phase difference (phase difference method). Then, the outer diameter Px of the pipe P in the X direction is calculated by combining the measurement result of the laser distance measurement device T4 and the measurement result of the laser distance measurement device T5.

より詳細には、レーザ距離測定装置T4とレーザ距離測定装置T5は、配管Pの長手方向の中心軸の位置を挟んで、X方向に対向するように、枠体K1、K2に取り付けられる。そして、レーザ距離測定装置T4は、受光部T4Bが出射部T4Aから出射されるレーザ光線L4を受光することにより、配管Pの−X側の寸法(距離)を測定し、受光部T5Bが出射部T5Aから出射されるレーザ光線L5を受光することにより、配管Pの+X側の寸法(距離)を測定する。尚、後述するように、出射部T4A、出射部T5Aは、ミラーM1、M2を介してレーザ光線L4、L5の経路を変更して、配管Pに対して±X方向から、直線状のレーザ光線L4、L5を出射している。   More specifically, the laser distance measuring device T4 and the laser distance measuring device T5 are attached to the frames K1 and K2 so as to face each other in the X direction across the position of the central axis in the longitudinal direction of the pipe P. Then, the laser distance measuring device T4 measures the dimension (distance) on the −X side of the pipe P by the light receiving portion T4B receiving the laser beam L4 emitted from the emitting portion T4A, and the light receiving portion T5B is the emitting portion. By receiving the laser beam L5 emitted from T5A, the dimension (distance) on the + X side of the pipe P is measured. As will be described later, the emission part T4A and the emission part T5A change the paths of the laser beams L4 and L5 via the mirrors M1 and M2, and are linear laser beams from the ± X direction with respect to the pipe P. L4 and L5 are emitted.

配管PのX方向の外径Pxの算出は、例えば、レーザ距離測定装置T4とレーザ距離測定装置T5が配管Pの長手方向の各地点で測定を行った後、夫々の測定データ(Z方向の位置、配管Pのレーザを反射した地点とレーザ距離測定装置T4、T5の距離)を演算装置(図示せず)に送信して、演算装置により行う。このとき、演算装置は、当該測定データのうちZ方向の位置データに基づいて、レーザ距離測定装置T4、T5の配管Pの長手方向の同じ地点での測定データを抽出し、配管Pのレーザを反射した地点とレーザ距離測定装置T4、T5の距離と、配管Pの初期の外径と、を加算した値から、ミラーM1、M2とレーザ距離測定装置T4、T5の間の距離を減算することにより、配管Pの長手方向の各地点におけるX方向の外径Pxを算出する。尚、レーザ距離測定装置T4、T5の夫々は、上記した肉厚測定部T1のローラーT102〜T105のいずれかに設けられたロータリーエンコーダの測定データを取得することにより、Z方向の測定位置を検出することができる構成となっている。   The calculation of the outer diameter Px in the X direction of the pipe P is performed, for example, after the laser distance measuring device T4 and the laser distance measuring device T5 perform measurement at each point in the longitudinal direction of the pipe P, and then the respective measurement data (Z direction The position, the point where the laser of the pipe P is reflected, and the distance between the laser distance measuring devices T4 and T5) are transmitted to an arithmetic device (not shown), and are performed by the arithmetic device. At this time, the arithmetic device extracts the measurement data at the same point in the longitudinal direction of the pipe P of the laser distance measuring devices T4 and T5 based on the position data in the Z direction among the measurement data, and the laser of the pipe P is used. Subtract the distance between the mirrors M1 and M2 and the laser distance measuring devices T4 and T5 from the sum of the reflected point, the distance between the laser distance measuring devices T4 and T5, and the initial outer diameter of the pipe P. Thus, the outer diameter Px in the X direction at each point in the longitudinal direction of the pipe P is calculated. Each of the laser distance measuring devices T4 and T5 detects the measurement position in the Z direction by acquiring the measurement data of the rotary encoder provided on any of the rollers T102 to T105 of the above-described thickness measuring unit T1. It is the structure which can do.

本実施形態に係る移動体Kは、上記したように、車輪R1〜R4を配管Pに当接した状態で、配管Pを挟持しながら移動することにより、枠体K1、K2の形状を保持した状態で、配管Pの長手方向の中心軸に沿って、X方向及びY方向にずれることなく移動する。そのため、第1外径測定部T2、T3、第2外径測定部T4、T5は、夫々、移動の前後で、配管Pの測定位置に対する基準とする座標、及び配管Pの測定位置に対する基準とする方向が一定に維持されるように、移動体Kの枠体K1、K2と一体となって移動する構成となっている。即ち、配管Pの測定位置に対するレーザ寸法測定装置T2、T3のレーザ平行光線L2、L3の出射位置及び出射方向は、移動の前後で、一定に維持される。又、同様に、配管Pの測定位置に対するレーザ距離測定装置T4、T5のレーザ光線L4、L5の出射位置及び出射方向は、移動の前後で、一定に維持される。これにより、レーザ寸法測定装置T2、T3、レーザ距離測定装置T4、T5は、配管Pを長手方向に沿って移動しながら、連続的に測定することが可能となる。尚、電磁超音波センサT1、レーザ寸法測定装置T2、T3、レーザ距離測定装置T4、T5は、夫々、上記したように位置合わせをすることなく測定することが可能であるから、移動体Kを移動しながら肉厚及び外径を連続的に測定することとしてもよいし、一定間隔(例えば、10cm)ごとに測定することとしてもよい。   As described above, the moving body K according to the present embodiment maintains the shapes of the frames K1 and K2 by moving while holding the pipe P in a state where the wheels R1 to R4 are in contact with the pipe P. In the state, it moves along the central axis in the longitudinal direction of the pipe P without shifting in the X direction and the Y direction. Therefore, the first outer diameter measuring units T2, T3, the second outer diameter measuring units T4, T5 are respectively the coordinates used as the reference for the measurement position of the pipe P and the reference for the measurement position of the pipe P before and after the movement. The moving body K is configured to move integrally with the frames K1 and K2 of the moving body K so that the moving direction is maintained constant. That is, the emission positions and emission directions of the laser parallel light beams L2 and L3 of the laser dimension measuring devices T2 and T3 with respect to the measurement position of the pipe P are kept constant before and after the movement. Similarly, the emission positions and emission directions of the laser beams L4 and L5 of the laser distance measuring devices T4 and T5 with respect to the measurement position of the pipe P are maintained constant before and after the movement. Thereby, the laser dimension measuring devices T2 and T3 and the laser distance measuring devices T4 and T5 can continuously measure the pipe P while moving along the longitudinal direction. Note that the electromagnetic ultrasonic sensor T1, the laser dimension measuring devices T2, T3, and the laser distance measuring devices T4, T5 can measure without moving the positioning as described above. It is good also as measuring wall thickness and an outer diameter continuously, moving, and good also as measuring at fixed intervals (for example, 10 cm).

=外径測定部の配置=
次に、測定装置のX方向及びY方向のサイズの縮小を図るための外径測定部(レーザ寸法測定装置T2、レーザ寸法測定装置T3、レーザ距離測定装置T4、レーザ距離測定装置T5)の配置構成について説明する。図8に、配管と測定装置の位置関係を、図3AにおけるA―A’で切断したときの平面図で示す。ボイラーに用いられる配管は、図1に示したように、多数の略平行に伸延する細い配管(例えば、直径50mm)から構成され、夫々の配管同士の間隔も配管の径と同程度で、配管が密集した状態となっている。特に、当該配管同士の間隔は、Y方向の幅FyがX方向の幅Fxに比して狭小となっている。他方、レーザ寸法測定装置、レーザ距離測定装置は、レーザを出射するための光学系を、その筐体内に格納する必要があるため、レーザの出射方向に一定のサイズを要し、小型のものでも、レーザの出射方向に伸びた形状を呈する。本実施形態に係る測定装置は、これらを考慮して、X方向及びY方向のサイズの縮小化のため、以下に示す構成とする。
= Arrangement of outer diameter measuring part =
Next, arrangement of an outer diameter measuring unit (laser dimension measuring apparatus T2, laser dimension measuring apparatus T3, laser distance measuring apparatus T4, laser distance measuring apparatus T5) for reducing the size of the measuring apparatus in the X direction and the Y direction. The configuration will be described. FIG. 8 is a plan view showing the positional relationship between the pipe and the measuring device taken along line AA ′ in FIG. 3A. As shown in FIG. 1, the pipe used for the boiler is composed of a large number of thin pipes (for example, 50 mm in diameter) extending substantially in parallel, and the interval between the pipes is approximately the same as the pipe diameter. Is in a dense state. In particular, the interval between the pipes is such that the width Fy in the Y direction is narrower than the width Fx in the X direction. On the other hand, since the laser dimension measuring device and the laser distance measuring device need to store the optical system for emitting the laser in the casing, a certain size is required in the laser emitting direction, and even a small one is required. It exhibits a shape extending in the laser emission direction. In consideration of these, the measuring apparatus according to the present embodiment has the following configuration in order to reduce the size in the X direction and the Y direction.

第一に、本実施形態に係る測定装置は、レーザ寸法測定装置T2とレーザ寸法測定装置T3との2つのレーザ寸法測定装置を用いて配管PのY方向の外径Pyを測定する構成として、出射部T2Aと出射部T3Aの間の領域にレーザ距離測定装置T4を設置するとともに、受光部T2Bと受光部T3Bの間の領域にレーザ距離測定装置T5を設置する構成とする。これにより、移動体Kの枠体K1、K2の±Y側の側面に、配管Pの外径等を測定するための装置を取り付けることなく、二つのレーザ寸法測定装置T2、T3により配管PのY方向の外径Pyの測定を可能とし、又、二つのレーザ距離測定装置T4、T5により配管PのX方向の外径Pxの測定を可能としている。   First, the measuring apparatus according to the present embodiment is configured to measure the outer diameter Py in the Y direction of the pipe P using two laser dimension measuring apparatuses, a laser dimension measuring apparatus T2 and a laser dimension measuring apparatus T3. The laser distance measuring device T4 is installed in the region between the emitting unit T2A and the emitting unit T3A, and the laser distance measuring device T5 is installed in the region between the light receiving unit T2B and the light receiving unit T3B. Thereby, without attaching the apparatus for measuring the outer diameter etc. of the piping P to the side surface of the movable bodies K on the ± Y side of the frames K1, K2, the two laser dimension measuring devices T2, T3 The outer diameter Py in the Y direction can be measured, and the outer diameter Px in the X direction of the pipe P can be measured by the two laser distance measuring devices T4 and T5.

第二に、本実施形態に係る測定装置は、レーザ寸法測定装置T2、T3、レーザ距離測定装置T4、T5の出射部T2A、T3A、T4A、T5Aのレーザの出射方向を+Z方向に向けるとともに、ミラーM1、M2を用いてレーザL2、L3、L4、L5の経路変更を行い、受光部T2B、T3B、T4B、T5Bのレーザの受光方向を−Z方向に向ける構成とする。   Secondly, the measuring apparatus according to the present embodiment directs the laser emission direction of the emission parts T2A, T3A, T4A, T5A of the laser dimension measuring apparatuses T2, T3, laser distance measuring apparatuses T4, T5 to the + Z direction, The paths of the lasers L2, L3, L4, and L5 are changed using the mirrors M1 and M2, and the light receiving directions of the light receiving units T2B, T3B, T4B, and T5B are set in the −Z direction.

具体的には、レーザ寸法測定装置T2、T3の出射部T2A、T3Aは、夫々、出射方向が配管Pの長手方向に沿うように移動体Kに取り付けられ、受光部T2B、T3Bも、同様に、受光方向が配管Pの長手方向に沿うように(+Z方向)移動体Kに取り付けられる。そして、出射部T2A、T3Aは、配管Pの長手方向に沿う方向(+Z方向)にレーザ平行光線L2、L3を出射し、当該+Z方向に出射されたレーザ平行光線L2、L3は、ミラーM1に反射されて、配管Pの長手方向に直角する+X方向に経路を変えられ、レーザ平行光線L2、L3のうち、配管Pの影になった部分以外のレーザが、ミラーM2に反射されて、−Z方向に経路を変えられる。当該構成により、受光部T2B、T3Bは、ミラーM2から反射されたレーザ平行光線L2、L3のうち、配管Pの影になった部分以外のレーザ平行光線を受光する。又、同様に、レーザ距離測定装置T4、T5の出射部T4A、T5Aは、夫々、出射方向が配管Pの長手方向に沿うように移動体Kに取り付けられ、受光部T4B、T5Bも、受光方向が配管Pの長手方向に沿うように(+Z方向)移動体Kに取り付けられる。そして、出射部T4A、T5Aは、配管Pの長手方向に沿う方向(+Z方向)に直線状のレーザ光線L4、L5を出射し、当該+Z方向に出射されたレーザ光線L4、L5は、夫々、ミラーM1、M2に反射されて、配管Pの長手方向に直角する+X方向、−X方向に経路を変えられる。当該レーザ光線L4、L5は、夫々、配管Pの測定位置の表面に反射された後、再びミラーM1、M2に反射されて、配管Pの長手方向−Z方向に経路を変えられる。当該構成により、受光部T4B、T5Bは、ミラーM1、M2から反射されたレーザ光線L4、L5を受光する。尚、ミラーM1、M2の反射面は、レーザ平行光線L2、L3、レーザ光線L4、L5を上記の経路に変更し得る形状を呈している。   Specifically, the emission units T2A and T3A of the laser dimension measuring apparatuses T2 and T3 are attached to the moving body K so that the emission direction is along the longitudinal direction of the pipe P, and the light receiving units T2B and T3B are similarly configured. The light receiving direction is attached to the moving body K so as to be along the longitudinal direction of the pipe P (+ Z direction). The emitting portions T2A and T3A emit laser parallel rays L2 and L3 in a direction along the longitudinal direction of the pipe P (+ Z direction), and the laser parallel rays L2 and L3 emitted in the + Z direction are directed to the mirror M1. The reflected laser beam is changed in the + X direction perpendicular to the longitudinal direction of the pipe P. Of the laser parallel rays L2 and L3, lasers other than the shadowed part of the pipe P are reflected by the mirror M2, and − The route can be changed in the Z direction. With this configuration, the light receiving portions T2B and T3B receive the laser parallel rays other than the shadowed portion of the pipe P among the laser parallel rays L2 and L3 reflected from the mirror M2. Similarly, the emitting portions T4A and T5A of the laser distance measuring devices T4 and T5 are attached to the moving body K so that the emitting direction is along the longitudinal direction of the pipe P, and the light receiving portions T4B and T5B are also in the light receiving direction. Is attached to the movable body K along the longitudinal direction of the pipe P (+ Z direction). The emitting portions T4A and T5A emit linear laser beams L4 and L5 in a direction along the longitudinal direction of the pipe P (+ Z direction), and the laser beams L4 and L5 emitted in the + Z direction are respectively Reflected by the mirrors M1 and M2, the path can be changed in the + X direction and the −X direction perpendicular to the longitudinal direction of the pipe P. The laser beams L4 and L5 are reflected on the surface of the measurement position of the pipe P and then reflected on the mirrors M1 and M2, respectively, so that the path is changed in the longitudinal direction -Z direction of the pipe P. With this configuration, the light receiving portions T4B and T5B receive the laser beams L4 and L5 reflected from the mirrors M1 and M2. The reflecting surfaces of the mirrors M1 and M2 have shapes that can change the laser parallel rays L2 and L3 and the laser rays L4 and L5 to the above-described paths.

本実施形態では、配管Pの肉厚の減肉量、あるいは外径の膨出量の少なくとも一方に基づいて、配管Pのクリープ損傷や酸化減肉を検出する。一方、配管Pの材料、又は、配管Pへの応力のかかり方によっては、肉厚の減肉量、あるいは外径の膨出量のいずれかでしかクリープ損傷が検出できない場合がある。例えば、配管Pに膨出と同時に酸化減肉が生じると、膨出していても外径は変化しない場合がある。そのため、本実施形態に係る測定装置は、上記したとおり、配管Pの長手方向の各地点に亘って肉厚及び外径をともに連続的に測定できる構成として、それらの測定結果に基づいて、確実にクリープ損傷や酸化減肉の検出を可能としている。   In the present embodiment, creep damage or oxidation thinning of the pipe P is detected based on at least one of the thickness reduction amount of the pipe P or the bulge amount of the outer diameter. On the other hand, depending on the material of the pipe P or how the stress is applied to the pipe P, creep damage may be detected only by the thickness reduction amount or the outer diameter expansion amount. For example, if oxidation thinning occurs in the pipe P at the same time as the expansion, the outer diameter may not change even if the expansion occurs. Therefore, as described above, the measuring apparatus according to the present embodiment is configured to be able to continuously measure both the wall thickness and the outer diameter over each point in the longitudinal direction of the pipe P, based on the measurement results. In addition, it is possible to detect creep damage and oxidation thinning.

尚、クリープ損傷、又は酸化減肉の一方が支配的に進行していると判断される場合、配管の減肉量、又は配管の外径の膨出量の一方のみに基づいて、余寿命を判断してもよい。その場合、配管の減肉量と余寿命の関係、又は配管の外径の膨出量と余寿命の関係を、測定対象の配管Pと同一種類(例えば、同一の材料、同一の肉厚)の配管Pについて実験を行うことにより算出しておき、クリープ損傷又は酸化減肉の検出結果に基づいて、余寿命評価をしてもよい。一方、クリープ損傷、又は酸化減肉のいずれも進行していると判断される場合、クリープ損傷、又は酸化減肉のいずれか一方のみの値では余寿命を判断することは困難であるため、クリープ損傷や酸化減肉が検出された箇所について、表面を研磨して採取したレプリカについて組織観察を行って、結晶粒変形法により、詳細な余寿命評価を行ってもよい。   If it is determined that one of creep damage or oxidation thinning is proceeding dominantly, the remaining life is determined based only on one of the thinning amount of the pipe or the bulging amount of the outer diameter of the pipe. You may judge. In that case, the relationship between the pipe thinning amount and the remaining life, or the relationship between the bulging amount of the outer diameter of the piping and the remaining life, is the same type as the piping P to be measured (for example, the same material and the same thickness). The remaining life may be evaluated based on the detection result of creep damage or oxidation thinning by performing an experiment on the pipe P. On the other hand, if it is determined that both creep damage and oxidation thinning have progressed, it is difficult to determine the remaining life with only one value of creep damage or oxidation thinning. A detailed remaining life evaluation may be performed by a crystal grain deformation method by observing the structure of a replica collected by polishing the surface of a portion where damage or oxidation thinning is detected.

そして、クリープ損傷や酸化減肉の検出結果に基づいて、配管Pの交換、修繕の時期を判断する。このとき、基準とする配管の減肉量/膨出量は、夫々、設計規格の配管の肉厚に対して減肉した量、及び外径に対して膨出した量である。又、これに代えて、設計規格の配管の肉厚に対して減肉した度合、設計規格の配管の外径に対する膨出の度合い(比率)であってもよい。尚、配管Pの減肉量/膨出量は、配管Pの肉厚/外径が設計規格上、長さ方向に亘って一定である場合は、上記の配管Pの肉厚/外径の測定結果から当該一定値を減算することにより算出することができる。又、一定でない場合は、配管Pの肉厚/外径を、配管Pに減肉/膨出が生じる前に長さ方向(Z方向)の各地点において予め測定し、当該地点と対応付けて記憶しておき、予め測定した配管Pの当該地点と対応付けられた肉厚/外径と、減肉/膨出後の肉厚/外径とを比較することにより算出することができる。   And the time of replacement | exchange of pipe | tube P and repair is judged based on the detection result of creep damage or oxidation thinning. At this time, the thickness reduction / expansion amount of the reference pipe is an amount reduced with respect to the thickness of the design standard pipe and an amount expanded with respect to the outer diameter, respectively. Alternatively, the degree of reduction relative to the wall thickness of the design standard pipe, or the degree of expansion (ratio) with respect to the outer diameter of the design standard pipe may be used. In addition, the thickness / outside diameter of the pipe P is equal to the thickness / outside diameter of the pipe P when the thickness / outside diameter of the pipe P is constant over the length direction in the design standard. It can be calculated by subtracting the constant value from the measurement result. Further, if not constant, the thickness / outer diameter of the pipe P is measured in advance in each point in the length direction (Z direction) before the pipe P is thinned / bulged, and is associated with the point. The thickness / outer diameter stored in advance and associated with the point of the pipe P measured in advance can be calculated by comparing the thickness / outer diameter after thickness reduction / bulging.

尚、配管Pの長手方向の各地点における、配管の肉厚/外径の測定結果に基づいて、クリープ損傷や酸化減肉を判断する際、当該演算処理は、第1外径測定部T2、T3、第2外径測定部T4、T5の演算処理と同様に他の演算装置が行ってもよいし、肉厚測定部T1、第1外径測定部T2、T3、第2外径測定部T4、T5、夫々がその機能構成として備えていてもよい。例えば、測定装置は、配管Pの長手方向の各地点で測定を行った後、これら肉厚/外径の測定結果に基づいて、他の演算装置に配管の長手方向の各地点における配管のクリープ損傷や酸化減肉を識別可能に表示する構成を備えていてもよい。   In addition, when determining creep damage and oxidation thinning based on the measurement result of the thickness / outer diameter of the pipe at each point in the longitudinal direction of the pipe P, the calculation process includes the first outer diameter measuring unit T2, Similar to the calculation processing of T3, the second outer diameter measurement unit T4, T5, other calculation devices may perform, or the thickness measurement unit T1, the first outer diameter measurement unit T2, T3, the second outer diameter measurement unit. Each of T4 and T5 may be provided as its functional configuration. For example, after measuring at each point in the longitudinal direction of the pipe P, the measuring device performs creep of the pipe at each point in the longitudinal direction of the pipe based on the measurement result of the thickness / outer diameter. You may provide the structure which displays damage and oxidation thinning so that identification is possible.

又、測定装置は、肉厚測定部T1、第1外径測定部T2、T3、第2外径測定部T4、T5の夫々に、クリープ損傷や酸化減肉していること、即ち、交換、修繕の時期を示す閾値となる減肉量/膨出量を設定し、測定対象の位置の減肉量/膨出量が当該閾値となる減肉量/膨出量を超えていると判断した場合、音等により警告を発する機能(警告部)を備えていてもよい。これによって、作業者は、極めて簡易な作業により、交換,修繕の時期を判断することができる。尚、配管のクリープ損傷は、その進行に伴い、進行度合いが速くなり、又、減肉/膨出も急激に増加し破断するに至る。そのため、例えば、進行度合いが速くなる時期の減肉量/膨出量を、警告を発する閾値として設定しておくことにより、配管の破断を確実に防止することができる。   In addition, the measuring apparatus has a creep damage or oxidation thinning in each of the thickness measuring unit T1, the first outer diameter measuring unit T2, T3, and the second outer diameter measuring unit T4, T5. Set the amount of thinning / bulging as a threshold indicating the time of repair, and determined that the amount of thinning / bulging at the position to be measured exceeds the amount of thinning / bulging as the threshold In this case, a function (warning unit) that issues a warning by sound or the like may be provided. As a result, the operator can determine the time for replacement and repair by an extremely simple operation. As the creep damage of the pipe progresses, the degree of progress becomes faster, and the thinning / bulging also increases abruptly, leading to breakage. Therefore, for example, by setting the thinning amount / bulging amount at the time when the progress degree becomes fast as a threshold value for issuing a warning, it is possible to reliably prevent the pipe from being broken.

以上、本実施形態に係る測定装置によれば、電磁超音波センサT1の測定面が、配管Pの長手方向の各地点で、配管Pの測定位置の表面に対して一定の距離に維持され、かつ、配管Pの測定位置の表面に対して略平行に対向する構成とすることができる。これによって、配管Pに洗浄や研磨などの前処理を行うことなく、高い精度で、配管Pの肉厚を連続測定することが可能となる。   As described above, according to the measurement apparatus according to the present embodiment, the measurement surface of the electromagnetic ultrasonic sensor T1 is maintained at a certain distance from the surface of the measurement position of the pipe P at each point in the longitudinal direction of the pipe P. And it can be set as the structure which opposes substantially parallel with respect to the surface of the measurement position of the piping P. As shown in FIG. Accordingly, it is possible to continuously measure the thickness of the pipe P with high accuracy without performing pretreatment such as cleaning and polishing on the pipe P.

又、本実施形態に係る測定装置によれば、移動体Kは、配管Pの外周面を取り囲む形状を呈し、配管Pの外周面の周囲を取り囲むように配設した弾性部材により構成される車輪R1〜R4を介して、配管Pの外周面を挟持しながら移動するため、配管Pが膨出する箇所等においても、電磁超音波センサT1が配管Pの肉厚を連続測定することができることに加えて、レーザ寸法測定装置T2、T3の出射部T2A、T3Aが測定位置に対してレーザ平行光線L2、L3を出射する方向、及び出射部T2A、T3Aと受光部T2B、T3Bの距離も一定に維持される構成となっている。又、同様に、レーザ距離測定装置T4、T5の出射部T4A、T5Aが測定位置に対してレーザ光線L4、L5を出射する方向、及びレーザ距離測定装置T4、T5の距離も一定に維持される。そのため、配管Pの長手方向の各地点で、肉厚と外径とをともに連続測定することが可能となり、確実にクリープ損傷している可能性のある部位を検出することができる。   Moreover, according to the measuring apparatus which concerns on this embodiment, the mobile body K exhibits the shape which surrounds the outer peripheral surface of the piping P, and is comprised by the elastic member arrange | positioned so that the circumference | surroundings of the outer peripheral surface of the piping P may be surrounded. The electromagnetic ultrasonic sensor T1 can continuously measure the wall thickness of the pipe P even at a location where the pipe P bulges because the pipe P moves while holding the outer peripheral surface of the pipe P via R1 to R4. In addition, the direction in which the emitting portions T2A and T3A of the laser dimension measuring devices T2 and T3 emit the laser parallel rays L2 and L3 with respect to the measurement position, and the distance between the emitting portions T2A and T3A and the light receiving portions T2B and T3B are also constant. The configuration is maintained. Similarly, the direction in which the emitting portions T4A and T5A of the laser distance measuring devices T4 and T5 emit the laser beams L4 and L5 with respect to the measurement position and the distances of the laser distance measuring devices T4 and T5 are also maintained constant. . Therefore, it is possible to continuously measure both the wall thickness and the outer diameter at each point in the longitudinal direction of the pipe P, and it is possible to reliably detect a portion that may be creep damaged.

<その他の実施形態>
尚、上記実施形態では、移動体Kに、第1外径測定部T2、T3、第2外径測定部T4、T5を設ける構成としたが、配管Pのクリープ損傷が肉厚の測定のみで確実に検出できる場合等は、これらの構成は不要である。又、配管Pの外径を測定するための構成を設ける場合も、測定対象の配管Pと周囲の配管との離間状態に応じて、ミラーM1、M2等を省略したり、その配置関係を適宜変更することが可能である。又、配管Pの外径を測定するための構成は、レーザ寸法測定装置やレーザ距離測定装置に代えて、デジタルノギス等を用いてもよい。その場合、例えば、ステンレス鋼等により形成される第1の測定部材と第2の測定部材とを、配管Pの長手方向と略垂直な方向に配管Pを挟んで対向するように移動体Kに取り付け、これらを配管Pに当接しながら、移動体Kが移動可能な構成とすればよい。
<Other embodiments>
In the above embodiment, the movable body K is provided with the first outer diameter measuring parts T2, T3 and the second outer diameter measuring parts T4, T5. However, the creep damage of the pipe P is only measured by the thickness. These configurations are not necessary if they can be detected reliably. Also, in the case of providing a configuration for measuring the outer diameter of the pipe P, the mirrors M1, M2, etc. may be omitted or the arrangement relationship thereof may be appropriately determined according to the separation state between the pipe P to be measured and the surrounding pipe. It is possible to change. In addition, the configuration for measuring the outer diameter of the pipe P may use a digital caliper or the like instead of the laser dimension measuring device or the laser distance measuring device. In this case, for example, the first measuring member and the second measuring member formed of stainless steel or the like are placed on the moving body K so as to face each other with the pipe P sandwiched in a direction substantially perpendicular to the longitudinal direction of the pipe P. The moving body K may be configured to be movable while attaching and abutting them to the pipe P.

又、上記実施形態では、枠体K1、K2の形状を維持しつつ、配管Pの長手方向の中心軸に沿うように移動体Kを移動させるべく、移動体Kを配管Pの周囲を囲むように配設された弾性部材(車輪R1〜R4)を介して、その周囲を挟持しながら、配管Pの長手方向に沿って移動する構成とした。しかし、電磁超音波センサT1と配管Pとの間に介在して移動体Kを案内する案内部材(ローラーT102〜T105等)を有していれば、電磁超音波センサT1と配管Pの間の距離が一定の距離に保持されるように、移動体Kは移動することが可能であり、第1外径測定部T2、T3、第2外径測定部T4、T5の構成等に応じて、その態様は、種々変更し得る。例えば、移動体Kが、配管Pの長手方向に沿って敷設されたレールに沿って移動する構成とであってもよい。又、案内部材を、高剛性材料により形成されるローラーT102〜T105に代えて、表面に潤滑油を塗布した高剛性材料、例えば、ステンレス鋼等を用いてもよい。   In the above embodiment, the movable body K is surrounded by the pipe P so as to move the movable body K along the central axis in the longitudinal direction of the pipe P while maintaining the shapes of the frames K1 and K2. It is configured to move along the longitudinal direction of the pipe P while sandwiching the periphery thereof through the elastic members (wheels R1 to R4) disposed in the pipe P. However, if there is a guide member (rollers T102 to T105, etc.) that is interposed between the electromagnetic ultrasonic sensor T1 and the pipe P and guides the moving body K, it is between the electromagnetic ultrasonic sensor T1 and the pipe P. The moving body K can move so that the distance is maintained at a constant distance, and according to the configuration of the first outer diameter measuring units T2, T3, the second outer diameter measuring units T4, T5, etc. The aspect can be variously changed. For example, the moving body K may be configured to move along a rail laid along the longitudinal direction of the pipe P. Further, instead of the rollers T102 to T105 formed of a highly rigid material, the guide member may be made of a highly rigid material whose surface is coated with a lubricating oil, such as stainless steel.

又、上記実施形態では、配管Pの周囲を囲むように配設された弾性部材として、弾性ゴム材により構成される車輪R1〜R4を用いたが、車輪R1〜R4に代えて、付勢バネや緩衝材を配管Pの周囲を囲むように枠体K1、K2に配設して、配管Pと移動体Kの間にこれらを介在させる構成としてもよい。   Moreover, in the said embodiment, although the wheel R1-R4 comprised with an elastic rubber material was used as an elastic member arrange | positioned so that the circumference | surroundings of the piping P might be enclosed, it replaced with wheel R1-R4 and was urged | biased spring Alternatively, a buffer material may be disposed in the frames K1 and K2 so as to surround the periphery of the pipe P, and these may be interposed between the pipe P and the moving body K.

又、上記実施形態では、配管の肉厚を測定する電磁超音波センサT1として、ローレンツ力を利用して超音波を送受信する構成としたが、配管Pの材料が鋼等の強磁性体である場合は、磁歪効果を利用して超音波を送受信する構成としてもよい。   Moreover, in the said embodiment, although it was set as the structure which transmits / receives an ultrasonic wave using Lorentz force as electromagnetic ultrasonic sensor T1 which measures the thickness of piping, the material of piping P is ferromagnetics, such as steel. In such a case, a configuration may be adopted in which ultrasonic waves are transmitted and received using the magnetostrictive effect.

上記各実施形態は、以下の記載により特定される発明を開示するものである。   Each of the above embodiments discloses an invention specified by the following description.

前述した課題を解決する主たる本発明は、配管Pの肉厚を測定する電磁超音波センサT1と、電磁超音波センサT1の測定面T101A、T101Bが配管Pの外周面と対向するように電磁超音波センサT1が取り付けられ、配管Pの長手方向に沿って移動する移動体Kと、移動体Kが配管Pの長手方向に沿って移動する際に、電磁超音波センサT1と配管Pとの間の距離が一定の距離に保持されるように、電磁超音波センサT1と配管Pとの間に介在して移動体Kを案内する第1案内部材T102〜T105と、を備えたことを特徴とする測定装置である。これにより、配管Pに洗浄や研磨などの前処理を行うことなく、高い精度で、配管Pの肉厚を連続測定することが可能となる。   The main present invention for solving the above-described problem is that the electromagnetic ultrasonic sensor T1 for measuring the thickness of the pipe P and the electromagnetic ultrasonic sensors T1A and T101B of the electromagnetic ultrasonic sensor T1 are opposed to the outer peripheral surface of the pipe P. The movable body K to which the acoustic wave sensor T1 is attached and moves along the longitudinal direction of the pipe P, and when the movable body K moves along the longitudinal direction of the pipe P, between the electromagnetic ultrasonic sensor T1 and the pipe P The first guide members T102 to T105 are provided between the electromagnetic ultrasonic sensor T1 and the pipe P so as to guide the moving body K so that the distance is maintained at a constant distance. Measuring device. Thereby, it is possible to continuously measure the thickness of the pipe P with high accuracy without performing pretreatment such as cleaning and polishing on the pipe P.

又、測定装置は、移動体Kと電磁超音波センサT1の間に介在し、電磁超音波センサT1を配管Pの外周面の方向に押圧する付勢部材T106〜T109を、更に備えるものであってもよい。   The measuring apparatus further includes biasing members T106 to T109 that are interposed between the moving body K and the electromagnetic ultrasonic sensor T1 and press the electromagnetic ultrasonic sensor T1 toward the outer peripheral surface of the pipe P. May be.

又、第1案内部材T102〜T105は、複数のローラーであってもよい。   The first guide members T102 to T105 may be a plurality of rollers.

又、移動体Kは、配管Pの外周面を取り囲む形状を呈し、移動体Kが配管Pの長手方向に沿って移動するように、配管Pの外周面を挟持しながら移動体Kを案内する第2案内部材R1〜R4を更に備えたものであってもよい。   The movable body K has a shape surrounding the outer peripheral surface of the pipe P, and guides the movable body K while holding the outer peripheral surface of the pipe P so that the movable body K moves along the longitudinal direction of the pipe P. It may further include second guide members R1 to R4.

又、第2案内部材R1〜R4は、配管Pの外周面の周囲を取り囲むように配設された弾性部材により構成されるものであってもよい。これによって、移動体Kは、枠体K1、K2の形状が保持された状態で、配管Pの長手方向の中心軸に沿って移動することが可能となる。即ち、移動の前後で、電磁超音波センサT1を配管Pの測定位置の表面に対して平行に維持することが可能となる。   Further, the second guide members R <b> 1 to R <b> 4 may be configured by an elastic member disposed so as to surround the periphery of the outer peripheral surface of the pipe P. As a result, the movable body K can move along the central axis in the longitudinal direction of the pipe P in a state where the shapes of the frames K1 and K2 are maintained. That is, before and after the movement, the electromagnetic ultrasonic sensor T1 can be maintained parallel to the surface of the measurement position of the pipe P.

又、配管Pの長手方向と略垂直な方向に対して一定の幅を有するレーザ平行光線L2、L3を出射する出射部T2A、T3Aと、レーザ平行光線L2、L3を受光する受光部T2B、T3Bとが、配管Pの長手方向と略垂直な方向に配管Pを挟んで対向するように移動体Kに取り付けられ、出射部T2A、T3Aが出射したレーザ平行光線L2、L3のうち、受光部T2B、T3Bが受光しなかったレーザ平行光線L2、L3に基づいて、配管Pの外径を測定するレーザ寸法測定装置T2、T3を、更に備えたものであってもよい。これによって、配管の肉厚と外径をともに連続測定することが可能となる。   Further, light emitting portions T2A and T3A that emit laser parallel rays L2 and L3 having a certain width with respect to a direction substantially perpendicular to the longitudinal direction of the pipe P, and light receiving portions T2B and T3B that receive the laser parallel rays L2 and L3. Are attached to the movable body K so as to face each other across the pipe P in a direction substantially perpendicular to the longitudinal direction of the pipe P, and among the laser parallel rays L2 and L3 emitted from the emission parts T2A and T3A, the light receiving part T2B , T3B may further include laser dimension measuring devices T2 and T3 that measure the outer diameter of the pipe P based on the laser parallel rays L2 and L3 that are not received. This makes it possible to continuously measure both the wall thickness and the outer diameter of the pipe.

又、測定装置は、配管Pの長手方向の各地点で測定された配管Pの肉厚及び外径の測定結果に基づいてクリープ損傷や酸化減肉していることを示す警告を発する警告部を、更に備えるものであってもよい。これによって、作業者は、極めて簡易な作業により、クリープ損傷や酸化減肉を判断することができる。   In addition, the measuring device has a warning unit that issues a warning indicating that creep damage or oxidation is reduced based on the measurement result of the thickness and outer diameter of the pipe P measured at each point in the longitudinal direction of the pipe P. Further, it may be provided. As a result, the operator can determine creep damage and oxidation thinning by an extremely simple operation.

又、測定対象の配管は、ボイラーに用いられる配管Pであってもよい。   Further, the pipe to be measured may be a pipe P used for a boiler.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

P 配管
K 移動体
T1 肉厚測定部
T2、T3 第1外径測定部
T4、T5 第2外径測定部
M1、M2 ミラー
P Piping K Moving object T1 Thickness measuring part T2, T3 First outer diameter measuring part T4, T5 Second outer diameter measuring part M1, M2 Mirror

前述した課題を解決する主たる本発明は、配管の肉厚を測定する電磁超音波センサと、前記配管の外径を測定するレーザ寸法測定装置と、前記電磁超音波センサの測定面が前記配管の外周面と対向するように前記電磁超音波センサが取り付けられ、前記配管の外周面を取り囲む形状を呈すると共に、前記配管の長手方向に沿って移動する移動体と、前記移動体が前記配管の長手方向に沿って移動する際に、前記電磁超音波センサと前記配管との間の距離が一定の距離に保持されるように、前記電磁超音波センサと前記配管との間に介在して前記移動体を案内する第1案内部材と、前記移動体が前記配管の長手方向に沿って移動する際に、前記配管の外周面を挟持しながら前記移動体を案内すると共に、前記配管の外周面の周囲を取り囲むように配設された弾性部材により構成される第2案内部材と、を備え、前記レーザ寸法測定装置は、前記配管の長手方向と略垂直な断面方向に一定の幅を有する第1レーザ平行光線を、出射する第1出射部と、前記第1レーザ平行光線を受光する第1受光部と、前記配管の前記断面方向に一定の幅を有する第2レーザ平行光線を、前記第1レーザ平行光線の出射方向に平行に出射する第2出射部と、前記第2レーザ平行光線を受光する第2受光部と、前記配管の外径を算出する制御部と、を有し、前記第1出射部及び前記第2出射部は、前記配管の前記断面方向に互いに離間すると共に、前記第1レーザ平行光線の一部及び前記第2レーザ平行光線の一部がそれぞれ前記配管に遮られるように配置され、前記第1受光部及び前記第2受光部は、前記配管を挟んで前記第1出射部及び前記第2出射部と対向するように配置され、前記制御部は、前記第1出射部から出射された前記第1レーザ平行光線のうちの前記第1受光部によって受光された部分の幅と、前記第2出射部から出射された前記第2レーザ平行光線のうちの前記第2受光部によって受光された部分の幅と、に基づいて、前記配管の外径を算出することを特徴とする測定装置である。本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。 The main present invention that solves the above-described problems includes an electromagnetic ultrasonic sensor that measures the thickness of a pipe, a laser dimension measuring device that measures the outer diameter of the pipe, and a measurement surface of the electromagnetic ultrasonic sensor that is the surface of the pipe. The electromagnetic ultrasonic sensor is attached so as to face the outer peripheral surface, exhibits a shape surrounding the outer peripheral surface of the pipe, and moves along the longitudinal direction of the pipe. When moving along the direction, the movement is interposed between the electromagnetic ultrasonic sensor and the pipe so that the distance between the electromagnetic ultrasonic sensor and the pipe is maintained at a constant distance. When the movable body moves along the longitudinal direction of the pipe , the first guide member that guides the body guides the movable body while sandwiching the outer circumferential surface of the pipe, and the outer circumferential surface of the pipe To surround A second guide member constituted by an elastic member disposed, wherein the laser dimension measuring device emits a first laser parallel beam having a constant width in a cross-sectional direction substantially perpendicular to the longitudinal direction of the pipe, A first light emitting unit that emits light, a first light receiving unit that receives the first laser parallel light beam, and a second laser parallel light beam having a certain width in the cross-sectional direction of the pipe are emitted from the first laser parallel light beam. A second light emitting portion that emits parallel to the direction, a second light receiving portion that receives the second laser parallel light beam, and a control portion that calculates an outer diameter of the pipe, the first light emitting portion and the The second emission part is disposed so as to be separated from each other in the cross-sectional direction of the pipe, and a part of the first laser parallel beam and a part of the second laser parallel beam are respectively blocked by the pipe, The first light receiving part and the second light receiving part It arrange | positions so that the said 1st radiation | emission part and the said 2nd radiation | emission part may be opposed on both sides of piping, and the said control part is a said 1st light reception among the said 1st laser parallel rays radiate | emitted from the said 1st radiation | emission part. On the basis of the width of the portion received by the portion and the width of the portion received by the second light receiving portion of the second laser parallel light emitted from the second emitting portion. It is a measuring device characterized by calculating a diameter . Other features of the present invention will become apparent from the accompanying drawings and the description of this specification.

Claims (8)

配管の肉厚を測定する電磁超音波センサと、
前記電磁超音波センサの測定面が前記配管の外周面と対向するように前記電磁超音波センサが取り付けられ、前記配管の長手方向に沿って移動する移動体と、
前記移動体が前記配管の長手方向に沿って移動する際に、前記電磁超音波センサと前記配管との間の距離が一定の距離に保持されるように、前記電磁超音波センサと前記配管との間に介在して前記移動体を案内する第1案内部材と、
を備えたことを特徴とする測定装置。
An electromagnetic ultrasonic sensor for measuring the thickness of the pipe;
The electromagnetic ultrasonic sensor is attached so that the measurement surface of the electromagnetic ultrasonic sensor faces the outer peripheral surface of the pipe, and a moving body that moves along the longitudinal direction of the pipe;
When the movable body moves along the longitudinal direction of the pipe, the electromagnetic ultrasonic sensor and the pipe are arranged so that the distance between the electromagnetic ultrasonic sensor and the pipe is maintained at a constant distance. A first guide member for guiding the movable body interposed between
A measuring apparatus comprising:
前記第1案内部材を前記配管の外周面の方向に押圧する付勢部材を、更に備える
ことを特徴とする請求項1に記載の測定装置。
The measuring apparatus according to claim 1, further comprising an urging member that presses the first guide member in a direction of an outer peripheral surface of the pipe.
前記第1案内部材は、複数のローラーである
ことを特徴とする請求項1又は2に記載の測定装置。
The measuring apparatus according to claim 1, wherein the first guide member is a plurality of rollers.
前記移動体は、前記配管の外周面を取り囲む形状を呈し、
前記移動体が前記配管の長手方向に沿って移動するように、前記配管の外周面を挟持しながら前記移動体を案内する第2案内部材、を更に備えた
ことを特徴とする請求項1乃至3のいずれか一項に記載の測定装置。
The movable body has a shape surrounding the outer peripheral surface of the pipe,
The second guide member for guiding the moving body while sandwiching the outer peripheral surface of the pipe so that the moving body moves along the longitudinal direction of the pipe. 4. The measuring device according to any one of 3.
前記第2案内部材は、前記配管の外周面の周囲を取り囲むように配設された弾性部材により構成される
ことを特徴とする請求項4に記載の測定装置。
The measuring apparatus according to claim 4, wherein the second guide member is configured by an elastic member disposed so as to surround the periphery of the outer peripheral surface of the pipe.
前記配管の長手方向と略垂直な方向に対して一定の幅を有するレーザ平行光線を出射する出射部と、前記レーザ平行光線を受光する受光部とが、前記配管の長手方向と略垂直な方向に前記配管を挟んで対向するように前記移動体に取り付けられ、
前記出射部が出射したレーザ平行光線のうち、前記受光部が受光しなかったレーザ平行光線に基づいて、前記配管の外径を測定するレーザ寸法測定装置を、更に備えた
ことを特徴とする請求項5に記載の測定装置。
A light emitting portion for emitting a laser parallel light beam having a certain width with respect to a direction substantially perpendicular to the longitudinal direction of the pipe, and a light receiving portion for receiving the laser parallel light beam are substantially perpendicular to the longitudinal direction of the pipe. Attached to the moving body so as to face each other with the piping interposed therebetween,
The apparatus further comprises a laser dimension measuring device that measures an outer diameter of the pipe based on a laser parallel beam that has not been received by the light receiving unit among the laser parallel beams emitted by the emitting unit. Item 6. The measuring device according to Item 5.
前記測定装置は、前記配管の長手方向の各地点で測定された前記配管の肉厚及び外径の測定結果に基づいてクリープ損傷や酸化減肉していることを示す警告を発する警告部を、更に備えた
ことを特徴とする請求項6に記載の測定装置。
The measuring device is a warning unit that issues a warning indicating that creep damage or oxidation thinning based on the measurement results of the thickness and outer diameter of the pipe measured at each point in the longitudinal direction of the pipe, The measuring apparatus according to claim 6, further comprising:
前記配管は、ボイラーに用いられる配管である
ことを特徴とする請求項1乃至7のいずれか一項に記載の測定装置。
The measurement apparatus according to claim 1, wherein the pipe is a pipe used for a boiler.
JP2014252924A 2014-12-15 2014-12-15 Measuring apparatus Pending JP2016114455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252924A JP2016114455A (en) 2014-12-15 2014-12-15 Measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252924A JP2016114455A (en) 2014-12-15 2014-12-15 Measuring apparatus

Publications (1)

Publication Number Publication Date
JP2016114455A true JP2016114455A (en) 2016-06-23

Family

ID=56141377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252924A Pending JP2016114455A (en) 2014-12-15 2014-12-15 Measuring apparatus

Country Status (1)

Country Link
JP (1) JP2016114455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190830A (en) * 2018-04-18 2019-10-31 中国電力株式会社 Outer diameter measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109453U (en) * 1977-02-09 1978-09-01
JPS54128756A (en) * 1978-03-29 1979-10-05 Sumitomo Metal Ind Optical measuring device
JPS59160704A (en) * 1983-03-04 1984-09-11 Kawasaki Steel Corp Method for measuring sectional size of steel rod or the like
JPH0310209U (en) * 1989-06-16 1991-01-31
JPH0658750A (en) * 1992-08-05 1994-03-04 Mitsubishi Heavy Ind Ltd Measuring machine for pipe wall thickness and outer diameter
JP2001514116A (en) * 1997-08-21 2001-09-11 イーソーン,ラッセル,ジェームス Pylon structure working device
JP2013536079A (en) * 2010-06-03 2013-09-19 ヴイ・アンド・エム・フランス Production management method and apparatus for pipe passage inspection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109453U (en) * 1977-02-09 1978-09-01
JPS54128756A (en) * 1978-03-29 1979-10-05 Sumitomo Metal Ind Optical measuring device
JPS59160704A (en) * 1983-03-04 1984-09-11 Kawasaki Steel Corp Method for measuring sectional size of steel rod or the like
JPH0310209U (en) * 1989-06-16 1991-01-31
JPH0658750A (en) * 1992-08-05 1994-03-04 Mitsubishi Heavy Ind Ltd Measuring machine for pipe wall thickness and outer diameter
JP2001514116A (en) * 1997-08-21 2001-09-11 イーソーン,ラッセル,ジェームス Pylon structure working device
JP2013536079A (en) * 2010-06-03 2013-09-19 ヴイ・アンド・エム・フランス Production management method and apparatus for pipe passage inspection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019190830A (en) * 2018-04-18 2019-10-31 中国電力株式会社 Outer diameter measuring device

Similar Documents

Publication Publication Date Title
JP5288864B2 (en) Active sensor, multi-point active sensor, pipe deterioration diagnosis method and pipe deterioration diagnosis apparatus
CN102506781B (en) Laser ultrasonic thickness measuring method and laser ultrasonic thickness measuring device capable of being used for field detection
EP2437053A1 (en) Scanning device for nondestructive inspection and nondestructive inspection equipment
WO2014142306A1 (en) Eddy current flaw detection device, eddy current flaw detection method, and eddy current flaw detection program
JP6362533B2 (en) Residual stress evaluation method and residual stress evaluation apparatus
JP2010071741A (en) Piping thickness measurement method and device
EP3244202B1 (en) Piping inspection apparatus
JPH03100406A (en) Ultrasonic system for measuring external form of object
WO2017183471A1 (en) Temperature measurement substrate and temperature measurement system
US9182499B2 (en) Inspection device of radioactive waste body and inspection method of radioactive waste body
JP4776484B2 (en) Pipe nondestructive inspection device, pipe nondestructive inspection method, and power plant
JP2016114455A (en) Measuring apparatus
JP2013124891A (en) Ultrasonic flaw inspection device
JP5535095B2 (en) Work size measuring device
JP2013186087A (en) Ultrasonic flaw detection system and ultrasonic flaw detection device
JP2013210200A (en) Ultrasonic thickness measuring device and ultrasonic thickness measuring method
CN108168470B (en) Device and method for measuring characteristic angle of frequency doubling crystal based on divergent light beam
US11480548B2 (en) Acoustic inspection device and method of operation
JP2010096703A (en) Measuring device with use of electromagnetic ultrasonic wave method, and measuring method
JP2012159209A (en) Inspection system and inspection method for heat transfer pipe
JP2019219344A (en) Ultrasonic inspection method for pipe weld zone
JP6150014B2 (en) Strain measuring method and strain measuring system
JP2019007802A (en) Optical inspection apparatus and method for optical inspection
KR101513805B1 (en) Ultrasonic inspection device for small bore pipe
JP2011145146A (en) Roller outside crack diagnostic device and diagnostic method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170117