JP2016113345A - Graphite-silicon carbide composite and method of producing the same - Google Patents

Graphite-silicon carbide composite and method of producing the same Download PDF

Info

Publication number
JP2016113345A
JP2016113345A JP2014255342A JP2014255342A JP2016113345A JP 2016113345 A JP2016113345 A JP 2016113345A JP 2014255342 A JP2014255342 A JP 2014255342A JP 2014255342 A JP2014255342 A JP 2014255342A JP 2016113345 A JP2016113345 A JP 2016113345A
Authority
JP
Japan
Prior art keywords
silicon carbide
graphite
ppm
content
carbide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255342A
Other languages
Japanese (ja)
Other versions
JP6334388B2 (en
Inventor
福岡 宏文
Hirofumi Fukuoka
宏文 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2014255342A priority Critical patent/JP6334388B2/en
Publication of JP2016113345A publication Critical patent/JP2016113345A/en
Application granted granted Critical
Publication of JP6334388B2 publication Critical patent/JP6334388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphite-silicon carbide composite excellent in high-temperature oxidation resistance and little in variation of quality, and a method of easily producing the same.SOLUTION: The graphite-silicon carbide composite is provided which includes: a graphite base material; and a silicon carbide layer formed on the surface of the graphite base material, and in which the silicon carbide layer contains Fe, and the content of Fe is 5-5,000 ppm. The method of producing the graphite-silicon carbide composite is also provided which comprises : a step (1) of preparing a metallic silicon powder having an Fe content of 8-8,000; a step (2) of melt-spraying the metallic silicon powder on the surface of the graphite base material; and a step (3) of subjecting the graphite base material melt-sprayed with the metallic silicon powder to heat treatment in a non-oxidation atmosphere at the temperature range of 1,100-1,700°C to form a silicon carbide layer on the surface of the graphite base material.SELECTED DRAWING: None

Description

本発明は、黒鉛−炭化珪素複合体及びその製造方法に関し、特に、高温構造材、治具、半導体装置部材、液晶装置部材、及び機械的摺動材などに好適に用いられる黒鉛−炭化珪素複合体及びその製造方法に関する。   The present invention relates to a graphite-silicon carbide composite and a method for producing the same, and in particular, a graphite-silicon carbide composite that is suitably used for high-temperature structural materials, jigs, semiconductor device members, liquid crystal device members, mechanical sliding materials, and the like. The present invention relates to a body and a manufacturing method thereof.

黒鉛材料は高温特性、機械的強度、及び加工性に優れた材料であり、種々の高温材料(高温下で使用される材料)として使用されている。但し、黒鉛材料は耐酸化性に劣ることより非酸化性雰囲気での使用に限定され、酸化性雰囲気で使用する高温材料としては、炭化珪素、窒化珪素、及びアルミナといった酸化物セラミックスが用いられてきた。しかしながら、これらセラミックスは、加工性に劣ったり、大型化が困難だったり、耐熱衝撃性に劣るなどといった別の問題があった。   A graphite material is a material excellent in high temperature characteristics, mechanical strength, and workability, and is used as various high temperature materials (materials used at high temperatures). However, graphite materials are limited to use in a non-oxidizing atmosphere due to poor oxidation resistance, and oxide ceramics such as silicon carbide, silicon nitride, and alumina have been used as high-temperature materials used in an oxidizing atmosphere. It was. However, these ceramics have other problems such as inferior processability, difficulty in increasing the size, and inferior thermal shock resistance.

そこで、耐酸化性を向上させるため、黒鉛材表面を炭化珪素層で被覆させる黒鉛−炭化珪素複合体の製造が試みられてきた。   Therefore, in order to improve the oxidation resistance, it has been attempted to produce a graphite-silicon carbide composite in which the surface of the graphite material is covered with a silicon carbide layer.

従来、黒鉛−炭化珪素複合体の製造方法としては、幾つかの方法が提案されている。例えば、特許文献1においては、特定の径を持つ微細気孔の占める容積が0.02cm/g以上の炭素基材を使用し、SiOガスを用いてコンバージョン法で黒鉛−炭化珪素複合体を製造する方法、特許文献2には、開気孔率が5〜55%、平均気孔径が0.1〜100μmの多孔質炭化珪素焼結体を作製し、その開気孔中に炭素を充填して黒鉛−炭化珪素複合体を製造する方法、特許文献3には多孔質黒鉛基材に溶融珪素を浸透し、反応せしめて、黒鉛−炭化珪素複合体を製造する方法、特許文献4にはカーボン基材にCVD法によりSi膜をコートし、1300℃以上で熱処理してSiC化した後、さらにCVD法によりSiCコート膜を生成させる方法、特許文献5には黒鉛材料を不活性ガス雰囲気下1400〜1800℃で二酸化珪素と反応させて表面部を珪化して炭化珪素基地とした後、更に化学蒸着法により炭化珪素膜を形成させる方法が記載されている。 Conventionally, several methods have been proposed as a method for producing a graphite-silicon carbide composite. For example, in Patent Document 1, a carbon-based material having a specific pore size occupied by fine pores of 0.02 cm 3 / g or more is used, and a graphite-silicon carbide composite is manufactured by a conversion method using SiO gas. In Patent Document 2, a porous silicon carbide sintered body having an open porosity of 5 to 55% and an average pore diameter of 0.1 to 100 μm is prepared, and carbon is filled in the open pores to form graphite. A method for producing a silicon carbide composite, Patent Document 3 discloses a method for producing a graphite-silicon carbide composite by infiltrating and reacting molten silicon with a porous graphite base material, and Patent Document 4 discloses a carbon base material. A method of forming a SiC coating film by CVD method after coating a Si film by CVD method and heat-treating at 1300 ° C. or higher, and further forming a SiC coating film by CVD method. Dioxide at ℃ A method is described in which a silicon carbide film is formed by chemical vapor deposition after reacting with silicon to siliconize the surface portion to form a silicon carbide base.

特公昭61−11911号公報Japanese Patent Publication No. 61-11911 特開昭62−132787号公報Japanese Patent Laid-Open No. 62-132787 特許第2620294号公報Japanese Patent No. 2620294 特開2002−128580号公報JP 2002-128580 A 特開昭63−225591号公報Japanese Patent Laid-Open No. 63-225591

上記の特許文献1〜5の従来の方法は、いずれも複雑な製造工程を経る方法であり、製造の歩留まりが悪く、結果として高価な黒鉛−炭化珪素複合体となったり、炭化珪素層のバラツキが大きく、品質バラツキの大きい製品となるといった問題があり、工業的生産に優れた方法とは言えなかった。   Each of the conventional methods of Patent Documents 1 to 5 described above is a method that undergoes a complicated manufacturing process, and the manufacturing yield is poor, resulting in an expensive graphite-silicon carbide composite, or variations in the silicon carbide layer. However, the method has a problem that the product has a large quality variation and cannot be said to be an excellent method for industrial production.

本発明は、上記問題を解決するためになされたものであり、高温耐酸化性に優れ、かつ品質バラツキの少ない黒鉛−炭化珪素複合体を提供することを目的とする。また、本発明は、そのような黒鉛−炭素複合体を簡便に製造することができる方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a graphite-silicon carbide composite that is excellent in high-temperature oxidation resistance and has little variation in quality. Moreover, an object of this invention is to provide the method which can manufacture such a graphite carbon composite easily.

上記課題を解決するために、本発明では、黒鉛基材と、該黒鉛基材の表面に形成された炭化珪素層とを有する黒鉛−炭化珪素複合体であって、前記炭化珪素層がFeを含み、前記炭化珪素層中のFe含有率が5〜5000ppmである黒鉛−炭化珪素複合体を提供する。   In order to solve the above problems, in the present invention, a graphite-silicon carbide composite having a graphite base material and a silicon carbide layer formed on the surface of the graphite base material, wherein the silicon carbide layer contains Fe. And a graphite-silicon carbide composite having a Fe content in the silicon carbide layer of 5 to 5000 ppm.

本発明の黒鉛−炭化珪素複合体は、黒鉛基材表面に形成された炭化珪素層に含まれるFeの含有率が上記の範囲内であることによって黒鉛基材と炭化珪素層との密着性を向上させることができる。このような黒鉛−炭化珪素複合体であれば、黒鉛基材からの炭化珪素層の剥離を抑えることができ、高温耐酸化性に優れた黒鉛−炭化珪素複合体とすることができる。その結果、このような黒鉛−炭化珪素複合体は、耐熱材料として好適に用いることができる。   In the graphite-silicon carbide composite of the present invention, the adhesion between the graphite substrate and the silicon carbide layer is achieved by the content of Fe contained in the silicon carbide layer formed on the surface of the graphite substrate being within the above range. Can be improved. With such a graphite-silicon carbide composite, peeling of the silicon carbide layer from the graphite substrate can be suppressed, and a graphite-silicon carbide composite excellent in high-temperature oxidation resistance can be obtained. As a result, such a graphite-silicon carbide composite can be suitably used as a heat resistant material.

このとき、前記炭化珪素層の厚みが、10〜300μmであることが好ましい。   At this time, it is preferable that the thickness of the silicon carbide layer is 10 to 300 μm.

上記炭化珪素層の厚みがこのような範囲内であれば、十分なガス不透過性を備えることができ、高温酸化性雰囲気下での長期使用に耐え得る黒鉛−炭化珪素複合体となる。   If the thickness of the silicon carbide layer is within such a range, it is possible to provide sufficient gas impermeability, and it becomes a graphite-silicon carbide composite that can withstand long-term use in a high-temperature oxidizing atmosphere.

また、前記炭化珪素層がさらにAl及びCaを含み、前記炭化珪素層中のAl含有率が10〜1000ppm、Ca含有率が5〜1000ppmであることが好ましい。   Moreover, it is preferable that the said silicon carbide layer contains Al and Ca further, Al content rate in the said silicon carbide layer is 10-1000 ppm, and Ca content rate is 5-1000 ppm.

上記炭化珪素層に含まれるAl及びCaの含有率がこのような範囲内であれば、黒鉛基材と炭化珪素層との密着性をさらに向上させることができる。   If the content rate of Al and Ca contained in the said silicon carbide layer is in such a range, the adhesiveness of a graphite base material and a silicon carbide layer can further be improved.

また、本発明では、黒鉛−炭化珪素複合体の製造方法であって、
(1)Fe含有率が8〜8000ppmである金属珪素粉末を準備する工程と、
(2)前記金属珪素粉末を黒鉛基材の表面に溶射する工程と、
(3)前記金属珪素粉末が溶射された黒鉛基材を非酸化性雰囲気にて1100〜1700℃の温度範囲で熱処理して、前記黒鉛基材の表面に炭化珪素層を形成する工程と
を含む黒鉛−炭化珪素複合体の製造方法を提供する。
Further, in the present invention, a method for producing a graphite-silicon carbide composite,
(1) preparing a metal silicon powder having an Fe content of 8 to 8000 ppm;
(2) spraying the metal silicon powder on the surface of the graphite substrate;
(3) heat treating the graphite substrate sprayed with the metal silicon powder in a temperature range of 1100 to 1700 ° C. in a non-oxidizing atmosphere to form a silicon carbide layer on the surface of the graphite substrate. A method for producing a graphite-silicon carbide composite is provided.

このような黒鉛−炭化珪素複合体の製造方法であれば、高温耐酸化性に優れ、かつ品質バラツキの少ない黒鉛−炭化珪素複合体を簡便な方法により製造することができる。   With such a method for producing a graphite-silicon carbide composite, a graphite-silicon carbide composite having excellent high-temperature oxidation resistance and little variation in quality can be produced by a simple method.

このとき、前記金属珪素粉末の平均粒子径が、0.5〜50μmであることが好ましい。   At this time, it is preferable that the average particle diameter of the said metal silicon powder is 0.5-50 micrometers.

上記金属珪素粉末の平均粒子径が0.5μm以上であれば、溶射が容易になり、均一な溶射を達成することができる。また、上記平均粒子径が50μm以下であれば、熱処理による炭化珪素層の転化を容易に十分に行うことができる。   If the average particle diameter of the said metal silicon powder is 0.5 micrometer or more, thermal spraying will become easy and uniform thermal spraying can be achieved. Moreover, if the said average particle diameter is 50 micrometers or less, the conversion of the silicon carbide layer by heat processing can be performed easily enough.

また、前記金属珪素粉末を準備する工程において、前記金属珪素粉末として、さらにAl及びCaを含み、Al含有率が16〜1600ppm、Ca含有率が8〜1600ppmであるものを準備することが好ましい。   Moreover, in the step of preparing the metal silicon powder, it is preferable to prepare a metal silicon powder further containing Al and Ca, having an Al content of 16 to 1600 ppm and a Ca content of 8 to 1600 ppm.

このような金属珪素粉末を用いることにより、高温耐酸化性に一層優れた黒鉛−炭化珪素複合体を得ることができる。   By using such a metal silicon powder, it is possible to obtain a graphite-silicon carbide composite having further excellent high-temperature oxidation resistance.

以上のように、本発明の黒鉛−炭化珪素複合体であれば、黒鉛基材と炭化珪素層との密着性が向上し、炭化珪素層の剥離が抑制され、その結果、高温耐酸化性に優れた黒鉛−炭化珪素複合体となる。従って、本発明の黒鉛−炭化珪素複合体であれば、耐熱材料として種々の用途に使用することができる。また、本発明の黒鉛−炭化珪素複合体の製造方法は簡便であり、高温耐酸化性に優れ、耐熱材料として好適に用いることができ、かつ品質バラツキの少ない黒鉛−炭化珪素複合体を容易に得ることが可能であり、工業的規模の生産にも十分耐え得るものである。   As described above, with the graphite-silicon carbide composite of the present invention, the adhesion between the graphite base material and the silicon carbide layer is improved, and peeling of the silicon carbide layer is suppressed, resulting in high temperature oxidation resistance. It becomes an excellent graphite-silicon carbide composite. Therefore, the graphite-silicon carbide composite of the present invention can be used for various applications as a heat-resistant material. Further, the method for producing a graphite-silicon carbide composite of the present invention is simple, excellent in high-temperature oxidation resistance, suitable for use as a heat-resistant material, and easily producing a graphite-silicon carbide composite with little quality variation. It can be obtained and can sufficiently withstand industrial scale production.

上述のように、高温耐酸化性に優れ、かつ品質バラツキの少ない黒鉛−炭化珪素複合体、及びその製造方法の開発が求められていた。   As described above, there has been a demand for the development of a graphite-silicon carbide composite that is excellent in high-temperature oxidation resistance and has little quality variation, and a method for producing the same.

本発明者らは、上記問題を解決するため鋭意検討を行った結果、黒鉛基材表面に形成される炭化珪素層に含まれるFe含有率を所定の範囲内とすることで、黒鉛基材と炭化珪素層との密着性が向上し、黒鉛−炭化珪素複合体の高温耐酸化性が向上することを見出した。また、本発明者らは、上記黒鉛−炭化珪素複合体の製造方法として、Fe含有率が所定の範囲内である金属珪素粉末を黒鉛基材に溶射し、これを熱処理することで、容易にバラツキの少ない一定の厚さを有する炭化珪素層を黒鉛基材表面に形成することが可能となり、高温酸化性雰囲気での使用に十分耐え得る黒鉛−炭化珪素複合体を製造することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have determined that the Fe content contained in the silicon carbide layer formed on the surface of the graphite substrate is within a predetermined range, It has been found that the adhesion with the silicon carbide layer is improved and the high-temperature oxidation resistance of the graphite-silicon carbide composite is improved. In addition, as a method for producing the above graphite-silicon carbide composite, the present inventors easily sprayed a metal silicon powder having an Fe content within a predetermined range on a graphite substrate, and then heat-treated it. It becomes possible to form a silicon carbide layer having a certain thickness with little variation on the surface of the graphite substrate, and it is possible to produce a graphite-silicon carbide composite that can sufficiently withstand use in a high-temperature oxidizing atmosphere. As a result, the present invention has been completed.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

[黒鉛−炭素珪素複合体]
本発明の黒鉛−炭素珪素複合体は、黒鉛基材と、該黒鉛基材の表面に形成された炭化珪素層とを有するものであり、この炭化珪素層がFeを含み、Fe含有率を所定の範囲内としたものである。具体的には、上記の炭化珪素層に含まれるFe含有率は、5〜5000ppmであり、好ましくは50〜3000ppmである。このような黒鉛−炭素珪素複合体であれば、高温耐酸化性を向上させることができる。Fe含有率が5ppmより少ないと、黒鉛基材と炭化珪素層との密着性が低下し、炭化珪素層の剥離が生じる場合があり、高温耐酸化性が低下する。逆にFe含有率が5000ppmを超えると、炭化珪素層中に融点の低いFe−Si合金が含まれ、高温耐酸化性が低下する。
[Graphite-carbon silicon composite]
The graphite-carbon silicon composite of the present invention has a graphite base material and a silicon carbide layer formed on the surface of the graphite base material. The silicon carbide layer contains Fe, and the Fe content is predetermined. Within the range. Specifically, the Fe content contained in the silicon carbide layer is 5 to 5000 ppm, preferably 50 to 3000 ppm. Such a graphite-carbon silicon composite can improve high-temperature oxidation resistance. If the Fe content is less than 5 ppm, the adhesion between the graphite base material and the silicon carbide layer may be reduced, and the silicon carbide layer may be peeled off, resulting in reduced high-temperature oxidation resistance. On the other hand, when the Fe content exceeds 5000 ppm, the silicon carbide layer contains an Fe—Si alloy having a low melting point, and the high-temperature oxidation resistance is lowered.

またこのとき、上記炭化珪素層がさらにAl及びCaを含み、この炭化珪素層中のAl含有率が10〜1000ppm、Ca含有率が5〜1000ppmであることが好ましい。   Moreover, at this time, it is preferable that the said silicon carbide layer further contains Al and Ca, and Al content rate in this silicon carbide layer is 10-1000 ppm, and Ca content rate is 5-1000 ppm.

本発明の黒鉛−炭化珪素複合体の炭化珪素層に含まれるAl含有率は、上記のように好ましくは10〜1000ppmであり、さらに好ましくは50〜800ppmである。Al含有率が10ppm以上であれば、黒鉛基材と炭化珪素層との密着性をより強固とし、炭化珪素層の剥離を抑制することができる。そのため、黒鉛−炭化珪素複合体の高温耐酸化性を高くすることができる。また、Al含有率が1000ppm以下であれば、炭化珪素層中に融点の低いAl−Si合金が含まれにくいため、高温耐酸化性を高くすることができる。   The Al content contained in the silicon carbide layer of the graphite-silicon carbide composite of the present invention is preferably 10 to 1000 ppm as described above, and more preferably 50 to 800 ppm. If Al content rate is 10 ppm or more, the adhesiveness of a graphite base material and a silicon carbide layer can be strengthened, and peeling of a silicon carbide layer can be suppressed. Therefore, the high temperature oxidation resistance of the graphite-silicon carbide composite can be increased. In addition, when the Al content is 1000 ppm or less, the silicon carbide layer is unlikely to contain an Al—Si alloy having a low melting point, so that high-temperature oxidation resistance can be increased.

本発明の黒鉛−炭化珪素複合体の炭化珪素層に含まれるCa含有率は、上記のように好ましくは5〜1000ppmであり、さらに好ましくは50〜800ppmである。Ca含有率が5ppm以上であれば、黒鉛基材と炭化珪素層との密着性をより強固とし、炭化珪素層の剥離を抑制することができる。そのため、黒鉛−炭化珪素複合体の高温耐酸化性を高くすることができる。また、Ca含有率が1000ppm以下であれば、炭化珪素層中に融点の低いCa−Si合金が含まれにくいため、高温耐酸化性を高くすることができる。   The Ca content contained in the silicon carbide layer of the graphite-silicon carbide composite of the present invention is preferably 5 to 1000 ppm, more preferably 50 to 800 ppm as described above. If Ca content rate is 5 ppm or more, the adhesiveness of a graphite base material and a silicon carbide layer can be strengthened, and peeling of a silicon carbide layer can be suppressed. Therefore, the high temperature oxidation resistance of the graphite-silicon carbide composite can be increased. Moreover, if Ca content is 1000 ppm or less, since a Ca-Si alloy with low melting | fusing point is hard to be contained in a silicon carbide layer, high temperature oxidation resistance can be made high.

ここで、上記金属(Fe、Al、Ca)の含有率は、下記測定方法により測定することができる。すなわち、試料に50質量%フッ酸を加え、反応が始まったら、さらに50質量%硝酸を加え、200℃に加熱して完全溶融した処理液をICP−AES(誘導結合プラズマ−発光分光分析)(Agilent社製 730C)で分析・測定する。   Here, the content rate of the said metal (Fe, Al, Ca) can be measured with the following measuring method. That is, when 50% by mass hydrofluoric acid is added to the sample and the reaction starts, 50% by mass nitric acid is further added, and the treatment liquid completely melted by heating to 200 ° C. is subjected to ICP-AES (inductively coupled plasma-emission spectroscopy) ( Analyze and measure with Agilent 730C).

尚、上記炭化珪素層中のFe、Al及びCa含有率は、後で詳しく述べるように、本発明の黒鉛−炭化珪素複合体の製造方法に用いられる金属珪素粉末中のFe、Al及びCa含有率に関連した値となる。   The Fe, Al, and Ca contents in the silicon carbide layer include Fe, Al, and Ca in the metal silicon powder used in the method for producing a graphite-silicon carbide composite of the present invention, as will be described in detail later. Value related to rate.

また、本発明の黒鉛−炭化珪素複合体の炭化珪素層の厚みは、特に限定されるものではないが、10μm〜300μm、特に10μm〜200μmであることが好ましい。炭化珪素層の厚みが10μm以上であれば、より確実に、十分なガス不透過性を有するものとすることができ、高温酸化性雰囲気下での長期使用に耐え得る黒鉛−炭化珪素複合体とすることができる。また、上記厚みが300μm以下であれば、ガス不透過性は十分に良好であり、また、炭化珪素層の生成コストを抑えることができる。   The thickness of the silicon carbide layer of the graphite-silicon carbide composite of the present invention is not particularly limited, but is preferably 10 μm to 300 μm, particularly preferably 10 μm to 200 μm. If the thickness of the silicon carbide layer is 10 μm or more, a graphite-silicon carbide composite that can more reliably have sufficient gas impermeability and can withstand long-term use in a high-temperature oxidizing atmosphere; can do. Further, when the thickness is 300 μm or less, the gas impermeability is sufficiently good, and the production cost of the silicon carbide layer can be suppressed.

ここで、上記炭化珪素層の厚みは、黒鉛−炭化珪素複合体を製造する際に溶射する金属珪素粉末の膜厚(金属珪素粉末層の厚み)に対応しており、この金属珪素粉末の膜厚により制御することが可能である。   Here, the thickness of the silicon carbide layer corresponds to the thickness of the metal silicon powder (the thickness of the metal silicon powder layer) sprayed when the graphite-silicon carbide composite is produced. It can be controlled by the thickness.

[黒鉛−炭化珪素複合体の製造方法]
次に本発明の黒鉛−炭化珪素複合体の製造方法について説明する。本発明の黒鉛−炭化珪素複合体は、Feの含有率が8〜8000ppmの範囲内である金属珪素粉末を黒鉛基材に溶射し、さらに非酸化性雰囲気にて熱処理を行うことで容易に得ることができる。以下、製造方法について更に詳細な説明を行う。
[Method for producing graphite-silicon carbide composite]
Next, the manufacturing method of the graphite-silicon carbide composite of this invention is demonstrated. The graphite-silicon carbide composite of the present invention is easily obtained by thermally spraying a metallic silicon powder having a Fe content in the range of 8 to 8000 ppm on a graphite substrate and further performing a heat treatment in a non-oxidizing atmosphere. be able to. Hereinafter, the manufacturing method will be described in more detail.

まず、Fe含有率が8〜8000ppmである金属珪素粉末を準備する(工程(1))。次に、この金属珪素粉末を黒鉛基材の表面に溶射する(工程(2))。この溶射方法に関しては特に限定されるものではなく、プラズマ溶射法、アセチレン、プロパン、ケロシン等を燃料ガスとするガス溶射法、及び高速ガス溶射法等が適宜用いられる。具体的には、プラズマ炎又はガス炎中に金属珪素粉末を供給し、半溶融状態にして黒鉛基材に吹き付ける。特に、より高温で皮膜を密着性良く形成できる理由によりプラズマ溶射法を用いることが好ましい。   First, a metal silicon powder having an Fe content of 8 to 8000 ppm is prepared (step (1)). Next, this metal silicon powder is sprayed onto the surface of the graphite substrate (step (2)). The thermal spraying method is not particularly limited, and a plasma spraying method, a gas spraying method using acetylene, propane, kerosene or the like as a fuel gas, a high-speed gas spraying method, or the like is appropriately used. Specifically, metal silicon powder is supplied into a plasma flame or a gas flame, and is made into a semi-molten state and sprayed onto a graphite substrate. In particular, it is preferable to use a plasma spraying method for the reason that a film can be formed with higher adhesion at a higher temperature.

本発明で使用される黒鉛基材は特に限定されるものではなく、その用途に応じて、CIP(冷間静水圧プレス)成形品、押出し成形品、及びC/Cコンポジット等を使用することができるが、特にC/Cコンポジットは高強度であり、より好適に使用される。尚、C/Cコンポジットとは、炭素繊維強化炭素複合材料とも呼ばれ、炭素繊維と炭素質の母材(充填材)からなる材料である。   The graphite substrate used in the present invention is not particularly limited, and CIP (cold isostatic pressing) molded products, extruded molded products, C / C composites, etc. may be used depending on the application. In particular, C / C composites have high strength and are more preferably used. The C / C composite is also called a carbon fiber reinforced carbon composite material, and is a material made of carbon fiber and a carbonaceous base material (filler).

また、溶射する金属珪素粉末としては、半導体グレード、セラッミクスグレード、ケミカルグレードの粉末などをその目的により使用することができるが、本発明で重要なことは、溶射する金属珪素粉末のFe含有率を8〜8000ppmとすることである。本発明で溶射する金属珪素粉末のFe含有率は、好ましくは80〜4800ppmである。金属珪素粉末のFe含有率が8ppmより小さいと黒鉛基材と金属珪素粉末との反応性が低下し、黒鉛基材表面に形成される炭化珪素層の転化率が低下するため、均一な炭化珪素層を形成できず、高温耐酸化性が低下する。逆に金属珪素粉末のFe含有率が8000ppmより大きいと融点の低いFe−Si合金が生成され、高温耐酸化性が低下する。   Also, as the metal silicon powder to be sprayed, semiconductor grade, ceramic grade, chemical grade powder, etc. can be used depending on the purpose, but what is important in the present invention is the Fe content of the metal silicon powder to be sprayed. Is 8 to 8000 ppm. The Fe content of the metal silicon powder sprayed in the present invention is preferably 80 to 4800 ppm. When the Fe content of the metal silicon powder is less than 8 ppm, the reactivity between the graphite base material and the metal silicon powder is reduced, and the conversion rate of the silicon carbide layer formed on the surface of the graphite base material is reduced. The layer cannot be formed, and the high-temperature oxidation resistance decreases. Conversely, if the Fe content of the metal silicon powder is greater than 8000 ppm, an Fe—Si alloy having a low melting point is produced, and high-temperature oxidation resistance decreases.

次に、金属珪素粉末が溶射された黒鉛基材を熱処理し、黒鉛基材表面に炭化珪素層を形成する(工程(3))。このとき熱処理温度は1100℃〜1700℃であり、好ましくは1200℃〜1500℃である。熱処理温度が1100℃より低いと、金属珪素粉末の炭化珪素転化率が小さくなり、黒鉛基材表面に形成される炭化珪素層は未反応の金属珪素粉末を多く含むものとなる。逆に1700℃を超えると、金属珪素粉末の融点を遥かに超える温度であるため、溶射した金属珪素粉末が溶融し、炭化珪素層の膜厚のバラツキが大きくなる。   Next, the graphite substrate sprayed with the metal silicon powder is heat-treated to form a silicon carbide layer on the surface of the graphite substrate (step (3)). At this time, the heat treatment temperature is 1100 ° C to 1700 ° C, preferably 1200 ° C to 1500 ° C. When the heat treatment temperature is lower than 1100 ° C., the silicon carbide conversion rate of the metal silicon powder becomes small, and the silicon carbide layer formed on the surface of the graphite substrate contains a large amount of unreacted metal silicon powder. On the other hand, when the temperature exceeds 1700 ° C., the temperature is far higher than the melting point of the metal silicon powder, so that the sprayed metal silicon powder melts and the film thickness variation of the silicon carbide layer increases.

熱処理を行う雰囲気は、非酸化性雰囲気であれば特に問題なく、例えば、Ar、Heなどの不活性ガス中で常圧下あるいは減圧下で行うことができる。また、熱処理を行う装置についても特に限定されるものではなく、バッチ炉、連続式トンネル炉等を用いることができる。熱処理時間は特に限定されず、溶射により形成した金属珪素粉末層が十分に炭化珪素に転化される時間だけ熱処理すればよい。熱処理時間は、炭化珪素粉末の粒径や溶射の方法、熱処理温度等の条件にも依存するが、例えば30分〜24時間とすることができる。   The atmosphere for the heat treatment is not particularly limited as long as it is a non-oxidizing atmosphere. For example, it can be performed in an inert gas such as Ar or He under normal pressure or reduced pressure. Further, the apparatus for performing the heat treatment is not particularly limited, and a batch furnace, a continuous tunnel furnace, or the like can be used. The heat treatment time is not particularly limited, and the heat treatment may be performed only for a time during which the metal silicon powder layer formed by thermal spraying is sufficiently converted into silicon carbide. Although the heat treatment time depends on conditions such as the particle size of the silicon carbide powder, the thermal spraying method, the heat treatment temperature, etc., it can be, for example, 30 minutes to 24 hours.

本発明の製造方法に用いられる金属珪素粉末中のFe含有率は、本発明の黒鉛−炭化珪素複合体の炭化珪素層中のFe含有率に関連する。具体的には、本発明の製造方法により得られる黒鉛−炭化珪素複合体の炭化珪素層中のFe含有率は、溶射する金属珪素粉末中のFeの含有率に対して、およそ50〜70%の値となる。すなわち、上記金属珪素粉末中のFe含有率が8〜8000ppmの範囲内であれば、製造される黒鉛−炭化珪素複合体の炭化珪素層中のFe含有率はおよそ5〜5000ppmの範囲内となる。   The Fe content in the metal silicon powder used in the production method of the present invention is related to the Fe content in the silicon carbide layer of the graphite-silicon carbide composite of the present invention. Specifically, the Fe content in the silicon carbide layer of the graphite-silicon carbide composite obtained by the production method of the present invention is approximately 50 to 70% with respect to the Fe content in the thermally sprayed metal silicon powder. It becomes the value of. That is, if the Fe content in the metal silicon powder is in the range of 8 to 8000 ppm, the Fe content in the silicon carbide layer of the produced graphite-silicon carbide composite is in the range of about 5 to 5000 ppm. .

また、上記の金属珪素粉末を準備する工程(工程(1))において、金属珪素粉末として、さらにAl及びCaを含み、Al及びCaの含有率が所定の範囲内であるものを準備することが好ましい。   In the step of preparing the metal silicon powder (step (1)), the metal silicon powder may further include Al and Ca, and the content of Al and Ca may be within a predetermined range. preferable.

具体的には、本発明で溶射する金属珪素粉末は、Al含有率が好ましくは16〜1600ppmであり、さらに好ましくは80〜1280ppmである。金属珪素粉末のAl含有率が16ppm以上であれば、黒鉛基材と金属珪素粉末との反応性をより高くすることができ、黒鉛基材表面に形成される炭化珪素層の転化率をより高くすることができ、均一な炭化珪素層を安定して形成することができる。その結果、高温耐酸化性に一層優れた黒鉛−炭化珪素複合体を得ることができる。また、金属珪素粉末のAl含有率が1600ppm以下であれば、融点の低いAl−Si合金が生成されにくいため、高温耐酸化性を高くすることができる。   Specifically, the metal silicon powder sprayed in the present invention preferably has an Al content of 16 to 1600 ppm, and more preferably 80 to 1280 ppm. If the Al content of the metal silicon powder is 16 ppm or more, the reactivity between the graphite base material and the metal silicon powder can be increased, and the conversion rate of the silicon carbide layer formed on the surface of the graphite base material can be increased. And a uniform silicon carbide layer can be stably formed. As a result, it is possible to obtain a graphite-silicon carbide composite having further excellent high-temperature oxidation resistance. Further, when the Al content of the metal silicon powder is 1600 ppm or less, an Al—Si alloy having a low melting point is difficult to be generated, so that high-temperature oxidation resistance can be increased.

本発明で溶射する金属珪素粉末は、Ca含有率が好ましくは8〜1600ppmであり、さらに好ましくは80〜1280ppmである。金属珪素粉末のCa含有率が8ppm以上であれば、黒鉛基材と金属珪素粉末との反応性をより高くすることができ、黒鉛基材表面に形成される炭化珪素層の転化率をより高くすることができ、均一な炭化珪素層を安定して形成することができる。その結果、高温耐酸化性に一層優れた黒鉛−炭化珪素複合体を得ることができる。また、金属珪素粉末のCa含有率が1600ppm以下であれば、融点の低いCa−Si合金が生成されにくいため、高温耐酸化性を高くすることができる。   The metal silicon powder sprayed in the present invention preferably has a Ca content of 8 to 1600 ppm, and more preferably 80 to 1280 ppm. If the Ca content of the metal silicon powder is 8 ppm or more, the reactivity between the graphite base material and the metal silicon powder can be increased, and the conversion rate of the silicon carbide layer formed on the surface of the graphite base material can be increased. And a uniform silicon carbide layer can be stably formed. As a result, it is possible to obtain a graphite-silicon carbide composite having further excellent high-temperature oxidation resistance. Further, if the Ca content of the metal silicon powder is 1600 ppm or less, a Ca—Si alloy having a low melting point is unlikely to be produced, so that high temperature oxidation resistance can be enhanced.

ここで、本発明の製造方法に用いられる金属珪素粉末中のAl及びCa含有率は、Fe含有率と同様に、本発明の黒鉛−炭化珪素複合体の炭化珪素層中のAl及びCaの含有率に関連する。すなわち、上記金属珪素粉末中のAl含有率が16〜1600ppmの範囲内であれば、得られる黒鉛−炭化珪素複合体の炭化珪素層中のAl含有率はおよそ10〜1000ppmの範囲内となる。また、上記金属珪素粉末中のCa含有率が8〜1600ppmの範囲内であれば、得られる黒鉛−炭化珪素複合体の炭化珪素層中のAl含有率はおよそ5〜1000ppmの範囲内となる。   Here, the content of Al and Ca in the metal silicon powder used in the production method of the present invention is the same as the content of Fe, but the content of Al and Ca in the silicon carbide layer of the graphite-silicon carbide composite of the present invention. Related to rate. That is, if the Al content in the metal silicon powder is in the range of 16 to 1600 ppm, the Al content in the silicon carbide layer of the resulting graphite-silicon carbide composite is in the range of about 10 to 1000 ppm. If the Ca content in the metal silicon powder is in the range of 8 to 1600 ppm, the Al content in the silicon carbide layer of the resulting graphite-silicon carbide composite is in the range of about 5 to 1000 ppm.

尚、上記金属珪素粉末中のFe、Al、及びCaの含有率は、上述した方法と同様の方法により測定することができる。   In addition, the content rate of Fe, Al, and Ca in the said metal silicon powder can be measured by the method similar to the method mentioned above.

また、金属珪素粉末の粒子径は、特に限定されるものではないが、平均粒子径が0.5〜50μm、特に3〜30μmであることが望ましい。平均粒子径が0.5μm以上であれば、金属珪素粉末の溶射が容易になり、均一な溶射を達成することができる。また、平均粒子径が50μm以下であれば、熱処理による炭化珪素転化を容易に十分に行うことができ、結果として黒鉛基材表面に形成される炭化珪素層は、未反応の金属珪素粉末が少ないものとすることができる。ここで、平均粒子径とは、レーザー光回折法による粒度分布測定における質量平均値D50(即ち、累積質量が50%となるときの粒子径又はメジアン径)として測定した値である。 The particle diameter of the metal silicon powder is not particularly limited, but it is desirable that the average particle diameter is 0.5 to 50 μm, particularly 3 to 30 μm. When the average particle diameter is 0.5 μm or more, the thermal spraying of the metal silicon powder becomes easy, and uniform thermal spraying can be achieved. Further, if the average particle size is 50 μm or less, silicon carbide conversion by heat treatment can be performed easily and sufficiently, and as a result, the silicon carbide layer formed on the surface of the graphite substrate has a small amount of unreacted metal silicon powder. Can be. Here, the average particle diameter is a value measured as a mass average value D 50 (that is, a particle diameter or a median diameter when the cumulative mass is 50%) in particle size distribution measurement by a laser light diffraction method.

以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example and a comparative example, this invention is not limited to these.

〔実施例1〕
寸法が50mm×50mm×厚さ3mmのCIP成形黒鉛基材全面に、Fe含有率が500ppm、Al含有率が300ppm、Ca含有率が150ppm、平均粒子径が20μmの金属珪素粉末を金属珪素粉末層の厚さが40μmとなるようプラズマ溶射法により溶射した。次に、この被溶射材をバッチ炉内に仕込み、Ar雰囲気中、1450℃の温度で3時間熱処理した。
[Example 1]
A metal silicon powder layer having a Fe content of 500 ppm, an Al content of 300 ppm, a Ca content of 150 ppm, and an average particle size of 20 μm is applied to the entire surface of a CIP-molded graphite substrate having dimensions of 50 mm × 50 mm × thickness 3 mm. The film was sprayed by plasma spraying so that the thickness of the film became 40 μm. Next, this sprayed material was charged into a batch furnace and heat-treated in an Ar atmosphere at a temperature of 1450 ° C. for 3 hours.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、黒鉛基材表面に緑色の炭化珪素層が形成された黒鉛−炭化珪素複合体であった。   When the cross-sectional observation of the obtained base material and the X-ray diffraction analysis of the surface layer were performed, it was a graphite-silicon carbide composite in which a green silicon carbide layer was formed on the surface of the graphite base material.

次に、得られた黒鉛−炭化珪素複合体の高温耐酸化性を評価するため、該黒鉛−炭化珪素複合体を大気中1000℃で1時間保持した。冷却後、重量減少を測定したところ、重量減少は0%であり、高温耐酸化性に優れた材質であることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が320ppm、Al含有率が200ppm、Ca含有率が95ppmであった。   Next, in order to evaluate the high-temperature oxidation resistance of the obtained graphite-silicon carbide composite, the graphite-silicon carbide composite was kept in the atmosphere at 1000 ° C. for 1 hour. When the weight loss was measured after cooling, the weight loss was 0%, and it was confirmed that the material was excellent in high-temperature oxidation resistance. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 320 ppm, Al content rate was 200 ppm, and Ca content rate was 95 ppm.

〔実施例2〕
Fe含有率が20ppm、Al含有率が20ppm、Ca含有率が10ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
[Example 2]
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that a metal silicon powder having an Fe content of 20 ppm, an Al content of 20 ppm, and a Ca content of 10 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、実施例1と同様に黒鉛基材表面に緑色の炭化珪素層が形成されていることが観察された。   When the cross section of the obtained base material was observed and the surface layer was subjected to X-ray diffraction analysis, it was observed that a green silicon carbide layer was formed on the surface of the graphite base material as in Example 1.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は3.1%であり、高温耐酸化性に優れた材質であることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が13ppm、Al含有率が12ppm、Ca含有率が6ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 3.1%, and it was confirmed that the material was excellent in high-temperature oxidation resistance. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 13 ppm, Al content rate was 12 ppm, and Ca content rate was 6 ppm.

〔実施例3〕
Fe含有率が4800ppm、Al含有率が900ppm、Ca含有率が800ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
Example 3
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that metal silicon powder having an Fe content of 4800 ppm, an Al content of 900 ppm, and a Ca content of 800 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、実施例1と同様に黒鉛基材表面に緑色の炭化珪素層が形成されていることが観察された。   When the cross section of the obtained base material was observed and the surface layer was subjected to X-ray diffraction analysis, it was observed that a green silicon carbide layer was formed on the surface of the graphite base material as in Example 1.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は2.7%であり、高温耐酸化性に優れた材質であることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が3100ppm、Al含有率が580ppm、Ca含有率が470ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 2.7%, and it was confirmed that the material was excellent in high-temperature oxidation resistance. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 3100 ppm, Al content rate was 580 ppm, and Ca content rate was 470 ppm.

〔実施例4〕
Fe含有率が7800ppm、Al含有率が1520ppm、Ca含有率が1500ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
Example 4
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that metal silicon powder having an Fe content of 7800 ppm, an Al content of 1520 ppm, and a Ca content of 1500 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、実施例1と同様に黒鉛基材表面に緑色の炭化珪素層が形成されていることが観察された。   When the cross section of the obtained base material was observed and the surface layer was subjected to X-ray diffraction analysis, it was observed that a green silicon carbide layer was formed on the surface of the graphite base material as in Example 1.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は4.2%であり、高温耐酸化性に優れた材質であることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が4800ppm、Al含有率が980ppm、Ca含有率が900ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 4.2%, and it was confirmed that the material was excellent in high-temperature oxidation resistance. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 4800 ppm, Al content rate was 980 ppm, and Ca content rate was 900 ppm.

〔実施例5〕
Fe含有率が20ppm、Al含有率が5ppm、Ca含有率が2ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
Example 5
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that metal silicon powder having an Fe content of 20 ppm, an Al content of 5 ppm, and a Ca content of 2 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、実施例1と同様に黒鉛基材表面に緑色の炭化珪素層が形成されていることが観察された。   When the cross section of the obtained base material was observed and the surface layer was subjected to X-ray diffraction analysis, it was observed that a green silicon carbide layer was formed on the surface of the graphite base material as in Example 1.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は4.0%であり、高温耐酸化性に優れた材質であることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が10ppm、Al含有率が3ppm、Ca含有率が1ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 4.0%, and it was confirmed that the material was excellent in high-temperature oxidation resistance. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 10 ppm, Al content rate was 3 ppm, and Ca content rate was 1 ppm.

〔比較例1〕
Fe含有率が2ppm、Al含有率が5ppm、Ca含有率が2ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
[Comparative Example 1]
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that metal silicon powder having an Fe content of 2 ppm, an Al content of 5 ppm, and a Ca content of 2 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、黒鉛基材表面に炭化珪素層が形成されていたが、それには一部未反応な金属珪素が含まれていることが観察された。   When the cross-sectional observation of the obtained base material and the X-ray diffraction analysis of the surface layer were performed, a silicon carbide layer was formed on the surface of the graphite base material, which partially contained unreacted metallic silicon It was observed.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は6.5%であり、明らかに実施例1〜5と比べ高温耐酸化性に劣ることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が1ppm、Al含有率が3ppm、Ca含有率が1ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 6.5%, and it was clearly confirmed that the high-temperature oxidation resistance was inferior to Examples 1-5. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 1 ppm, Al content rate was 3 ppm, and Ca content rate was 1 ppm.

〔比較例2〕
Fe含有率が8200ppm、Al含有率が2000ppm、Ca含有率が2000ppmの金属珪素粉末を溶射材料とした他は実施例1と同様な方法で黒鉛−炭化珪素複合体を製造した。
[Comparative Example 2]
A graphite-silicon carbide composite was produced in the same manner as in Example 1 except that metal silicon powder having an Fe content of 8200 ppm, an Al content of 2000 ppm, and a Ca content of 2000 ppm was used as the thermal spray material.

得られた基材の断面観察及び表面層のX線回折分析を行ったところ、黒鉛基材表面に炭化珪素層が形成されていたが、それには一部Fe−Si合金、Al−Si合金、Ca−Si合金が含まれていることが観察された。   When the cross-sectional observation of the obtained base material and the X-ray diffraction analysis of the surface layer were performed, a silicon carbide layer was formed on the surface of the graphite base material, and partly Fe-Si alloy, Al-Si alloy, It was observed that a Ca-Si alloy was included.

次に、得られた黒鉛−炭化珪素複合体の耐酸化性を評価するため、実施例1と同様な方法で高温耐酸化性を評価した。その結果、重量減少は10.3%であり、明らかに実施例1〜5と比べ高温耐酸化性に劣ることが確認された。また、炭化珪素層中に含有されるFe、Al、Ca含有率を測定したところ、Fe含有率が6000ppm、Al含有率が1350ppm、Ca含有率が1200ppmであった。   Next, in order to evaluate the oxidation resistance of the obtained graphite-silicon carbide composite, high temperature oxidation resistance was evaluated in the same manner as in Example 1. As a result, the weight loss was 10.3%, which was clearly confirmed to be inferior in high-temperature oxidation resistance as compared with Examples 1-5. Moreover, when Fe, Al, and Ca content rate contained in a silicon carbide layer were measured, Fe content rate was 6000 ppm, Al content rate was 1350 ppm, and Ca content rate was 1200 ppm.

実施例1〜5、比較例1,2の結果を下記の表1にまとめる。   The results of Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1 below.

Figure 2016113345
表1において、各金属含有率の値は全てppmで示される。
Figure 2016113345
In Table 1, all metal content values are shown in ppm.

以上のように、本発明の黒鉛−炭化珪素複合体の製造方法であれば、高温耐酸化性に優れ、かつ品質のバラツキの少ない黒鉛−炭化珪素複合体を得ることができることが明らかになった。このような本発明の黒鉛−炭化珪素複合体であれば、耐熱材料としての使用範囲が広がり、種々の用途に使用することが可能である。   As described above, it has been clarified that the method for producing a graphite-silicon carbide composite of the present invention can provide a graphite-silicon carbide composite having excellent high-temperature oxidation resistance and less quality variation. . With such a graphite-silicon carbide composite of the present invention, the range of use as a heat-resistant material is widened and can be used for various applications.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (6)

黒鉛基材と、該黒鉛基材の表面に形成された炭化珪素層とを有する黒鉛−炭化珪素複合体であって、前記炭化珪素層がFeを含み、前記炭化珪素層中のFe含有率が5〜5000ppmであることを特徴とする黒鉛−炭化珪素複合体。   A graphite-silicon carbide composite having a graphite substrate and a silicon carbide layer formed on the surface of the graphite substrate, wherein the silicon carbide layer contains Fe, and the Fe content in the silicon carbide layer is A graphite-silicon carbide composite characterized by being 5 to 5000 ppm. 前記炭化珪素層の厚みが、10〜300μmであることを特徴とする請求項1に記載の黒鉛−炭化珪素複合体。   The graphite-silicon carbide composite according to claim 1, wherein the silicon carbide layer has a thickness of 10 to 300 μm. 前記炭化珪素層がさらにAl及びCaを含み、前記炭化珪素層中のAl含有率が10〜1000ppm、Ca含有率が5〜1000ppmであることを特徴とする請求項1又は請求項2に記載の黒鉛−炭化珪素複合体。   The silicon carbide layer further contains Al and Ca, the Al content in the silicon carbide layer is 10 to 1000 ppm, and the Ca content is 5 to 1000 ppm. Graphite-silicon carbide composite. 黒鉛−炭化珪素複合体の製造方法であって、
(1)Fe含有率が8〜8000ppmである金属珪素粉末を準備する工程と、
(2)前記金属珪素粉末を黒鉛基材の表面に溶射する工程と、
(3)前記金属珪素粉末が溶射された黒鉛基材を非酸化性雰囲気にて1100〜1700℃の温度範囲で熱処理して、前記黒鉛基材の表面に炭化珪素層を形成する工程と
を含む黒鉛−炭化珪素複合体の製造方法。
A method for producing a graphite-silicon carbide composite,
(1) preparing a metal silicon powder having an Fe content of 8 to 8000 ppm;
(2) spraying the metal silicon powder on the surface of the graphite substrate;
(3) heat treating the graphite substrate sprayed with the metal silicon powder in a temperature range of 1100 to 1700 ° C. in a non-oxidizing atmosphere to form a silicon carbide layer on the surface of the graphite substrate. A method for producing a graphite-silicon carbide composite.
前記金属珪素粉末の平均粒子径が、0.5〜50μmであることを特徴とする請求項4に記載の黒鉛−炭化珪素複合体の製造方法。   5. The method for producing a graphite-silicon carbide composite according to claim 4, wherein the metal silicon powder has an average particle size of 0.5 to 50 μm. 前記金属珪素粉末を準備する工程において、前記金属珪素粉末として、さらにAl及びCaを含み、Al含有率が16〜1600ppm、Ca含有率が8〜1600ppmであるものを準備することを特徴とする請求項4又は請求項5に記載の黒鉛−炭化珪素複合体の製造方法。   In the step of preparing the metal silicon powder, the metal silicon powder further includes Al and Ca, the Al content is 16 to 1600 ppm, and the Ca content is 8 to 1600 ppm. Item 6. A method for producing a graphite-silicon carbide composite according to Item 4 or 5.
JP2014255342A 2014-12-17 2014-12-17 Graphite-silicon carbide composite and method for producing the same Active JP6334388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255342A JP6334388B2 (en) 2014-12-17 2014-12-17 Graphite-silicon carbide composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255342A JP6334388B2 (en) 2014-12-17 2014-12-17 Graphite-silicon carbide composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016113345A true JP2016113345A (en) 2016-06-23
JP6334388B2 JP6334388B2 (en) 2018-05-30

Family

ID=56139712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255342A Active JP6334388B2 (en) 2014-12-17 2014-12-17 Graphite-silicon carbide composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP6334388B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315967A (en) * 1994-05-23 1995-12-05 Komatsu Electron Metals Co Ltd Formation of silicon carbide film on carbon parts
JP2000239079A (en) * 1999-02-19 2000-09-05 Nippon Carbon Co Ltd Carbon material having denified surface
JP2001199767A (en) * 2000-01-12 2001-07-24 Nippon Carbon Co Ltd Method for producing silicon carbide shaped article
JP2002128580A (en) * 2000-10-17 2002-05-09 Nippon Carbon Co Ltd METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315967A (en) * 1994-05-23 1995-12-05 Komatsu Electron Metals Co Ltd Formation of silicon carbide film on carbon parts
JP2000239079A (en) * 1999-02-19 2000-09-05 Nippon Carbon Co Ltd Carbon material having denified surface
JP2001199767A (en) * 2000-01-12 2001-07-24 Nippon Carbon Co Ltd Method for producing silicon carbide shaped article
JP2002128580A (en) * 2000-10-17 2002-05-09 Nippon Carbon Co Ltd METHOD FOR MANUFACTURING HIGH-PURITY SiC-COATED CARBON SUBSTANCE

Also Published As

Publication number Publication date
JP6334388B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
JP4438964B2 (en) Method for producing graphite-silicon carbide composite
JP5978105B2 (en) Silicon carbide ceramic joined body and method for producing silicon carbide ceramic joined body
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
JP3793157B2 (en) MoSi2-Si3N4 composite coating layer and method for producing the same
CN101576346A (en) Crucible for melting silicon and release agent used to the same
JP6343161B2 (en) Centrifugal spray powder manufacturing disc
Abdollahi et al. High temperature anti‐oxidation behavior of in situ and ex situ nanostructured C/SiC/ZrB2‐SiC gradient coatings: Thermodynamical evolution, microstructural characterization, and residual stress analysis
JP4781232B2 (en) Silicon melting crucible used in the manufacture of polycrystalline silicon blocks
JP2009274905A (en) Crucible for melting silicon
JP6334388B2 (en) Graphite-silicon carbide composite and method for producing the same
JP2005075720A (en) SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF
JP6468240B2 (en) Silicon monoxide manufacturing apparatus and manufacturing method
JP6309526B2 (en) Carbon material and jig for heat treatment using the carbon material
JP5002482B2 (en) Silicon carbide composite material and manufacturing method thereof
JP5532654B2 (en) Crucible and manufacturing method thereof, and silicon nitride powder manufacturing method using the same
EP1580294A1 (en) Corrosion-resistant member and process of producing the same
KR101856145B1 (en) Process for SiC coating on graphite foam containing silicon
KR102238819B1 (en) Method for producing silicon carbide fiber and the silicon carbide fiber manufactured by using the same
JP3966911B2 (en) In-furnace members and jigs
KR20180117760A (en) Method of coating silica crucibles with silicon nitride
JP5931516B2 (en) Method for manufacturing molten aluminum contact member
JP2010173915A (en) Method for producing carbon nanotube
KR20200089345A (en) Method for producing silicon carbide fiber and the silicon carbide fiber manufactured by using the same
CN118344187A (en) Composite carbon material and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180426

R150 Certificate of patent or registration of utility model

Ref document number: 6334388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150