JP2016113083A - Vehicle frame structure - Google Patents

Vehicle frame structure Download PDF

Info

Publication number
JP2016113083A
JP2016113083A JP2014254957A JP2014254957A JP2016113083A JP 2016113083 A JP2016113083 A JP 2016113083A JP 2014254957 A JP2014254957 A JP 2014254957A JP 2014254957 A JP2014254957 A JP 2014254957A JP 2016113083 A JP2016113083 A JP 2016113083A
Authority
JP
Japan
Prior art keywords
compression
tension
partition
wall portion
compression side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014254957A
Other languages
Japanese (ja)
Other versions
JP6172132B2 (en
Inventor
悠貴 外山
Yuki Toyama
悠貴 外山
力 河村
Tsutomu Kawamura
力 河村
正徳 本田
Masanori Honda
正徳 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014254957A priority Critical patent/JP6172132B2/en
Publication of JP2016113083A publication Critical patent/JP2016113083A/en
Application granted granted Critical
Publication of JP6172132B2 publication Critical patent/JP6172132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle frame structure that can improve EA efficiency at bending deformation and EA efficiency at axial compression deformation by using a single reinforcing member.SOLUTION: A first reinforcing member 30 which forms five vertically-adjacent sub-closed cross sections c in cooperation with a main closed cross section C comprises: a first partitioning wall 36 having a first compression-side partitioning part 36a and a first tension-side partitioning part 36b; and a second partitioning wall 37 having a second compression-side partitioning part 37a and a second tension-side partitioning part 37b. A vertical interval between tension-side ridges 36t, 37t is formed smaller than a vertical interval between compression-side ridges 36s, 37s, and when a load is inputted, a difference between lateral widths of the first and second compression-side partitioning parts 36a, 37a at a front end portion of a front side region 2a and lateral widths of the first and second tension-side partitioning parts 36b, 37b is formed smaller than a difference between lateral widths of the first and second compression-side partitioning parts 36a, 37a at a latter-half portion of the front side region 2a and lateral widths of the first and second tension-side partitioning parts 36b, 37b.SELECTED DRAWING: Figure 6

Description

本発明は、車両用フレーム構造に関し、特に圧縮側部分と引張側部分が協働して略矩形状の主閉断面を構成する車両用フレーム構造に関する。   The present invention relates to a vehicle frame structure, and more particularly to a vehicle frame structure in which a compression side portion and a tension side portion cooperate to form a substantially rectangular main closed section.

従来より、高張力鋼板製フロントサイドフレームの先端部分に軸圧縮変形可能なクラッシュカン(クラッシュボックスとも言う)を設け、フロントサイドフレームの途中部から後端部に亙って積極的に曲げ変形可能な複数の衝撃吸収機構を採用することにより衝突時の衝撃エネルギ吸収量を増加させて、前突時の乗員保護を図っている(特許文献1)。
このような衝撃吸収機構では、フロントサイドフレームの曲げ変形によって吸収される衝撃荷重がエネルギ吸収量全体の大半を占めるため、曲げ変形によるエネルギ吸収特性は圧縮変形によるエネルギ吸収特性よりもEA(Energy Absorption)性能に与える影響が大きい。
Conventionally, a crush can (also called a crush box) that can be axially deformed and deformed is provided at the tip of the front side frame made of high-strength steel plate, and can be actively bent and deformed from the middle to the rear end of the front side frame. By adopting a plurality of shock absorbing mechanisms, the amount of shock energy absorbed at the time of collision is increased to protect the occupant during a front collision (Patent Document 1).
In such an impact absorption mechanism, since the impact load absorbed by the bending deformation of the front side frame occupies most of the entire energy absorption amount, the energy absorption characteristic due to the bending deformation is greater than the energy absorption characteristic due to the compression deformation. ) Large impact on performance.

そこで、本出願人は、フレームの主閉断面と協働して上下方向に隣り合うように形成された複数の副閉断面の横比を縦比よりも大きくすることにより、曲げ強度に寄与するフレーム領域を拡大することができるフレーム構造、換言すれば、支持可能な荷重と変形ストロークとの相関関係(以下、FS特性という)における許容限界荷重を一定ストロークの間維持可能なフレーム構造を既に提案している。   Therefore, the present applicant contributes to bending strength by making the aspect ratio of the plurality of sub closed cross sections formed so as to be adjacent in the vertical direction in cooperation with the main closed cross section of the frame larger than the aspect ratio. The frame structure that can expand the frame area, in other words, the frame structure that can maintain the allowable limit load in the correlation between the load that can be supported and the deformation stroke (hereinafter referred to as FS characteristics) for a certain stroke has already been proposed. doing.

特許文献2のフレーム構造は、長手方向と直交する断面が細長矩形的な細長形状の複数の細長形状部を荷重入力時の圧縮側と引張側の中間の中立面が長辺と直交するように配置し、隣り合う細長形状部の互いに離隔した長辺同士を連結部で連結した車両用フレーム構造であって、前記連結部よりも圧縮側において前記隣り合う細長形状部の互いに離隔した長辺に夫々当接して前記細長形状部の前記長辺と直交する方向への傾倒を抑制する傾倒抑制部材を設けている。   In the frame structure of Patent Document 2, a plurality of elongated portions having an elongated rectangular cross-section perpendicular to the longitudinal direction is set so that the neutral surface between the compression side and the tension side at the time of load input is orthogonal to the long side. The frame structure for a vehicle is arranged in such a manner that long sides separated from each other in adjacent elongated portions are connected by a connecting portion, and the long sides separated from each other in the adjacent elongated shape portion on the compression side than the connecting portion. Are provided with tilt-inhibiting members that are in contact with each other to suppress tilting of the elongated portion in a direction perpendicular to the long side.

特許第5504820号公報Japanese Patent No. 5504820 特願2014−113803号Japanese Patent Application No. 2014-113803

本発明者は、断面縦長矩形状のフレームの座屈現象の検討にあたり、フレームの変形挙動のメカニズムについてCAE(Computer Aided Engineering)による解析を行った。
まず、この解析の基本的な考え方について説明する。
図13に示すように、長手方向に延びる閉断面状鋼板製フレームモデルMと、このフレームモデルMの両端部を挟み込んだ状態でフレームモデルMの軸心を曲げるための荷重付与手段Tとを準備して、荷重点Pの変位と荷重点Pの反力とを解析した。
図13,図14(a),図14(b)に示すように、荷重付与手段Tは、枢支部Rを中心として回動可能な支持部Taと、荷重を付与する荷重点Pが形成され且つ支持部Ta側へ変位しつつ回動可能な支持部Tbとを有し、枢支部Rと荷重点Pを結ぶ直線がフレームモデルMの軸心から50mmオフセットしている。尚、フレームモデルMの各壁部を、圧縮荷重が作用する圧縮側壁部Ma、引張荷重が作用する引張側壁部Mb、各々の壁部の上下端部を夫々連結する上端壁部Mc及び下端壁部Mdとしている。
The present inventor analyzed the mechanism of the deformation behavior of the frame by CAE (Computer Aided Engineering) in examining the buckling phenomenon of the frame having a vertically long rectangular cross section.
First, the basic concept of this analysis will be described.
As shown in FIG. 13, a closed cross-section steel frame model M extending in the longitudinal direction and a load applying means T for bending the axis of the frame model M in a state where both ends of the frame model M are sandwiched are prepared. Then, the displacement of the load point P and the reaction force of the load point P were analyzed.
As shown in FIGS. 13, 14 (a), and 14 (b), the load applying means T is formed with a support portion Ta that can be rotated about the pivot portion R and a load point P that applies a load. In addition, a support portion Tb that can be rotated while being displaced toward the support portion Ta side, and a straight line connecting the pivot portion R and the load point P is offset from the axis of the frame model M by 50 mm. In addition, each wall part of the frame model M includes a compression side wall part Ma to which a compressive load acts, a tension side wall part Mb to which a tensile load acts, an upper end wall part Mc and a lower end wall that connect the upper and lower end parts of each wall part, respectively. Part Md.

次に、フレームモデルMのFS特性に基づき解析結果について説明する。
図15に示すように、長手方向に延びる閉断面状フレームでは、所定変位においてピークとなる最大(許容限界)荷重26kNが発生し、座屈後、急激に荷重が低下する。
図16に示すように、座屈発生のメカニズムは、以下のように推測される。
許容限界を越えた荷重の付与によって圧縮側壁部Maに弾性座屈波Wが生じ、この弾性座屈波Wが上端壁部Mc及び下端壁部Mdに伝播することから、圧縮側壁部Maにおける弾性座屈波Wの谷領域mに対応した上端壁部Mc及び下端壁部Mdの山領域nに面外変形が夫々発生する。その結果、上端壁部Mc及び下端壁部Mdが夫々面外方向に膨出し且つ圧縮側壁部Maが二つ折りに折り畳まれて閉断面状フレームが座屈する。即ち、圧縮側壁部Ma、上端壁部Mc及び下端壁部Mdの弾性座屈波Wを減衰させることで、材料の塑性領域まで許容限界荷重を増加することができ、曲げ変形におけるEA効率を増加することができる。
Next, an analysis result based on the FS characteristic of the frame model M will be described.
As shown in FIG. 15, in the closed cross-sectional frame extending in the longitudinal direction, a maximum (allowable limit) load of 26 kN that becomes a peak at a predetermined displacement is generated, and the load rapidly decreases after buckling.
As shown in FIG. 16, the mechanism of occurrence of buckling is assumed as follows.
By applying a load that exceeds the allowable limit, an elastic buckling wave W is generated in the compression side wall portion Ma, and this elastic buckling wave W propagates to the upper end wall portion Mc and the lower end wall portion Md. Out-of-plane deformation occurs in the mountain region n of the upper end wall portion Mc and the lower end wall portion Md corresponding to the valley region m of the buckling wave W, respectively. As a result, the upper end wall portion Mc and the lower end wall portion Md bulge out in the out-of-plane direction, and the compression side wall portion Ma is folded in two to buckle the closed cross-section frame. That is, by attenuating the elastic buckling wave W of the compression side wall portion Ma, the upper end wall portion Mc, and the lower end wall portion Md, the allowable limit load can be increased to the plastic region of the material, and the EA efficiency in bending deformation is increased. can do.

特許文献2のフレーム構造は、副閉断面の横比を縦比よりも大きくすることにより、弾性座屈波の周期を減少できるため、フロントサイドフレームに座屈を生じさせる許容限界荷重を増加でき、この許容限界荷重を一定ストロークの間維持することができる。
しかし、このフレーム構造は、クラッシュカンの軸圧縮変形によって吸収されない衝撃荷重をフロントサイドフレームの曲げ変形により吸収する機構であるため、フロントサイドレイン(フレーム)の曲げ変形の起点部分から離隔した部分は、曲げ変形におけるEA効率増加に対して十分な貢献を果たしていない。
The frame structure of Patent Document 2 can increase the allowable limit load that causes buckling in the front side frame because the period of the elastic buckling wave can be reduced by making the sub-cross section aspect ratio larger than the aspect ratio. This allowable limit load can be maintained for a certain stroke.
However, this frame structure is a mechanism that absorbs the impact load that is not absorbed by the axial compression deformation of the crash can by the bending deformation of the front side frame, so the part separated from the bending deformation starting part of the front side drain (frame) is It does not make a sufficient contribution to the increase in EA efficiency in bending deformation.

また、荷重入力方向(長手方向)に直交する断面の1辺の長さが長い場合、軸圧縮荷重の波長が長くなると共に振幅が増大して軸圧縮変形におけるEA効率が悪化することから、1辺の長さが不均一なフロントサイドレインの先端部分は、軸圧縮変形におけるEA効率増加にも寄与率が小さい。   Further, when the length of one side of the cross section orthogonal to the load input direction (longitudinal direction) is long, the wavelength of the axial compressive load becomes longer and the amplitude increases, so that the EA efficiency in the axial compressive deformation deteriorates. The front end portion of the front side drain whose side length is not uniform contributes little to increasing the EA efficiency in axial compression deformation.

本発明の目的は、曲げ変形におけるEA効率と軸圧縮変形におけるEA効率とを単一の補強部材で向上できる車両用フレーム構造等を提供することである。   An object of the present invention is to provide a vehicle frame structure or the like that can improve EA efficiency in bending deformation and EA efficiency in axial compression deformation with a single reinforcing member.

請求項1の車両用フレーム構造は、圧縮荷重が作用する縦向きの圧縮側壁部を含む圧縮側部分と、引張荷重が作用する縦向きの引張側壁部を含み且つ前記圧縮側部分と協働して長手方向に直交する断面が略矩形状の主閉断面を構成する引張側部分と、前記主閉断面と協働して上下方向に隣り合う複数の副閉断面を形成する補強部材とを備えた車両用フレームにおいて、前記補強部材が、前記圧縮側壁部と引張側壁部を連結して前記主閉断面を上下に仕切る第1仕切壁部であって、前記圧縮側壁部から引張側に延びる第1圧縮側仕切部と前記引張側壁部から圧縮側に延びる第1引張側仕切部とを有する第1仕切壁部と、前記第1仕切壁部よりも下方位置で前記圧縮側壁部と引張側壁部を連結して前記主閉断面を上下に仕切る第2仕切壁部であって、前記圧縮側壁部から引張側に延びる第2圧縮側仕切部と前記引張側壁部から圧縮側に延びる第2引張側仕切部とを有する第2仕切壁部とを備え、前記第1,第2引張側仕切部の圧縮側端部の上下間隔が前記第1,第2圧縮側仕切部の引張側端部の上下間隔よりも小さく形成され、前記車両用フレームに長手方向から荷重が入力したとき、荷重入力側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が、前記荷重入力側部分よりも荷重入力側部分に対して荷重入力部と反対側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差よりも小さくなるように形成されたことを特徴としている。   The vehicle frame structure according to claim 1 includes a compression side portion including a longitudinal compression side wall portion on which a compression load acts, and a vertical tension side wall portion on which a tensile load acts, and cooperates with the compression side portion. A tension side portion that forms a main closed cross section whose cross section orthogonal to the longitudinal direction is substantially rectangular, and a reinforcing member that forms a plurality of sub closed cross sections adjacent to each other in the vertical direction in cooperation with the main closed cross section. In the vehicle frame, the reinforcing member is a first partition wall portion that connects the compression side wall portion and the tension side wall portion to partition the main closed section up and down, and extends from the compression side wall portion to the tension side. A first partition wall portion having a first compression side partition portion and a first tension side partition portion extending from the tension side wall portion toward the compression side; and the compression side wall portion and the tension side wall portion at a position below the first partition wall portion. Are connected to each other to partition the main closed section vertically. A second partition wall portion having a second compression side partition portion extending from the compression side wall portion toward the tension side and a second tension side partition portion extending from the tension side wall portion toward the compression side; When the vertical distance of the compression side end of the tension side partition is formed smaller than the vertical distance of the tension side end of the first and second compression side partitions, and a load is input to the vehicle frame from the longitudinal direction. The difference between the lateral width of the first and second compression side partition portions of the load input side portion and the lateral width of the first and second tension side partition portions is greater than the load input side portion with respect to the load input side portion. It is characterized in that it is formed to be smaller than the difference between the lateral width of the first and second compression side partitioning portions on the side opposite to the input portion and the lateral width of the first and second tension side partitioning portions.

この車両用フレーム構造では、主閉断面内に上下方向に隣り合う複数の副閉断面を形成する第1,第2横仕切壁部を備えているため、副閉断面の縦横比を1以下に調整して許容限界荷重を増加でき、この許容限界荷重を一定ストロークの間維持することができる。
前記第1,第2引張側仕切部の圧縮側端部の上下間隔が前記第1,第2圧縮側仕切部の引張側端部の上下間隔よりも小さく形成されているため、引張側壁部に支持された第1,第2引張側仕切部の圧縮側端部の当接によってトラス形状を形成することができ、曲げ変形に伴う断面崩れを抑制することができる。
荷重入力側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が、前記荷重入力側部分よりも荷重入力側部分に対して荷重入力部と反対側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差よりも小さくなるように形成されたため、長手方向に直交する断面の1辺の長さを短縮化でき、軸圧縮荷重の波長の短縮化と振幅の減少とを図ることができる。
The vehicle frame structure includes first and second horizontal partition walls that form a plurality of sub-closed cross-sections that are adjacent in the vertical direction within the main closed cross-section, so the aspect ratio of the sub-closed cross-section is 1 or less. The allowable limit load can be increased by adjustment, and this allowable limit load can be maintained for a certain stroke.
Since the vertical interval between the compression side end portions of the first and second tension side partition portions is smaller than the vertical interval between the tension side end portions of the first and second compression side partition portions, The truss shape can be formed by the contact of the compression side end portions of the supported first and second tension side partition portions, and the cross-sectional collapse accompanying the bending deformation can be suppressed.
The difference between the lateral width of the first and second compression side partition portions of the load input side portion and the lateral width of the first and second tension side partition portions is the load input to the load input side portion rather than the load input side portion. The cross section perpendicular to the longitudinal direction is formed so as to be smaller than the difference between the lateral width of the first and second compression side partitioning portions and the lateral width of the first and second tension side partitioning portions on the side opposite to the portion. The length of one side can be shortened, and the wavelength of the axial compression load can be shortened and the amplitude can be decreased.

請求項2の発明は、請求項1の発明において、前記荷重入力部近傍位置において、荷重入力部側程、前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が小さくなるように形成されたことを特徴としている。
この構成によれば、軸圧縮変形によって吸収されない荷重を曲げ変形部分に連続的に伝達することができ、曲げ変形部分にて効率的に荷重を吸収することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, in the vicinity of the load input portion, the lateral width of the first and second compression side partition portions and the first and second tension side partition portions are closer to the load input portion side. It is characterized in that it is formed so that the difference from the lateral width of is small.
According to this configuration, a load that is not absorbed by the axial compression deformation can be continuously transmitted to the bending deformation portion, and the load can be efficiently absorbed at the bending deformation portion.

請求項3の発明は、請求項1又は2の発明において、前記荷重入力部において、前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅とが同じ寸法に形成されたことを特徴としている。
この構成によれば、長手方向に直交する断面の1辺の長さを最短化することができ、軸圧縮変形におけるEA効率を増加することができる。
According to a third aspect of the present invention, in the first or second aspect of the invention, in the load input portion, the lateral width of the first and second compression side partition portions and the lateral width of the first and second tension side partition portions are the same dimension. It is characterized by being formed.
According to this configuration, the length of one side of the cross section orthogonal to the longitudinal direction can be minimized, and the EA efficiency in axial compression deformation can be increased.

請求項4の発明は、請求項1〜3の何れか1項の発明において、前記荷重入力時の圧縮と引張の中立面が、前記第1,第2圧縮側仕切部の引張側端部と第1,第2引張側仕切部の圧縮側端部との間に位置することを特徴としている。
この構成によれば、面外変形を抑制しつつ、引張側壁部に支持された第1,第2引張側仕切部の圧縮側端部の当接によるトラス形状を確実に形成することができる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the neutral surface of compression and tension at the time of load input is the tension side end of the first and second compression side partitions. And the compression side end portions of the first and second tension side partition portions.
According to this structure, the truss shape by contact | abutting of the compression side edge part of the 1st, 2nd tension | pulling side partition part supported by the tension | pulling side wall part can be formed reliably, suppressing an out-of-plane deformation | transformation.

本発明の車両用フレーム構造によれば、曲げ変形におけるEA効率と軸圧縮変形におけるEA効率とを単一の補強部材で向上することができる。   According to the vehicle frame structure of the present invention, EA efficiency in bending deformation and EA efficiency in axial compression deformation can be improved with a single reinforcing member.

実施例1に係るフロントサイドフレームをエンジンルーム内側から視た側面図である。It is the side view which looked at the front side frame concerning Example 1 from the engine room inside. 右側フロントサイドフレームの平面図である。It is a top view of a right front side frame. 図2のIII−III線断面図である。It is the III-III sectional view taken on the line of FIG. 図2のIV−IV線断面図である。It is the IV-IV sectional view taken on the line of FIG. 右側フロントサイドフレームの分解斜視図である。It is a disassembled perspective view of a right front side frame. 第1補強部材の斜視図である。It is a perspective view of the 1st reinforcement member. 第2補強部材の斜視図である。It is a perspective view of the 2nd reinforcement member. 第1,第2補強部材とエンジンマウント補強部材の左側側面図である。It is a left side view of a 1st, 2nd reinforcement member and an engine mount reinforcement member. 第1,第2補強部材とエンジンマウント補強部材を右斜め上方から視た図である。It is the figure which looked at the 1st, 2nd reinforcement member and the engine mount reinforcement member from diagonally right above. 前面衝撃荷重の入力前の車両の状態を示す平面図である。It is a top view which shows the state of the vehicle before the input of a front impact load. 前面衝撃荷重の入力後の車両の状態を示す平面図である。It is a top view which shows the state of the vehicle after the input of a front impact load. 図11のXII−XII線断面図である。It is the XII-XII sectional view taken on the line of FIG. 閉断面状フレームの変形挙動に係る解析方法の説明図である。It is explanatory drawing of the analysis method which concerns on the deformation | transformation behavior of a closed cross-section frame. 閉断面状フレームの変形挙動であって、(a)は荷重を付与する前の状態図を示し、(b)は荷重を付与した後の状態図を示している。It is a deformation | transformation behavior of a closed cross-sectional frame, Comprising: (a) shows the state figure before giving a load, (b) has shown the state figure after giving a load. 従来の閉断面状フレームのFS特性を示すグラフである。It is a graph which shows the FS characteristic of the conventional closed section frame. 閉断面状フレームの弾性座屈を説明する図である。It is a figure explaining elastic buckling of a closed section frame.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
以下の説明は、本発明を車両のフロントサイドフレームに適用したものを例示したものであり、本発明、その適用物、或いは、その用途を制限するものではない。
尚、図において、矢印F方向を前方とし、矢印L方向を左方とし、矢印U方向を上方として説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The following description exemplifies a case where the present invention is applied to a front side frame of a vehicle, and does not limit the present invention, its application, or its use.
In the figure, the direction of arrow F is the front, the direction of arrow L is the left, and the direction of arrow U is the top.

以下、本発明の実施例1について図1〜図12に基づいて説明する。
まず、フロントサイドフレームが設置された前部車体構造について簡潔に説明する。
図1に示すように、車両Vは、エンジンルームEと車室とを上下方向および車幅方向に延びて仕切るダッシュパネル1と、このダッシュパネル1の前方位置で前後方向に延びるフロントサイドフレーム2と、フロントサイドフレーム2の側方位置でタワー形状に立設されたサスタワー部3と、このサスタワー部3と前述のダッシュパネル1とを上下方向及び前後方向に延びて連結するエプロン部4と、エプロン部4上端で前後方向に延びるエプロンレインメンバ5等を備えている。尚、左右対象構造であるため、主に車体右側構造について説明し、車体左側構造については説明を省略する。
Hereinafter, Example 1 of the present invention will be described with reference to FIGS.
First, the front body structure in which the front side frame is installed will be briefly described.
As shown in FIG. 1, a vehicle V includes a dash panel 1 that extends and partitions an engine room E and a vehicle compartment in a vertical direction and a vehicle width direction, and a front side frame 2 that extends in the front-rear direction at a front position of the dash panel 1. A suspension tower 3 standing in a tower shape at a side position of the front side frame 2, and an apron 4 that extends and connects the suspension tower 3 and the dash panel 1 in the vertical direction and the front-rear direction; An apron rain member 5 extending in the front-rear direction at the upper end of the apron portion 4 is provided. In addition, since it is a right-and-left object structure, it mainly demonstrates the vehicle body right side structure and abbreviate | omits description about the vehicle body left side structure.

フロントサイドフレーム2の前端部には、前面衝撃荷重を受けた際、圧縮変形(軸圧縮)して、衝突エネルギの一部を吸収するためのクラッシュカン6を設置している。
フロントサイドフレーム2の前後方向中間部分には、略円柱形状のエンジンマウント装置7を設置して、このエンジンマウント装置7によってパワーユニット(図示略)を弾性支持している。また、このエンジンマウント装置7よりも下方のフロントサイドフレーム2内には、エンジンマウント装置7の取り付け剛性を高めるために、マウントレイン8(エンジンマウント補強部材)を設置している。フロントサイドフレーム2の後部下面には、サスペンションサブフレーム(図示略)を取り付けるサブフレーム取付ブラケット9を接合固定している。
A crash can 6 is installed at the front end of the front side frame 2 to compress and deform (axially compress) when receiving a front impact load to absorb part of the collision energy.
A substantially cylindrical engine mount device 7 is installed in the front-rear direction intermediate portion of the front side frame 2, and a power unit (not shown) is elastically supported by the engine mount device 7. A mount rain 8 (engine mount reinforcing member) is installed in the front side frame 2 below the engine mount device 7 in order to increase the mounting rigidity of the engine mount device 7. A subframe mounting bracket 9 for attaching a suspension subframe (not shown) is joined and fixed to the rear lower surface of the front side frame 2.

次に、フロントサイドフレーム2について詳細に説明する。
図2〜図5に示すように、フロントサイドフレーム2は、高張力鋼板をプレス成形することにより形成され、上下方向に長い、所謂縦比が横比よりも大きな略矩形状の主閉断面Cを構成している。このフロントサイドフレーム2は、前後方向における各々の領域の機能に応じて、第1補強部材30が配設された前側領域2aと、この前側領域2aの後端に連なりマウントレイン8が配設されたマウント領域2bと、このマウント領域2bの後端に連なり第2補強部材40が配設された途中領域2cと、この途中領域2cの後端に連なり第3補強部材50が配設された後側領域2dとを備えている。
Next, the front side frame 2 will be described in detail.
As shown in FIGS. 2 to 5, the front side frame 2 is formed by press-forming a high-tensile steel plate, and has a substantially rectangular main closed section C that is long in the vertical direction and has a so-called aspect ratio larger than the aspect ratio. Is configured. The front side frame 2 has a front region 2a in which the first reinforcing member 30 is disposed and a mount rain 8 connected to the rear end of the front region 2a according to the function of each region in the front-rear direction. After the mounting region 2b, the intermediate region 2c connected to the rear end of the mounting region 2b and the second reinforcing member 40, and the third reinforcing member 50 connected to the rear end of the intermediate region 2c. Side region 2d.

前側領域2aは、前突時、クラッシュカン6によって吸収されない衝撃荷重によって前半部分が軸圧縮変形すると共に後半部分が上下に延びる第1ビード部11fにより右(車幅方向外)側へ曲げ変形するように形成されている。
マウント領域2bは、その主閉断面C内にマウントレイン8を収容した状態で支持するように形成され、途中領域2cは、前突時、後端側部分が上下に延びる第2ビード部23fにより左(車幅方向内)側へ曲げ変形すると共に後端部分がサブフレーム取付ブラケット9を支持するように形成されている。そして、後側領域2dは、前突時、後端側部分が上下に延びる第3ビード部14fにより車幅方向外側へ曲げ変形すると共に後端部分がダッシュパネル1に固着されるように形成されている。
The front side region 2a is bent and deformed to the right (outside in the vehicle width direction) by the first bead portion 11f that is axially compressed and deformed by the impact load that is not absorbed by the crash can 6 at the time of the front collision, and the second portion extends vertically. It is formed as follows.
The mount region 2b is formed so as to be supported in a state in which the mount rain 8 is accommodated in the main closed section C, and the intermediate region 2c is formed by a second bead portion 23f whose rear end side portion extends vertically during a front collision. The rear end portion is formed to support the subframe mounting bracket 9 while being bent and deformed to the left (in the vehicle width direction) side. The rear region 2d is formed so that the rear end side portion is bent and deformed outward in the vehicle width direction by the third bead portion 14f extending vertically, and the rear end portion is fixed to the dash panel 1 at the time of a front collision. ing.

図2〜図5に示すように、フロントサイドフレーム2は、断面略ハッド状のアウタ部材10と、略パネル状のインナ部材20とにより左右2分割形成されている。
まず、アウタ部材10について説明する。
アウタ部材10は、前側領域2aの右側部分を構成する第1アウタ部分11(圧縮側部分)と、マウント領域2bの右側部分を構成する第2アウタ部分12と、途中領域2cの右側部分を構成する第3アウタ部分13(引張側部分)と、後側領域2dの右側部分を構成する第4アウタ部分14(圧縮側部分)とによって一体形成されている。
As shown in FIGS. 2 to 5, the front side frame 2 is divided into left and right parts by an outer member 10 having a substantially hat-shaped cross section and an inner member 20 having a substantially panel shape.
First, the outer member 10 will be described.
The outer member 10 constitutes a first outer portion 11 (compression side portion) that constitutes the right portion of the front region 2a, a second outer portion 12 that constitutes the right portion of the mount region 2b, and a right portion of the intermediate region 2c. The third outer portion 13 (tensile side portion) and the fourth outer portion 14 (compression side portion) constituting the right side portion of the rear region 2d are integrally formed.

第1アウタ部分11は、左右方向に略直交する面に沿った圧縮側壁部11aと、この圧縮側壁部11aの上端部から左方に延びる上端壁部11bと、圧縮側壁部11aの下端部から左方に延びる下端壁部11cと等を一体的に備えている。
圧縮側壁部11aは、後端部分に主閉断面C側に凹入した第1ビード部11fを備えている。この第1ビード部11fは、圧縮側壁部11aの上下方向に亙って前後方向に略直交するように形成されている。上端壁部11bと下端壁部11cは、左端部から上方に延びる上フランジ部11dと左端部から下方に延びる下フランジ部11eを夫々備えている。
The first outer portion 11 includes a compressed side wall portion 11a along a plane substantially orthogonal to the left-right direction, an upper end wall portion 11b extending leftward from the upper end portion of the compressed side wall portion 11a, and a lower end portion of the compressed side wall portion 11a. A lower end wall portion 11c extending leftward is integrally provided.
The compression side wall part 11a is provided with the 1st bead part 11f dented in the main closed cross section C side in the rear-end part. The first bead portion 11f is formed so as to be substantially orthogonal to the front-rear direction over the vertical direction of the compression side wall portion 11a. The upper end wall portion 11b and the lower end wall portion 11c are respectively provided with an upper flange portion 11d extending upward from the left end portion and a lower flange portion 11e extending downward from the left end portion.

第2アウタ部分12は、左右方向に略直交する面に沿った右側壁部12aと、この右側壁部12aの上端部から左方に延びる上端壁部12bと、右側壁部12aの下端部から左方に延びる下端壁部12cと、上端壁部12bの左端部から上方に延びる上フランジ部12dと、下端壁部12cの左端部から下方に延びる下フランジ部12eとを備えている。
第3アウタ部分13は、左右方向に略直交する面に沿った引張側壁部13aと、この引張側壁部13aの上端部から左方に延びる上端壁部13bと、引張側壁部13aの下端部から左方に延びる下端壁部13cと、上端壁部13bの左端部から上方に延びる上フランジ部13dと、下端壁部13cの左端部から下方に延びる下フランジ部13eとを備えている。また、第4アウタ部分14は、圧縮側壁部14aと、上端壁部14bと、下端壁部14cと、上フランジ部14dと、下フランジ部14eと、第3ビード部14fを備え、第1アウタ部分11と略同様に構成されている。
The second outer portion 12 includes a right side wall portion 12a along a plane substantially orthogonal to the left and right direction, an upper end wall portion 12b extending leftward from the upper end portion of the right side wall portion 12a, and a lower end portion of the right side wall portion 12a. A lower end wall portion 12c extending leftward, an upper flange portion 12d extending upward from the left end portion of the upper end wall portion 12b, and a lower flange portion 12e extending downward from the left end portion of the lower end wall portion 12c are provided.
The third outer portion 13 includes a tensile side wall portion 13a along a plane substantially orthogonal to the left-right direction, an upper end wall portion 13b extending leftward from the upper end portion of the tensile side wall portion 13a, and a lower end portion of the tensile side wall portion 13a. A lower end wall portion 13c extending leftward, an upper flange portion 13d extending upward from the left end portion of the upper end wall portion 13b, and a lower flange portion 13e extending downward from the left end portion of the lower end wall portion 13c are provided. The fourth outer portion 14 includes a compression side wall portion 14a, an upper end wall portion 14b, a lower end wall portion 14c, an upper flange portion 14d, a lower flange portion 14e, and a third bead portion 14f. The configuration is substantially the same as the portion 11.

次に、インナ部材20について説明する。
図2〜図5に示すように、インナ部材20は、前側領域2aの左側部分を構成する第1インナ部分21(引張側部分)と、マウント領域2bの左側部分を構成する第2インナ部分22と、途中領域2cの左側部分を構成する第3インナ部分23(圧縮側部分)と、後側領域2dの左側部分を構成する第4インナ部分24(引張側部分)とによって一体形成されている。
Next, the inner member 20 will be described.
As shown in FIGS. 2 to 5, the inner member 20 includes a first inner portion 21 (tensile side portion) constituting the left side portion of the front region 2 a and a second inner portion 22 constituting the left portion of the mount region 2 b. And a third inner portion 23 (compression side portion) constituting the left portion of the intermediate region 2c and a fourth inner portion 24 (tensile side portion) constituting the left portion of the rear region 2d. .

第1インナ部分21は、左右方向に略直交する面に沿った引張側壁部21aと、この引張側壁部21aの上端部から上方に延びる上フランジ部21dと、引張側壁部21aの下端部から下方に延びる下フランジ部21eを一体的に備えている。
また、第2インナ部分22は、左右方向に略直交する面に沿った左側壁部22aと、この左側壁部22aの上端部から上方に延びる上フランジ部22dと、左側壁部22aの下端部から下方に延びる下フランジ部22eを一体的に備えている。
The first inner portion 21 includes a tensile side wall portion 21a along a plane substantially orthogonal to the left-right direction, an upper flange portion 21d extending upward from the upper end portion of the tensile side wall portion 21a, and a lower side from the lower end portion of the tensile side wall portion 21a. Is integrally provided with a lower flange portion 21e.
The second inner portion 22 includes a left wall portion 22a along a plane substantially orthogonal to the left-right direction, an upper flange portion 22d extending upward from the upper end portion of the left wall portion 22a, and a lower end portion of the left wall portion 22a. Are integrally provided with a lower flange portion 22e extending downward.

第3インナ部分24は、左右方向に略直交する面に沿った圧縮側壁部23aと、この左側壁部23aの上端部から上方に延びる上フランジ部23dと、左側壁部23aの下端部から下方に延びる下フランジ部23eを一体的に備えている。圧縮側壁部23aは、主閉断面C側に凹入した第2ビード部23fを備えている。この第2ビード部23fは、圧縮側壁部23aの上下方向に亙って前後方向に略直交するように形成されている。
第4インナ部分24は、引張側壁部24aと、上フランジ部24dと、下フランジ部24eを一体的に備え、第1インナ部分21と略同様に構成されている。
上フランジ部11d〜14dが上フランジ部21d〜24dに接合され、下フランジ部11e〜14eが下フランジ部21e〜24eに接合されることにより、前後方向に延びる主閉断面Cが構成されている。
The third inner portion 24 includes a compression side wall portion 23a along a plane substantially orthogonal to the left-right direction, an upper flange portion 23d extending upward from the upper end portion of the left side wall portion 23a, and a lower side from the lower end portion of the left side wall portion 23a. Is integrally provided with a lower flange portion 23e. The compression side wall part 23a is provided with the 2nd bead part 23f dented in the main closed cross section C side. The second bead portion 23f is formed so as to be substantially orthogonal to the front-rear direction over the vertical direction of the compression side wall portion 23a.
The fourth inner portion 24 is integrally provided with a tensile side wall portion 24a, an upper flange portion 24d, and a lower flange portion 24e, and is configured in substantially the same manner as the first inner portion 21.
The main flange section 11d-14d is joined to the upper flange parts 21d-24d, and the lower flange parts 11e-14e are joined to the lower flange parts 21e-24e, so that a main closed section C extending in the front-rear direction is configured. .

次に、第1補強部材30について説明する。
図3,図4に示すように、第1補強部材30は、前側領域2aに対応した主閉断面C内に配設され、主閉断面Cと協働して上下方向に隣り合う5つの副閉断面cを形成している。
図3〜図6に示すように、第1補強部材30は、単一の鋼板材料をプレス成形することにより前後方向に延びる長尺状に形成され、第1〜第3圧縮側接合部31〜33と、第1,第2引張側接合部34,35と、第1〜第4仕切壁部36〜39によって構成されている。
Next, the first reinforcing member 30 will be described.
As shown in FIGS. 3 and 4, the first reinforcing member 30 is disposed in the main closed section C corresponding to the front region 2 a, and cooperates with the main closed section C so as to be adjacent to the upper and lower subordinates. A closed cross section c is formed.
As shown in FIGS. 3-6, the 1st reinforcement member 30 is formed in the elongate shape extended in the front-back direction by press-molding a single steel plate material, and the 1st-3rd compression side junction parts 31- 33, the 1st, 2nd tension | pulling side junction parts 34 and 35, and the 1st-4th partition wall parts 36-39 are comprised.

第1〜第3圧縮側接合部31〜33は、左右方向に略直交する面に沿って形成され、圧縮側壁部11aの上段部と中段部と下段部とに夫々溶接にて接合されている。
第1,第2引張側接合部34,35は、左右方向に略直交する面に沿って形成され、引張側壁部21aの途中部分に夫々溶接にて接合されている。第1引張側接合部34は、第1圧縮側接合部31よりも低く且つ第2圧縮側接合部32よりも高い高さ位置に配設され、第2引張側接合部35は、第2圧縮側接合部32よりも低く且つ第3圧縮側接合部33よりも高い高さ位置に配設されている。
The 1st-3rd compression side junction parts 31-33 are formed along the surface substantially orthogonal to the left-right direction, and are joined to the upper stage part, middle stage part, and lower stage part of the compression side wall part 11a by welding, respectively. .
The 1st, 2nd tension | pulling side junction parts 34 and 35 are formed along the surface substantially orthogonal to the left-right direction, and are joined to the middle part of the tension | pulling side wall part 21a by welding, respectively. The first tension side joint 34 is disposed at a height position lower than the first compression side joint 31 and higher than the second compression side joint 32, and the second tension side joint 35 is the second compression side. It is disposed at a height position lower than the side joint portion 32 and higher than the third compression side joint portion 33.

第1仕切壁部36は、第1圧縮側接合部31の下端部と第1引張側接合部34の上端部とを連結して主閉断面Cを上下に仕切るように形成されている。
この第1仕切壁部36は、第1圧縮側仕切部36aと、第1引張側仕切部36bと、第1連結部36cを備えている。
第1圧縮側仕切部36aは、第1圧縮側接合部31の下端部から左方へ略水平状に延びるように形成され、第1引張側仕切部36bは、第1引張側接合部34の上端部から右方へ略水平状に延びるように形成されている。
The first partition wall portion 36 is formed to connect the lower end portion of the first compression side joint portion 31 and the upper end portion of the first tension side joint portion 34 so as to partition the main closed section C in the vertical direction.
The first partition wall portion 36 includes a first compression side partition portion 36a, a first tension side partition portion 36b, and a first connection portion 36c.
The first compression side partitioning part 36 a is formed so as to extend substantially horizontally from the lower end part of the first compression side joining part 31 to the left, and the first tension side partitioning part 36 b is formed of the first tension side joining part 34. It is formed to extend substantially horizontally from the upper end to the right.

前側領域2aの前端部から所定後方位置までの前端部分において、第1圧縮側仕切部36aの横幅(左右幅)は第1引張側仕切部36bの横幅と同じ寸法になるように形成され(図3参照)、前側領域2aの所定後方位置から途中部までの前端近傍部分において、第1圧縮側仕切部36aの横幅が漸次減少するように形成され且つ第1引張側仕切部36bの横幅が漸次増加するように形成され(図6参照)、前側領域2aの途中部から後端部までの後半部分において、第1圧縮側仕切部36aの横幅は第1引張側仕切部36bの横幅の半分の寸法になるように形成されている(図4参照)。これにより、前端部分では第1圧縮側仕切部36aの横幅と第1引張側仕切部36bの横幅との差が略零に構成され、後端部分では、第1圧縮側仕切部36aの横幅と第1引張側仕切部36bの横幅との差が大きくなるように構成されている。また、荷重入力部近傍である前端近傍部分では、第1圧縮側仕切部36aの横幅と第1引張側仕切部36bの横幅との差が前側程リニアに小さくなるように形成されている。   In the front end portion from the front end portion of the front region 2a to a predetermined rear position, the lateral width (left-right width) of the first compression side partition portion 36a is formed to be the same as the lateral width of the first tension side partition portion 36b (see FIG. 3), in the vicinity of the front end of the front region 2a from the predetermined rear position to the middle part, the lateral width of the first compression side partition 36a is gradually reduced and the lateral width of the first tension side partition 36b is gradually increased. The width of the first compression side partition 36a is half the width of the first tension side partition 36b in the latter half from the middle part to the rear end of the front region 2a. It is formed so that it may become a dimension (refer FIG. 4). As a result, the difference between the lateral width of the first compression side partitioning portion 36a and the lateral width of the first tension side partitioning portion 36b is substantially zero at the front end portion, and the lateral width of the first compression side partitioning portion 36a at the rear end portion. It is comprised so that the difference with the lateral width of the 1st tension | pulling side partition part 36b may become large. Further, in the vicinity of the front end, which is in the vicinity of the load input portion, the difference between the lateral width of the first compression side partitioning portion 36a and the lateral width of the first tension side partitioning portion 36b is linearly reduced toward the front side.

第1連結部36cは、第1圧縮側仕切部36aと第1引張側仕切部36bを連結するように、左側程、下方に移行するように傾斜状に形成されている。この第1連結部36cは、圧縮側稜線部36sを介して第1圧縮側仕切部36aの左端部と連なり、引張側稜線部36tを介して第1引張側仕切部36bの右端部と連なっている。
図3,図4に示すように、圧縮側稜線部36sと引張側稜線部36tは、荷重入力時の圧縮と引張の中立面Nが圧縮側稜線部36sと引張側稜線部36tとの間に位置するように設定され、且つ圧縮側稜線部36sと引張側稜線部36tとの間隔が第1補強部材30の前端から後端に亙って略均一間隔になるように設定されている。尚、軸圧縮変形におけるEA効率を考慮して、圧縮側稜線部36sと引張側稜線部36tとの間隔は、前端部分における第1圧縮側仕切部36a(第1引張側仕切部36b)の左右幅と同じ寸法に設定することが好ましい。
The first connecting portion 36c is formed in an inclined shape so as to move downward on the left side so as to connect the first compression side partition portion 36a and the first tension side partition portion 36b. The first connecting portion 36c is connected to the left end portion of the first compression side partition portion 36a via the compression side ridge line portion 36s, and is connected to the right end portion of the first tension side partition portion 36b via the tension side ridge line portion 36t. Yes.
As shown in FIGS. 3 and 4, the compression-side ridge line portion 36 s and the tension-side ridge line portion 36 t are located between the compression-side ridge line portion 36 s and the tension-side ridge line portion 36 t. And the distance between the compression-side ridge line portion 36s and the tension-side ridge line portion 36t is set to be substantially uniform from the front end to the rear end of the first reinforcing member 30. In consideration of the EA efficiency in the axial compression deformation, the distance between the compression side ridge line part 36s and the tension side ridge line part 36t is the left and right of the first compression side partition part 36a (first tension side partition part 36b) in the front end part. It is preferable to set the same dimension as the width.

第2仕切壁部37は、第2圧縮側接合部32の上端部と第1引張側接合部34の下端部とを連結して主閉断面Cを上下に仕切るように形成されている。
この第2仕切壁部37は、第2圧縮側仕切部37aと、第2引張側仕切部37bと、第2連結部37cと、圧縮側稜線部37sと、引張側稜線部37tを備えている。この第2仕切壁部37は、水平面に対して第1仕切壁部36と面対称になるように構成され、圧縮側稜線部37sと引張側稜線部37tが圧縮側稜線部36sと引張側稜線部36tの直下に対向するように夫々配設されている。
The second partition wall portion 37 is formed to connect the upper end portion of the second compression side joint portion 32 and the lower end portion of the first tension side joint portion 34 so as to partition the main closed section C vertically.
The second partition wall portion 37 includes a second compression side partition portion 37a, a second tension side partition portion 37b, a second connection portion 37c, a compression side ridge line portion 37s, and a tension side ridge line portion 37t. . This 2nd partition wall part 37 is comprised so that it may become plane-symmetrical with the 1st partition wall part 36 with respect to a horizontal surface, and the compression side ridgeline part 37s and the tension side ridgeline part 37t are the compression side ridgeline part 36s and the tension side ridgeline. They are arranged so as to face each other directly below the portion 36t.

第3仕切壁部38は、第2圧縮側接合部32の下端部と第2引張側接合部35の上端部とを連結して主閉断面Cを上下に仕切るように形成されている。この第3仕切壁部38は、第3圧縮側仕切部38aと、第3引張側仕切部38bと、第3連結部38cと、圧縮側稜線部38sと、引張側稜線部38tを備え、第1仕切壁部36と同様に構成されている。
第4仕切壁部39は、第3圧縮側接合部33の上端部と第2引張側接合部35の下端部とを連結して主閉断面Cを上下に仕切るように形成されている。この第4仕切壁部39は、第4圧縮側仕切部39aと、第4引張側仕切部39bと、第4連結部39cと、圧縮側稜線部39sと、引張側稜線部39tを備え、第2仕切壁部37と同様に構成されている。
The third partition wall portion 38 is formed to connect the lower end portion of the second compression side joint portion 32 and the upper end portion of the second tension side joint portion 35 so as to partition the main closed section C vertically. The third partition wall portion 38 includes a third compression side partition portion 38a, a third tension side partition portion 38b, a third connection portion 38c, a compression side ridge line portion 38s, and a tension side ridge line portion 38t. The configuration is the same as that of the one partition wall portion 36.
The fourth partition wall portion 39 is formed to connect the upper end portion of the third compression side joint portion 33 and the lower end portion of the second tension side joint portion 35 so as to partition the main closed section C vertically. The fourth partition wall portion 39 includes a fourth compression side partition portion 39a, a fourth tension side partition portion 39b, a fourth connection portion 39c, a compression side ridge line portion 39s, and a tension side ridge line portion 39t. The two partition walls 37 are configured in the same manner.

次に、第2補強部材40について説明する。
図7に示すように、第2補強部材40は、途中領域2cに対応した主閉断面C内に配設され、主閉断面Cと協働して上下方向に隣り合う5つの副閉断面cを形成している。
第2補強部材40は、単一の鋼板材料をプレス成形することにより前後方向に延びる長尺状に形成され、第1〜第3圧縮側接合部41〜43と、第1,第2引張側接合部44,45と、第1〜第4仕切壁部46〜49によって構成されている。
Next, the second reinforcing member 40 will be described.
As shown in FIG. 7, the second reinforcing member 40 is disposed in the main closed section C corresponding to the midway region 2c, and cooperates with the main closed section C and is adjacent to the five sub closed sections c in the vertical direction. Is forming.
The 2nd reinforcement member 40 is formed in the elongate shape extended in the front-back direction by press-molding a single steel plate material, the 1st-3rd compression side junction parts 41-43, and the 1st, 2nd tension side It is comprised by the junction parts 44 and 45 and the 1st-4th partition wall parts 46-49.

第1〜第3圧縮側接合部41〜43は、左右方向に略直交する面に沿って形成され、圧縮側壁部23aの上段部と中段部と下段部とに夫々溶接にて接合されている。
第1,第2引張側接合部44,45は、左右方向に略直交する面に沿って形成され、引張側壁部13aの途中部分に夫々溶接にて接合されている。第1引張側接合部44は、第1圧縮側接合部41よりも低く且つ第2圧縮側接合部42よりも高い高さ位置に配設され、第2引張側接合部45は、第2圧縮側接合部42よりも低く且つ第3圧縮側接合部43よりも高い高さ位置に配設されている。
The 1st-3rd compression side junction parts 41-43 are formed along the surface substantially orthogonal to the left-right direction, and are joined to the upper stage part of the compression side wall part 23a, the middle stage part, and the lower stage part by welding, respectively. .
The 1st, 2nd tension | pulling side junction parts 44 and 45 are formed along the surface substantially orthogonal to the left-right direction, and are joined to the middle part of the tension | pulling side wall part 13a by welding, respectively. The first tension side joint portion 44 is disposed at a height position lower than the first compression side joint portion 41 and higher than the second compression side joint portion 42, and the second tension side joint portion 45 is second compressed. It is disposed at a height position lower than the side joint portion 42 and higher than the third compression side joint portion 43.

第1仕切壁部46は、第1圧縮側接合部41の下端部と第1引張側接合部44の上端部とを連結して主閉断面Cを上下に仕切るように形成されている。この第1仕切壁部46は、第1圧縮側仕切部46aと、第1引張側仕切部46bと、第1連結部46cを備えている。
第1圧縮側仕切部46aは、第1圧縮側接合部41の下端部から右方へ略水平状に延びるように形成され、第1引張側仕切部46bは、第1引張側接合部44の上端部から左方へ略水平状に延びるように形成されている。第1圧縮側仕切部46aの横幅は第1引張側仕切部46bの横幅の半分の寸法になるように形成されている。
The first partition wall portion 46 is formed to connect the lower end portion of the first compression side joint portion 41 and the upper end portion of the first tension side joint portion 44 so as to partition the main closed section C vertically. The first partition wall section 46 includes a first compression side partition section 46a, a first tension side partition section 46b, and a first connection section 46c.
The first compression side partition portion 46 a is formed so as to extend substantially horizontally from the lower end portion of the first compression side joint portion 41, and the first tension side partition portion 46 b is formed of the first tension side joint portion 44. It is formed so as to extend substantially horizontally from the upper end to the left. The lateral width of the first compression side partition 46a is formed to be half the width of the first tension side partition 46b.

第1連結部46cは、第1圧縮側仕切部46aと第1引張側仕切部46bを連結するように、左側程、上方に移行するように傾斜状に形成されている。この第1連結部46cは、圧縮側稜線部46sを介して第1圧縮側仕切部46aの右端部と連なり、引張側稜線部46tを介して第1引張側仕切部46bの左端部と連なっている。
圧縮側稜線部46sと引張側稜線部46tは、荷重入力時の圧縮と引張の中立面Nが圧縮側稜線部46sと引張側稜線部46tとの間に位置するように設定され、且つ圧縮側稜線部46sと引張側稜線部46tとの間隔が第2補強部材40の前端から後端に亙って略均一間隔に設定されている。
The first connecting portion 46c is formed in an inclined shape so as to move upward on the left side so as to connect the first compression side partitioning portion 46a and the first tension side partitioning portion 46b. The first connecting portion 46c is connected to the right end portion of the first compression side partition portion 46a via the compression side ridge line portion 46s, and is connected to the left end portion of the first tension side partition portion 46b via the tension side ridge line portion 46t. Yes.
The compression-side ridge line portion 46s and the tension-side ridge line portion 46t are set so that the neutral surface N of compression and tension at the time of load input is positioned between the compression-side ridge line portion 46s and the tension-side ridge line portion 46t. The interval between the side ridge line portion 46 s and the tension side ridge line portion 46 t is set to a substantially uniform interval from the front end to the rear end of the second reinforcing member 40.

第2仕切壁部47は、第2圧縮側接合部42の上端部と第1引張側接合部44の下端部とを連結して主閉断面Cを上下に仕切るように形成されている。
この第2仕切り壁部47は、第2圧縮側仕切部47aと、第2引張側仕切部47bと、第2連結部47cと、圧縮側稜線部47sと、引張側稜線部47tを備えている。この第2仕切壁部47は、水平面に対して第1仕切壁部46と面対称になるように構成され、圧縮側稜線部47sと引張側稜線部47tが圧縮側稜線部46sと引張側稜線部46tの直下に対向するように夫々配設されている。
The second partition wall portion 47 is formed to connect the upper end portion of the second compression side joint portion 42 and the lower end portion of the first tension side joint portion 44 so as to partition the main closed section C vertically.
The second partition wall portion 47 includes a second compression side partition portion 47a, a second tension side partition portion 47b, a second connection portion 47c, a compression side ridge line portion 47s, and a tension side ridge line portion 47t. . The second partition wall portion 47 is configured to be plane-symmetric with the first partition wall portion 46 with respect to the horizontal plane, and the compression side ridge line portion 47 s and the tension side ridge line portion 47 t are the compression side ridge line portion 46 s and the tension side ridge line. They are arranged so as to face each other directly below the portion 46t.

第3仕切壁部48は、第2圧縮側接合部42の下端部と第2引張側接合部45の上端部とを連結して主閉断面Cを上下に仕切るように形成されている。この第3仕切り壁部48は、第3圧縮側仕切部48aと、第3引張側仕切部48bと、第3連結部48cと、圧縮側稜線部48sと、引張側稜線部48tを備え、第1仕切壁部46と同様に構成されている。また、第4仕切り壁部49は、第3圧縮側接合部43の上端部と第2引張側接合部45の下端部とを連結して主閉断面Cを上下に仕切るように形成されている。この第4仕切壁部49は、第4圧縮側仕切部49aと、第4引張側仕切部49bと、第4連結部49cと、圧縮側稜線部49sと、引張側稜線部49tを備え、第2仕切壁部47と同様に構成されている。
尚、第3補強部材50は、第2補強部材40と同様に構成され、第2補強部材40の後側に左右方向に直交する面に対して面対称になる状態で配設されているため、詳細な説明を省略する。
The third partition wall portion 48 is formed to connect the lower end portion of the second compression side joint portion 42 and the upper end portion of the second tension side joint portion 45 so as to partition the main closed section C vertically. The third partition wall portion 48 includes a third compression side partition portion 48a, a third tension side partition portion 48b, a third connection portion 48c, a compression side ridge line portion 48s, and a tension side ridge line portion 48t. The configuration is the same as that of the one partition wall 46. The fourth partition wall 49 is formed to connect the upper end portion of the third compression side joint portion 43 and the lower end portion of the second tension side joint portion 45 so as to partition the main closed section C vertically. . The fourth partition wall portion 49 includes a fourth compression side partition portion 49a, a fourth tension side partition portion 49b, a fourth connection portion 49c, a compression side ridge line portion 49s, and a tension side ridge line portion 49t. The two partition walls 47 are configured in the same manner.
The third reinforcing member 50 is configured in the same manner as the second reinforcing member 40 and is disposed on the rear side of the second reinforcing member 40 so as to be plane-symmetric with respect to a plane orthogonal to the left-right direction. Detailed description will be omitted.

次に、マウントレイン8について説明する。
図1,図8,図9に示すように、マウントレイン8は、上下方向に延びる前後1対のボルト(図示略)と、これら1対のボルトに螺合する前後1対のナット部7aとによってエンジンマウント装置7を上端壁部12b上に支持している。
マウントレイン8は、断面略ハット状の本体部61と、この本体部61の前端部に接合され主閉断面Cを前後に仕切る前側節部62と、本体部61の後端部に接合され主閉断面Cを前後に仕切る後側節部63を備え、一面が左方に開放した直方体形状に形成されている。
Next, the mount rain 8 will be described.
As shown in FIGS. 1, 8, and 9, the mount rain 8 includes a pair of front and rear bolts (not shown) extending in the vertical direction, and a pair of front and rear nut portions 7 a that are screwed to the pair of bolts. Thus, the engine mount device 7 is supported on the upper end wall portion 12b.
The mount rain 8 is joined to a main body portion 61 having a substantially hat-shaped cross section, a front side node portion 62 which is joined to the front end portion of the main body portion 61 and divides the main closed cross section C into the front and rear, and a rear end portion of the main body portion 61. It has a rear side node 63 that partitions the closed section C forward and backward, and is formed in a rectangular parallelepiped shape with one surface opened to the left.

図8,図9に示すように、本体部61は、上端壁部61a及び下端壁部61bの左端部から夫々上方と下方に延びる上フランジ部61c及び下フランジ部61dを備えている。
1対のナット部7aは、上端壁部61a及び下端壁部61bに上下方向に貫通した状態で接合されている。上フランジ部61cは上フランジ部12dと上フランジ部22dによって三重結合され、下フランジ部61dは下フランジ部12eと下フランジ部22eによって三重結合されている。
As shown in FIGS. 8 and 9, the main body 61 includes an upper flange portion 61c and a lower flange portion 61d extending upward and downward from the left end portions of the upper end wall portion 61a and the lower end wall portion 61b, respectively.
The pair of nut portions 7a is joined to the upper end wall portion 61a and the lower end wall portion 61b in a state of penetrating in the vertical direction. The upper flange portion 61c is triple-coupled by the upper flange portion 12d and the upper flange portion 22d, and the lower flange portion 61d is triple-coupled by the lower flange portion 12e and the lower flange portion 22e.

前側節部62は、前後方向に直交する面に沿って主閉断面Cを横断的に仕切るプレート状のプレート部62aと、このプレート部62aの上端から前方に延びて上端壁部11bに接合された上フランジ部62bと、プレート部62aの下端から前方に延びて下端壁部11cに接合された下フランジ部62cを有している。
プレート部62aは、第1補強部材30の後端に僅かな隙間(例えば2〜3mm)を介して対向状に配設されている。これにより、前突時、第1補強部材30とプレート部62aが当接することにより、第1補強部材30からプレート部62aに荷重が伝達される。
The front side node 62 is a plate-like plate 62a that transversely partitions the main closed section C along a plane orthogonal to the front-rear direction, and extends forward from the upper end of the plate 62a and joined to the upper end wall 11b. The upper flange portion 62b has a lower flange portion 62c that extends forward from the lower end of the plate portion 62a and is joined to the lower end wall portion 11c.
The plate part 62a is disposed in an opposing manner at the rear end of the first reinforcing member 30 with a slight gap (for example, 2 to 3 mm). Thereby, a load is transmitted from the 1st reinforcement member 30 to the plate part 62a by the 1st reinforcement member 30 and the plate part 62a contact | abutting at the time of a front collision.

後側節部63は、前後方向に直交する面に沿って主閉断面Cを横断的に仕切るプレート状のプレート部63aと、このプレート部63aの上端から後方に延びて上端壁部13bに接合された上フランジ部63bと、プレート部63aの下端から前方に延びて下端壁部12cに接合された下フランジ部63cを有している。
プレート部63aは、第2補強部材40の前端に僅かな隙間(例えば2〜3mm)を介して対向状に配設されている。これにより、前突時、第2補強部材40とプレート部63aが当接することにより、プレート部63aから第1補強部材30と断面形状が異なる第2補強部材40に荷重が伝達される。
The rear side node 63 has a plate-like plate part 63a that transversely partitions the main closed section C along a plane orthogonal to the front-rear direction, and extends rearward from the upper end of the plate part 63a and is joined to the upper end wall part 13b. The upper flange portion 63b and a lower flange portion 63c that extends forward from the lower end of the plate portion 63a and is joined to the lower end wall portion 12c.
The plate portion 63a is disposed on the front end of the second reinforcing member 40 so as to be opposed to each other with a slight gap (for example, 2 to 3 mm). Thereby, a load is transmitted from the plate part 63a to the 2nd reinforcement member 40 from which cross-sectional shape differs from the 1st reinforcement member 30 by contact | abutting the 2nd reinforcement member 40 and the plate part 63a at the time of a front collision.

図5に示すように、第2補強部材40と第3補強部材50との間にはプレート部材65が配設されている。プレート部材65は、前後方向に直交する面に沿って主閉断面Cを横断的に仕切るように構成され、その上端部が前方に延びて上端壁部13bに接合され、下端部が下端壁部14cに接合されている。
プレート部材65は、第2補強部材40の後端に僅かな隙間(例えば2〜3mm)を介して対向状に配設されると共に第3補強部材50の前端に僅かな隙間(例えば2〜3mm)を介して対向状に配設されている。これにより、前突時、第2補強部材40とプレート部材65が当接すると共に第3補強部材50とプレート部材65が当接するため、第2補強部材40から断面形状が異なる第3補強部材50に効率良く荷重が伝達される。
As shown in FIG. 5, a plate member 65 is disposed between the second reinforcing member 40 and the third reinforcing member 50. The plate member 65 is configured to transversely partition the main closed section C along a plane perpendicular to the front-rear direction, and has an upper end portion extending forward and joined to the upper end wall portion 13b, and a lower end portion being a lower end wall portion. 14c.
The plate member 65 is disposed opposite to the rear end of the second reinforcing member 40 with a slight gap (for example, 2 to 3 mm), and at the front end of the third reinforcing member 50, the slight gap (for example, 2 to 3 mm). ). Thereby, since the 2nd reinforcement member 40 and the plate member 65 contact | abut at the time of a front collision, the 3rd reinforcement member 50 and the plate member 65 contact | abut, From the 2nd reinforcement member 40 to the 3rd reinforcement member 50 from which a cross-sectional shape differs. Load is transmitted efficiently.

次に、本実施例の車両用フレーム構造における作用、効果を説明する。
図10,図11に基づき、車両Vが前面衝撃荷重を受けたときの変形挙動について説明する。
図10に示すように、フロントサイドフレーム2には、変形後の位置関係が容易に分かるように、説明の便宜上、前後方向に略直線状に延びる複数のポイントを設定している。
第1ポイントP1は前側領域2aの前端位置、第2ポイントP2は前側領域2aの第1ビード部11fの形成位置、第3ポイントP3はマウント領域2bの前端位置、第4ポイントP4はマウント領域2bの後端位置、第5ポイントP5は途中領域2cの第2ビード部23fの形成位置、第6ポイントP6はプレート部材65の配設位置、第7ポイントP7は後側領域2dの第3ビード部14fの形成位置を夫々示している。
Next, functions and effects of the vehicle frame structure of the present embodiment will be described.
The deformation behavior when the vehicle V receives a front impact load will be described with reference to FIGS.
As shown in FIG. 10, the front side frame 2 is provided with a plurality of points extending substantially linearly in the front-rear direction for convenience of explanation so that the positional relationship after deformation can be easily understood.
The first point P1 is the front end position of the front region 2a, the second point P2 is the formation position of the first bead portion 11f of the front region 2a, the third point P3 is the front end position of the mount region 2b, and the fourth point P4 is the mount region 2b. The rear end position, the fifth point P5 is the formation position of the second bead portion 23f in the midway region 2c, the sixth point P6 is the placement position of the plate member 65, and the seventh point P7 is the third bead portion of the rear region 2d. The formation positions of 14f are shown respectively.

前方からクラッシュカン6の軸圧縮変形によって吸収されない荷重が作用した場合、フロントサイドフレーム2は、圧縮変形と車幅方向の曲げ変形を積極的に生じさせて衝撃エネルギを吸収する。
図11に示すように、衝突体がフロントサイドフレーム2に衝突すると、前側領域2aの前端に軸心に沿った荷重が入力する。
第1ポイントP1には、入力した荷重が軸圧縮荷重として作用する。
前側領域2aの前端部分では、第1〜第4圧縮側仕切部36a〜39aの左右幅と第1〜第4引張側仕切部36b〜39bの左右幅が等しく形成されているため、入力した軸圧縮荷重の波長の短縮化と振幅の減少によって前後(軸心)方向に均一な軸圧縮変形を発生させ、軸圧縮変形におけるEA(Energy Absorption)効率が増加する。
軸圧縮変形によって吸収されない荷重は、第1〜第4仕切壁部36〜39の形状が緩やかに変化する前端近傍部分を経由して後半部分の第2ポイントP2に伝達される。
When a load that is not absorbed by the axial compression deformation of the crash can 6 is applied from the front, the front side frame 2 positively generates compression deformation and bending deformation in the vehicle width direction to absorb impact energy.
As shown in FIG. 11, when the colliding body collides with the front side frame 2, a load along the axial center is input to the front end of the front region 2a.
The input load acts as an axial compression load on the first point P1.
In the front end portion of the front region 2a, the left and right widths of the first to fourth compression side partition portions 36a to 39a and the left and right widths of the first to fourth tension side partition portions 36b to 39b are formed to be equal to each other. By shortening the wavelength of the compression load and decreasing the amplitude, uniform axial compression deformation is generated in the front-rear (axial center) direction, and EA (Energy Absorption) efficiency in the axial compression deformation increases.
The load that is not absorbed by the axial compression deformation is transmitted to the second point P2 in the second half portion through the vicinity of the front end where the shapes of the first to fourth partition wall portions 36 to 39 change gradually.

第2ポイントP2には、曲げ変形の起点となる第1ビード部11fがアウタ部材10に形成されているため、伝達された荷重が外曲げ荷重として作用する。
第1〜第4仕切壁部36〜39に圧縮側稜線部36s〜39sと引張側稜線部36t〜39tを夫々形成したため、稜線による補強効果によって第1〜第4仕切壁部36〜39の強度が増加され、許容限界荷重を高くしている。
また、引張側稜線部36t,37t(38t,39t)の上下間隔が圧縮側稜線部36s,37s(38s,39s)の上下間隔よりも小さく形成され且つ第1〜第4引張側仕切部36b〜39bの横幅が第1〜第4圧縮側仕切部36a〜39aの横幅よりも大きく形成されているため、図12に示すように、座屈発生後、早期に引張側稜線部36t(38t)と引張側稜線部37t(39t)が当接することにより各仕切壁部36〜39が協働して引張側にトラス構造を構成して断面崩れを抑制している。
これにより、前側領域2aの後半部分では、曲げ変形によるEA効率を増加している。
Since the first bead portion 11f serving as a starting point of bending deformation is formed on the outer member 10 at the second point P2, the transmitted load acts as an outer bending load.
Since the compression-side ridge line portions 36s to 39s and the tension-side ridge line portions 36t to 39t are formed on the first to fourth partition wall portions 36 to 39, respectively, the strength of the first to fourth partition wall portions 36 to 39 is achieved by the reinforcing effect by the ridge lines. Increases the allowable load limit.
Further, the vertical interval between the tension side ridge line portions 36t, 37t (38t, 39t) is formed smaller than the vertical interval between the compression side ridge line portions 36s, 37s (38s, 39s), and the first to fourth tension side partition portions 36b- Since the lateral width of 39b is formed larger than the lateral widths of the first to fourth compression side partition portions 36a to 39a, as shown in FIG. 12, after the occurrence of buckling, the tension side ridge line portion 36t (38t) and When the tension side ridge line part 37t (39t) abuts, the partition wall parts 36 to 39 cooperate to constitute a truss structure on the tension side to suppress the collapse of the cross section.
As a result, the EA efficiency due to the bending deformation is increased in the latter half of the front region 2a.

マウント領域2bでは、マウントレイン8の構造を利用して前側領域2aから入力した荷重を他所に分散させることなく途中領域2cに伝達している。
第1補強部材30の後端全域に亙って接触可能なプレート状のプレート部62aが当接することにより、第3ポイントP3に前側領域2aで吸収されない荷重が伝達される。
マウントレイン8は高剛性であるため、第2補強部材40の前端全域に亙って接触可能なプレート状のプレート部63aが当接することにより、マウントレイン8に入力した荷重を第4ポイントP4から効率良く第2補強部材40に伝達している。
In the mount region 2b, the load input from the front region 2a is transmitted to the intermediate region 2c using the structure of the mount rain 8 without being dispersed elsewhere.
When the plate-like plate portion 62a that can be contacted over the entire rear end region of the first reinforcing member 30 contacts, a load that is not absorbed by the front region 2a is transmitted to the third point P3.
Since the mount rain 8 is highly rigid, the plate-like plate portion 63a that can be contacted over the entire front end of the second reinforcing member 40 comes into contact with the load, so that the load input to the mount rain 8 from the fourth point P4. It is efficiently transmitted to the second reinforcing member 40.

第5ポイントP5には、曲げ変形の起点となる第2ビード部23fがインナ部材20に形成されているため、伝達された荷重が内曲げ荷重として作用する。
途中領域2cでは、圧縮側稜線部46s〜49sと引張側稜線部46t〜49tによる補強効果によって第1〜第4仕切壁部46〜49の強度を増加し、座屈発生後、引張側稜線部46t(48t)と引張側稜線部47t(49t)を当接させたトラス構造を構成して断面崩れを抑制している。
これにより、曲げ変形によるEA効率を増加している。
At the fifth point P5, since the second bead portion 23f serving as a starting point for bending deformation is formed on the inner member 20, the transmitted load acts as an internal bending load.
In the intermediate region 2c, the strength of the first to fourth partition wall portions 46 to 49 is increased by the reinforcing effect of the compression side ridge line portions 46s to 49s and the tension side ridge line portions 46t to 49t. A truss structure in which 46t (48t) and the pulling-side ridge line portion 47t (49t) are brought into contact with each other is configured to suppress cross-sectional collapse.
Thereby, the EA efficiency by bending deformation is increased.

第2補強部材40の後端全域に亙ってプレート部材65が当接し且つ第3補強部材50の前端全域に亙ってプレート部材65が当接することにより、途中領域2cで吸収されない荷重が第6ポイントP6を介して後側領域2dに伝達される。
第7ポイントP7には、曲げ変形の起点となる第3ビード部14fがアウタ部材10に形成されているため、伝達された荷重が外曲げ荷重として作用する。
後側領域2dでは、前側領域2aの後半部分と同様の作用で曲げ変形によるEA効率を増加している。
Since the plate member 65 abuts over the entire rear end region of the second reinforcing member 40 and the plate member 65 abuts over the entire front end region of the third reinforcing member 50, a load that is not absorbed in the intermediate region 2c is generated. It is transmitted to the rear region 2d via 6 points P6.
Since the third bead portion 14f serving as a starting point of bending deformation is formed on the outer member 10 at the seventh point P7, the transmitted load acts as an outer bending load.
In the rear region 2d, the EA efficiency due to bending deformation is increased by the same action as the latter half of the front region 2a.

本車両用フレーム構造によれば、曲げ変形におけるEA効率と軸圧縮変形におけるEA効率とを単一の第1補強部材30で向上することができる。
即ち、この車両用フレーム構造では、主閉断面C内に上下方向に隣り合う複数の副閉断面cを形成する第1,第2横仕切壁部36,37を備えているため、副閉断面cの縦横比を1以下に調整して許容限界荷重を増加でき、この許容限界荷重を一定ストロークの間維持することができる。第1,第2引張側仕切部36b,37bの圧縮側端部(引張側稜線部36t,37t)の上下間隔が第1,第2圧縮側仕切部36a,37aの引張側端部の上下間隔(圧縮側稜線部36s,37s)よりも小さく形成されているため、引張側壁部21aに支持された第1,第2引張側仕切部36b,37bの圧縮側端部の当接によってトラス形状を形成することができ、曲げ変形に伴う断面崩れを抑制することができる。
前側領域2aの前端部分の第1,第2圧縮側仕切部36a,37aの横幅と第1,第2引張側仕切部36b,37bの横幅との差が、前側領域2aの後半部分の第1,第2圧縮側仕切部36a,37aの横幅と第1,第2引張側仕切部36b,37bの横幅との差よりも小さくなるように形成されたため、前後方向に直交する断面の1辺の長さを短縮化でき、軸圧縮荷重の波長の短縮化と振幅の減少とを図ることができる。
According to the vehicle frame structure, the EA efficiency in bending deformation and the EA efficiency in axial compression deformation can be improved by the single first reinforcing member 30.
That is, the vehicle frame structure includes the first and second horizontal partition walls 36 and 37 that form a plurality of sub-closed cross-sections c adjacent in the vertical direction in the main closed cross-section C. The allowable limit load can be increased by adjusting the aspect ratio of c to 1 or less, and this allowable limit load can be maintained for a certain stroke. The vertical interval between the compression side end portions (tensile side ridge portions 36t, 37t) of the first and second tension side partition portions 36b, 37b is the vertical interval between the tension side end portions of the first and second compression side partition portions 36a, 37a. Since it is formed smaller than (compression side ridge line parts 36s, 37s), the truss shape is formed by the contact of the compression side end parts of the first and second tension side partition parts 36b, 37b supported by the tension side wall part 21a. It can form and can suppress cross-sectional collapse accompanying bending deformation.
The difference between the lateral width of the first and second compression side partitioning portions 36a and 37a at the front end portion of the front region 2a and the lateral width of the first and second tension side partitioning portions 36b and 37b is the first half portion of the front region 2a. , Because it is formed to be smaller than the difference between the lateral width of the second compression side partitioning portions 36a and 37a and the lateral width of the first and second tension side partitioning portions 36b and 37b, The length can be shortened, and the wavelength of the axial compression load can be shortened and the amplitude can be decreased.

前側領域2aの前端近傍部分において、前側程、第1,第2圧縮側仕切部36a,37aの横幅と第1,第2引張側仕切部36b,37bの横幅との差が小さくなるように形成されているため、軸圧縮変形によって吸収されない荷重を曲げ変形部分に連続的に伝達することができ、曲げ変形部分にて効率的に荷重を吸収することができる。   In the vicinity of the front end of the front region 2a, the difference between the lateral width of the first and second compression side partition portions 36a and 37a and the lateral width of the first and second tension side partition portions 36b and 37b is reduced toward the front side. Therefore, the load that is not absorbed by the axial compression deformation can be continuously transmitted to the bending deformation portion, and the load can be efficiently absorbed at the bending deformation portion.

前側領域2aの前端部分において、第1,第2圧縮側仕切部36a,37aの横幅と第1,第2引張側仕切部36b,37bの横幅とが同じ寸法に形成されたため、前後方向に直交する断面の1辺の長さを最短化することができ、軸圧縮変形におけるEA効率を増加することができる。   In the front end portion of the front region 2a, the lateral width of the first and second compression side partitioning portions 36a and 37a and the lateral width of the first and second tension side partitioning portions 36b and 37b are formed in the same dimension, so that they are orthogonal to the front-rear direction. The length of one side of the cross section to be reduced can be minimized, and the EA efficiency in axial compression deformation can be increased.

荷重入力時の圧縮と引張の中立面Nが、第1,第2圧縮側仕切部36a,37aの引張側端部と第1,第2引張側仕切部36b,37bの圧縮側端部との間に位置するため、面外変形を抑制しつつ、引張側壁部21aに支持された第1,第2引張側仕切部36b,37bの圧縮側端部の当接によるトラス形状を確実に形成することができる。   The neutral surface N of compression and tension at the time of load input is the tension side end portions of the first and second compression side partition portions 36a and 37a and the compression side end portions of the first and second tension side partition portions 36b and 37b. Therefore, while suppressing out-of-plane deformation, the truss shape is reliably formed by the contact of the compression side end portions of the first and second tension side partition portions 36b and 37b supported by the tension side wall portion 21a. can do.

次に、前記実施形態を部分的に変更した変形例について説明する。
1〕前記実施形態においては、フロントサイドフレームの例を説明したが、リヤサイドフレーム、サスクロスメンバ、バンパビーム、センタピラー、インパクトバー等、少なくとも、圧縮荷重と引張荷重とが作用する車両用フレームであれば何れにも適用することができる。
Next, a modified example in which the embodiment is partially changed will be described.
1) In the above embodiment, an example of a front side frame has been described. However, a rear side frame, a suspension cross member, a bumper beam, a center pillar, an impact bar, or the like may be used for at least a vehicle frame on which a compressive load and a tensile load act. Any of them can be applied.

2〕前記実施形態においては、EA効率の観点から4つの仕切壁部の例を説明したが、少なくとも2つの仕切壁部を備えることで本発明の効果を奏することができる。また、設計上の観点から5つ以上の仕切壁部を採用しても良い。 2] In the above embodiment, an example of four partition walls has been described from the viewpoint of EA efficiency, but the effect of the present invention can be achieved by providing at least two partition walls. Moreover, you may employ | adopt five or more partition walls from a design viewpoint.

3〕前記実施形態においては、2ヶ所の外曲げ変形部分と1ヶ所の内曲げ変形部分が形成され、これら変形部分全てに補強部材を設けた車両用フレームの例を説明したが、少なくとも軸圧縮変形と曲げ変形とを同時に行う補強部材のみを設け、曲げ変形専用の補強部材を省略しても良い。また、車両用フレームに1つの外折れ変形部分又は内折れ変形部分を形成しても良い。 3) In the embodiment described above, an example of a vehicle frame in which two outer bending deformation portions and one inner bending deformation portion are formed, and reinforcing members are provided in all of the deformation portions has been described. Only the reinforcing member that performs the deformation and bending deformation at the same time may be provided, and the reinforcing member dedicated to bending deformation may be omitted. Further, one outer fold deformation portion or one inner fold deformation portion may be formed in the vehicle frame.

4〕前記実施形態においては、前側領域の前端部分において、第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が略零の例を説明したが、設計要件に応じて軸圧縮荷重の波長の短縮化と振幅の減少とを図れる範囲の差を形成しても良い。
また、前側領域の後半部分において、第1,第2圧縮側仕切部の横幅が第1,第2引張側仕切部の横幅の半分の寸法に設定された例を説明したが、少なくとも引張側に仕切壁部を構成できれば良く、各仕切壁部の剛性、形状に基づき仕切部の横幅比率を任意に設定することも可能である。
4) In the above embodiment, the example has been described in which the difference between the lateral width of the first and second compression-side partition portions and the lateral width of the first and second tension-side partition portions is substantially zero at the front end portion of the front region. Depending on the design requirements, a difference in the range in which the wavelength of the axial compression load can be shortened and the amplitude can be reduced may be formed.
Also, in the latter half of the front region, the example has been described in which the width of the first and second compression side partitions is set to half the width of the first and second tension side partitions, but at least on the tension side The partition wall portion only needs to be configured, and the width ratio of the partition portion can be arbitrarily set based on the rigidity and shape of each partition wall portion.

5〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。 5] In addition, those skilled in the art can implement the present invention with various modifications added without departing from the spirit of the present invention, and the present invention includes such modifications. is there.

V 車両
C 主閉断面
c 副閉断面
N 中立面
2 フロントサイドフレーム
11 第1アウタ部分
11a 圧縮側壁部
21 第1インナ部分
21a 引張側壁部
30 第1補強部材
36 第1仕切壁部
36a 第1圧縮側仕切部
36b 第1引張側仕切部
36s 圧縮側稜線部
36t 引張側稜線部
37 第2仕切壁部
37a 第2圧縮側仕切部
37b 第2引張側仕切部
37s 圧縮側稜線部
37t 引張側稜線部
V Vehicle C Main closed cross section c Sub closed cross section N Neutral surface 2 Front side frame 11 First outer portion 11a Compression side wall portion 21 First inner portion 21a Tension side wall portion 30 First reinforcing member 36 First partition wall portion 36a First Compression side partition part 36b First tension side partition part 36s Compression side ridge line part 36t Tensile side ridge line part 37 Second partition wall part 37a Second compression side partition part 37b Second tension side partition part 37s Compression side ridge line part 37t Tensile side ridge line Part

Claims (4)

圧縮荷重が作用する縦向きの圧縮側壁部を含む圧縮側部分と、引張荷重が作用する縦向きの引張側壁部を含み且つ前記圧縮側部分と協働して長手方向に直交する断面が略矩形状の主閉断面を構成する引張側部分と、前記主閉断面と協働して上下方向に隣り合う複数の副閉断面を形成する補強部材とを備えた車両用フレームにおいて、
前記補強部材が、前記圧縮側壁部と引張側壁部を連結して前記主閉断面を上下に仕切る第1仕切壁部であって、前記圧縮側壁部から引張側に延びる第1圧縮側仕切部と前記引張側壁部から圧縮側に延びる第1引張側仕切部とを有する第1仕切壁部と、前記第1仕切壁部よりも下方位置で前記圧縮側壁部と引張側壁部を連結して前記主閉断面を上下に仕切る第2仕切壁部であって、前記圧縮側壁部から引張側に延びる第2圧縮側仕切部と前記引張側壁部から圧縮側に延びる第2引張側仕切部とを有する第2仕切壁部とを備え、
前記第1,第2引張側仕切部の圧縮側端部の上下間隔が前記第1,第2圧縮側仕切部の引張側端部の上下間隔よりも小さく形成され、
前記車両用フレームに長手方向から荷重が入力したとき、荷重入力側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が、前記荷重入力側部分よりも荷重入力側部分に対して荷重入力部と反対側部分の前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差よりも小さくなるように形成されたことを特徴とする車両用フレーム。
A compression side portion including a longitudinal compression side wall portion on which a compressive load acts and a longitudinal side wall portion including a vertical tension side wall portion on which a tensile load acts and which is orthogonal to the longitudinal direction in cooperation with the compression side portion are substantially rectangular. In a vehicle frame comprising: a tension side portion that forms a main closed cross section of a shape; and a reinforcing member that forms a plurality of sub closed cross sections adjacent in the vertical direction in cooperation with the main closed cross section.
The reinforcing member is a first partition wall portion that connects the compression side wall portion and the tension side wall portion to partition the main closed section vertically, and includes a first compression side partition portion extending from the compression side wall portion to the tension side. A first partition wall portion having a first tension side partition portion extending from the tension side wall portion to the compression side; and the compression side wall portion and the tension side wall portion are connected to each other at a position below the first partition wall portion to A second partition wall part that partitions the closed section up and down, and has a second compression side partition part extending from the compression side wall part to the tension side and a second tension side partition part extending from the tension side wall part to the compression side. Two partition walls,
The vertical interval between the compression side end portions of the first and second compression side partition portions is formed smaller than the vertical interval between the tension side end portions of the first and second compression side partition portions,
When a load is input to the vehicle frame from the longitudinal direction, the difference between the lateral width of the first and second compression side partition portions of the load input side portion and the lateral width of the first and second tension side partition portions is the load. It is smaller than the difference between the lateral width of the first and second compression side partitioning portions and the lateral width of the first and second tension side partitioning portions on the side opposite to the load input portion with respect to the load input side portion. A vehicle frame characterized by being formed as described above.
前記荷重入力部近傍位置において、荷重入力部側程、前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅との差が小さくなるように形成されたことを特徴とする請求項1に記載の車両用フレーム。   In the vicinity of the load input portion, the difference between the lateral width of the first and second compression side partition portions and the lateral width of the first and second tension side partition portions is reduced toward the load input portion side. The vehicle frame according to claim 1. 前記荷重入力部において、前記第1,第2圧縮側仕切部の横幅と第1,第2引張側仕切部の横幅とが同じ寸法に形成されたことを特徴とする請求項1又は2に記載の車両用フレーム。   The said load input part WHEREIN: The lateral width of the said 1st, 2nd compression side partition part and the lateral width of the 1st, 2nd tension side partition part were formed in the same dimension, The Claim 1 or 2 characterized by the above-mentioned. Vehicle frame. 前記荷重入力時の圧縮と引張の中立面が、前記第1,第2圧縮側仕切部の引張側端部と第1,第2引張側仕切部の圧縮側端部との間に位置することを特徴とする請求項1〜3の何れか1項に記載の車両用フレーム。   The neutral surface of compression and tension at the time of load input is located between the tension side end of the first and second compression side partitions and the compression side end of the first and second tension side partitions. The vehicle frame according to any one of claims 1 to 3, wherein:
JP2014254957A 2014-12-17 2014-12-17 Vehicle frame structure Active JP6172132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014254957A JP6172132B2 (en) 2014-12-17 2014-12-17 Vehicle frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014254957A JP6172132B2 (en) 2014-12-17 2014-12-17 Vehicle frame structure

Publications (2)

Publication Number Publication Date
JP2016113083A true JP2016113083A (en) 2016-06-23
JP6172132B2 JP6172132B2 (en) 2017-08-02

Family

ID=56139713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014254957A Active JP6172132B2 (en) 2014-12-17 2014-12-17 Vehicle frame structure

Country Status (1)

Country Link
JP (1) JP6172132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024319A (en) * 2016-08-09 2018-02-15 トヨタ自動車株式会社 Vehicle pillar structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110095568A1 (en) * 2009-10-26 2011-04-28 Mazda Motor Corporation Front vehicle-body structure of vehicle
WO2013061408A1 (en) * 2011-10-25 2013-05-02 トヨタ自動車株式会社 Framework member
JP2015227124A (en) * 2014-06-02 2015-12-17 マツダ株式会社 Vehicular frame structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110095568A1 (en) * 2009-10-26 2011-04-28 Mazda Motor Corporation Front vehicle-body structure of vehicle
JP5504820B2 (en) * 2009-10-26 2014-05-28 マツダ株式会社 Front body structure of the vehicle
WO2013061408A1 (en) * 2011-10-25 2013-05-02 トヨタ自動車株式会社 Framework member
JP2015227124A (en) * 2014-06-02 2015-12-17 マツダ株式会社 Vehicular frame structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018024319A (en) * 2016-08-09 2018-02-15 トヨタ自動車株式会社 Vehicle pillar structure
US10081392B2 (en) 2016-08-09 2018-09-25 Toyota Jidosha Kabushiki Kaisha Vehicle pillar structure

Also Published As

Publication number Publication date
JP6172132B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6107850B2 (en) Vehicle frame structure
JP6044624B2 (en) Vehicle frame structure
JP6044796B2 (en) Front body structure of the vehicle
JP6119727B2 (en) Vehicle frame structure
JP5071588B2 (en) Vehicle front structure
JP6315292B2 (en) Vehicle frame structure
JP5749959B2 (en) Body front structure
JP5504820B2 (en) Front body structure of the vehicle
JP5078597B2 (en) Shock absorption structure
JP4000951B2 (en) Auto body front structure
JP6284056B1 (en) Vehicle frame structure
JP6172132B2 (en) Vehicle frame structure
JP6128339B2 (en) Vehicle frame structure
JP3632654B2 (en) Body front structure
JP6003954B2 (en) Front body structure of the vehicle
JP6572786B2 (en) Shock absorption structure at the rear of the vehicle
JP6206304B2 (en) Vehicle frame structure
JP6098626B2 (en) Vehicle frame structure
JP6206303B2 (en) Vehicle frame structure
JP6003955B2 (en) Front body structure of the vehicle
JP6098625B2 (en) Vehicle frame structure
JP7036758B2 (en) Vehicle front structure
JP2019219050A (en) Energy absorption member for vehicle, manufacturing method thereof and energy absorption assembly
JP2020050278A (en) Cab structure
JP2020083149A (en) Load supporting structure of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6172132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150