JP2016110805A - Radiation heater - Google Patents

Radiation heater Download PDF

Info

Publication number
JP2016110805A
JP2016110805A JP2014246434A JP2014246434A JP2016110805A JP 2016110805 A JP2016110805 A JP 2016110805A JP 2014246434 A JP2014246434 A JP 2014246434A JP 2014246434 A JP2014246434 A JP 2014246434A JP 2016110805 A JP2016110805 A JP 2016110805A
Authority
JP
Japan
Prior art keywords
heater
heating
tube
radiation
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014246434A
Other languages
Japanese (ja)
Other versions
JP5824689B1 (en
Inventor
齋 原田
Hitoshi Harada
齋 原田
井本 泰造
Taizo Imoto
泰造 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tech Res Inst Of Osaka Prefecture
Technology Research Institute of Osaka Prefecture
Original Assignee
Tech Res Inst Of Osaka Prefecture
Technology Research Institute of Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tech Res Inst Of Osaka Prefecture, Technology Research Institute of Osaka Prefecture filed Critical Tech Res Inst Of Osaka Prefecture
Priority to JP2014246434A priority Critical patent/JP5824689B1/en
Application granted granted Critical
Publication of JP5824689B1 publication Critical patent/JP5824689B1/en
Publication of JP2016110805A publication Critical patent/JP2016110805A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radiation heater which has high heating efficiency by increasing a radiation flux from a surface at a heating required direction side of a tubular heater without including a reflector function like a transparent tube heater since the tubular heater that is formed from an opaque material is used, although, in a heater using a transparent tube suck as a quartz glass tube, the reflector function can be added by making heat radiation permeable because of the transparent tube, the heat radiation emitted from a heating element within the tube is reflected in a predetermined direction by the reflector function and permeated through the transparent tube and efficiency of heating toward an object to be heated is improved.SOLUTION: In a part of a tube surface 1 of the tubular heater that is formed from the opaque material, a low covered surface 2 is formed from a belt-like material of which the radiation rate is lower than that of the tube surface. Therefore, the radiation heater has directivity of heat radiation that improves heating efficiency by increasing the radiation flux from the tube surface at the heating required direction side.SELECTED DRAWING: Figure 1

Description

本発明は、熱輻射(赤外線)による加熱方法としての電気輻射ヒーターに関するものである。   The present invention relates to an electric radiation heater as a heating method using thermal radiation (infrared rays).

熱輻射による加熱を特徴とした電気輻射ヒーターには、赤外線ランプ、ハロゲンヒーター、カーボンヒーター、石英管ヒーター、透光性アルミナ管ヒーター、遠赤外線ヒーター、セラミックスヒーター、シースヒーター等々があり、一般的には反射板を併用して、効率的な熱輻射による加熱を行っている。   Electric radiation heaters characterized by heating by thermal radiation include infrared lamps, halogen heaters, carbon heaters, quartz tube heaters, translucent alumina tube heaters, far infrared heaters, ceramics heaters, sheath heaters, etc. Uses a reflector in combination with efficient heat radiation.

しかしながら、反射板を併用した加熱器においては、反射板及びその組み付け部品の調達とその組み付け作業が必要であり、さらには使用中における反射板への汚れの付着が反射率の低下をきたすことになり、反射板の清掃が欠かせない煩雑作業となる。また、加熱器の構造によっては、反射板の使用が困難な場合もある。このようなことから反射板の装着なしでそれと同等に近い加熱効率の得られる輻射ヒーターの開発が要望されている。 However, in a heater that also uses a reflector, it is necessary to procure and assemble the reflector and its assembly parts, and further, adhesion of dirt to the reflector during use causes a decrease in reflectance. Therefore, it becomes a complicated work in which cleaning of the reflector is indispensable. Further, depending on the structure of the heater, it may be difficult to use the reflector. For this reason, there is a demand for the development of a radiant heater that can achieve a heating efficiency close to that without mounting a reflector.

特開平07−288175JP 07-288175 特開平2011−177926JP 2011-177926 特許番号4939961Patent No.4939961

書籍「真空ハンドブック」p.133〜134(日本真空技術株式会社編、株式会社オーム社発行、平成4年11月30日)Book “Vacuum Handbook” p.133-134 (Nippon Vacuum Technology Co., Ltd., published by OHM Co., Ltd., November 30, 1992)

電熱線やタングステンフィラメント、グラファイト(カーボン)、炭化ケイ素等の抵抗発熱体からの熱輻射を透過させる透明管(石英ガラス管、あるいは透光性アルミナ管等)を用いたヒーターは、その透明な管の内面側、あるいは外面側に金属やセラミックス等の反射物質をコーティング処理、あるいは二重管にして管内に反射板を取り付ける等で、反射板の機能を付加しており、その透明管を用いたヒーターには、ハロゲンヒーターやカーボンヒーター等がある。 A heater using a transparent tube (such as a quartz glass tube or a translucent alumina tube) that transmits heat radiation from a heating element such as a heating wire, tungsten filament, graphite (carbon), silicon carbide, etc., is a transparent tube. The reflective plate function is added by coating a reflective material such as metal or ceramics on the inner surface or outer surface of the tube, or by attaching a reflector in the tube using a double tube, and using the transparent tube The heater includes a halogen heater and a carbon heater.

特許文献1は、石英ガラスなどの管状外囲器の内表面、あるいは外表面にその円周方向の一部を除いてアルミニウム蒸着膜などの赤外線反射層を設けて、タングステンフィラメントから放射される赤外線をその反射層で反射する赤外線ヒーターである。インクジェットプリンターのインク乾燥用向けの加熱用ヒーターとして開発されている。 Patent Document 1 discloses an infrared ray radiated from a tungsten filament by providing an infrared reflective layer such as an aluminum vapor deposition film on the inner surface of a tubular envelope such as quartz glass or on the outer surface except for a part in the circumferential direction thereof. Is an infrared heater that reflects the light on its reflective layer. It has been developed as a heater for heating ink for inkjet printers.

特許文献2は、特許文献1の石英管においてアルミニウム蒸着膜の代わりにアルミナとシリカを主成分とするセラミックス材をホワイトコートして、タングステンフィラメントから照射される近赤外線を反射させる方法である。そのホワイトコート開口部の開口角を120°±10°に設定規制し、一定レベル以上の加熱効率のアップを得ることで、ポリエチレンテレフタレート樹脂製プリフォームを壜体状に2軸延伸ブロー成形する際に用いる近赤外線ヒーターが開示されている。 Patent Document 2 is a method of reflecting near infrared rays irradiated from a tungsten filament by white-coating a ceramic material mainly composed of alumina and silica instead of an aluminum vapor deposition film in the quartz tube of Patent Document 1. When the opening angle of the white coat opening is regulated to 120 ° ± 10 ° and the heating efficiency is increased to a certain level or more, when a polyethylene terephthalate resin preform is biaxially stretched blow-molded into a housing A near-infrared heater for use in is disclosed.

特許文献3は、ガラス管の内管に炭素質発熱体をアルゴンガス等の不活性ガスと共に内管に封入し、炭素質発熱体から発生する遠赤外線放射熱を所定の方向へ向けて放射させる反射板を外管内で内管の外側に設け、装着された反射板が汚れないように二重管にした赤外線ヒーターを開示している。業務用調理器のフライヤーやゆで麺機等の用途向けに開発しており、熱い油や温水の中に浸漬されるため、「熱輻射・熱伝導熱・対流熱伝達」の「伝熱の3形態」の伝熱作用が働き、ヒーター表面からの伝熱が大きいのが特徴である。 Patent Document 3 discloses that a carbonaceous heating element is enclosed in an inner pipe of an inner tube of a glass tube together with an inert gas such as argon gas, and radiates far infrared radiation generated from the carbonaceous heating element in a predetermined direction. An infrared heater is disclosed in which a reflector is provided outside the inner tube within the outer tube, and a double tube is used so that the mounted reflector is not soiled. Developed for applications such as commercial cooker fryer and boiled noodle machine, and soaked in hot oil or hot water, "Heat radiation, heat conduction heat, convection heat transfer" "3 of heat transfer" The feature is that the heat transfer effect of "form" works and the heat transfer from the heater surface is large.

特許文献1から特許文献3に係る透明管を用いたヒーターは、透明管であるが故に熱輻射が透過するので、反射板機能の付加が可能となっている。反射板機能により管内の発熱体から発せられる熱輻射が、所定方向に反射して透明管を透過し、被加熱物(加熱対象物)方向への加熱効率を高めている。 Since the heater using the transparent tube according to Patent Document 1 to Patent Document 3 is a transparent tube, heat radiation is transmitted, so that a reflector function can be added. The heat radiation emitted from the heating element in the tube by the reflecting plate function is reflected in a predetermined direction and transmitted through the transparent tube, thereby increasing the heating efficiency in the direction of the object to be heated (heating object).

これに対し、本発明に係る輻射ヒーターは、特許文献1から特許文献3に係る透明管を用いたヒーターのように反射板機能を有せず、不透明な素材で構成された管状(チューブ状)ヒーターの被加熱物に対向する側の表面からの輻射束を増大させて、高い加熱効率を持つ輻射ヒーターを提供することを目的としている。尚、輻射束とは、単位時間当たりに放出、伝熱、または入射する輻射エネルギーのことであり、[W]の単位で表示される。 On the other hand, the radiant heater according to the present invention does not have a reflector function like the heater using the transparent tube according to Patent Documents 1 to 3, and has a tubular shape (tube shape) made of an opaque material. An object of the present invention is to provide a radiant heater having high heating efficiency by increasing the radiant flux from the surface of the heater facing the object to be heated. The radiant flux is radiant energy emitted, heat transferred, or incident per unit time, and is displayed in units of [W].

上述した目的を達成するために、本発明に係る輻射ヒーターは、不透明な素材で構成された管状ヒーター表面に、管外周に輻射率の異なる素材を被覆し、被覆表面と未被覆表面、あるいは異なる被覆面同士からの輻射発散度の差により、図1から図3に示すような熱輻射の必要な加熱方向(以下、「要加熱方向」と称することがある)F 側への加熱効率の向上を図るものである。尚、輻射発散度とは、単位面積当たりに発散される輻射束であり、[W/cm]の単位で表示される。 In order to achieve the above-described object, the radiation heater according to the present invention has a tubular heater surface made of an opaque material coated with a material having a different emissivity on the outer periphery of the tube, so that the coated surface and the uncoated surface are different. Improvement in heating efficiency toward the F direction where heat radiation is required as shown in FIGS. 1 to 3 (hereinafter sometimes referred to as “required heating direction”) due to the difference in radiation divergence from the coated surfaces Is intended. The radiant divergence is a radiant flux radiated per unit area, and is expressed in units of [W / cm 2 ].

図1に示すように、本発明に係る輻射ヒーター(以下、単に「輻射ヒーター」と称することがある)は、不透明な素材で構成された管状ヒーターの管表面1の熱輻射の不要な方向(以下、「非加熱方向」と称することがある)B側の表面からの輻射束を抑制するために、ヒーターの管外周の一部に対して、非加熱方向B側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より低い輻射率の帯状の素材を以って、輻射率の低い素材からなる被覆面(以下、「低被覆面」と称することがある)2を形成した輻射ヒーターである。その低被覆面2からの輻射発散度を抑制することで、ヒーターの表面温度の上昇を図り、要加熱方向F側の表面からの輻射束を増大させて、要加熱方向F側への加熱効率を向上させることができる。 As shown in FIG. 1, the radiation heater according to the present invention (hereinafter sometimes simply referred to as “radiation heater”) is an unnecessary direction of heat radiation on the tube surface 1 of a tubular heater made of an opaque material ( In order to suppress the radiant flux from the surface on the B side (hereinafter sometimes referred to as “non-heating direction”), the tube length axis is centered on the non-heating direction B side with respect to a part of the outer periphery of the heater tube. A coated surface made of a material having a low emissivity with a band-shaped material having an emissivity lower than the emissivity of the tube surface 1 along the direction (hereinafter sometimes referred to as a “low-coated surface”). 2 is a radiant heater. By suppressing the radiation divergence from the low coated surface 2, the surface temperature of the heater is increased, the radiation flux from the surface in the heating direction F side is increased, and the heating efficiency in the heating direction F side is required. Can be improved.

また、図2に示すように、輻射ヒーターは、不透明な素材で構成された管状ヒーターの管外周の一部に対して、要加熱方向F側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より高い輻射率の帯状の素材を以って、輻射率の高い素材からなる被覆面(以下、「高被覆面」と称することがある)5を形成した輻射ヒーターである。その高被覆面5から要加熱方向F側への輻射束を増大させて、加熱効率を向上させることができる。 In addition, as shown in FIG. 2, the radiant heater extends over the entire length along the axial direction of the tube length with respect to a part of the outer periphery of the tube of the tubular heater made of an opaque material, centering on the side F in the required heating direction. Thus, a radiation heater in which a coated surface (hereinafter sometimes referred to as a “highly coated surface”) 5 made of a material having a high emissivity is formed by a band-shaped material having an emissivity higher than that of the tube surface 1 It is. The heating efficiency can be improved by increasing the radiant flux from the high covering surface 5 to the heating direction F side.

さらに、図3に示すように、輻射ヒーターは、不透明な素材で構成された管状ヒーターの管表面1の非加熱方向B側の表面からの輻射発散度を抑制するために、ヒーターの管外周の一部に対して、非加熱方向B側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より低い輻射率の帯状の素材を以って、低被覆面2を形成し、その管状ヒーターの未被覆面の一部、あるいは全部に対して、要加熱方向F側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より高い輻射率の帯状の素材を以って、高被覆面5を形成した輻射ヒーターであり、未被覆面が残る場合もある。管状ヒーターに低被覆面2及び高被覆面5を形成することによって、低被覆面2からの輻射発散度が抑制され、輻射ヒーターの高被覆面5側からの輻射発散度は増大し、要加熱方向F側への加熱効率を向上させることができる。 Further, as shown in FIG. 3, the radiant heater is provided on the outer periphery of the tube of the heater in order to suppress the radiation divergence from the surface on the non-heating direction B side of the tube surface 1 of the tubular heater made of an opaque material. For a part, the low covering surface 2 is formed with a strip-shaped material having a lower emissivity than the emissivity of the tube surface 1 over the entire length along the axial direction of the tube length, centering on the non-heating direction B side. The emissivity higher than the emissivity of the tube surface 1 over the entire length along the axial direction of the tube length, centered on the heating direction F side, with respect to part or all of the uncoated surface of the tubular heater This is a radiant heater in which the highly coated surface 5 is formed by using the belt-shaped material, and an uncoated surface may remain. By forming the low coated surface 2 and the high coated surface 5 on the tubular heater, the radiation divergence from the low coated surface 2 is suppressed, the radiation divergence from the high coated surface 5 side of the radiant heater is increased, and heating is required. Heating efficiency toward the direction F can be improved.

輻射率の低い素材及び輻射率の高い素材の詳細は、前記非特許文献1に記載のものがあげられ、非特許文献1における「放射率」を本発明では、「輻射率」と表記する。また、低被覆面2及び高被覆面5を形成する方法には、めっき、塗布、溶射、真空蒸着等によるコーティング処理、あるいは単体の被覆材で被覆する方法等がある。 The details of the low emissivity material and the high emissivity material are those described in Non-Patent Document 1, and the “emissivity” in Non-Patent Document 1 is referred to as “radiation rate” in the present invention. In addition, as a method of forming the low coating surface 2 and the high coating surface 5, there are a coating process by plating, coating, thermal spraying, vacuum deposition, etc., or a method of coating with a single coating material.

本発明では、次に列挙する効果が得られる。
(1)本発明に係る輻射ヒーターは、ヒーターの低被覆面2側からの輻射発散度を抑制し、輻射ヒーターの表面温度を上昇させ、輻射率の高い素材である管表面1側からの輻射発散度を増大させて、要加熱方向F側への加熱効率の向上ができる。
In the present invention, the following effects can be obtained.
(1) The radiation heater according to the present invention suppresses the radiation divergence from the low coated surface 2 side of the heater, raises the surface temperature of the radiation heater, and radiates from the tube surface 1 side, which is a material having a high radiation rate. By increasing the divergence, it is possible to improve the heating efficiency toward the heating direction F side.

(2)本発明に係る輻射ヒーターは、ヒーターの高被覆面5側からの輻射発散度を増大させて、要加熱方向F側への加熱効率の向上ができる。 (2) The radiant heater according to the present invention can increase the radiation divergence from the high covering surface 5 side of the heater and improve the heating efficiency in the heating direction F side.

(3)前記(1)の輻射ヒーターに対して、ヒーターの管表面1の未被覆面に高被覆面5を形成し、あるいは前記(2)の輻射ヒーターに対して、ヒーターの管表面1の未被覆面に低被覆面2を形成することで、高被覆面5側からの輻射発散度は増大し、要加熱方向F側への加熱効率の向上ができる。 (3) A high coated surface 5 is formed on the uncovered surface of the tube surface 1 of the heater with respect to the radiant heater of (1), or the tube surface 1 of the heater is formed with respect to the radiant heater of (2). By forming the low coating surface 2 on the uncoated surface, the radiation divergence from the high coating surface 5 side increases, and the heating efficiency toward the heating direction F side can be improved.

(4)前記(1)から(3)において、要加熱方向F側への加熱効率の向上できることから、被覆前のヒーターと同じ加熱効率にした場合、輻射ヒーターの消費電力の削減ができる。 (4) In (1) to (3), the heating efficiency in the heating direction F side can be improved. Therefore, when the heating efficiency is the same as that of the heater before coating, the power consumption of the radiation heater can be reduced.

本発明の第1実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。It is the front view (a) of the radiation heater which concerns on 1st Embodiment of this invention, and its expanded sectional view (b). 本発明の第2実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。It is the front view (a) of the radiation heater which concerns on 2nd Embodiment of this invention, and its expanded sectional view (b). 本発明の第3実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。It is the front view (a) of the radiation heater which concerns on 3rd Embodiment of this invention, and its expanded sectional view (b). 本発明の第1実施形態に係る輻射ヒーターにおいて、低被覆面幅の割合Abと要加熱方向F側への加熱効率の向上率Kの理論数値曲線である。In radiant heaters according to the first embodiment of the present invention is a theoretical numerical curve of improvement rate K of heating efficiency to the ratio A b and main heating direction F side of the lower cover surface width. 本発明の第1実施形態に係る輻射ヒーターを適用した調理用下火焼き器の平 面図(a)及び正面断面図(b)である。FIG. 2 is a plan view (a) and a front sectional view (b) of a cooking pan-firer using the radiant heater according to the first embodiment of the present invention. 従来のヒーターを適用した調理用加熱装置(a)及び本発明の第1実施形態 に係る輻射ヒーターを適用した調理用加熱装置(b)を比較した図である。It is the figure which compared the heating apparatus (a) for cooking which applied the conventional heater, and the heating apparatus (b) for cooking which applied the radiation heater which concerns on 1st Embodiment of this invention.

以下、本発明に係る輻射ヒーターを図に基づいて説明する。 Hereinafter, a radiation heater according to the present invention will be described with reference to the drawings.

本発明において、適用できるヒーターは、炭化ケイ素等の抵抗発熱体及び遠赤外線ヒーター、セラミックスヒーター、シースヒーター等の不透明な素材で構成された管状、あるいは棒状のものを指し、図1から図3に示されているようなヒーター断面が、円形状以外であっても構わず、また軸方向に沿った直線形状以外でも適用できる。 In the present invention, the applicable heater refers to a tubular or rod-shaped member made of an opaque material such as a resistance heating element such as silicon carbide and a far-infrared heater, a ceramic heater, or a sheath heater. The heater cross section as shown may be other than a circular shape, and other than a linear shape along the axial direction can be applied.

図1は、本発明の第1実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。輻射ヒーターは、両端に碍子3、端子4を備え、不透明な素材で構成された管状ヒーターの管外周の一部に対して、非加熱方向B側を中心に、管長の軸方向に沿い全長に渡って、その管表面1の素材の輻射率よりも低い輻射率の帯状の素材を以って、低被覆面2を形成し、その低被覆面2からの輻射発散度を抑制することで、ヒーターの表面温度の上昇を図り、要加熱方向F側の表面から輻射束を増大させて、要加熱方向F側への加熱効率を向上させた熱輻射の指向性を有する第1実施形態に係る輻射ヒーターである。 FIG. 1: is the front view (a) of the radiation heater which concerns on 1st Embodiment of this invention, and its expanded sectional view (b). The radiant heater is equipped with insulators 3 and terminals 4 at both ends, and has a full length along the axial direction of the tube length, centering on the non-heating direction B side, with respect to a part of the outer periphery of the tube heater made of opaque material. By forming a low covering surface 2 with a band-shaped material having a lower emissivity than that of the material of the tube surface 1, and suppressing the radiation divergence from the low covering surface 2, According to the first embodiment, the surface temperature of the heater is increased, the radiation flux is increased from the surface in the heating required direction F side, and the heating efficiency toward the heating required direction F side is improved. It is a radiant heater.

輻射率の低い素材の詳細は、前記非特許文献1に記載のものがあげられるが、ヒーターの管表面1の輻射率より低い値のものであれば使用することが可能であり、管表面1と低被覆面2との輻射率の差が大きいほど、輻射ヒーターの表面温度が高くなり、要加熱方向F側の表面から輻射束は増大し、要加熱方向F側への加熱効率は向上する。 The details of the material having a low emissivity include those described in Non-Patent Document 1, but any material having a value lower than the emissivity of the tube surface 1 of the heater can be used. The greater the difference in emissivity between the low-covered surface 2 and the higher the surface temperature of the radiant heater, the higher the radiant flux from the surface in the required heating direction F side, and the higher the heating efficiency in the required heating direction F side. .

純金の研磨面の輻射率は0.035と極めて低い輻射率であり、大気中における表面酸化がなく、その輻射率を維持するため、輻射率の低い素材として最適である。ステンレスSUS316酸化面の輻射率は0.3と、輻射率の低い素材である。 The emissivity of the polished surface of pure gold is 0.035, which is an extremely low emissivity. There is no surface oxidation in the atmosphere, and the emissivity is maintained, so that it is optimal as a material with low emissivity. The emissivity of the stainless steel SUS316 oxidized surface is 0.3, which is a low emissivity material.

輻射ヒーターの管外周に対する低被覆面2の幅の割合(以下、「低被覆面幅の割合」と称することがある)Abは、少しであっても加熱効率は向上し、被加熱物との位置や距離等の使用条件を勘案して、低被覆面幅の割合Abの割合を決める。例えば、輻射ヒーターの上側半外周を要加熱方向F側、下側半外周を非加熱方向B側と仮定した場合に、低被覆面幅の割合Abは、50%で要加熱方向F側への加熱効率が最大となるが、要加熱方向F側への指向性をより持たせるには、低被覆面幅の割合Abが50%より大きくすることが良い。 Ratio of the low coating surface 2 of the width to the outer tube circumference of radiant heaters (hereinafter, sometimes referred to as "ratio of the low coating surface width") A b is also heating efficiency is improved a little, and the object to be heated taking into consideration the conditions of use of the position and distance, etc., determine the ratio of rate a b of the low coating surface width. For example, assuming that the upper half circumference of the radiant heater is in the required heating direction F side and the lower half circumference is in the non-heating direction B side, the low covering surface width ratio Ab is 50% to the required heating direction F side. However, in order to provide more directivity in the direction F of the heating required, it is preferable that the ratio of low covering surface width Ab is greater than 50%.

図2は、本発明の第2実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。輻射ヒーターは、両端に碍子3、端子4を備え、不透明な素材で構成された管状ヒーターの管外周の一部に対して、要加熱方向F側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より高い輻射率の帯状の素材を以って、輻射率の高い素材からなる高被覆面5を形成し、その高被覆面5から要加熱方向F側への輻射束を増大させて、加熱効率を向上した熱輻射の指向性を有する第2実施形態に係る輻射ヒーターである。 FIG. 2: is the front view (a) and its expanded sectional view (b) of the radiation heater which concern on 2nd Embodiment of this invention. The radiant heater is equipped with insulators 3 and terminals 4 at both ends, and has a full length along the axial direction of the tube length, centering on the heating direction F side, with respect to a part of the outer periphery of the tube heater made of opaque material. A high covering surface 5 made of a material having a high emissivity is formed with a strip-shaped material having an emissivity higher than the emissivity of the tube surface 1, and from the high covering surface 5 to the heating direction F side. It is a radiation heater which concerns on 2nd Embodiment which has the directivity of the heat radiation which increased the radiation flux and improved the heating efficiency.

輻射率の高い素材の詳細は、前記非特許文献1に記載のものがあげられるが、ヒーターの管表面1の輻射率より高い値の素材であれば使用することが可能であり、管表面1と高被覆面5との輻射率の差が大きいほど、要加熱方向F側の表面から輻射束は増大し、要加熱方向F側への加熱効率が向上する。 The details of the material having a high emissivity are those described in Non-Patent Document 1, but any material having a value higher than the emissivity of the tube surface 1 of the heater can be used. The greater the difference in emissivity between the high coverage surface 5 and the high coating surface 5, the greater the radiation flux from the surface in the heating direction F side, and the heating efficiency in the heating direction F side is improved.

輻射率の高い素材には、セラミックスや金属酸化物等があり、ジルコンの輻射率は0.8と輻射率の高い素材である。また、アルミナの輻射率は0.5、アルミナシリカ(ムライト)の輻射率は0.61である。 Materials with high emissivity include ceramics and metal oxides, and zircon has a high emissivity of 0.8. The emissivity of alumina is 0.5, and the emissivity of alumina silica (mullite) is 0.61.

輻射ヒーターの管外周に対する高被覆面5の幅の割合(以下、「高被覆面幅の割合」と称することがある)Afは、少しであっても加熱効率は向上し、被加熱物との位置や距離等の使用条件を勘案して管外周に対する高被覆面幅の割合Afを決める。例えば、輻射ヒーターの上側半外周を要加熱方向F側、下側半外周を非加熱方向B側と仮定した場合に、高被覆面幅の割合Afは、50%で要加熱方向F側への加熱効率が最大となるが、要加熱方向F側への指向性をより持たせるには、高被覆面幅の割合Afは50%より小さくすることが良い。 The ratio of the width of the high covering surface 5 to the outer circumference of the tube of the radiation heater (hereinafter sometimes referred to as “the ratio of the high covering surface width”) A f is improved even if it is a little, and the heating efficiency is improved. The ratio A f of the high covering surface width with respect to the outer circumference of the pipe is determined in consideration of the use conditions such as the position and distance of the pipe. For example, assuming that the upper half circumference of the radiant heater is in the heating direction F side and the lower half circumference is in the non-heating direction B side, the ratio A f of the high coating surface width is 50% to the heating direction F side. However, in order to have more directivity in the heating direction F required, the ratio Af of the high coating surface width is preferably smaller than 50%.

図3は、本発明の第3実施形態に係る輻射ヒーターの正面図(a)及びその拡大断面図(b)である。輻射ヒーターは、両端に碍子3、端子4を備え、不透明な素材で構成された管状ヒーターの管表面1の非加熱方向B側の表面からの輻射束を抑制するために、ヒーターの管外周の一部に対して、非要加熱方向B側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より低い輻射率の帯状の素材を以って、低被覆面2を形成し、その管状ヒーターの未被覆面の一部、あるいは全部に対して、要加熱方向F側を中心に、管長の軸方向に沿い全長に渡って、管表面1の輻射率より高い輻射率の帯状の素材を以って、高被覆面5を形成したものである。管状ヒーターに低被覆面2及び高被覆面5を形成することによって、低被覆面2からの輻射発散度が抑制され、輻射ヒーターの高被覆面5側からの輻射発散度は増大し、要加熱方向F側への加熱効率を向上させた熱輻射の指向性を有する第3実施形態に係る輻射ヒーターである。 FIG. 3: is the front view (a) and its expanded sectional view (b) of the radiation heater which concern on 3rd Embodiment of this invention. The radiant heater has insulators 3 and terminals 4 at both ends, and in order to suppress the radiant flux from the surface on the non-heating direction B side of the tube surface 1 of the tubular heater made of an opaque material, For some parts, with a strip-shaped material with a lower emissivity than the emissivity of the tube surface 1 over the entire length along the axial direction of the tube length, centered on the non-heating required direction B side, the low covering surface 2 The radiation rate higher than the emissivity of the tube surface 1 over the entire length along the axial direction of the tube length with respect to a part or all of the uncoated surface of the tubular heater, centered on the heating direction F side. The high covering surface 5 is formed by using a band-shaped material of a rate. By forming the low coating surface 2 and the high coating surface 5 on the tubular heater, the radiation divergence from the low coating surface 2 is suppressed, the radiation divergence from the high coating surface 5 side of the radiant heater is increased, and heating is required. It is a radiation heater which concerns on 3rd Embodiment which has the directivity of the heat radiation which improved the heating efficiency to the direction F side.

低被覆面2及び高被覆面5を各々形成する素材の輻射率に関しては、前記非特許文献1に記載のものがあげられ、被覆する素材の輻射率の高低は、管表面1、低被覆面2及び高被覆面5の素材相互間で相対的に決まるものであり、その素材についても制限の無いことは勿論である。 Regarding the emissivity of the material forming the low covering surface 2 and the high covering surface 5, respectively, the ones described in Non-Patent Document 1 can be mentioned, and the emissivity of the material to be coated is the tube surface 1, the low covering surface Of course, there is no limitation on the material of the material 2 and the high covering surface 5.

輻射ヒーターの管外周に対する低被覆面幅の割合Ab及び高被覆面幅の割合Afは、少しであっても加熱効率は向上し、被加熱物との位置や距離等の使用条件を勘案して、低被覆面幅の割合Ab及び高被覆面幅の割合Afを決める。例えば、輻射ヒーターの上側半外周を要加熱方向F側、下側半外周を非加熱方向B側と仮定した場合に、低被覆面幅の割合Ab、あるいは高被覆面幅の割合Afは、50%で要加熱方向F側への加熱効率が最大となり、要加熱方向F側への指向性をより高めるには、低被覆面幅の割合Abは、50%より大きく、高被覆面幅の割合Afは、50%より小さくすることが良い。 The heating efficiency improves even if the ratio A b of the low coating surface width and the ratio A f of the high coating surface width to the outer circumference of the tube of the radiant heater are small, taking into consideration the use conditions such as the position and distance to the object to be heated. Then, the ratio A b of the low covering surface width and the ratio A f of the high covering surface width are determined. For example, assuming that the upper half circumference of the radiant heater is the required heating direction F side and the lower half circumference is the non-heating direction B side, the ratio A b of the low coating surface width or the ratio A f of the high coating surface width is , heating efficiency to the main heating direction F side of 50% becomes the maximum, the increase the directivity of the main heating direction F side, the ratio a b of the low coating surface width is greater than 50%, high coverage surface The width ratio Af is preferably smaller than 50%.

以上、本発明に係る輻射ヒーターは、ヒーターの管表面1と、低被覆面2、あるいは高被覆面5との輻射率の差が大きいほど、輻射率の高い素材の表面側からの輻射発散度は増大し、加熱効率の向上が図られる。また、低被覆面2及び高被覆面5を形成する方法には、めっき、塗布、溶射、真空蒸着等によるコーティング処理、あるいは単体の被覆材で被覆する方法等がある。 As described above, in the radiation heater according to the present invention, the greater the difference in the radiation rate between the tube surface 1 of the heater and the low coating surface 2 or the high coating surface 5, the greater the radiation divergence from the surface side of the material having a high radiation rate. Increases and the heating efficiency is improved. In addition, as a method of forming the low coating surface 2 and the high coating surface 5, there are a coating process by plating, coating, thermal spraying, vacuum deposition, etc., or a method of coating with a single coating material.

[本発明の第1実施形態に係る輻射ヒーターにおける低被覆面幅の割合Abと要加熱方向F側への加熱効率の向上率Kの理論数値曲線]
図4は、本発明の第1実施形態に係る輻射ヒーターの投入電力が全て熱輻射として利用され、かつ上側半外周を要加熱方向F側、下側半外周を非加熱方向B側と仮定した場合における、低被覆面幅の割合Abと要加熱方向F側への加熱効率の向上率Kの理論数値曲線である。尚、管表面1の輻射率εを0.8とし、低被覆面2の輻射率εを0.035から0.7まで変化させている。
[Theoretical Numerical Curve of Low Cover Surface Width Ratio Ab and Heating Efficiency Improvement Rate K in Heating Direction F Required in Radiation Heater According to First Embodiment of the Present Invention]
FIG. 4 assumes that all the input power of the radiation heater according to the first embodiment of the present invention is used as thermal radiation, and that the upper half outer periphery is the heating direction F side required and the lower half outer periphery is the non-heating direction B side. 6 is a theoretical numerical curve of a ratio A b of a low coating surface width and a heating efficiency improvement rate K toward the heating direction F side in the case. Note that the emissivity ε f of the tube surface 1 is 0.8, and the emissivity ε b of the low coating surface 2 is changed from 0.035 to 0.7.

本発明の中で示す輻射ヒーターの加熱効率Hβとは、輻射ヒーターの要加熱方向F側への輻射束ΦβFを全輻射束Φで除した数値(Hβ=ΦβF/Φ)である。また、被覆前のヒーターの加熱効率Hαとは、被覆前のヒーターの要加熱方向F側への輻射束ΦαFを全輻射束Φで除した数値(Hα=ΦαF/Φ)である。 The heating efficiency H β of the radiant heater shown in the present invention is a numerical value (H β = Φ βF / Φ) obtained by dividing the radiant flux Φ βF toward the side F requiring heating of the radiant heater by the total radiant flux Φ. . Further, the heating efficiency H α of the heater before coating is a numerical value (H α = Φ αF / Φ) obtained by dividing the radiant flux Φ αF in the heating required direction F side of the heater before coating by the total radiant flux Φ. .

また、本発明の中で示す要加熱方向F側への加熱効率の向上率Kとは、被覆後の輻射ヒーターの加熱効率Hβを被覆前のヒーターの加熱効率Hαで除した数値(K=Hβ/Hα)である。 Further, main and improvement rate K of the heating efficiency of the heating direction F side shown in the present invention, a value obtained by dividing the heating efficiency H beta radiation heater after the coating with heating efficiency H alpha heater before coating (K = / ).

輻射ヒーターの低被覆面幅の割合Abを50%とした場合が、要加熱方向F側に対する加熱効率の向上率Kは最大になる。E1曲線は、E2曲線からE4曲線と比較して、低被覆面2の輻射率εと管表面1の輻射率εの比(ε/ε)が0.044と小さく、低被覆面2が少しであっても加熱効率は向上し、低被覆面幅の割合Abが50%で要加熱方向F側への加熱効率の向上率Kの理論数値は、1.92になる。 If the ratio A b of the low coating surface width of the radiant heater and 50%, improvement rate K of the heating efficiency with respect to a main heating direction F side is maximized. The E1 curve has a smaller ratio (ε b / ε f ) of the emissivity ε b of the low covering surface 2 and the emissivity ε f of the tube surface 1 to 0.044 than the E2 curve to the E4 curve, and the low covering surface 2 there is also the heating efficiency is improved a little, the theoretical value of the increase rate K of heating efficiency ratio a b of the low coating surface width to main heating direction F side 50% will 1.92.

E2曲線は、輻射率の比(ε/ε)が0.375であり、低被覆面幅の割合Abが50%で、要加熱方向F側への加熱効率の向上率Kの理論数値は、1.45と高く、低被覆面幅の割合Abが20%から90%の範囲で、その向上率Kの理論数値は、1.1以上ある。 E2 curve, the ratio of the emissivity (ε b / ε f) is 0.375, with a 50% rate A b of the low coating surface width, the theoretical value of the increase rate K of the heating efficiency of the main heating direction F side as high as 1.45, the range ratio a b is 90% to 20% of low-coated surface width, the theoretical value of the increase rate K is 1.1 or more.

E3曲線は、輻射率の比(ε/ε)が0.7であり、低被覆面幅の割合Abが50%で、要加熱方向F側への加熱効率の向上率Kの理論数値は、1.18であり、低被覆面幅の割合Abが30%から70%の範囲で、その向上率Kの理論数値が1.1以上ある。輻射率の比(ε/ε)が大きくなるほど、その向上率Kは低くなる。 The E3 curve has a ratio of emissivity (ε b / ε f ) of 0.7, the ratio A b of the low coating surface width is 50%, and the theoretical value of the heating efficiency improvement rate K toward the heating direction F side is , 1.18, range rate a b is 70% to 30% of the low coating surface width is theoretical value of the increase rate K is 1.1 or more. As the ratio of emissivity (ε b / ε f ) increases, the improvement rate K decreases.

E4曲線は、輻射率の比(ε/ε)が0.875であり、低被覆面幅の割合Abが50%で、要加熱方向F側への加熱効率の向上率Kの理論数値は、1.07であり、輻射率の比(ε/ε)が0.82よりも大きいと、その向上率Kの理論数値は1.1を越えず、消費電力の削減率も小さくなる。 E4 curve, the ratio of the emissivity (ε b / ε f) is 0.875, with a 50% rate A b of the low coating surface width, the theoretical value of the increase rate K of the heating efficiency of the main heating direction F side 1.07, and if the ratio of emissivity (ε b / ε f ) is greater than 0.82, the theoretical value of the improvement rate K does not exceed 1.1, and the reduction rate of power consumption also decreases.

以下、本発明の実施例を図と表と数に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings, tables and numbers.

管外径が26mm、長さが340mmで輻射率0.8のセラミックス管を用い、管長の軸方向に沿い全長に渡って、その管外周に対する低被覆面幅の割合Abが50%で輻射率0.035の金蒸着膜を帯状に形成し、両端に碍子、端子を備え、電気抵抗値が9.5Ωの電熱線が組み込まれた全長430mmの第1実施形態に係る輻射ヒーターの金被覆セラミックスヒーターを製作した。 Outer diameter is 26 mm, is used a ceramic tube emissivity 0.8 340mm length, over the entire length along the axial direction of the tube length, the ratio A b of the low coating surface width to the tube periphery emissivity of 50% 0.035 A gold-coated ceramic heater for a radiant heater according to the first embodiment having a total length of 430 mm, in which a gold-deposited film was formed in a strip shape, was equipped with insulators and terminals at both ends, and a heating wire with an electric resistance value of 9.5Ω was manufactured .

[実施例1の試験結果1]
表1は、輻射率0.8の無処理のセラミックスヒーターと、実施例1に示す金被覆セラミックスヒーターにおいて、消費電力を変化させた時のヒーター表面温度の変化を実測した結果である。尚、無処理のセラミックスヒーターは、金被覆セラミックスヒーターと金被覆以外は、同一仕様のヒーターである。
[Test result 1 of Example 1]
Table 1 shows the results of actual measurement of changes in the heater surface temperature when the power consumption was changed in the untreated ceramic heater with an emissivity of 0.8 and the gold-coated ceramic heater shown in Example 1. The untreated ceramic heater is a heater having the same specifications except for the gold-coated ceramic heater and the gold-coated heater.

Figure 2016110805
Figure 2016110805

表1の結果より、金被覆セラミックスヒーターの表面温度は、消費電力550Wで596℃であり、無処理のセラミックスヒーターの消費電力900Wの時の表面温度と同じとなり、数1より消費電力の削減率が求められる。   From the results in Table 1, the surface temperature of the gold-coated ceramic heater is 596 ° C with a power consumption of 550W, which is the same as the surface temperature of the untreated ceramic heater with a power consumption of 900W. Is required.

Figure 2016110805
Figure 2016110805

数1の計算の結果から、金被覆セラミックスヒーターは、無処理のセラミックスヒーターと比較して、約4割の消費電力が削減できたことになる。 From the calculation result of Equation 1, the power consumption of the gold-coated ceramic heater was reduced by about 40% compared to the untreated ceramic heater.

表1より消費電力900Wにおける比較で、無処理のセラミックスヒーターの表面温度よりも、金被覆セラミックスヒーターの表面温度は111℃上昇している。輻射束は、素材表面の絶対温度の4乗に比例して増大するので、金被覆セラミックスヒーターの要加熱方向F側への加熱効率の向上率Kは、1.62に増大したことになる。尚、図4のE1曲線より要加熱方向F側への加熱効率の向上率Kの理論数値は、1.92である。 Table 1 shows that the surface temperature of the gold-coated ceramic heater is 111 ° C. higher than the surface temperature of the untreated ceramic heater in comparison with the power consumption of 900 W. Since the radiant flux increases in proportion to the fourth power of the absolute temperature of the material surface, the heating efficiency improvement rate K toward the heating required direction F side of the gold-coated ceramic heater has increased to 1.62. In addition, the theoretical numerical value of the improvement rate K of the heating efficiency from the E1 curve of FIG. 4 to the heating direction F side is 1.92.

[実施例1の試験結果2]
表2は、実施例1の金被覆セラミックスヒーター及び無処理のセラミックスヒーターを用いて、ビーカー内の水に対する加熱効果を調べた試験結果である。試験の操作方法は、水道水400mlを入れた1■ビーカーを、金被覆セラミックスヒーター及び無処理のセラミックスヒーターで加熱し、30℃から40℃までの昇温に要した時間を測定したものである。
[Test result 2 of Example 1]
Table 2 shows the test results of examining the heating effect on the water in the beaker using the gold-coated ceramic heater of Example 1 and the untreated ceramic heater. The operation method of the test is to measure a time required for heating from 30 ° C. to 40 ° C. by heating a beaker containing 400 ml of tap water with a gold-coated ceramic heater and an untreated ceramic heater. .

Figure 2016110805
Figure 2016110805

表2の結果から、金被覆セラミックスヒーターによる加熱は、無処理のセラミックスヒーターによる加熱と比較して、ビーカー内の水が短時間で昇温したことから、高い加熱効果が確認された。無処理のセラミックスヒーターが消費電力800W、金被覆セラミックスヒーターが消費電力500Wで、昇温時間がほぼ同じであり、数2より消費電力の削減率が求められる。   From the results shown in Table 2, the heating with the gold-coated ceramic heater was confirmed to have a high heating effect because the water in the beaker was heated in a short time compared to the heating with the untreated ceramic heater. The untreated ceramic heater has a power consumption of 800 W, the gold-covered ceramic heater has a power consumption of 500 W, and the heating time is almost the same.

Figure 2016110805
Figure 2016110805

数2の計算結果から、金被覆セラミックスヒーターは、無処理のセラミックスヒーターと比較して、約4割の消費電力の削減ができたことになる。 From the calculation result of Equation 2, the gold-coated ceramic heater has reduced power consumption by about 40% compared to the untreated ceramic heater.

第1実施形態に係る輻射ヒーターの一例である金被覆セラミックスヒーターは、無処理のセラミックスヒーターと比較して、要加熱方向F側への加熱効率の向上率Kが高くなり、数1及び数2による計算結果より、各々約4割の消費電力の削減ができることを示した。 The gold-coated ceramic heater, which is an example of the radiation heater according to the first embodiment, has a higher heating efficiency improvement rate K toward the heating required direction F as compared with an untreated ceramic heater. From the calculation results by, it was shown that power consumption can be reduced by about 40% each.

管外径が28mm、長さが300mm、厚さが1mmのステンレスSUS316管を管長の軸方向に沿って全長に渡り、均等に3分割にした1/3パイプを用い、(0045)及び(0051)に示す試験で使用した無処理のセラミックスヒーターに被覆し、両端をステンレスバンドで固定し、低被覆面幅の割合Abが30%で帯状の低被覆面2を形成した第1実施形態に係る輻射ヒーターのステンレス被覆セラミックスヒーターを製作した。 A stainless steel SUS316 pipe having a pipe outer diameter of 28 mm, a length of 300 mm, and a thickness of 1 mm was used as a 1/3 pipe divided into three equal parts over the entire length along the axial direction of the pipe length (0045) and (0051 The first embodiment in which the untreated ceramic heater used in the test shown in Fig. 1) is covered, both ends are fixed with a stainless steel band, and the low covering surface width ratio Ab is 30% to form a belt-like low covering surface 2 is formed. A stainless steel ceramic heater for such a radiation heater was manufactured.

(0045)に示す同様の試験をステンレス被覆セラミックスヒーターでも実施し、要加熱方向F側への加熱効率の向上率Kは、1.19に増大した。ステンレスSUS316の酸化面の輻射率は、0.3であり、図4のE2曲線より、低被覆面幅の割合Abが30%の要加熱方向F側への加熱効率の向上率Kの理論数値は、1.23であり、近似した試験結果になった。 The same test shown in (0045) was also performed with a stainless steel ceramic heater, and the heating efficiency improvement rate K toward the heating direction F side increased to 1.19. Emissivity of the oxide surface of the stainless steel SUS316 is 0.3, than E2 curve in FIG. 4, the theoretical value of the increase rate K of heating efficiency to the ratio A b of the low coating surface width of 30% of the main heating direction F side 1.23, which is an approximate test result.

[本発明の第1実施形態に係る輻射ヒーターの適用例1]
以下に、本発明の第1実施形態に係る輻射ヒーターを適用例について、図に基づいて説明する。
[Application example 1 of the radiant heater according to the first embodiment of the present invention]
Hereinafter, application examples of the radiation heater according to the first embodiment of the present invention will be described with reference to the drawings.

図5は、本発明の第1実施形態に係る輻射ヒーターを適用した調理用下火焼き器の平面図(a)及び正面断面図(b)である。下火焼き器6へのヒーター使用は、魚や肉等の被加熱物7から油脂を含むドリップ等が落下するため、反射板の設置は困難であり、輻射束の半分近くが非加熱方向B側へ捨てられ、消費電力が無駄になってしまう。そこで、第1実施形態に係る輻射ヒーターを使用した場合は、同一の消費電力の投入でヒーター表面温度が高くなり、反射板を設置しなくても要加熱方向F側への輻射束が増大し、加熱効率が向上して、焼き時間の短縮ができる。 FIG. 5 is a plan view (a) and a front cross-sectional view (b) of a cooking pan for cooking using the radiant heater according to the first embodiment of the present invention. When using a heater for the lower-fire bakeware 6, it is difficult to install a reflector because a drip containing oil or fat falls from the heated object 7 such as fish or meat, and nearly half of the radiant flux is on the non-heating direction B side. The power consumption is wasted. Therefore, when the radiant heater according to the first embodiment is used, the heater surface temperature increases with the same power consumption, and the radiant flux toward the heating direction F side increases without installing a reflector. The heating efficiency is improved and the baking time can be shortened.

下火焼き器6に従来のヒーターを用いた場合は、水槽の水8が加温されて蒸発減少が著しい。しかし、第1実施形態に係る輻射ヒーターを用いた場合は、要加熱方向B側への輻射束が抑制されているため、水槽の水8の蒸発も抑えられ、輻射ヒーターから水面までの距離Lw1が短くでき、下火焼き器6の高さを低くした設計にできる。 When a conventional heater is used for the lower flame baking apparatus 6, the water 8 in the water tank is heated and the evaporation reduction is remarkable. However, when the radiant heater according to the first embodiment is used, since the radiant flux in the heating direction B side is suppressed, evaporation of water 8 in the water tank is also suppressed, and the distance Lw from the radiant heater to the water surface is reduced. 1 can be shortened, and the design of the lower-fired oven 6 can be made lower.

[本発明の第1実施形態に係る輻射ヒーターの適用例2]
図6は、従来のヒーターを適用した加熱装置(a)及び本発明の第1実施例の輻射ヒーターを適用した加熱装置(b)を比較した図である。加熱装置に従来のヒーターを使用した場合は、上側の壁に反射板9を設置して加熱効率を高めるが、その加熱効率が落ちないように随時反射板の洗浄を必要とする。また反射板の設置空間も必要であり、ヒーターから壁面までの距離Lc2を長く取らなければならない。そこで、加熱装置に第1実施形態に係る輻射ヒーターを使用した場合は、反射板を設置しなくても加熱効率の向上した加熱装置になり、輻射ヒーターから壁面までの距離Lc1は短くでき、またヒーターから水面までの距離Lw2を長くとるのが普通であるが、輻射ヒーターから水面までの距離Lw1も短くでき、水槽の水8の蒸発が抑制され、加熱装置内の省スペース化(装置内空間を狭くできること)が可能になる。
[Application example 2 of the radiant heater according to the first embodiment of the present invention]
FIG. 6 is a diagram comparing a heating device (a) to which a conventional heater is applied and a heating device (b) to which the radiation heater according to the first embodiment of the present invention is applied. When a conventional heater is used for the heating device, the reflecting plate 9 is installed on the upper wall to increase the heating efficiency, but the reflecting plate needs to be cleaned as needed so that the heating efficiency does not decrease. In addition, a space for installing the reflector is also required, and a long distance Lc 2 from the heater to the wall must be taken. Therefore, when the radiation heater according to the first embodiment is used for the heating device, the heating device has improved heating efficiency without installing a reflector, and the distance Lc 1 from the radiation heater to the wall surface can be shortened. In addition, the distance Lw 2 from the heater to the water surface is usually increased, but the distance Lw 1 from the radiant heater to the water surface can also be shortened, the evaporation of the water 8 in the water tank is suppressed, and space saving in the heating device ( The space inside the apparatus can be reduced).

また、輻射ヒーターの適用により加熱装置内の省スペース化になることは、加熱装置の外寸も小さくできるため、製作資材等が削減でき、装置からの放熱も減り、省エネルギー化した加熱装置になる。 In addition, space saving in the heating device by applying a radiant heater can reduce the outer dimensions of the heating device, thereby reducing production materials and the like, reducing heat radiation from the device, and saving energy. .

本発明に係る輻射ヒーターは、反射板を設置しなくとも加熱効率の高いヒーターであり、被加熱物7が、紙や繊維、木材、樹脂等の有機物、あるいは金属酸化物やセラミックス等の無機物に対する加熱源としても有効なのは、明らかである。 The radiant heater according to the present invention is a heater having high heating efficiency without installing a reflector, and the object to be heated 7 is for an organic substance such as paper, fiber, wood, resin, or an inorganic substance such as metal oxide or ceramics. It is clear that it is also effective as a heating source.

1 ヒーターの管表面(管表面)
2 輻射率の低い素材からなる被覆面(低被覆面)
3 碍子
4 端子
5 輻射率の高い素材からなる被覆面(高被覆面)
6 下火焼き器(下からの上向き加熱で焼くタイプの焼き器)
7 被加熱物(加熱対象物)
8 水槽の水
9 反射板
F 熱輻射の必要な加熱方向(要加熱方向)
B 熱輻射の不要な加熱方向(非加熱方向)
Ab 低被覆面2の幅の割合(低被覆面幅の割合)
Af 高被覆面5の幅の割合(高被覆面幅の割合)
Lw1 輻射ヒーターから水面までの距離
Lw2 ヒーターから水面までの距離
Lc1 輻射ヒーターから壁面までの距離
Lc2 ヒーターから壁面までの距離
1 Heater tube surface (tube surface)
2 Covered surface made of material with low emissivity (low coated surface)
3 Choshi
4 terminals
5 Covered surface made of material with high emissivity (highly coated surface)
6 Lower-heater (a type that burns upward from below)
7 Object to be heated (object to be heated)
8 Aquarium water
9 Reflector
F Heating direction that requires heat radiation (heating direction required)
B Heating direction that does not require heat radiation (non-heating direction)
A b Ratio of width of low coated surface 2 (ratio of width of low coated surface)
A f Ratio of width of high covering surface 5 (Ratio of high covering surface width)
Lw 1 Distance from radiant heater to water surface
Distance from Lw 2 heater to water surface
Lc 1 Distance from radiant heater to wall
Distance from Lc 2 heater to wall

Claims (3)

不透明な素材で構成された管状ヒーターの管外周の一部に対して、管長の軸方向に沿って全長に渡り、管表面の輻射率より低い輻射率の帯状の素材を以って、低被覆面を形成した輻射ヒーター。 Low covering with a strip-shaped material whose emissivity is lower than the emissivity of the tube surface over the entire length along the axial direction of the tube length on a part of the tube outer circumference of the tube heater made of opaque material Radiant heater with a surface. 不透明な素材で構成された管状ヒーターの管外周の一部に対して、管長の軸方向に沿って全長に渡り、管表面の輻射率より高い輻射率の帯状の素材を以って、高被覆面を形成した輻射ヒーター。 Highly covered with a strip-shaped material whose emissivity is higher than the emissivity of the tube surface over the entire length along the axial direction of the tube length on a part of the outer circumference of the tube heater made of opaque material Radiant heater with a surface. 請求項1の輻射ヒーターの低被覆面を形成していない管外周の一部、あるいは全部に対して、管長の軸方向に沿って全長に渡り、管表面の輻射率より高い輻射率の帯状の素材を以って、高被覆面を形成した輻射ヒーター。 The part of the outer periphery of the pipe not forming the low covering surface of the radiant heater according to claim 1 is formed in a band shape having a radiation rate higher than the radiation rate of the pipe surface over the entire length along the axial direction of the pipe length. A radiant heater with a high covering surface made of a material.
JP2014246434A 2014-12-05 2014-12-05 Radiant heater Active JP5824689B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246434A JP5824689B1 (en) 2014-12-05 2014-12-05 Radiant heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246434A JP5824689B1 (en) 2014-12-05 2014-12-05 Radiant heater

Publications (2)

Publication Number Publication Date
JP5824689B1 JP5824689B1 (en) 2015-11-25
JP2016110805A true JP2016110805A (en) 2016-06-20

Family

ID=54696333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246434A Active JP5824689B1 (en) 2014-12-05 2014-12-05 Radiant heater

Country Status (1)

Country Link
JP (1) JP5824689B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111405691B (en) * 2020-03-18 2022-07-08 山东永恒轴承有限公司 Bearing heating device
CN113615891B (en) * 2021-08-06 2024-02-23 安徽中烟工业有限责任公司 Efficient infrared circumferential heating element and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691391A (en) * 1979-12-21 1981-07-24 Matsushita Electric Ind Co Ltd Panel heater
JPS5638788A (en) * 1980-08-14 1981-04-14 Matsushita Electric Ind Co Ltd Infrared ray heater
JPS59160993A (en) * 1983-03-02 1984-09-11 松下電器産業株式会社 Heater
JPS59186293A (en) * 1983-04-05 1984-10-23 コ−ニング・ジヤパン・インコ−ポレ−テツド Glass tubular heater with radiation window
JPH02213080A (en) * 1989-02-14 1990-08-24 Matsushita Electric Ind Co Ltd Heating device and manufacture thereof
JPH07123069B2 (en) * 1989-05-18 1995-12-25 松下電器産業株式会社 Heating element
JPH06101369B2 (en) * 1989-05-18 1994-12-12 松下電器産業株式会社 Heating device
JP2911564B2 (en) * 1990-08-08 1999-06-23 大成建設株式会社 Far-infrared radiation panel heater
JPH0629085U (en) * 1992-09-04 1994-04-15 立身 斉藤 Far infrared heater
JP2910576B2 (en) * 1994-09-30 1999-06-23 松下電器産業株式会社 Cooker
JP4235999B2 (en) * 2003-08-26 2009-03-11 株式会社協真エンジニアリング High temperature chamber heater and high temperature chamber equipped with the heater

Also Published As

Publication number Publication date
JP5824689B1 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5824689B1 (en) Radiant heater
JP2019500996A5 (en)
JPH07230795A (en) Heat generating tungsten halogen lamp, heating device and image forming device
JP2015052446A (en) Heater unit and heating cooker equipped with the heater unit
JPH0410716B2 (en)
CN110740532A (en) heating assembly, preparation method thereof and kitchen appliance
US2836698A (en) Domestic appliance
CN201063878Y (en) Infrared heating tube
JP2006302719A (en) Infrared ray lamp with reflecting film and its manufacturing method
CN104113942A (en) Electric heating assembly
JPS63269473A (en) Heating cooker
JP2021009003A (en) Near infrared heating device
JP2007333250A (en) Far-infrared panel heater
JPH07280279A (en) Heating and cooking device
CN204409396U (en) A kind of far-infrared reflection device
KR101659582B1 (en) Cook top for cooking vessel
JP2013019587A (en) Cooker
JP3168214U (en) Heat reflecting member and heater using the heat reflecting member
JPS5839039Y2 (en) Planar far infrared heater
JP2958888B1 (en) Improved structure of far infrared heater
JP2005108586A (en) Electric cooker
JPH0739453A (en) Electric rice cooker
JPH08256906A (en) Rice cooker
JP2020020555A (en) High-temperature water production device
JPH0884661A (en) Rice cooker

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150820

R150 Certificate of patent or registration of utility model

Ref document number: 5824689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350