JP2016110738A - Powder for conductive filler - Google Patents

Powder for conductive filler Download PDF

Info

Publication number
JP2016110738A
JP2016110738A JP2014244748A JP2014244748A JP2016110738A JP 2016110738 A JP2016110738 A JP 2016110738A JP 2014244748 A JP2014244748 A JP 2014244748A JP 2014244748 A JP2014244748 A JP 2014244748A JP 2016110738 A JP2016110738 A JP 2016110738A
Authority
JP
Japan
Prior art keywords
powder
phase
alloy
less
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014244748A
Other languages
Japanese (ja)
Other versions
JP6445854B2 (en
Inventor
哲嗣 久世
Tetsutsugu Kuze
哲嗣 久世
哲朗 仮屋
Tetsuro Kariya
哲朗 仮屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014244748A priority Critical patent/JP6445854B2/en
Publication of JP2016110738A publication Critical patent/JP2016110738A/en
Application granted granted Critical
Publication of JP6445854B2 publication Critical patent/JP6445854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide powder for a conductive filler excellent in conductivity, obtainable at a low cost, and also lightweight.SOLUTION: The material of the particle 1 of powder for a conductive filler being an alloy containing, by mass, 0.1 to 30% of Al, Si and conductive elements X1 with inevitable impurities. This alloy includes: a plurality of Al phases 2; a plurality of silicide phases 3, and an Si phase 4. The ratio (P1/P2) between the integrated intensity P1 of the peak of the Al(111) whose 2θ measured by XRD lies in the vicinity of 38.6°±0.3° and the integrated intensity P2 of the peak of the Si(111) whose 2θ lies in the vicinity of 28.3°±0.3° being 0.01 to 0.30. The density of this powder being 2.0 to 6.0 Mg/m.SELECTED DRAWING: Figure 1

Description

本発明は、導電性樹脂、導電性プラスチック、導電性ペースト、電子機器、電子部品等に用いられる導電フィラーに適した粉末に関する。   The present invention relates to a powder suitable for a conductive filler used in a conductive resin, a conductive plastic, a conductive paste, an electronic device, an electronic component, and the like.

導電性物質に含有されるフィラーに、金、銀、白金及び銅のような貴金属の粉末が用いられている。他の金属の表面に貴金属がコーティングされた粉末も、導電フィラーとして用いられている。貴金属の電気抵抗は小さいので、この貴金属を含むフィラーは導電性に優れる。貴金属を含む粒子の凝集により、粒子同士の大きな接触面積が得られるので、この観点からも貴金属はフィラーの導電性に寄与する。貴金属はさらに、熱伝導性にも優れる。   As the filler contained in the conductive material, powders of noble metals such as gold, silver, platinum and copper are used. A powder in which a surface of another metal is coated with a noble metal is also used as a conductive filler. Since the electrical resistance of the noble metal is small, the filler containing the noble metal is excellent in conductivity. Since a large contact area between the particles can be obtained by aggregation of the particles containing the noble metal, the noble metal contributes to the conductivity of the filler also from this viewpoint. Precious metals are also excellent in thermal conductivity.

貴金属は、高価である。従って、貴金属を含む導電性物質は、高コストである。しかも、貴金属は高比重である。従って、貴金属を含む導電性物質は、重い。コスト低減及び軽量化の観点から、貴金属以外の元素を含む合金の検討が、種々なされている。   Precious metals are expensive. Therefore, a conductive material containing a noble metal is expensive. Moreover, noble metals have a high specific gravity. Therefore, the conductive substance containing a noble metal is heavy. From the viewpoint of cost reduction and weight reduction, various studies have been made on alloys containing elements other than noble metals.

特開2004−47404公報には、シリコン化合物からなる粒子の表面に、炭素がコーティングされた導電フィラー用合金が開示されている。この粒子では、シリコン微結晶がシリコン化合物に分散している。   Japanese Patent Application Laid-Open No. 2004-47404 discloses an alloy for conductive filler in which the surface of particles made of a silicon compound is coated with carbon. In these particles, silicon microcrystals are dispersed in the silicon compound.

特開2004−232699公報には、Agからなる粒子の表面に、Si又はSi系化合物がコーティングされた導電フィラー用合金が開示されている。   Japanese Patent Application Laid-Open No. 2004-232699 discloses an alloy for conductive filler in which the surface of particles made of Ag is coated with Si or a Si-based compound.

特開2008−136475公報には、銀と、0.01−10質量%のSiとを含有する導電フィラー用合金が開示されている。この合金では、銀粒子の表面に、SiOのゲルがコーティングされている。 Japanese Patent Application Laid-Open No. 2008-136475 discloses an alloy for conductive fillers containing silver and 0.01-10% by mass of Si. In this alloy, the surface of silver particles is coated with a SiO 2 gel.

特開2004−47404公報JP 2004-47404 A 特開2004−232699公報JP 2004-232699 A 特開2008−136475公報JP 2008-136475 A

近年、電子機器の高性能化及び用途拡大が進んでいる。導電性物質には、低コスト化及び軽量化の要請がある。   In recent years, performance enhancement and application expansion of electronic devices have progressed. There is a demand for reducing the cost and weight of the conductive material.

本発明の目的は、導電性に優れ、低コストで得られ、かつ軽量である導電フィラー用粉末の提供にある。   An object of the present invention is to provide a conductive filler powder that is excellent in conductivity, obtained at low cost, and lightweight.

本発明に係る導電フィラー用粉末の材質は、0.1質量%以上30質量%以下のAl、Si、導電性の元素X1及び不可避的不純物を含む合金である。この合金は、複数のAl相と、Siと元素X1とを含有する複数のシリサイド相と、Si相とを有する。この粉末の、XRDによって測定された、その2θが38.6°±0.3°付近にあるAl(111)面のピークの積分強度P1と、その2θが28.3°±0.3°付近にあるSi(111)面のピークの積分強度P2との、比(P1/P2)は、0.01以上0.30以下である。この粉末の密度は、2.0Mg/m以上6.0Mg/m以下である。 The material for the conductive filler powder according to the present invention is an alloy containing 0.1% by mass or more and 30% by mass or less of Al, Si, the conductive element X1, and inevitable impurities. This alloy has a plurality of Al phases, a plurality of silicide phases containing Si and the element X1, and a Si phase. The integrated intensity P1 of the peak of the Al (111) surface, measured by XRD, whose 2θ is near 38.6 ° ± 0.3 °, and its 2θ is 28.3 ° ± 0.3 °. The ratio (P1 / P2) with the integrated intensity P2 of the peak of the Si (111) plane in the vicinity is 0.01 or more and 0.30 or less. The density of this powder is 2.0 Mg / m 3 or more and 6.0 Mg / m 3 or less.

好ましくは、Al相は、Si相内に分散して存在する。好ましくは、1つのAl相は、シリサイド相と他のシリサイド相とをリンクしている。   Preferably, the Al phase is dispersed in the Si phase. Preferably, one Al phase links a silicide phase and another silicide phase.

好ましくは、元素X1は、B、C、Na、Mg、P、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びAuからなる群から選択された1種又は2種以上である。   Preferably, the element X1 is one or two selected from the group consisting of B, C, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Au. That's it.

好ましくは、合金は、元素X2をさらに含む。この元素X2は、Sn、In、Zn、Bi、Ga及びPbからなる群から選択された1種又は2種以上である。   Preferably, the alloy further includes element X2. The element X2 is one or more selected from the group consisting of Sn, In, Zn, Bi, Ga, and Pb.

本発明に係る導電フィラー用粉末は、材質がSiを含む合金であるため、低コストで得られうる。この粉末は、貴金属がコーティングされて得られる粉末に比べ、製造に手間がかからず、しかもコーティング層の剥離の問題も生じない。この粉末は低密度でもある。この粉末では、Al相及びシリサイド相が導電性に寄与する。   Since the conductive filler powder according to the present invention is an alloy containing Si, it can be obtained at low cost. Compared with a powder obtained by coating a noble metal, this powder is less time-consuming to manufacture and does not cause a problem of peeling of the coating layer. This powder is also low density. In this powder, the Al phase and the silicide phase contribute to conductivity.

図1は、本発明の一実施形態に係る粉末に含まれる粒子の一部が示された断面図である。FIG. 1 is a cross-sectional view illustrating a part of particles included in a powder according to an embodiment of the present invention.

以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。   Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings.

本発明に係る導電フィラー用粉末は、多数の粒子の集合である。図1に、この粒子1の断面が拡大されて示されている。この粒子1の材質は、合金である。この合金は、Al、Si及び元素X1を含んでいる。元素X1は、導電性である。元素X1の電気伝導度は、100AV−1−1以上である。 The conductive filler powder according to the present invention is an aggregate of a large number of particles. FIG. 1 shows an enlarged cross section of the particle 1. The material of the particles 1 is an alloy. This alloy contains Al, Si, and element X1. The element X1 is conductive. The electric conductivity of the element X1 is 100 AV −1 m −1 or more.

好ましくは、合金は、
(1)Al
(2)Si
(3)元素X1
及び
(4)不可避的不純物
のみを含む。
Preferably, the alloy is
(1) Al
(2) Si
(3) Element X1
And (4) Contains only inevitable impurities.

図1に示されるように、この合金は、複数のAl相2、複数のシリサイド相3及びSi相4を有している。これらのAl相2は、Si相4に分散して析出している。シリサイド相3も、Si相4に分散して析出している。   As shown in FIG. 1, this alloy has a plurality of Al phases 2, a plurality of silicide phases 3 and a Si phase 4. These Al phases 2 are dispersed and precipitated in the Si phase 4. Silicide phase 3 is also dispersed and precipitated in Si phase 4.

それぞれのAl相2の主成分は、Alである。Al相2が、Alのみを含んでもよい。Al相2が、Alと共に、少量の他の元素を含んでもよい。Al相2におけるAlの比率は、90質量%以上である。Alは、導電性である。   The main component of each Al phase 2 is Al. The Al phase 2 may contain only Al. The Al phase 2 may contain a small amount of other elements together with Al. The ratio of Al in the Al phase 2 is 90% by mass or more. Al is conductive.

それぞれのシリサイド相3は、Al、Si及び元素X1を含有する。このシリサイド相3は、AlとSiとの化合物を含みうる。このシリサイド相3は、Siと元素X1との化合物を含みうる。このシリサイド相3は、Al、Si及び元素X1の化合物を含みうる。このシリサイド相3において、Al及び元素X1は、Siに固溶しうる。Al及び元素X1を含有するので、このシリサイド相3は導電性である。   Each silicide phase 3 contains Al, Si, and element X1. The silicide phase 3 can contain a compound of Al and Si. The silicide phase 3 can include a compound of Si and the element X1. The silicide phase 3 can include a compound of Al, Si, and the element X1. In the silicide phase 3, Al and the element X1 can be dissolved in Si. This silicide phase 3 is conductive because it contains Al and the element X1.

Si相4の主成分は、Siである。Si相4が、Siのみを含んでもよい。Si相4が、Siと共に、少量の他の元素(Al等)を含んでもよい。他の元素は、Si相4にドープされてもよく、固溶してもよい。   The main component of the Si phase 4 is Si. Si phase 4 may contain only Si. The Si phase 4 may contain a small amount of other elements (such as Al) together with Si. Other elements may be doped into the Si phase 4 or may be dissolved.

Siは、電気伝導度の低い金属である。一方、Al相2及びシリサイド相3は、粒子1の電気抵抗を抑制する。このAl相2及びシリサイド相3を含む導電フィラー用粉末は、導電性に優れる。特に、Al相2を有する粉末は、導電性に優れる。この粉末を含む物体(例えば電子機器)は、導電性に優れる。   Si is a metal with low electrical conductivity. On the other hand, the Al phase 2 and the silicide phase 3 suppress the electrical resistance of the particles 1. The conductive filler powder containing the Al phase 2 and the silicide phase 3 is excellent in conductivity. In particular, the powder having the Al phase 2 is excellent in conductivity. An object (for example, an electronic device) containing this powder is excellent in conductivity.

図1に示されるように、Al相2は、シリサイド相3と他のシリサイド相3とをリンクしている。この合金では、電気は、Al相2及びシリサイド相3を通じて流れる。この粉末は、導電性に極めて優れる。   As shown in FIG. 1, the Al phase 2 links the silicide phase 3 and another silicide phase 3. In this alloy, electricity flows through the Al phase 2 and the silicide phase 3. This powder is extremely excellent in conductivity.

従来の導電フィラー粉末には、前述の通り、金、銀、白金及び銅のような貴金属が用いられている。金の密度は19.32Mg/mであり、銀の密度は10.50Mg/mであり、白金の密度は21.45Mg/mであり、銅の密度は8.960Mg/mである。一方、Alの密度は2.698Mg/mであり、Siの密度は2.329Mg/mである。Al及びSiの密度は、金属の中では小さい。Al及びSiを含む導電フィラー用粉末は、軽量である。この粉末を含む物体は、軽量である。 As described above, noble metals such as gold, silver, platinum and copper are used for the conventional conductive filler powder. The density of gold is 19.32 Mg / m 3 , the density of silver is 10.50 Mg / m 3 , the density of platinum is 21.45 Mg / m 3 , and the density of copper is 8.960 Mg / m 3 is there. On the other hand, the density of Al is 2.698 Mg / m 3 and the density of Si is 2.329 Mg / m 3 . The density of Al and Si is small among metals. The conductive filler powder containing Al and Si is lightweight. The object containing this powder is lightweight.

Al及びSiは、貴金属に比べて低価格である。Al及びSiを含む導電フィラー用粉末は、この粉末を含む物体の低コストを達成する。さらにこの粉末は、コーティングの手間がなく製造されうる。   Al and Si are less expensive than noble metals. The conductive filler powder containing Al and Si achieves the low cost of the object containing this powder. Furthermore, this powder can be produced without the hassle of coating.

導電性の観点から、合金におけるAlの比率は0.1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が特に好ましい。   From the viewpoint of conductivity, the Al ratio in the alloy is preferably 0.1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more.

粒子1の表面に存在するAlは、大気中の酸素と反応しうる。この反応により、アルミナが生成される。アルミナは、粒子1の表面において酸化被膜を形成する。アルミナは、絶縁性である。アルミナは、粒子1同士の接触抵抗を高める。この粒子1を含む粉末は、導電性に劣る。アルミナの生成が抑制されるとの観点、及び低コストの観点から、合金におけるAlの比率は30質量%以下が好ましく、10質量%以下が特に好ましい。   Al present on the surface of the particle 1 can react with oxygen in the atmosphere. This reaction produces alumina. Alumina forms an oxide film on the surface of the particles 1. Alumina is insulative. Alumina increases the contact resistance between the particles 1. The powder containing the particles 1 is inferior in conductivity. From the viewpoint that generation of alumina is suppressed and from the viewpoint of low cost, the Al ratio in the alloy is preferably 30% by mass or less, and particularly preferably 10% by mass or less.

導電性の観点から、合金における元素X1の比率は1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上が特に好ましい。合金が十分なSiを含有しうるとの観点から、元素X1の比率は50質量%以下が好ましい。   From the viewpoint of conductivity, the ratio of the element X1 in the alloy is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more. From the viewpoint that the alloy can contain sufficient Si, the ratio of the element X1 is preferably 50% by mass or less.

軽量及び低コストの観点から、合金におけるSiの比率は45質量%以上が好ましく、65質量%以上がより好ましく、75質量%以上が特に好ましい。合金が十分なAl及び元素X1を含有しうるとの観点から、Siの比率は95質量%以下が好ましい。   From the viewpoint of light weight and low cost, the Si ratio in the alloy is preferably 45% by mass or more, more preferably 65% by mass or more, and particularly preferably 75% by mass or more. From the viewpoint that the alloy can contain sufficient Al and the element X1, the Si ratio is preferably 95% by mass or less.

導電フィラー用粉末を含む物体の軽量の観点から、この粉末の密度は6.0Mg/m以下が好ましく、5.5Mg/m以下がより好ましく、5.0Mg/m以下が特に好ましい。密度は、2.0Mg/m以上が好ましく、2.5Mg/m以上がより好ましく、3.0Mg/m以上が特に好ましい。 From the viewpoint of weight of the object containing a conductive filler powder, the density of the powder is preferably 6.0 mg / m 3 or less, more preferably 5.5 mg / m 3 or less, 5.0 mg / m 3 or less is particularly preferred. Density is preferably 2.0 Mg / m 3 or more, more preferably 2.5 mg / m 3 or more, 3.0 mg / m 3 or more is particularly preferable.

密度は、島津製作所社の乾式自動密度計「アキュピック II 340シリーズ」により測定される。この装置の容器に粉末が投入され、ヘリウムガスが充填される。定容積膨張法に基づき、粉末の密度が検出される。10回の測定の平均値が算出される。   The density is measured by a dry automatic densimeter “Acupic II 340 series” manufactured by Shimadzu Corporation. The container of this apparatus is charged with powder and filled with helium gas. Based on the constant volume expansion method, the density of the powder is detected. An average value of 10 measurements is calculated.

元素X1の具体例として、B、C、Na、Mg、P、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びAuが挙げられる。粉末が、2種以上の元素X1を含んでもよい。これらの元素X1は、粉末の熱伝導性にも寄与しうる。   Specific examples of the element X1 include B, C, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Au. The powder may contain two or more elements X1. These elements X1 can also contribute to the thermal conductivity of the powder.

本発明では、XRD(X-ray diffraction)により、粉末の積分強度P1及びP2が測定される。P1は、Al(111)面のピークの積分強度である。Al(111)面のピークの2θは、38.6°±0.3°付近である。P2は、Si(111)面のピークの積分強度である。Si(111)面のピークの2θは、28.3°±0.3°付近にある。比(P1/P2)は、0.01以上0.30以下が好ましい。比(P1/P2)が0.01以上である粉末では、十分なAl相2が析出する。この観点から、比(P1/P2)は0.05以上がより好ましく、0.10以上が特に好ましい。比(P1/P2)が0.30以下である粉末では、Alの酸化被膜が形成されにくい。この観点から、比(P1/P2)は0.20以下が特に好ましい。   In the present invention, the integrated intensities P1 and P2 of the powder are measured by XRD (X-ray diffraction). P1 is the integrated intensity of the peak of the Al (111) plane. The peak 2θ of the Al (111) plane is around 38.6 ° ± 0.3 °. P2 is the integrated intensity of the peak of the Si (111) plane. The peak 2θ of the Si (111) plane is in the vicinity of 28.3 ° ± 0.3 °. The ratio (P1 / P2) is preferably 0.01 or more and 0.30 or less. In a powder having a ratio (P1 / P2) of 0.01 or more, sufficient Al phase 2 is precipitated. In this respect, the ratio (P1 / P2) is more preferably equal to or greater than 0.05, and particularly preferably equal to or greater than 0.10. In a powder having a ratio (P1 / P2) of 0.30 or less, it is difficult to form an Al oxide film. In this respect, the ratio (P1 / P2) is particularly preferably equal to or less than 0.20.

合金が、元素X2を含んでもよい。この場合、好ましくは、合金は、
(1)Al
(2)Si
(3)元素X1
(4)元素X2
及び
(5)不可避的不純物
のみを含む。
The alloy may include the element X2. In this case, preferably the alloy is
(1) Al
(2) Si
(3) Element X1
(4) Element X2
And (5) Contains only inevitable impurities.

元素X2として、Sn、In、Zn、Bi、Ga及びPbが挙げられる。合金が、2種以上の元素X2を含んでもよい。   Examples of the element X2 include Sn, In, Zn, Bi, Ga, and Pb. The alloy may include two or more elements X2.

粉末の電気伝導度は、粒子1の内部のバルク抵抗と、粒子1同士の接触抵抗に、主として支配される。軟質な元素X2を含む合金は、粒子1同士の密着性を高める。この元素X2により、接触抵抗が低減される。   The electrical conductivity of the powder is mainly governed by the bulk resistance inside the particles 1 and the contact resistance between the particles 1. The alloy containing the soft element X2 improves the adhesion between the particles 1. This element X2 reduces the contact resistance.

合金における元素X2の含有量は、1質量%以上5質量%以下が好ましい。   The content of the element X2 in the alloy is preferably 1% by mass or more and 5% by mass or less.

元素X2は、Siとの融点差が大きく、かつ、元素X2及びSiの相互の溶解はほとんどない。従って、Si−X2合金のアトマイズをおこなうと、Siと元素X2とを含有するシリサイド相が現れにい。このアトマイズにより、Si単体と元素X2の単体とが析出する傾向が見られる。Si単体の電気伝導度は非常に小さく、さらにSi−X2合金中におけるSi単体が占める割合は多いため、Si−X2合金は導電フィラー粉末としては適さない。本発明に係る粉末の合金では、元素X2は、Al及び元素X1に付随して添加される。この合金は、導電フィラー粉末に適している。   The element X2 has a large melting point difference from Si, and the elements X2 and Si hardly dissolve each other. Therefore, when the Si—X2 alloy is atomized, a silicide phase containing Si and the element X2 appears. By this atomization, there is a tendency that Si simple substance and element X2 simple substance are precipitated. Since the electrical conductivity of Si alone is very small, and the proportion of Si alone in the Si—X2 alloy is large, the Si—X2 alloy is not suitable as a conductive filler powder. In the powder alloy according to the present invention, the element X2 is added along with Al and the element X1. This alloy is suitable for conductive filler powder.

導電フィラー粉末は、アトマイズ工程を含む液体急冷プロセスによって製造されうる。このプロセスにより、容易かつ安価に粉末が製造されうる。好ましいアトマイズとして、水アトマイズ法、ガスアトマイズ法、ディスクアトマイズ法及びプラズマアトマイズ法が例示される。ガスアトマイズ法及びディスクアトマイズ法が、特に好ましい。   The conductive filler powder can be manufactured by a liquid quenching process including an atomizing process. By this process, the powder can be produced easily and inexpensively. Examples of preferable atomization include a water atomization method, a gas atomization method, a disk atomization method, and a plasma atomization method. A gas atomizing method and a disk atomizing method are particularly preferable.

ガスアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料に、アルゴンガスが噴射される。原料は急冷されて凝固し、粉末が得られる。噴射圧の調整により、凝固速度がコントロールされうる。噴射圧が大きいほど、凝固速度は大きい。凝固速度のコントロールにより、所望の粒度分布を有する粉末が得られうる。凝固速度が速いほど、粒度分布の幅は小さい。   In the gas atomization method, raw materials are put into a quartz crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, argon gas is injected onto the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder. The coagulation rate can be controlled by adjusting the injection pressure. The greater the injection pressure, the greater the solidification rate. By controlling the solidification rate, a powder having a desired particle size distribution can be obtained. The faster the solidification rate, the smaller the width of the particle size distribution.

ディスクアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料が、高速で回転するディスクの上に落とされる。回転速度は、40000rpmから60000rpmである。ディスクによって原料は急冷され、凝固して、粉末が得られる。この粉末にミリングが施されてもよい。   In the disk atomization method, raw materials are put into a quartz crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, the raw material flowing out from the pores is dropped onto a disk that rotates at high speed. The rotation speed is 40000 rpm to 60000 rpm. The raw material is rapidly cooled by the disk and solidified to obtain a powder. This powder may be milled.

メルトスピニング法によって製造した鱗片状又は薄箔状の材料が、メカニカルアロイング法で粉砕されることで、粉末が製造されてもよい。   Powders may be produced by pulverizing a scale-like or thin foil-like material produced by a melt spinning method by a mechanical alloying method.

以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。   Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be construed in a limited manner based on the description of the examples.

表1及び2に示される組成を有する実施例1−20及び比較例1−20の粉末を得た。各粉末は、表1及び2に記載されていない不可避的不純物を含む。   The powders of Example 1-20 and Comparative Example 1-20 having the compositions shown in Tables 1 and 2 were obtained. Each powder contains unavoidable impurities not listed in Tables 1 and 2.

各粉末の電気伝導度を測定した。まず、篩を用いて径が45μmを超える粒子を粉末から除去した。この粉末を、直径が25mmであり高さが10mmである円柱状のサンプルホルダー(東陽テクニカ社の粉体インピーダンス測定用四端子サンプルホルダー)に充填した。この粉末に、上下から4Nmの荷重をかけた。この粉末の上側に電流のプラス端子及び電圧のプラス端子を取り付けた。この粉末の下側に電流のマイナス端子及び電圧のマイナス端子を取り付けた。いわゆる四端子法により、電流を流して電圧を測定した。この結果が、下記の表1及び2に示されている。   The electrical conductivity of each powder was measured. First, particles having a diameter exceeding 45 μm were removed from the powder using a sieve. This powder was filled into a cylindrical sample holder (four-terminal sample holder for powder impedance measurement by Toyo Technica Co., Ltd.) having a diameter of 25 mm and a height of 10 mm. A load of 4 Nm was applied to the powder from above and below. A positive terminal for current and a positive terminal for voltage were attached to the upper side of the powder. A negative terminal for current and a negative terminal for voltage were attached to the lower side of the powder. The voltage was measured by applying a current by the so-called four-terminal method. The results are shown in Tables 1 and 2 below.

Figure 2016110738
Figure 2016110738

Figure 2016110738
Figure 2016110738

表1及び2における製造プロセスの詳細は、下記の通りである。
G.A.:ガスアトマイズ法
D.A.:ディスクアトマイズ法
M.S.:メルトスピニング法
Details of the manufacturing process in Tables 1 and 2 are as follows.
G. A. : Gas atomization method A. : Disc atomization method S. : Melt spinning method

表1−2に示される通り、各実施例の粉末の合金は、0.1質量%以上30質量%以下のAlを含んでいる。この合金は、
(1)Al相、
(2)Al、Si及び元素Xを含むシリサイド相、及び
(3)Si相
を含む。この粉末の比(P1/P2)は、0.01以上0.30以下である。この粉末の密度は、2.0Mg/m以上6.0Mg/m以下である。表1では、各粉末が、A−Dの格付けで評価されている。この評価の基準は、以下の通りである。
格付けA
積分強度比:0.01以上0.30以下
密度:2.0Mg/m以上6Mg/m以下
電気伝導度:1000AV−1−1未満
格付けB
積分強度比:0.01以上0.30以下
密度:2.0Mg/m以上6Mg/m以下
電気伝導度:500AV−1−1以上1000AV−1−1未満
格付けC
積分強度比:0.01以上0.30以下
密度:2.0Mg/m以上6Mg/m以下
電気伝導度:100AV−1−1以上500AV−1−1未満
格付けD
積分強度比:0.01以上0.30以下
密度:2.0Mg/m以上6Mg/m以下
電気伝導度:100AV−1−1未満
As shown in Table 1-2, the alloy of the powder of each example contains 0.1 mass% or more and 30 mass% or less of Al. This alloy is
(1) Al phase,
(2) a silicide phase containing Al, Si and element X, and (3) a Si phase. The ratio (P1 / P2) of this powder is 0.01 or more and 0.30 or less. The density of this powder is 2.0 Mg / m 3 or more and 6.0 Mg / m 3 or less. In Table 1, each powder is rated with an A-D rating. The criteria for this evaluation are as follows.
Rating A
Integral intensity ratio: 0.01 or more and 0.30 or less Density: 2.0 Mg / m 3 or more and 6 Mg / m 3 or less Electrical conductivity: less than 1000 AV −1 m −1 Rating B
The integrated intensity ratio 0.01 0.30 Density: 2.0 Mg / m 3 or more 6 mg / m 3 or less electrical conductivity: 500AV -1 m -1 or more 1000AV -1 m less than -1 rating C
The integrated intensity ratio 0.01 0.30 Density: 2.0 Mg / m 3 or more 6 mg / m 3 or less electrical conductivity: 100AV -1 m -1 or more 500AV -1 m less than -1 rating D
Integral intensity ratio: 0.01 or more and 0.30 or less Density: 2.0 Mg / m 3 or more and 6 Mg / m 3 or less Electrical conductivity: less than 100 AV −1 m −1

表2に示された各比較例の粉末の格付けは、Eである。この粉末は、Al含有率、積分強度比及び密度のいずれかが、本発明の要件を満たしていない。   The rating of each comparative example shown in Table 2 is E. In this powder, any one of the Al content, the integrated intensity ratio, and the density does not satisfy the requirements of the present invention.

例えば、実施例14に係る粉末は、組成が10Al−60Si−15Cr−15Tiであり、積分強度比は0.20である。また、密度は3.41Mg/mであり、電気伝導度は1250AV−1−1である。この粉末は、本実施例で最も好ましい特性を示している。 For example, the powder according to Example 14 has a composition of 10Al-60Si-15Cr-15Ti and an integrated intensity ratio of 0.20. Further, the density is 3.41 Mg / m 3 and the electric conductivity is 1250AV −1 m −1 . This powder exhibits the most favorable properties in this example.

例えば、比較例12に係る粉末の電気伝導度は、840AV−1−1である。この粉末は優れた導電性を示し、かつ、Al量が30質量%、密度が3.47/mであるが、積分強度比が0.008であるため、本発明の要件を満たさない。 For example, the electrical conductivity of the powder according to Comparative Example 12 is 840AV −1 m −1 . This powder exhibits excellent conductivity, has an Al amount of 30% by mass, and a density of 3.47 / m 3 , but does not satisfy the requirements of the present invention because the integrated intensity ratio is 0.008.

以上の評価結果から、本発明の優位性は明かである。   From the above evaluation results, the superiority of the present invention is clear.

本発明に係る粉末は、導電性樹脂、導電性プラスチック、導電性ペースト、電子機器、電子部品等に用いられ得る。   The powder according to the present invention can be used for conductive resins, conductive plastics, conductive pastes, electronic devices, electronic components, and the like.

特開2006−54061公報には、Agからなる粒子の表面に、Si又はSi系化合物がコーティングされた導電フィラー用合金が開示されている。 Japanese Patent Application Laid-Open No. 2006-54061 discloses an alloy for conductive filler in which the surface of particles made of Ag is coated with Si or a Si-based compound.

特開2008−262916公報には、銀と、0.01−10質量%のSiとを含有する導電フィラー用合金が開示されている。この合金では、銀粒子の表面に、SiOのゲルがコーティングされている。 Japanese Patent Application Laid-Open No. 2008-262916 discloses a conductive filler alloy containing silver and 0.01 to 10% by mass of Si. In this alloy, the surface of silver particles is coated with a SiO 2 gel.

特開2004−47404公報JP 2004-47404 A 特開2006−54061公報JP 2006-54061 A 特開2008−262916公報JP 2008-262916 A

Claims (5)

その材質が、0.1質量%以上30質量%以下のAl、Si、導電性の元素X1及び不可避的不純物を含む合金であり、
上記合金が、複数のAl相と、上記Siと上記元素X1とを含有する複数のシリサイド相と、Si相とを有しており、
XRDによって測定された、その2θが38.6°±0.3°付近にあるAl(111)面のピークの積分強度P1と、その2θが28.3°±0.3°付近にあるSi(111)面のピークの積分強度P2との、比(P1/P2)が、0.01以上0.30以下であり、
密度が2.0Mg/m以上6.0Mg/m以下である導電フィラー用粉末。
The material is an alloy containing 0.1% by mass or more and 30% by mass or less of Al, Si, conductive element X1, and inevitable impurities,
The alloy has a plurality of Al phases, a plurality of silicide phases containing the Si and the element X1, and a Si phase;
Measured by XRD, the integrated intensity P1 of the peak of the Al (111) surface whose 2θ is around 38.6 ° ± 0.3 ° and Si whose 2θ is around 28.3 ° ± 0.3 ° The ratio (P1 / P2) with the integrated intensity P2 of the peak of the (111) plane is 0.01 or more and 0.30 or less,
A conductive filler powder having a density of 2.0 Mg / m 3 or more and 6.0 Mg / m 3 or less.
上記Al相が、上記Si相内に分散して存在する請求項1に記載の粉末。   The powder according to claim 1, wherein the Al phase is dispersed in the Si phase. 1つのAl相が、シリサイド相と他のシリサイド相とをリンクしている請求項2に記載の粉末。   The powder according to claim 2, wherein one Al phase links a silicide phase and another silicide phase. 上記元素X1が、B、C、Na、Mg、P、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びAuからなる群から選択された1種又は2種以上である請求項1から3のいずれかに記載の粉末。   The element X1 is one or more selected from the group consisting of B, C, Na, Mg, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Au. The powder according to any one of claims 1 to 3. 上記合金が元素X2をさらに含んでおり、
上記元素X2が、Sn、In、Zn、Bi、Ga及びPbからなる群から選択された1種又は2種以上である請求項1から4のいずれかに記載の粉末。
The alloy further comprises element X2,
The powder according to any one of claims 1 to 4, wherein the element X2 is one or more selected from the group consisting of Sn, In, Zn, Bi, Ga, and Pb.
JP2014244748A 2014-12-03 2014-12-03 Conductive filler powder Active JP6445854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014244748A JP6445854B2 (en) 2014-12-03 2014-12-03 Conductive filler powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014244748A JP6445854B2 (en) 2014-12-03 2014-12-03 Conductive filler powder

Publications (2)

Publication Number Publication Date
JP2016110738A true JP2016110738A (en) 2016-06-20
JP6445854B2 JP6445854B2 (en) 2018-12-26

Family

ID=56124466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014244748A Active JP6445854B2 (en) 2014-12-03 2014-12-03 Conductive filler powder

Country Status (1)

Country Link
JP (1) JP6445854B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2006054061A (en) * 2004-08-09 2006-02-23 Sumitomo Metal Mining Co Ltd Conductive paste
JP2008262916A (en) * 2008-05-26 2008-10-30 Dowa Electronics Materials Co Ltd Silver powder for conductive paste, and conductive paste using silver powder
JP2013105655A (en) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
JP2014203768A (en) * 2013-04-09 2014-10-27 山陽特殊製鋼株式会社 Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2006054061A (en) * 2004-08-09 2006-02-23 Sumitomo Metal Mining Co Ltd Conductive paste
JP2008262916A (en) * 2008-05-26 2008-10-30 Dowa Electronics Materials Co Ltd Silver powder for conductive paste, and conductive paste using silver powder
JP2013105655A (en) * 2011-11-15 2013-05-30 Shin Etsu Chem Co Ltd Negative electrode material for lithium ion battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
JP2014203768A (en) * 2013-04-09 2014-10-27 山陽特殊製鋼株式会社 Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP6445854B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP2017528327A (en) Lead-free solder alloy composition and method for producing lead-free solder alloy
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP2011006740A (en) Copper powder for conductive paste, and conductive paste
JP5932638B2 (en) Copper powder for conductive paste and conductive paste
JPWO2010004852A1 (en) Copper powder for conductive paste and conductive paste
KR20170131280A (en) Lead-free solder composition and method for maunfacturing thereof
KR102040280B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
JP2015105391A (en) Method for producing lead-free solder alloy powder
JP6445854B2 (en) Conductive filler powder
WO2016052643A1 (en) Powder for conductive fillers
JP6546384B2 (en) Conductive filler powder
JP2017007885A (en) Powder for conductive filler
JP6581771B2 (en) Conductive filler powder
JP6670114B2 (en) Powder for conductive filler
JP2012067327A (en) Copper powder for conductive paste, and conductive paste
JP6475531B2 (en) Powder for filler
JP5876609B1 (en) Conductive filler powder
JP6654922B2 (en) Powder for conductive filler
WO2015053222A1 (en) Agcu-based conductive filler powder
JP2015196877A (en) POWDER FOR AgCuBi-BASED CONDUCTIVE FILLER
JP2011006739A (en) Copper powder for conductive paste, and conductive paste
JP2015232160A (en) Powder for conductive filler
JP6726020B2 (en) Powder for conductive filler
JP6338846B2 (en) Conductive filler powder
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181130

R150 Certificate of patent or registration of utility model

Ref document number: 6445854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250