JP2016109875A - Image forming apparatus - Google Patents

Image forming apparatus Download PDF

Info

Publication number
JP2016109875A
JP2016109875A JP2014247334A JP2014247334A JP2016109875A JP 2016109875 A JP2016109875 A JP 2016109875A JP 2014247334 A JP2014247334 A JP 2014247334A JP 2014247334 A JP2014247334 A JP 2014247334A JP 2016109875 A JP2016109875 A JP 2016109875A
Authority
JP
Japan
Prior art keywords
intermediate transfer
image forming
forming apparatus
power source
constant voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014247334A
Other languages
Japanese (ja)
Inventor
徹 仲江川
Toru Nakaegawa
徹 仲江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014247334A priority Critical patent/JP2016109875A/en
Priority to PCT/JP2015/005746 priority patent/WO2016088315A1/en
Publication of JP2016109875A publication Critical patent/JP2016109875A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1665Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat
    • G03G15/167Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer
    • G03G15/1675Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer by introducing the second base in the nip formed by the recording member and at least one transfer member, e.g. in combination with bias or heat at least one of the recording member or the transfer member being rotatable during the transfer with means for controlling the bias applied in the transfer nip

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve both acceleration and a cost reduction of a system omitting primary transfer.SOLUTION: An image forming apparatus causes a first power source and a second power source to flow a current in the circumferential direction of an intermediate transfer belt so that the current flows into the ground via a Zener diode, and adjusts the output of the power sources so that the Zener diode generates a predetermined voltage.SELECTED DRAWING: Figure 2

Description

本発明は、複写機やレーザプリンタ等の電子写真の技術を用いた画像形成装置に関する。   The present invention relates to an image forming apparatus using an electrophotographic technique such as a copying machine or a laser printer.

電子写真方式の画像形成装置では、感光体からトナー像を中間転写体に転写(一次転写)して、中間転写体から記録材に転写(二次転写)することで画像を形成する中間転写方式が知られている。   In an electrophotographic image forming apparatus, an intermediate transfer system that forms an image by transferring a toner image from a photosensitive member to an intermediate transfer member (primary transfer) and then transferring the image from the intermediate transfer member to a recording material (secondary transfer). It has been known.

しかし、二次転写ローラや二次転写用の電源とは別に、一次転写専用の電源、および一次転写ローラを用いれば、コストアップ、及び中間転写ユニットの大型化につながるおそれがある。そこで中間転写ユニットの小型化を図るために中間転写ベルトの内面を低抵抗化し、一次転写ローラ及び一次転写用の電源を省き、定電圧素子を介して中間転写ベルトを接地する構成(以下、一転レスシステム)が提案されている(特許文献1参照)。   However, if a power supply dedicated for primary transfer and a primary transfer roller are used separately from the secondary transfer roller and the power supply for secondary transfer, there is a risk that the cost increases and the intermediate transfer unit becomes large. Therefore, in order to reduce the size of the intermediate transfer unit, the resistance of the inner surface of the intermediate transfer belt is reduced, the primary transfer roller and the primary transfer power supply are omitted, and the intermediate transfer belt is grounded via a constant voltage element (hereinafter referred to as a single transfer). System) (see Patent Document 1).

特開2012−137733JP 2012-137733 A

しかし、上記の一転レスシステムでは、使用によって感光体が摩耗して膜厚が薄くなると、電源から供給される電流のうち一次転写部に流れ込んでしまう電流量が増え、定電圧素子に流れる電流量が低くなることがある。その結果、定電圧素子が予め定められた電圧を発生することができず、一次転写電界不足による一次転写不良が発生するという課題がある。   However, in the above-mentioned one-turn-less system, when the photosensitive member is worn and thinned by use, the amount of current flowing from the power source that flows into the primary transfer portion increases, and the amount of current flowing through the constant voltage element. May be low. As a result, the constant voltage element cannot generate a predetermined voltage, and there is a problem that primary transfer failure occurs due to insufficient primary transfer electric field.

そこで本発明の画像形成装置は、トナー像を担持する像担持体と、前記像担持体から一次転写部で転写されたトナー像を担持する中間転写体と、前記中間転写体の外周面に当接して配置され、前記中間転写体からトナー像を二次転写部で記録材に転写する転写部材と、前記中間転写体の内周面と接地電位との間に電気的に接続され、予め定められた電圧を発生させる定電圧素子と、前記定電圧素子に流れる電流を検知する検知手段と、前記転写部材に電圧を印加して前記定電圧素子に電流を流し前記二次転写部に二次転写電界を形成する第1の電源と、前記中間転写体の内周面と電気的に接続され、前記一次転写部に一次転写電界を形成する第2の電源と、前記検知手段の検知結果に基づき前記第2の電源を制御する制御部と、を有することを特徴とする。   In view of this, the image forming apparatus of the present invention contacts an image carrier that carries a toner image, an intermediate transfer member that carries a toner image transferred from the image carrier by a primary transfer unit, and an outer peripheral surface of the intermediate transfer member. A transfer member that is disposed in contact with the intermediate transfer member and transfers a toner image from the intermediate transfer member to a recording material at a secondary transfer portion; and is electrically connected between an inner peripheral surface of the intermediate transfer member and a ground potential. A constant voltage element that generates a generated voltage; a detection unit that detects a current flowing through the constant voltage element; and a voltage applied to the transfer member to cause the current to flow through the constant voltage element, and to the secondary transfer unit. A first power source that forms a transfer electric field, a second power source that is electrically connected to the inner peripheral surface of the intermediate transfer member and forms a primary transfer electric field in the primary transfer portion, and a detection result of the detection means And a control unit for controlling the second power source based on And features.

本発明によれば、定電圧素子に予め定められた電圧を確実に発生させることができ、一次転写不良を抑制できる。   According to the present invention, a predetermined voltage can be reliably generated in the constant voltage element, and primary transfer failure can be suppressed.

従来の一転レスシステムを説明する図Diagram explaining a conventional one-turn-less system 本実施形態における基本構成を説明する図The figure explaining the basic composition in this embodiment 本実施形態における等価回路を説明する図The figure explaining the equivalent circuit in this embodiment 本実施形態における転写電位と静電像電位の関係を示す図The figure which shows the relationship between the transfer potential and electrostatic image potential in this embodiment ツェナーダイオードのIV特性Zener diode IV characteristics 本実施形態におけるブロック図Block diagram in this embodiment

以下、図面に沿って、本発明の実施の形態について説明する。なお、各図面において同一の符号を付したものは、同一の構成又は作用をなすものであり、これらについての重複説明は適宜省略した。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, what attached | subjected the same code | symbol in each drawing has the same structure or effect | action, The duplication description about these was abbreviate | omitted suitably.

[画像形成装置]
図2に本実施例1におけるタンデム方式の中間転写体を用いた画像形成装置を示す。
[Image forming apparatus]
FIG. 2 shows an image forming apparatus using a tandem type intermediate transfer member according to the first embodiment.

画像形成ユニット101a、101b、101c、101dは、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、黒(K)色のトナー像を形成する画像形成手段である。これらの画像形成ユニットは、中間転写ベルト7の移動方向において上流側から、画像形成ユニット101a、101b、101c、101dの順、すなわちイエロー、マゼンタ、シアン、黒の順に配置されている。   The image forming units 101a, 101b, 101c, and 101d are image forming units that form yellow (Y), magenta (M), cyan (C), and black (K) toner images, respectively. These image forming units are arranged from the upstream side in the moving direction of the intermediate transfer belt 7 in the order of the image forming units 101a, 101b, 101c, and 101d, that is, in order of yellow, magenta, cyan, and black.

各画像形成ユニット101a、101b、101c、101dはそれぞれ、トナー像が形成される担持する像担持体としての感光体1a、1b、1c、1dを備える。帯電ローラ2a、2b、2c、2dは、各感光体1a、1b、1c、1dの表面を帯電する帯電手段である。露光装置3a、3b、3c、3dはレーザスキャナーを備えて、帯電ローラ2a、2b、2c、2dによって帯電された感光体1a、1b、1c、1dを露光する。レーザスキャナーの出力が画像情報に基づいてオンオフされることによって、画像に対応した静電像が各感光体1a、1b、1c、1d上に形成される。すなわち、帯電ローラ2a、2b、2c、2dと露光装置3a、3b、3c、3dとが、静電像を感光体1a、1b、1c、1dに形成する静電像形成手段として機能する。現像装置4a、4b、4c、4dは、それぞれイエロー、マゼンタ、シアン、黒の各色のトナーを収容する収容器を備えて、感光体1a、1b、1c、1d上の静電像をトナーを用いて現像する現像手段である。   Each of the image forming units 101a, 101b, 101c, and 101d includes a photoreceptor 1a, 1b, 1c, and 1d as an image carrier on which a toner image is formed. The charging rollers 2a, 2b, 2c, and 2d are charging units that charge the surfaces of the photoreceptors 1a, 1b, 1c, and 1d. The exposure devices 3a, 3b, 3c, and 3d include a laser scanner, and expose the photoreceptors 1a, 1b, 1c, and 1d charged by the charging rollers 2a, 2b, 2c, and 2d. When the output of the laser scanner is turned on / off based on the image information, electrostatic images corresponding to the images are formed on the respective photoreceptors 1a, 1b, 1c, and 1d. That is, the charging rollers 2a, 2b, 2c, and 2d and the exposure devices 3a, 3b, 3c, and 3d function as an electrostatic image forming unit that forms electrostatic images on the photoreceptors 1a, 1b, 1c, and 1d. Each of the developing devices 4a, 4b, 4c, and 4d includes a container that stores toner of each color of yellow, magenta, cyan, and black, and uses the electrostatic images on the photoreceptors 1a, 1b, 1c, and 1d with the toner. And developing means for developing.

感光体1a、1b、1c、1dに形成されたトナー像は、中間転写ベルト7へ一次転写部N1a、N1b,N1c,N1dで一次転写される。こうして中間転写ベルト7上に4色のトナー像が重ねて転写される。   The toner images formed on the photoreceptors 1a, 1b, 1c, and 1d are primarily transferred to the intermediate transfer belt 7 by primary transfer portions N1a, N1b, N1c, and N1d. In this way, the four color toner images are superimposed and transferred onto the intermediate transfer belt 7.

中間転写ベルト7は、感光体1a、1b、1c、1dからトナー像が転写される移動可能な中間転写体である。中間転写ベルト7は、基層(内周面側)と表層(外周面側)との二層構成である。なお、中間転写ベルト7は基層と表層の間に他の層を有する二層以上の構成であっても構わない。   The intermediate transfer belt 7 is a movable intermediate transfer member to which toner images are transferred from the photoreceptors 1a, 1b, 1c, and 1d. The intermediate transfer belt 7 has a two-layer configuration of a base layer (inner peripheral surface side) and a surface layer (outer peripheral surface side). The intermediate transfer belt 7 may have a structure of two or more layers having another layer between the base layer and the surface layer.

基層はポリイミドあるいはポリアミド、PEN、PEEK等の樹脂または各種ゴム等にカーボンブラック等の帯電防止剤を適当量含有させたものが用いられる。
中間転写ベルト7の基層は、基層の表面抵抗率が10〜10Ω/□(導電性)となるように形成される。本実施例1における基層としては、ポリイミドで、中心厚みが45〜150um程度のフィルム状の無端ベルトが用いられる。
The base layer is made of a resin such as polyimide or polyamide, PEN or PEEK, or various rubbers containing an appropriate amount of an antistatic agent such as carbon black.
The base layer of the intermediate transfer belt 7 is formed so that the surface resistivity of the base layer is 10 2 to 10 8 Ω / □ (conductive). As the base layer in Example 1, a film-like endless belt made of polyimide and having a center thickness of about 45 to 150 μm is used.

さらに表層は、基層込みでの膜厚方向の体積抵抗率が10〜1013Ω・cmに抵抗調整されたアクリルコートが施される。すなわち表層の抵抗よりも、基層の抵抗の方が低い。 Further, the surface layer is coated with an acrylic coat whose resistance in the film thickness direction including the base layer is adjusted to 10 9 to 10 13 Ω · cm. That is, the resistance of the base layer is lower than the resistance of the surface layer.

表層の厚みは1〜10umである。もちろんこれらの数値に限定する意図ではない。   The thickness of the surface layer is 1 to 10 um. Of course, it is not intended to limit to these numerical values.

中間転写ベルト7は、張架部材としての各種ローラ10、11、12、13によって中間転写ベルト7の内周面に当接して張架されている。アイドラローラ12は、各感光体1a、1b、1c、1dの配列方向に沿って延びる中間転写ベルト7を張架する。   The intermediate transfer belt 7 is stretched in contact with the inner peripheral surface of the intermediate transfer belt 7 by various rollers 10, 11, 12, 13 as stretch members. The idler roller 12 stretches the intermediate transfer belt 7 extending along the arrangement direction of the photoreceptors 1a, 1b, 1c, and 1d.

テンションローラ11は、中間転写ベルト7に対して一定の張力を与えるテンションローラである。さらにテンションローラ11は、中間転写ベルト7の蛇行を防止する補正ローラとしても機能する。なお、テンションローラ11に対するベルトテンションは5〜12kgf程度になるように構成される。このベルトテンションがかけられることで、一次転写部N1a、N1b,N1c,N1dとして、中間転写ベルト7と感光体1a、1b、1c、1dとの間にニップが形成される。   The tension roller 11 is a tension roller that applies a constant tension to the intermediate transfer belt 7. Further, the tension roller 11 also functions as a correction roller that prevents the intermediate transfer belt 7 from meandering. The belt tension with respect to the tension roller 11 is configured to be about 5 to 12 kgf. By applying this belt tension, nips are formed between the intermediate transfer belt 7 and the photoreceptors 1a, 1b, 1c, and 1d as primary transfer portions N1a, N1b, N1c, and N1d.

二次転写内ローラ10は、定速性に優れたモーターにより駆動されて中間転写ベルト7を循環駆動させる駆動ローラとして機能する。   The secondary transfer inner roller 10 functions as a driving roller that is driven by a motor excellent in constant speed and circulates and drives the intermediate transfer belt 7.

第2の電源21はテンションローラ11に接続されており、中間転写ベルト7の周方向に電流を流すための電源である。なお、第2の電源21は必ずしもテンションローラ11へ接続する必要はなく、張架ローラ10、11、12、13のいずれか1つに接続される構成でも構わない。   The second power source 21 is connected to the tension roller 11 and is a power source for causing a current to flow in the circumferential direction of the intermediate transfer belt 7. Note that the second power source 21 is not necessarily connected to the tension roller 11, and may be configured to be connected to any one of the stretching rollers 10, 11, 12, and 13.

記録材Pは用紙トレイに収容されている。記録材Pは、この用紙トレイから所定のタイミングでピックアップローラによって取り出されて、レジストレーションローラ(不図示)へ導かれる。記録材Pは、中間転写ベルト7上のトナー像が搬送されるのと同期して、中間転写ベルト7からトナー像を記録材Pに転写する二次転写部N2へレジストレーションローラによって送り出される。   The recording material P is accommodated in a paper tray. The recording material P is taken out from the paper tray by a pickup roller at a predetermined timing and guided to a registration roller (not shown). The recording material P is sent out by the registration roller to the secondary transfer portion N2 that transfers the toner image from the intermediate transfer belt 7 to the recording material P in synchronization with the toner image on the intermediate transfer belt 7 being conveyed.

二次転写外ローラ14は、中間転写ベルト7に当接し、中間転写ベルト7を介して二次転写内ローラ10を押圧して、二次転写内ローラ10と共に二次転写部N2を形成する二次転写部材である。   The secondary transfer outer roller 14 abuts on the intermediate transfer belt 7 and presses the secondary transfer inner roller 10 via the intermediate transfer belt 7 to form a secondary transfer portion N2 together with the secondary transfer inner roller 10. Next transfer member.

第1の電源22は、二次転写外ローラ14に電気的に接続されており、二次転写外ローラ14に電圧を印加する電圧印加手段としての電源である。   The first power source 22 is electrically connected to the secondary transfer outer roller 14 and is a power source as a voltage application unit that applies a voltage to the secondary transfer outer roller 14.

記録材Pが二次転写部N2へ搬送されると、二次転写外ローラ14にトナーと逆極性の二次転写電圧が印加されることによって、中間転写ベルト7からトナー像が記録材に転写する。   When the recording material P is conveyed to the secondary transfer portion N2, a secondary transfer voltage having a polarity opposite to that of the toner is applied to the secondary transfer outer roller 14, whereby the toner image is transferred from the intermediate transfer belt 7 to the recording material. To do.

なお二次転写内ローラ10はEPDMゴムからなる。二次転写内ローラ10の直径は20mm、ゴム厚は0.5mm、硬度は70°(Asker−C)に設定される。   The secondary transfer inner roller 10 is made of EPDM rubber. The diameter of the secondary transfer inner roller 10 is set to 20 mm, the rubber thickness is set to 0.5 mm, and the hardness is set to 70 ° (Asker-C).

二次転写外ローラ14はNBRゴムやEPDMゴム等からなる弾性層と芯金からなる。二次転写外ローラの直径は、24mmになるように形成される。   The secondary transfer outer roller 14 is made of an elastic layer made of NBR rubber, EPDM rubber or the like and a cored bar. The diameter of the secondary transfer outer roller is formed to be 24 mm.

中間転写ベルト7が移動する方向において二次転写部N2よりも下流側には、記録材に二次転写部N2で転写せず中間転写ベルト7に残留した残留トナーや紙粉を除去するための中間転写ベルトクリーニング装置15が設けられている。   For removing residual toner and paper dust remaining on the intermediate transfer belt 7 without being transferred to the recording material at the secondary transfer portion N2 on the downstream side of the secondary transfer portion N2 in the direction in which the intermediate transfer belt 7 moves. An intermediate transfer belt cleaning device 15 is provided.

[一次転写電界形成]
実施例1における一次転写電界の形成について図3の等価回路を参照して説明する。ここで、ITB_bは中間転写ベルト7の基層を、ITB_sは中間転写ベルト7の表層を表す。
[Primary transfer electric field formation]
The formation of the primary transfer electric field in Example 1 will be described with reference to the equivalent circuit of FIG. Here, ITB_b represents the base layer of the intermediate transfer belt 7, and ITB_s represents the surface layer of the intermediate transfer belt 7.

中間転写ベルト7からトナー像を記録材へ二次転写するための第1の電源22からの電流を利用して一次転写電界を発生させるように、張架ローラ10、11、12、13とアースとの間に定電圧素子を配置している。   The stretching rollers 10, 11, 12, and 13 are grounded so as to generate a primary transfer electric field by using a current from a first power source 22 for secondary transfer of the toner image from the intermediate transfer belt 7 to the recording material. A constant voltage element is disposed between the two.

その結果、図3に示すように、中間転写ベルト7の電位が高くなり、感光体1a、1b、1c、1dと中間転写ベルト7との間に一次転写電界が働くようになる。   As a result, as shown in FIG. 3, the potential of the intermediate transfer belt 7 becomes high, and a primary transfer electric field acts between the photoreceptors 1 a, 1 b, 1 c, 1 d and the intermediate transfer belt 7.

次に図4を用いて、感光体の電位と中間転写ベルトの電位の差である一次転写コントラストについて説明する。   Next, the primary transfer contrast, which is the difference between the potential of the photoreceptor and the potential of the intermediate transfer belt, will be described with reference to FIG.

図4は、感光体表面が帯電ローラによって帯電されて、感光体表面の電位Vd(ここでは−678Vとする)となり、帯電された感光体の表面が露光手段によって露光されて、感光体の表面がVl(ここでは−240Vとする)となる場合である。   In FIG. 4, the surface of the photosensitive member is charged by a charging roller to become a potential Vd of the surface of the photosensitive member (here, assumed to be −678 V), and the charged surface of the photosensitive member is exposed by an exposure unit. Is Vl (here, assumed to be −240 V).

電位Vdはトナーが付着されない非画像部の電位であり、電位Vlは感光体上のトナーが付着される画像部の電位である。Vitbは中間転写ベルトの電位である。   The potential Vd is the potential of the non-image area where the toner is not adhered, and the potential Vl is the potential of the image area where the toner on the photoreceptor is adhered. Vitb is the potential of the intermediate transfer belt.

感光体の表面電位は帯電、露光手段の下流側、且つ現像手段の上流で感光体に近接配置された電位センサーの検知結果に基づいて制御される。   The surface potential of the photoconductor is controlled on the basis of the detection result of a potential sensor disposed close to the photoconductor on the downstream side of the charging and exposure unit and upstream of the developing unit.

電位センサーは感光体表面の非画像部電位と画像部電位を検知し、非画像部電位に基づいて帯電手段の帯電電位を制御して、画像部電位に基づいて露光手段の露光光量を制御する。   The potential sensor detects the non-image portion potential and the image portion potential on the surface of the photoreceptor, controls the charging potential of the charging unit based on the non-image portion potential, and controls the exposure light amount of the exposure unit based on the image portion potential. .

この制御により感光体の表面電位は画像部電位、非画像部電位の両電位とも適正な値にすることができる。   By this control, the surface potential of the photoreceptor can be set to an appropriate value for both the image portion potential and the non-image portion potential.

画像部電位Vlと非画像部電位Vdとの電位差である静電像コントラストVcbは、
−240(V)−(−678(V))=438(V)
となる。
The electrostatic image contrast Vcb, which is the potential difference between the image portion potential Vl and the non-image portion potential Vd, is
−240 (V) − (− 678 (V)) = 438 (V)
It becomes.

感光体の画像部電位Vlと中間転写ベルトの電位Vitb(ここでは300Vとする)との電位差である一次転写コントラストVtrは、
300(V)−(−240(V))=540(V)
となる。
The primary transfer contrast Vtr, which is the potential difference between the image portion potential Vl of the photoreceptor and the potential Vitb (here, 300 V) of the intermediate transfer belt,
300 (V)-(-240 (V)) = 540 (V)
It becomes.

[ツェナーダイオードの電圧電流特性]
一次転写は中間転写ベルトの電位と感光体の電位との電位差である一次転写コントラストによって決まる。そのため一次転写コントラストを安定的に形成するためには中間転写ベルトの電位を一定に維持するのが望ましい。
[Voltage-current characteristics of Zener diode]
The primary transfer is determined by the primary transfer contrast which is a potential difference between the potential of the intermediate transfer belt and the potential of the photosensitive member. Therefore, in order to stably form the primary transfer contrast, it is desirable to keep the potential of the intermediate transfer belt constant.

そこで実施例1では、張架ローラと接地電位(アース)との間に配置される定電圧素子として、ツェナーダイオードが用いられる。なお、ツェナーダイオードに代えてバリスタを用いても構わない。   Therefore, in the first embodiment, a Zener diode is used as a constant voltage element disposed between the stretching roller and the ground potential (earth). A varistor may be used instead of the Zener diode.

図5は、ツェナーダイオードの電流電圧特性を示す。ツェナーダイオードは、ツェナー降伏電圧Vbr以上の電圧が発生するまでほとんど電流が流れないが、ツェナー降伏電圧が発生すると急激に電流が流れる特性を持つ。すなわち、ツェナーダイオード16にかかる電圧がツェナー降伏電圧以上では、ツェナーダイオード16の電圧降下はツェナー電圧(予め定められた電圧)で一定に維持される。   FIG. 5 shows the current-voltage characteristics of the Zener diode. The Zener diode has a characteristic that current hardly flows until a voltage equal to or higher than the Zener breakdown voltage Vbr is generated, but current rapidly flows when the Zener breakdown voltage is generated. That is, when the voltage applied to the Zener diode 16 is equal to or higher than the Zener breakdown voltage, the voltage drop of the Zener diode 16 is kept constant at the Zener voltage (predetermined voltage).

このようなツェナーダイオードの電流電圧特性を利用して、中間転写ベルト7の電位を予め定められた電圧で略一定に維持する。   Utilizing such a current-voltage characteristic of the Zener diode, the potential of the intermediate transfer belt 7 is maintained substantially constant at a predetermined voltage.

すなわち実施例1では、すべての張架ローラ10、11、12、13と、接地電位(アース)との間にツェナーダイオード16が電気的に接続される。   That is, in the first embodiment, the Zener diode 16 is electrically connected between all the stretching rollers 10, 11, 12, 13 and the ground potential (earth).

ここで、使用によって感光体が摩耗して感光層の膜厚が薄くなると定電圧素子に流れる電流が少なくなる理由を説明する。一次転写コントラストが同じと仮定した場合、感光体の膜厚が薄い場合には厚い場合に比べ一次転写部に流れる転写電流が多くなる。これは、転写電流は感光体と中間転写ベルトとの電位差が所定値になるまで流れるところ、感光体の膜厚が薄い程感光体の静電容量が上がるため、単位時間で比較すると感光体を同一電位まで変化させる転写電荷は感光体の膜厚が薄い程多く必要になるからである。   Here, the reason why the current flowing through the constant voltage element is reduced when the photoreceptor is worn by use and the film thickness of the photosensitive layer is reduced will be described. Assuming that the primary transfer contrast is the same, the transfer current flowing through the primary transfer portion increases when the film thickness of the photoconductor is small compared to when it is thick. This is because the transfer current flows until the potential difference between the photoconductor and the intermediate transfer belt reaches a predetermined value. The thinner the photoconductor is, the higher the capacitance of the photoconductor. This is because the transfer charge to be changed to the same potential is required as the photoconductor is thinner.

なお、プロセス速度が速い場合は遅い場合に比べ、感光体の設定電位が高い場合は低い場合に比べ、ツェナーダイオード16に流れる電流が減る場合がある。   Note that when the process speed is high, the current flowing through the Zener diode 16 may decrease when the set potential of the photoconductor is high, compared to when it is low.

このように使用によって感光体が摩耗して膜厚が薄くなると、第1の電源から供給される電流の中で一次転写部に流れ込む電流の量が増えツェナーダイオード16に流れる電流が減る。そのためツェナーダイオード16に発生する電圧が予め定められた電圧に満たないことがある。   When the photosensitive member is worn and thinned in this way, the amount of current flowing into the primary transfer portion among the current supplied from the first power supply increases, and the current flowing through the Zener diode 16 decreases. For this reason, the voltage generated in the Zener diode 16 may not reach a predetermined voltage.

そこで本発明ではツェナーダイオード16に発生する電圧が予め定められた電圧を維持できるように、第2の電源21を設けることで中間転写ベルト7のベルト電位を一定に維持させる。   Therefore, in the present invention, the belt potential of the intermediate transfer belt 7 is kept constant by providing the second power source 21 so that the voltage generated in the Zener diode 16 can be maintained at a predetermined voltage.

実施例1では、張架ローラと接地電位(アース)との間に、ツェナー降伏電圧Vbrが25Vとなるツェナーダイオード16が12個直列に接続された状態で配置されるものとする。中間転写ベルトの電位は、各ツェナーダイオードのツェナー降伏電圧の合計、すなわち25×12=300Vで一定に維持されることになる。   In Example 1, it is assumed that 12 Zener diodes 16 having a Zener breakdown voltage Vbr of 25V are connected in series between the stretching roller and the ground potential (earth). The potential of the intermediate transfer belt is kept constant at the total Zener breakdown voltage of each Zener diode, that is, 25 × 12 = 300V.

もちろんツェナーダイオードを複数用いる構成に限定する意図ではない。ツェナーダイオードを1つだけ用いる構成にすることもできる。   Of course, the present invention is not intended to be limited to a configuration using a plurality of Zener diodes. A configuration in which only one Zener diode is used may be employed.

もちろん中間転写ベルトの表面電位は300Vになる構成に限定する意図ではない。使用するトナーの種類や感光体の特性に応じて適宜設定するのが望ましい。   Of course, the surface potential of the intermediate transfer belt is not intended to be limited to 300V. It is desirable to set appropriately according to the type of toner used and the characteristics of the photoreceptor.

[ツェナーダイオードに流れる電流を検知する回路]
実施例1ではツェナーダイオード16を介してアースに流れる電流を検知する第1の電流検知回路204(検知手段)が設けられている。
[Circuit for detecting current flowing in Zener diode]
In the first embodiment, a first current detection circuit 204 (detection means) that detects a current flowing to the ground via the Zener diode 16 is provided.

第1の電流検知回路204で検知した電流が5μA未満である場合、ツェナーダイオード16に発生する電圧は予め定められた電圧未満であり、5μA以上である場合、ツェナーダイオード16に発生する電圧は予め定められた電圧である。   When the current detected by the first current detection circuit 204 is less than 5 μA, the voltage generated in the Zener diode 16 is less than a predetermined voltage, and when it is 5 μA or more, the voltage generated in the Zener diode 16 is The voltage is determined.

[コントローラ]
実施例1の画像形成装置全体の制御を行うコントローラの構成について図6を参照して説明する。コントローラは、図6に示すように、CPU回路部150(制御部)を有する。CPU回路部150は、CPU(図示せず)、ROM151およびRAM152を内蔵する。
[controller]
A configuration of a controller that controls the entire image forming apparatus according to the first exemplary embodiment will be described with reference to FIG. As shown in FIG. 6, the controller includes a CPU circuit unit 150 (control unit). The CPU circuit unit 150 includes a CPU (not shown), a ROM 151, and a RAM 152.

第1の電流検知回路204はツェナーダイオード16に流入する電流を検知する回路である。第2の電流検知回路205は二次転写部を流れる電流を検知する回路である。電位センサー206は感光体表面の電位を検知するセンサーである。温湿度センサー207は温湿度を検知するセンサーである。   The first current detection circuit 204 is a circuit that detects a current flowing into the Zener diode 16. The second current detection circuit 205 is a circuit that detects a current flowing through the secondary transfer unit. The potential sensor 206 is a sensor that detects the potential of the photoreceptor surface. The temperature / humidity sensor 207 is a sensor for detecting temperature / humidity.

CPU回路部150には、第1の電流検知回路204、第2の電流検知回路205、電位センサー206、温湿度センサー207からの情報が入力される。そしてCPU回路部150は、ROM151に格納されている制御プログラムに応じて、第2の電源21、第1の電源22、現像高圧電源201、露光電源202,帯電高圧電源203を統括的に制御する。後述する環境テーブルや紙厚さ対応テーブルはROM151に格納されておりCPUが呼び出して反映される。RAM152は制御データを一時的に保持し、また制御に伴う演算処理の作業領域として用いられる。   Information from the first current detection circuit 204, the second current detection circuit 205, the potential sensor 206, and the temperature / humidity sensor 207 is input to the CPU circuit unit 150. The CPU circuit unit 150 comprehensively controls the second power source 21, the first power source 22, the development high-voltage power source 201, the exposure power source 202, and the charging high-voltage power source 203 in accordance with a control program stored in the ROM 151. . An environment table and a paper thickness correspondence table, which will be described later, are stored in the ROM 151 and reflected by being called by the CPU. The RAM 152 temporarily stores control data and is used as a work area for arithmetic processing associated with control.

[第1の電源の制御]
二次転写電界を適正化するために、第1の電源22がCPU回路部150によって制御される。
[Control of first power source]
In order to optimize the secondary transfer electric field, the first power supply 22 is controlled by the CPU circuit unit 150.

適正な二次転写電界は、雰囲気環境や記録材の種類によって変化する。そこで本実施例1では、トナー像を記録材に転写する二次転写工程前の非二次転写時に、CPU回路部150によって調整工程が実行される。   The appropriate secondary transfer electric field varies depending on the atmospheric environment and the type of recording material. Therefore, in the first embodiment, the adjustment process is executed by the CPU circuit unit 150 during the non-secondary transfer before the secondary transfer process for transferring the toner image to the recording material.

CPU回路部150は、第1の電源22で複数の調整電圧を印加したときに二次転写部を流れる電流を第2の電流検知手段205で測定し、電圧と電流の相関関係を算出する。   The CPU circuit unit 150 measures the current flowing through the secondary transfer unit with the second current detection unit 205 when a plurality of adjustment voltages are applied by the first power supply 22, and calculates the correlation between the voltage and the current.

CPU回路部150は、算出された電流と電圧との相関関係に基づいて、二次転写に必要となる二次転写目標電流Itを流すための電圧V1を算出する。   The CPU circuit unit 150 calculates a voltage V1 for flowing the secondary transfer target current It necessary for the secondary transfer based on the calculated correlation between the current and the voltage.

CPU回路部150は、二次転写目標電流Itを流すためのV1に記録材分担電圧V2が加算された電圧(V1+V2)を二次転写電圧の目標電圧Vtとして設定する。   The CPU circuit unit 150 sets a voltage (V1 + V2) obtained by adding the recording material sharing voltage V2 to V1 for flowing the secondary transfer target current It as the target voltage Vt of the secondary transfer voltage.

[一次転写と二次転写の実行時の各電源のON,OFFと制御]
画像形成中の一次転写部と二次転写部のそれぞれの場所において、転写が行われているか否かの観点で以下の(ア)〜(ウ)の3つのタイミングに分ける。それぞれのタイミングで第1の電源と第2の電源のON、OFFと制御について整理すると以下のようになる。
(ア)一次転写が行われているとともに二次転写も行われているとき
第1の電源をONかつ第2の電源をON
(イ)一次転写が行われていて、二次転写が行われてないとき
第1の電源をOFFかつ第2の電源をON
(ウ)一次転写が行われてなく、二次転写が行われているとき
第1の電源をONかつ第2の電源をON
(ア)の場合、第1の電源はATVCで決められた定電圧、第2の電源21は第1の電流検知回路204の検知電流が5μAになるように制御される。
(イ)の場合、第2の電源21は第1の電流検知回路204の検知電流が5μAになるように制御される。
(ウ)の場合、第1の電源はATVCで決められた定電圧、第2の電源は第1の電流検知回路204の検知電流が5μAになるように制御される。
[Power ON / OFF and control during primary transfer and secondary transfer]
From the viewpoint of whether or not the transfer is performed at each of the primary transfer portion and the secondary transfer portion during image formation, the timing is divided into the following three timings (a) to (c). The ON / OFF and control of the first power supply and the second power supply at each timing are summarized as follows.
(A) When primary transfer is being performed and secondary transfer is being performed The first power supply is turned on and the second power supply is turned on
(B) When primary transfer is performed and secondary transfer is not performed, the first power supply is turned off and the second power supply is turned on
(C) When the primary transfer is not performed and the secondary transfer is performed The first power supply is turned on and the second power supply is turned on
In the case of (a), the first power source is controlled to a constant voltage determined by ATVC, and the second power source 21 is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.
In the case of (a), the second power supply 21 is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.
In the case of (c), the first power source is controlled so as to have a constant voltage determined by ATVC, and the second power source is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.

ここで(イ)のタイミングで、第1の電源をON、第2の電源をOFFにすることも可能であるが、第1の電源をOFFかつ第2の電源をONにする理由は以下の通りである。2次転写ローラは、通電時間と電流値の積に依存して抵抗上昇して寿命に到達するところ、第1の電源をOFFにして2次転写ローラへの通電時間を短くして寿命を向上させるためである。   Here, it is possible to turn on the first power supply and turn off the second power supply at the timing (b). The reason for turning off the first power supply and turning on the second power supply is as follows. Street. The secondary transfer roller increases in resistance depending on the product of the energization time and the current value and reaches the end of its life. However, the first transfer is turned off to shorten the energization time to the secondary transfer roller and improve the life. This is to make it happen.

また、(ウ)のタイミングで、第1の電源22をON、第2の電源21をOFFにすることも可能であるが、第1の電源22をON、かつ第2の電源21をONにする理由は以下の通りである。(ウ)のタイミングは一次転写がされていない期間なので定電圧素子が予め定められた電圧未満でも一次転写の観点では問題はない。しかし、定電圧素子に発生する電位は二次転写内ローラ10の電位でもあるため二次転写電界に影響して二次転写電界の適正値からのずれによる二次転写不良が発生する。この二次転写不良の対策として(ウ)のタイミングに合わせて感光体の設定電位を下げ、相対的に定電圧素子に流れる電流を増やせば定電圧素子に予め定められた電圧を発生させ得る。しかし感光体の設定電位を下げた場合、中間転写ベルト7と感光体の電位差が大きくなり、感光体にメモリが発生するおそれがある。そこで実施例1では(ウ)のタイミングで第1の電源22をON、かつ第2の電源21をONにしている。   It is also possible to turn on the first power supply 22 and turn off the second power supply 21 at the timing of (c). However, the first power supply 22 is turned on and the second power supply 21 is turned on. The reason for doing this is as follows. Since the timing of (c) is a period in which primary transfer is not performed, there is no problem in terms of primary transfer even if the constant voltage element is less than a predetermined voltage. However, since the potential generated in the constant voltage element is also the potential of the secondary transfer inner roller 10, the secondary transfer electric field is affected and a secondary transfer failure occurs due to a deviation from the appropriate value of the secondary transfer electric field. As a countermeasure against this secondary transfer failure, a predetermined voltage can be generated in the constant voltage element by lowering the set potential of the photoreceptor in accordance with the timing of (c) and relatively increasing the current flowing through the constant voltage element. However, when the set potential of the photosensitive member is lowered, the potential difference between the intermediate transfer belt 7 and the photosensitive member becomes large, and there is a possibility that memory is generated in the photosensitive member. Therefore, in the first embodiment, the first power supply 22 is turned on and the second power supply 21 is turned on at the timing of (c).

第1の実施例により、定電圧素子を確実に予め定められた電圧にすることができ、一次転写不良を抑制できるとともに、2次転写ローラの寿命が向上し、感光体のメモリも回避できる。   According to the first embodiment, the constant voltage element can be reliably set to a predetermined voltage, primary transfer failure can be suppressed, the life of the secondary transfer roller can be improved, and the memory of the photoconductor can be avoided.

実施例2の装置の基本構成は実施例1と共通である。
第1の実施例では(イ)のタイミングで第1の電源22をOFFかつ第2の電源21をONにしていたが、二次転写ローラの材料や設定寿命により通電による抵抗上昇が問題にならない場合には以下の構成にできる。
(ア)一次転写が行われているとともに二次転写も行われているとき
第1の電源をON、かつ第2の電源をON
(イ)一次転写が行われていて、二次転写が行われてないとき
第1の電源をON、かつ第2の電源をOFF
(ウ)一次転写が行われてなく、二次転写が行われているとき
第1の電源をON、かつ第2の電源をON
(ア)の場合、第1の電源22はATVCで決められた定電圧、第2の電源21は第1の電流検知回路204の検知電流が5μAになるように制御される。
(イ)の場合、第1の電源22は第1の電流検知回路204の検知電流が5μAになるように制御される。
(ウ)の場合、第1の電源22はATVCで決められた定電圧、第2の電源21は第1の電流検知回路204の検知電流が5μAになるように制御される。
The basic configuration of the apparatus of the second embodiment is the same as that of the first embodiment.
In the first embodiment, the first power supply 22 is turned off and the second power supply 21 is turned on at the timing (a). However, the resistance increase due to energization does not become a problem due to the material of the secondary transfer roller and the set life. In some cases, the following configuration is possible.
(A) When primary transfer is being performed and secondary transfer is being performed The first power supply is turned on and the second power supply is turned on
(A) When primary transfer is being performed and secondary transfer is not being performed The first power supply is turned on and the second power supply is turned off
(C) When the primary transfer is not performed and the secondary transfer is performed The first power supply is turned on and the second power supply is turned on
In the case of (a), the first power source 22 is controlled to a constant voltage determined by ATVC, and the second power source 21 is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.
In the case of (a), the first power supply 22 is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.
In the case of (c), the first power supply 22 is controlled to a constant voltage determined by ATVC, and the second power supply 21 is controlled so that the detection current of the first current detection circuit 204 is 5 μA.

実施例2により、定電圧素子を確実に予め定められた電圧にすることができ、一次転写不良を抑制できるとともに、感光体のメモリも回避できる。   According to the second embodiment, the constant voltage element can be reliably set to a predetermined voltage, primary transfer failure can be suppressed, and the memory of the photoconductor can be avoided.

実施例3の装置の基本構成は実施例1と共通である。
第1、第2の実施例では、(ウ)のタイミングでは第1の電源22をON、かつ第2の電源21をOFFにしていたが、感光体の材料等で感光体のメモリが問題にならない場合には次の構成にできる。
(ア)一次転写が行われているとともに二次転写も行われているとき
第1の電源をON、かつ第2の電源をON
(イ)一次転写が行われていて、二次転写が行われてないとき
第1の電源をON、かつ第2の電源をOFF
(ウ)一次転写が行われてなく、二次転写が行われているとき
第1の電源をON、かつ第2の電源をOFF
(ア)の場合、第1の電源22はATVCで決められた定電圧、第2の電源21は第2の電流検知回路204の検知電流が5μAになるように制御される。
(イ)の場合、第1の電源22は第1の電流検知回路204の検知電流が5μAになるように制御される。
(ウ)の場合、第1の電源22はATVCで決められた定電圧で制御される。
The basic configuration of the apparatus of the third embodiment is the same as that of the first embodiment.
In the first and second embodiments, the first power source 22 is turned on and the second power source 21 is turned off at the timing of (c). However, the memory of the photoconductor becomes a problem due to the material of the photoconductor. If not, the following configuration can be used.
(A) When primary transfer is being performed and secondary transfer is being performed The first power supply is turned on and the second power supply is turned on
(A) When primary transfer is being performed and secondary transfer is not being performed The first power supply is turned on and the second power supply is turned off
(C) When the primary transfer is not performed and the secondary transfer is performed The first power supply is turned on and the second power supply is turned off.
In the case of (a), the first power source 22 is controlled to a constant voltage determined by ATVC, and the second power source 21 is controlled so that the detection current of the second current detection circuit 204 is 5 μA.
In the case of (a), the first power supply 22 is controlled so that the detection current of the first current detection circuit 204 becomes 5 μA.
In the case of (c), the first power supply 22 is controlled by a constant voltage determined by ATVC.

ここで、実施例3では(ウ)のタイミングに合わせて、一次転写部における感光体の電位が0Vになるように帯電又は露光を制御する。これによりツェナーダイオードに流れる電流が増え、二次転写内ローラ10の電位が下がることが抑制され、2次転写電界を適正に維持することができる。   Here, in Example 3, charging or exposure is controlled so that the potential of the photoconductor in the primary transfer portion becomes 0 V in accordance with the timing of (c). As a result, the current flowing through the Zener diode is increased and the potential of the secondary transfer inner roller 10 is suppressed from being lowered, and the secondary transfer electric field can be properly maintained.

実施例3により、定電圧素子を確実に予め定められた電圧にすることができ、一次転写不良を抑制できる。   According to the third embodiment, the constant voltage element can be reliably set to a predetermined voltage, and primary transfer failure can be suppressed.

1 感光体
7 中間転写ベルト
21 第2の電源
22 第1の電源
14 二次転写外ローラ
150 CPU回路部
DESCRIPTION OF SYMBOLS 1 Photoconductor 7 Intermediate transfer belt 21 2nd power supply 22 1st power supply 14 Secondary transfer outer roller 150 CPU circuit part

Claims (7)

トナー像を担持する像担持体と、
前記像担持体から一次転写部で転写されたトナー像を担持する中間転写体と、
前記中間転写体の外周面に当接して配置され、前記中間転写体からトナー像を二次転写部で記録材に転写する転写部材と、
前記中間転写体の内周面と接地電位との間に電気的に接続され、予め定められた電圧を発生させる定電圧素子と、
前記定電圧素子に流れる電流を検知する検知手段と、
前記転写部材に電圧を印加して前記定電圧素子に電流を流し前記二次転写部に二次転写電界を形成する第1の電源と、
前記中間転写体の内周面と電気的に接続され、前記一次転写部に一次転写電界を形成する第2の電源と、
前記検知手段の検知結果に基づき前記第2の電源を制御する制御部と、
を有することを特徴とする画像形成装置。
An image carrier for carrying a toner image;
An intermediate transfer member carrying a toner image transferred from the image carrier at a primary transfer portion;
A transfer member disposed in contact with the outer peripheral surface of the intermediate transfer member, and transferring a toner image from the intermediate transfer member to a recording material at a secondary transfer unit;
A constant voltage element that is electrically connected between the inner peripheral surface of the intermediate transfer member and a ground potential, and generates a predetermined voltage;
Detecting means for detecting a current flowing in the constant voltage element;
A first power source that applies a voltage to the transfer member to cause a current to flow through the constant voltage element to form a secondary transfer electric field in the secondary transfer portion;
A second power source electrically connected to the inner peripheral surface of the intermediate transfer member and forming a primary transfer electric field in the primary transfer portion;
A control unit for controlling the second power supply based on a detection result of the detection means;
An image forming apparatus comprising:
前記制御部は、前記検知手段による検知結果が、前記定電圧素子が予め定められた電圧を発生する電流値になるように前記第2の電源を制御することを特徴とする請求項1に記載の画像形成装置。   2. The control unit according to claim 1, wherein the control unit controls the second power supply so that a detection result of the detection unit becomes a current value at which the constant voltage element generates a predetermined voltage. Image forming apparatus. 前記制御部は、一次転写が行われている時に、前記検知手段の検知結果に基づき前記第2の電源を制御することを特徴とする請求項1に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the control unit controls the second power source based on a detection result of the detection unit when primary transfer is performed. 前記制御部は、一次転写が行われている時でかつ二次転写が行われていない時に、前記第2の電源のみから電流を供給し、前記検知手段の検知結果に基づき前記第2の電源を制御することを特徴とする請求項3に記載の画像形成装置。   The controller supplies current only from the second power source when primary transfer is being performed and when secondary transfer is not being performed, and the second power source is based on the detection result of the detection means. 4. The image forming apparatus according to claim 3, wherein the image forming apparatus is controlled. 前記中間転写体は二層以上の構成であり、前記外周面側の層の体積抵抗率が前記内周面側の層の体積抵抗率よりも高いことを特徴とする請求項1乃至4のいずれか1項に記載の画像形成装置。   The intermediate transfer member has a structure of two or more layers, and the volume resistivity of the layer on the outer peripheral surface side is higher than the volume resistivity of the layer on the inner peripheral surface side. The image forming apparatus according to claim 1. 前記中間転写体は中間転写ベルトであり、
前記中間転写ベルトの内周面に当接して前記中間転写ベルトを張架する複数の張架部材を有することを特徴とする請求項1乃至5のいずれか1項に記載の画像形成装置。
The intermediate transfer member is an intermediate transfer belt;
The image forming apparatus according to claim 1, further comprising a plurality of stretching members that are in contact with an inner peripheral surface of the intermediate transfer belt and stretch the intermediate transfer belt.
前記張架部材は導電性を有する張架ローラであり、
前記張架ローラが前記定電圧素子に電気的に接続されることで前記中間転写体と前記定電圧素子とを電気的に接続することを特徴とする請求項6に記載の画像形成装置。
The tension member is a tension roller having conductivity,
The image forming apparatus according to claim 6, wherein the tension roller is electrically connected to the constant voltage element to electrically connect the intermediate transfer body and the constant voltage element.
JP2014247334A 2014-12-05 2014-12-05 Image forming apparatus Pending JP2016109875A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014247334A JP2016109875A (en) 2014-12-05 2014-12-05 Image forming apparatus
PCT/JP2015/005746 WO2016088315A1 (en) 2014-12-05 2015-11-17 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247334A JP2016109875A (en) 2014-12-05 2014-12-05 Image forming apparatus

Publications (1)

Publication Number Publication Date
JP2016109875A true JP2016109875A (en) 2016-06-20

Family

ID=56091281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247334A Pending JP2016109875A (en) 2014-12-05 2014-12-05 Image forming apparatus

Country Status (2)

Country Link
JP (1) JP2016109875A (en)
WO (1) WO2016088315A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072550A (en) * 2016-10-28 2018-05-10 キヤノン株式会社 Image formation apparatus
US10423115B2 (en) 2017-10-13 2019-09-24 Canon Kabushiki Kaisha Image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5906047B2 (en) * 2010-10-04 2016-04-20 キヤノン株式会社 Image forming apparatus
JP6066578B2 (en) * 2012-04-03 2017-01-25 キヤノン株式会社 Image forming apparatus
CN104350434B (en) * 2012-04-03 2017-06-27 佳能株式会社 Image forming apparatus
JP6168816B2 (en) * 2012-04-03 2017-07-26 キヤノン株式会社 Image forming apparatus
JP2013217986A (en) * 2012-04-04 2013-10-24 Canon Inc Image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072550A (en) * 2016-10-28 2018-05-10 キヤノン株式会社 Image formation apparatus
US10423115B2 (en) 2017-10-13 2019-09-24 Canon Kabushiki Kaisha Image forming apparatus

Also Published As

Publication number Publication date
WO2016088315A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6366785B2 (en) Image forming apparatus
JP6366786B2 (en) Image forming apparatus
WO2013151177A1 (en) Image forming device
US20160124353A1 (en) Image forming apparatus
US9341993B2 (en) Image forming apparatus
JP5921293B2 (en) Image forming apparatus
JP5911357B2 (en) Image forming apparatus
US20160223956A1 (en) Image forming apparatus
JP5968014B2 (en) Image forming apparatus
JP6066578B2 (en) Image forming apparatus
JP2016109875A (en) Image forming apparatus
JP6366489B2 (en) Image forming apparatus
JP6214747B2 (en) Image forming apparatus
JP5911356B2 (en) Image forming apparatus
JP6129385B2 (en) Image forming apparatus
JP6053976B2 (en) Image forming apparatus
JP5925041B2 (en) Image forming apparatus
JP2018054644A (en) Image forming apparatus
JP2016109876A (en) Image forming apparatus
JP2017026775A (en) Image forming apparatus
JP2016143010A (en) Image forming apparatus
JP2016143008A (en) Image forming apparatus
JP2016109839A (en) Image formation device