JP2016109516A - Method for estimating fracture strength of material and rubber composition - Google Patents

Method for estimating fracture strength of material and rubber composition Download PDF

Info

Publication number
JP2016109516A
JP2016109516A JP2014246083A JP2014246083A JP2016109516A JP 2016109516 A JP2016109516 A JP 2016109516A JP 2014246083 A JP2014246083 A JP 2014246083A JP 2014246083 A JP2014246083 A JP 2014246083A JP 2016109516 A JP2016109516 A JP 2016109516A
Authority
JP
Japan
Prior art keywords
fracture
fracture surface
distance
area
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014246083A
Other languages
Japanese (ja)
Other versions
JP6463623B2 (en
Inventor
朋子 前田
Tomoko Maeda
朋子 前田
幸伸 河村
Yukinobu Kawamura
幸伸 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014246083A priority Critical patent/JP6463623B2/en
Publication of JP2016109516A publication Critical patent/JP2016109516A/en
Application granted granted Critical
Publication of JP6463623B2 publication Critical patent/JP6463623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate estimate durability performance by estimating fracture strength of a tire without sampling a rubber sample from a tire or performing a durability evaluation test, and to provide a highly durable tire.SOLUTION: A fracture-strength estimation method for a material includes: a first step of scanning a fracture surface of the material, measuring a position (X, y) and a height z(x, y) of the fracture surface, and digitizing a state of the fracture surface; a second step of calculating distances between respective positions using heights z of the position (x, y), a position (x+1, y), a position (x, y+1), and a position (x+1, y+1), and measurement intervals between the respective positions; a third step of calculating an area among four points using Heron's formula; and a step of determining whether or not a ratio obtained from surface roughness of the fracture surface and the measurement area is equal to or more than a threshold and estimating the fracture strength of the material.SELECTED DRAWING: Figure 1

Description

本発明は、材料の破壊強度の予測方法およびゴム組成物に関する。 The present invention relates to a method for predicting the breaking strength of a material and a rubber composition.

材料の破壊解析手法の一つとして、破断面解析(フラクトグラフィー)がある。これは、材料に破壊が生じたときの破断面の形態から材料の破壊に対する特性を評価する手法である。 One of the fracture analysis methods for materials is fracture surface analysis (fractography). This is a technique for evaluating the characteristics against the destruction of the material from the form of the fracture surface when the material is broken.

脆性破壊では、破壊に至るまでほとんど塑性変形しないため、分子鎖が伸びることなく瞬時に破壊が生じ、分子鎖間のすべりはほとんどなく切断する。そのため、破断面は比較的平坦であることが特徴である。一方、延性破壊は破壊に至るまでに大きな塑性変形を伴うため、分子鎖間では滑りを生じながらクラックが成長する。そのため、破断面は凹凸が生じて粗くなることが特徴である。そのほかにも、破壊の様式によって特徴的な模様が発生し、そこから破壊の進行方向を解析することもできる。 In brittle fracture, plastic deformation hardly occurs until fracture occurs, so the molecular chain does not stretch and breaks instantaneously, and there is almost no slip between the molecular chains. Therefore, the fracture surface is characterized by being relatively flat. On the other hand, since the ductile fracture is accompanied by a large plastic deformation until the fracture, the crack grows while slipping between the molecular chains. Therefore, the fracture surface is characterized by unevenness and roughness. In addition, a characteristic pattern is generated depending on the mode of destruction, and the progress direction of the destruction can be analyzed therefrom.

このような破断面の解析はこれまで金属の分野で主に行われていたが、近年は高分子材料の分野でも研究が進められつつある。一般的に破断面の解析に用いられる手法としては、肉眼や光学顕微鏡、走査型電子顕微鏡(SEM)を用いた形態観察である(特許文献1および非特許文献1)。 Such fracture surface analysis has been mainly performed in the field of metals, but in recent years, research is also being advanced in the field of polymer materials. A technique generally used for analysis of a fractured surface is morphological observation using the naked eye, an optical microscope, or a scanning electron microscope (SEM) (Patent Document 1 and Non-Patent Document 1).

しかしながら、肉眼や光学顕微鏡、走査型電子顕微鏡(SEM)を用いた形態観察は、ある程度熟練した技術がないと判断が難しいという問題がある。また、定性的な評価方法であるため、観察者の主観に左右されやすく、細かな粗さの違い等は判断できないという問題や、物性や性能などとの相関を調べることはできないという問題点がある。 However, morphological observation using the naked eye, an optical microscope, or a scanning electron microscope (SEM) has a problem that it is difficult to make a determination without a certain level of skill. In addition, because it is a qualitative evaluation method, it is easily influenced by the subjectivity of the observer, and there is a problem that it is not possible to determine the difference in fine roughness, etc., and it is not possible to investigate the correlation with physical properties and performance. is there.

特開2014−118544号公報JP 2014-118544 A

日本ゴム協会誌、Vol.55(1982)No. 2、p82−103Journal of Japan Rubber Association, Vol. 55 (1982) no. 2, p82-103

本発明は、材料、たとえばタイヤからゴムサンプルを採取して耐久評価試験を行うことなく、タイヤの破壊強度を予測して耐久性能を評価すること、および、耐久性の高いタイヤを提供することを目的とする。 It is an object of the present invention to predict the breaking strength of a tire and evaluate the durability performance without collecting a rubber sample from a material, for example, a tire and performing a durability evaluation test, and to provide a highly durable tire. Objective.

すなわち、本発明は、
材料の破断面を走査し、破断面の位置(x,y)と高さz(x,y)を計測してこの破断面の状態を数値化する第1工程、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する第2工程、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する第3工程、および、
第1〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが閾値以上かどうかを判別する工程
を含む材料の破壊強度の予測方法に関する。
a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S+S (10)
An=ΣA(x,y) (11)
That is, the present invention
A first step of scanning the fracture surface of the material, measuring the position (x, y) and height z (x, y) of the fracture surface, and quantifying the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. A third step of calculating an area A (x, y) between, and
Including the step of performing the first to third steps on the entire fractured surface and determining whether the ratio An / A obtained from the surface roughness An and the measurement area A of the fractured surface obtained by the equation (11) is equal to or greater than a threshold value. The present invention relates to a method for predicting the fracture strength of a material.
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 + S 2 (10)
An = ΣA (x, y) (11)

また、本発明は、
タイヤの破断面を走査し、破断面の位置(x,y)と高さz(x,y)を計測してこの破断面の状態を数値化する第1工程、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する第2工程、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する第3工程、および、
第1工程〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが1.55以上となるタイヤを作製できるゴム組成物に関する。
a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S+S (10)
An=ΣA(x,y) (11)
The present invention also provides:
A first step of scanning the fracture surface of the tire, measuring the position (x, y) and height z (x, y) of the fracture surface, and quantifying the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. A third step of calculating an area A (x, y) between, and
The first step to the third step are performed on the entire fractured surface, and a tire in which the ratio An / A obtained from the surface roughness An and the measurement area A of the fractured surface obtained by the equation (11) is 1.55 or more is manufactured. The present invention relates to a rubber composition.
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 + S 2 (10)
An = ΣA (x, y) (11)

本発明の予測方法を用いることで、材料、たとえばタイヤからゴムサンプルを採取して耐久試験を行うことなく、材料(タイヤ)の破壊強度を予測して耐久性能を評価することができる。そして、耐久性の高い材料(タイヤ)を提供することができる。 By using the prediction method of the present invention, durability performance can be evaluated by predicting the breaking strength of a material (tire) without collecting a rubber sample from a material, for example, a tire and conducting a durability test. And a highly durable material (tire) can be provided.

材料破断面における位置(x,y)とその位置における高さz(x,y)に対して、測定間隔p離れた近接位置との位置関係を表す座標図である。It is a coordinate diagram showing the positional relationship between a position (x, y) on a material fracture surface and a height z (x, y) at that position and a proximity position that is separated by a measurement interval p. 各実施例および比較例のサンプルの引張強度について、引張強度に対してAn/Aをプロットした図である。It is the figure which plotted An / A with respect to the tensile strength about the tensile strength of the sample of each Example and a comparative example. 各実施例および比較例のサンプルの引張強度について、引張強度に対してRa(μm)をプロットした図である。It is the figure which plotted Ra (micrometer) with respect to the tensile strength about the tensile strength of the sample of each Example and a comparative example.

本発明の材料の破壊強度の予測方法は、
材料の破断面を走査し、破断面の位置(x,y)と高さz(x,y)を計測してこの破断面の状態を数値化する第1工程、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する第2工程、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する第3工程、および、
第1工程〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが閾値以上かどうかを判別する工程を含むことを特徴とする。
The method for predicting the fracture strength of the material of the present invention is:
A first step of scanning the fracture surface of the material, measuring the position (x, y) and height z (x, y) of the fracture surface, and quantifying the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. A third step of calculating an area A (x, y) between, and
Performing the first step to the third step on the entire fracture surface, and determining whether the ratio An / A obtained from the surface roughness An and the measurement area A of the fracture surface obtained by the equation (11) is equal to or greater than a threshold value. It is characterized by including.

a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S+S (10)
An=ΣA(x,y) (11)
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 + S 2 (10)
An = ΣA (x, y) (11)

第1工程では、材料の破断面を走査しこの破断面の位置(x,y)における高さz(x,y)を計測してこの破断面の状態を数値化する。材料としては、ゴム材料が好ましく、特にタイヤに好適に適用することができる。また、破断面としては、特に限定されないが、チッピング破壊面、摩耗面、引張破壊、衝撃破壊、ねじり破壊などによる破断面などが挙げられる。測定する破断面の面積Aは、特に限定されないが、好ましくは0.25〜0.50μm、より好ましくは0.35〜0.40μmである。 In the first step, the fracture surface of the material is scanned, the height z (x, y) at the position (x, y) of the fracture surface is measured, and the state of the fracture surface is digitized. The material is preferably a rubber material, and can be suitably applied particularly to a tire. Further, the fracture surface is not particularly limited, and examples thereof include a fracture surface caused by a chipping fracture surface, a wear surface, a tensile fracture, an impact fracture, a torsion fracture, and the like. The area A of the fracture surface to be measured is not particularly limited, but is preferably 0.25 to 0.50 μm 2 , more preferably 0.35 to 0.40 μm 2 .

破断面の測定方法はとくに限定されないが、接触式または非接触式の表面粗さ計が挙げられる。より具体的には、接触式のものとして原子間力顕微鏡及びプローブを用いた表面粗さ計、非接触式のものとしてはレーザー計測式の表面粗さ計及び共焦点式のレーザー顕微鏡が挙げられる。微小な表面の凹凸を正確に計測できる点で、共焦点式のレーザー顕微鏡を用いることが好ましい。 Although the measuring method of a fracture surface is not specifically limited, A contact-type or non-contact-type surface roughness meter is mentioned. More specifically, the contact type includes a surface roughness meter using an atomic force microscope and a probe, and the non-contact type includes a laser measurement type surface roughness meter and a confocal laser microscope. . It is preferable to use a confocal laser microscope because it can accurately measure unevenness on a minute surface.

測定時の縦横方向への分解能(すなわち、各位置間の測定間隔p)は好ましくは500μm以下、より好ましくは50μm以下、さらに好ましくは1μm以下である。500μmより大きくなると、破断面の凹凸周期よりも大きくなってしまい、正確な測定ができなくなる恐れがある。また、高さ方向への分解能(すなわち、高さz)は好ましくは5μm以下、より好ましくは0.5μm以下、さらに好ましくは0.01μm以下である。5μmより大きくなると、破断面の凹凸の高さよりも大きくなってしまい、正確な測定ができなくなるおそれがある。 The resolution in the vertical and horizontal directions during measurement (that is, the measurement interval p between each position) is preferably 500 μm or less, more preferably 50 μm or less, and even more preferably 1 μm or less. If it is larger than 500 μm, it becomes larger than the irregularity cycle of the fracture surface, and there is a possibility that accurate measurement cannot be performed. The resolution in the height direction (that is, the height z) is preferably 5 μm or less, more preferably 0.5 μm or less, and still more preferably 0.01 μm or less. If it is larger than 5 μm, it becomes larger than the height of the unevenness of the fracture surface, and there is a possibility that accurate measurement cannot be performed.

第2工程では、位置(x,y)、位置(x,y)と近接する位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと測定間隔pを用いて式(1)〜(5)より各位置間の距離、すなわち
位置(x,y)と位置(x+1,y)との距離 a(x,y)、
位置(x+1,y)と位置(x+1,y+1)との距離 b(x,y)、
位置(x+1,y+1)と位置(x,y+1)との距離 c(x,y)、
位置(x,y)と位置(x,y+1)との距離 d(x,y)、
位置(x,y)と位置(x+1,y+1)との距離 e(x,y)
を算出する。ここで、4つの位置の関係を図1の座標図に示す。
In the second step, the height z and the measurement interval p of the position (x, y), the position (x + 1, y) close to the position (x, y), the position (x, y + 1), and the position (x + 1, y + 1) are set. Using the expressions (1) to (5), the distance between each position, that is, the distance a (x, y) between the position (x, y) and the position (x + 1, y),
Distance b (x, y) between position (x + 1, y) and position (x + 1, y + 1),
Distance c (x, y) between position (x + 1, y + 1) and position (x, y + 1),
Distance d (x, y) between position (x, y) and position (x, y + 1),
Distance e (x, y) between position (x, y) and position (x + 1, y + 1)
Is calculated. Here, the relationship between the four positions is shown in the coordinate diagram of FIG.

第3工程では、式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する。 In the third step, the triangular area S 1 (x, y) (position (x, y) and position (x + 1, y)) calculated using the Heron formula shown in equations (6) to (9) (Area with position (x + 1, y + 1)), S 2 (x, y) (area with position (x, y), position (x, y + 1) and position (x + 1, y + 1)) is added by equation (10). By combining them, the area A (x, y) between the four points is calculated.

第4工程では、第1〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが閾値以上かどうかを判別する。閾値は、予めその材料の市場評価などをもとにして決定する。その閾値よりも高い場合には、破壊に対する耐久性が高く、低い場合には破壊に対する耐久性が低いと判定する。閾値としては、タイヤの場合、1.55以上が好ましく、1.60以上がより好ましい。 In the fourth step, the first to third steps are performed on the entire fractured surface, and whether the ratio An / A obtained from the surface roughness An and the measurement area A of the fractured surface obtained by Equation (11) is equal to or greater than a threshold value. Determine. The threshold value is determined in advance based on the market evaluation of the material. When it is higher than the threshold, it is determined that the durability against destruction is high, and when it is low, the durability against destruction is low. In the case of a tire, the threshold is preferably 1.55 or more, and more preferably 1.60 or more.

また、本発明の材料の破壊強度の測定装置は、
材料の破断面を走査しこの破断面の位置(x,y)における高さz(x,y)を計測してこの破断面の状態を数値化する測定手段、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する手段、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する手段、および、
第1工程〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが閾値以上かどうかを判別する手段を含むことを特徴とする。該測定装置によって、材料の破断強度を予測することができる。
Moreover, the measuring device for the fracture strength of the material of the present invention is:
Measuring means for scanning the fracture surface of the material and measuring the height z (x, y) at the position (x, y) of the fracture surface to quantify the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (a distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. Means for calculating an area A (x, y) between, and
Means for performing the first to third steps on the entire fracture surface and determining whether the ratio An / A obtained from the surface roughness An and the measurement area A of the fracture surface obtained by the equation (11) is equal to or greater than a threshold value. It is characterized by including. With this measuring device, the breaking strength of the material can be predicted.

本発明によって評価可能なゴム材料としては ゴム成分にカーボンブラックやシリカなどの充填材、加硫剤、加硫促進剤等を配合したゴム組成物から得られる材料が挙げられる。 Examples of the rubber material that can be evaluated according to the present invention include a material obtained from a rubber composition in which a filler such as carbon black and silica, a vulcanizing agent, a vulcanization accelerator, and the like are blended with a rubber component.

ゴム成分としては、例えば天然ゴム(NR)、エポキシ化天然ゴム(ENR)等の改質天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、イソブチレン−p−メチルスチレン共重合体の臭素化物、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム(CR)、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエン共重合ゴム(EPDM)、スチレン−イソプレンゴム、スチレン−イソプレン−ブタジエンゴム共重合ゴム(SIBR)、イソプレン−ブタジエンゴム、クロロスルホン化ポリエチレン(CSM)、アクリルゴム(ACM、ANM)、エピクロルヒドリンゴム(CO、ECO、GECO)、多硫化ゴム(T)、シリコーンゴム(Q)、フッ素ゴム(FKM)、ウレタンゴム(U)などを用いることができる。 Examples of rubber components include natural rubber (NR), modified natural rubber such as epoxidized natural rubber (ENR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), butyl rubber (IIR), Brominated product of isobutylene-p-methylstyrene copolymer, acrylonitrile-butadiene rubber (NBR), chloroprene rubber (CR), ethylene-propylene rubber (EPM), ethylene-propylene-diene copolymer rubber (EPDM), styrene-isoprene Rubber, styrene-isoprene-butadiene rubber copolymer rubber (SIBR), isoprene-butadiene rubber, chlorosulfonated polyethylene (CSM), acrylic rubber (ACM, ANM), epichlorohydrin rubber (CO, ECO, GECO), polysulfide rubber ( T), silicone Beam (Q), fluororubber (FKM), and urethane rubber (U) may be used.

ジエン系ゴムとしては、天然ゴム(NR)、エポキシ化天然ゴム(ENR)等の改質天然ゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、スチレン−イソプレン−ブタジエン共重合ゴム(SIBR)などが挙げられる。これらジエン系ゴムは単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Diene rubbers include natural rubber (NR), modified natural rubber such as epoxidized natural rubber (ENR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), and acrylonitrile butadiene rubber (NBR). ), Chloroprene rubber (CR), styrene-isoprene-butadiene copolymer rubber (SIBR), and the like. These diene rubbers may be used alone or in combination of two or more.

ゴム組成物には、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどのカーボンブラックを配合してもよい。カーボンブラックの配合量は、ゴム成分100質量部に対して、通常150質量部以下であり、10〜150質量部が好ましい。10質量部未満では充分な補強性が得られない傾向があり、150質量部を超えると発熱が増大して転がり抵抗が悪化したり、加工性が悪化し、かえって耐摩耗性能は低下したりする傾向にある。かかる配合量は20〜120質量部がより好ましい。 You may mix | blend carbon black, such as furnace black, acetylene black, thermal black, channel black, and graphite, with a rubber composition. The compounding quantity of carbon black is 150 mass parts or less normally with respect to 100 mass parts of rubber components, and 10-150 mass parts is preferable. If the amount is less than 10 parts by mass, sufficient reinforcing properties tend not to be obtained. If the amount exceeds 150 parts by mass, heat generation increases, rolling resistance deteriorates, workability deteriorates, and wear resistance performance decreases. There is a tendency. As for this compounding quantity, 20-120 mass parts is more preferable.

ゴム組成物には、シリカ、たとえば乾式法シリカ、湿式法シリカなどを配合してもよい。シリカの配合量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは20質量部以上、特に好ましくは30質量部以上、最も好ましくは45質量部以上である。5質量部未満であると、シリカを用いることによる転がり抵抗低減効果やウエットグリップ向上効果を得にくくなる。またシリカの配合量は、好ましくは150質量部以下、より好ましくは100質量部以下、更に好ましくは80質量部以下である。150質量部を超えると、シリカが多すぎて加工することが難しくなる。 Silica, for example, dry process silica, wet process silica, and the like may be blended in the rubber composition. The amount of silica is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, still more preferably 20 parts by mass or more, particularly preferably 30 parts by mass or more, and most preferably 45 parts by mass with respect to 100 parts by mass of the rubber component. More than part by mass. When the amount is less than 5 parts by mass, it becomes difficult to obtain a rolling resistance reduction effect and a wet grip improvement effect by using silica. The amount of silica is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and still more preferably 80 parts by mass or less. When it exceeds 150 parts by mass, it is difficult to process because there is too much silica.

シリカとともに、公知のシランカップリング剤を使用することができる。シランカップリング剤としては、従来から用いられている一般的なものを使用することが出来る。カップリング剤配合量は、シリカ100質量部に対して0.5〜20質量部が好ましく、1.5〜15質量部がより好ましく、2.5〜10質量部が更に好ましい。シランカップリング剤の配合量が0.5質量部未満では、シランカップリング剤を入れてシリカの分散を改善する効果が充分に得られず、耐摩耗性や破壊エネルギーが低下する傾向があり、20質量部をこえると、コストが上がる割に効果が得られず、更には、補強性、耐摩耗性がかえって低下する場合がある。 A well-known silane coupling agent can be used with silica. As the silane coupling agent, conventional ones that have been conventionally used can be used. 0.5-20 mass parts is preferable with respect to 100 mass parts of silica, as for a coupling agent compounding quantity, 1.5-15 mass parts is more preferable, and 2.5-10 mass parts is still more preferable. If the blending amount of the silane coupling agent is less than 0.5 parts by mass, the effect of improving the silica dispersion by adding the silane coupling agent cannot be sufficiently obtained, and the wear resistance and fracture energy tend to be reduced. If the amount exceeds 20 parts by mass, the effect cannot be obtained for the cost increase, and further, the reinforcement and wear resistance may be lowered.

プロセスオイルとしては、合成油や、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどの鉱物油などが用いられる。植物油脂としてはひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、サフラワー油、桐油などがある。 As process oils, synthetic oils, mineral oils such as paraffinic process oils, naphthenic process oils, and aromatic process oils are used. Vegetable oils include castor oil, cottonseed oil, sesame oil, rapeseed oil, soybean oil, palm oil, palm oil, peanut oil, rosin, pine oil, pineapple, tall oil, corn oil, rice bran oil, bean flower oil, sesame oil, olive oil , Sunflower oil, palm kernel oil, coconut oil, jojoba oil, macadamia nut oil, safflower oil, tung oil and so on.

老化防止剤としては、耐熱性老化防止剤、耐候性老化防止剤等でゴム組成物に通常使用されるものであれば特に限定されないが、例えば、ナフチルアミン系(フェニル−α−ナフチルアミン等)、ジフェニルアミン系(オクチル化ジフェニルアミン、4,4´−ビス(α,α´−ジメチルベンジル)ジフェニルアミン等)、p−フェニレンジアミン系(N−イソプロピル−N´−フェニル−p−フェニレンジアミン、N−(1,3−ジメチルブチル)−N´−フェニル−p−フェニレンジアミン、N,N´−ジ−2−ナフチル−p−フェニレンジアミン等)等のアミン系老化防止剤;2,2,4−トリメチル−1,2−ジヒドロキノリンの重合物等のキノリン系老化防止剤;モノフェノール系(2,6−ジ−t−ブチル−4−メチルフェノール、スチレン化フェノール等)、ビス、トリス、ポリフェノール系(テトラキス−[メチレン−3−(3´,5´−ジ−t−ブチル−4´−ヒドロキシフェニル)プロピオネート]メタン等)等のフェノール系老化防止剤が挙げられる。 The anti-aging agent is not particularly limited as long as it is a heat-resistant anti-aging agent, a weather-resistant anti-aging agent and the like and is usually used in rubber compositions. For example, a naphthylamine type (phenyl-α-naphthylamine etc.), diphenylamine System (octylated diphenylamine, 4,4′-bis (α, α′-dimethylbenzyl) diphenylamine, etc.), p-phenylenediamine system (N-isopropyl-N′-phenyl-p-phenylenediamine, N- (1, 3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, etc.); 2,2,4-trimethyl-1 Quinoline antioxidants such as polymers of 2,2-dihydroquinoline; monophenols (2,6-di-tert-butyl-4-methylphenol, Phenol aging prevention such as tyrenated phenol), bis, tris, polyphenol (tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, etc.) Agents.

上記ゴム組成物は、タイヤのキャップトレッドなどに使用される。タイヤは、上記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でキャップトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧して、タイヤを製造できる。 The rubber composition is used for tire cap treads and the like. A tire is manufactured by a normal method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of the cap tread at an unvulcanized stage, molded by a normal method on a tire molding machine, Bonding together with the tire member forms an unvulcanized tire. This unvulcanized tire can be heated and pressurized in a vulcanizer to produce a tire.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

製造例
下記配合内容にしたがい、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の薬品を混練りした。次に、オープンロールを用いて、得られた混練り物に硫黄及び加硫促進剤を添加して練り込み、未加硫ゴム組成物を得た。次に、得られた未加硫ゴム組成物を170℃で15分間、2mm厚の金型でプレス加硫し、加硫ゴム組成物(加硫ゴムシート)を得た。
Production Example According to the following composition, chemicals other than sulfur and a vulcanization accelerator were kneaded using a 1.7 L Banbury mixer manufactured by Kobe Steel. Next, using an open roll, sulfur and a vulcanization accelerator were added to the kneaded product and kneaded to obtain an unvulcanized rubber composition. Next, the obtained unvulcanized rubber composition was press vulcanized with a 2 mm thick mold at 170 ° C. for 15 minutes to obtain a vulcanized rubber composition (vulcanized rubber sheet).

また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、150℃で30分間加硫し、試験用タイヤ(サイズ:11R22.5)を製造した。 Further, the obtained unvulcanized rubber composition is molded into a tread shape, and bonded together with other tire members on a tire molding machine to form an unvulcanized tire, which is vulcanized at 150 ° C. for 30 minutes, and tested. Tires (size: 11R22.5) were manufactured.

(配合)
SBR:日本ゼオン社製 NS116R(溶液重合SBR、結合スチレン量:23質量%、Tg:−21℃) (配合量は表1参照)
BR:宇部興産(株)製のBR150B (配合量は表1参照)
カーボンブラック:三菱化学(株)製のシーストN220(NSA:114m/g) (20質量部)
シリカ:EVONIK−DEGUSSA社製のウルトラジルVN3(NSA:175m/g) (50質量部)
シランカップリング剤:EVONIK−DEGUSSA社製のSi69(ビス(3−トリエトキシシリルプロピル)テトラスルフィド) (5質量部)
プロセスオイル(アロマオイル):ジャパンエナジー社製のプロセスX−140(芳香族系プロセスオイル) (20質量部)
パラフィンワックス:日本精蝋(株)製オゾエース0355(1質量部)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン) (1質量部)
ステアリン酸:日油(株)製のステアリン酸 (2質量部)
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号 (2質量部)
硫黄:鶴見化学(株)製の粉末硫黄 (2質量部)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(化学名:N−tert−ブチル−2−ベンゾチアジルスルフェンアミド) (1質量部)
を用いた。
(Combination)
SBR: NS116R manufactured by Zeon Corporation (Solution-polymerized SBR, bound styrene content: 23% by mass, Tg: -21 ° C.) (see Table 1 for the blending amount)
BR: BR150B manufactured by Ube Industries, Ltd. (see Table 1 for blending amount)
Carbon black: Seast N220 manufactured by Mitsubishi Chemical Corporation (N 2 SA: 114 m 2 / g) (20 parts by mass)
Silica: Ultrasil VN3 (N 2 SA: 175 m 2 / g) (50 parts by mass) manufactured by EVONIK-DEGUSSA
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) (5 parts by mass) manufactured by EVONIK-DEGUSSA
Process oil (aromatic oil): Process X-140 (aromatic process oil) manufactured by Japan Energy (20 parts by mass)
Paraffin wax: Nippon Seiwa Co., Ltd. Ozoace 0355 (1 part by mass)
Anti-aging agent: Nocrack 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) (1 part by mass) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.
Stearic acid: Stearic acid manufactured by NOF Corporation (2 parts by mass)
Zinc oxide: Zinc flower No. 1 (2 parts by mass) manufactured by Mitsui Mining & Smelting Co., Ltd.
Sulfur: Powder sulfur manufactured by Tsurumi Chemical Co., Ltd. (2 parts by mass)
Vulcanization accelerator: Noxeller NS (chemical name: N-tert-butyl-2-benzothiazylsulfenamide) manufactured by Ouchi Shinsei Chemical Industry Co., Ltd. (1 part by mass)
Was used.

実施例1〜3および比較例1〜2
製造例で得られたタイヤを装着して、市場で走行させた後のタイヤ外観を観察し、トレッド欠けの小さいものをgood、大きいものをbadとして耐久性能を評価した。
Examples 1-3 and Comparative Examples 1-2
The tires obtained in the production examples were mounted and the appearance of the tires after running in the market was observed. Durability was evaluated with good as a tread chip and good as a bad.

<破断面評価>
調製した厚さ2mmのゴムシートから、JIS K6251に準じて3号ダンベルを用いて引張り試験を実施し、破断面を作製した。その際、破断強度(TB)及び破断時伸び(EB)(%)を測定し、TB×EB/2の数値を引張強度として各配合の引張強度を、実施例1の組成物から得た試験片の引張強度を100として指数表示した。指数が大きいほど破壊強度に優れる。
<Fracture surface evaluation>
From the prepared rubber sheet having a thickness of 2 mm, a tensile test was performed using a No. 3 dumbbell according to JIS K6251 to produce a fracture surface. At that time, the breaking strength (TB) and the elongation at break (EB) (%) were measured, and the tensile strength of each formulation was obtained from the composition of Example 1 with the numerical value of TB × EB / 2 as the tensile strength. The tensile strength of the piece was taken as 100 and indicated as an index. The larger the index, the better the breaking strength.

<破断面評価>
第1工程
破断面評価において、引張破壊により形成された破断面を、表面粗さ計として共焦点式レーザー顕微鏡(株式会社キーエンス製の「VK9500」)を用いて位置(x,y)における高さz(x,y)を計測して、数値化した。縦横方向への分解能pは0.69μmで、測定面積Aは0.37μmであった。また、同時にJIS B0601−2001に準拠して算術平均粗さRaも測定した。
<Fracture surface evaluation>
In the first step fracture surface evaluation, the fracture surface formed by tensile fracture is height at position (x, y) using a confocal laser microscope ("VK9500" manufactured by Keyence Corporation) as a surface roughness meter. z (x, y) was measured and digitized. The resolution p in the vertical and horizontal directions was 0.69 μm, and the measurement area A was 0.37 μm 2 . At the same time, arithmetic average roughness Ra was also measured according to JIS B0601-2001.

第2工程
数値化によって得られた値と各位置間の測定間隔pをもとにして、式(1)〜(5)で示された近接する5箇所の距離(a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離))を算出した。
a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
Based on the value obtained by the second step quantification and the measurement interval p between each position, the distances (a (x, y) (a (x, y) ( Distance between position (x, y) and position (x + 1, y)), b (x, y) (distance between position (x + 1, y) and position (x + 1, y + 1)), c (x, y) ( Distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (distance between position (x, y) and position (x, y + 1)), e (x, y) ( The distance between the position (x, y) and the position (x + 1, y + 1))) was calculated.
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)

第3工程
この4箇所の点を結ぶことにより形成される四角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を、式(6)〜(10)で示されたヘロンの公式によって求めた。
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S(x,y)+S(x,y) (10)
Third step A square area S 1 (x, y) formed by connecting these four points (area of position (x, y), position (x + 1, y), and position (x + 1, y + 1)) , S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is the Heron formula expressed by equations (6) to (10). Sought by.
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 (x, y) + S 2 (x, y) (10)

第4工程
第1〜第3工程を破断面全体で行い、式(11)のように足し合わせることによって破断面の表面粗さAnを算出した。
An=ΣA(x,y) (11)
The 4th process 1st-3rd process was performed on the whole fracture surface, and surface roughness An of the fracture surface was computed by adding together like a formula (11).
An = ΣA (x, y) (11)

各タイヤの市場評価と、An/AおよびRa(μm)を表1に示す。

Figure 2016109516
Table 1 shows the market evaluation, An / A, and Ra (μm) of each tire.
Figure 2016109516

図2に、各実施例および比較例のサンプルの引張強度に対してAn/Aをプロットした図を、図3に、引張強度に対してRa(μm)をプロットした図を示す。引張強度とAn/Aの相関係数は0.979で、引張強度とRa(μm)の相関係数は0.447であった。破断面の凹凸高さの情報(Ra)だけでは、引張強度もタイヤの市場評価も再現できないことがわかった。 FIG. 2 is a diagram in which An / A is plotted against the tensile strength of the samples of the examples and comparative examples, and FIG. 3 is a diagram in which Ra (μm) is plotted against the tensile strength. The correlation coefficient between tensile strength and An / A was 0.979, and the correlation coefficient between tensile strength and Ra (μm) was 0.447. It was found that neither the tensile strength nor the market evaluation of the tire could be reproduced only by the information (Ra) of the unevenness of the fracture surface.

しかしながら、破断面の表面積比An/Aは、ゴム組成物の破壊強度と関連付けることができた。また、破断面の表面積比An/Aは、タイヤの市場評価結果と相関があり、An/Aが1.55以上であれば市場でのタイヤの耐久性を保てることが分かった。 However, the surface area ratio An / A of the fracture surface could be related to the fracture strength of the rubber composition. Further, the surface area ratio An / A of the fracture surface has a correlation with the tire market evaluation result, and it was found that if An / A is 1.55 or more, the durability of the tire in the market can be maintained.

Claims (2)

材料の破断面を走査し、破断面の位置(x,y)と高さz(x,y)を計測してこの破断面の状態を数値化する第1工程、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する第2工程、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する第3工程、および、
第1〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが閾値以上かどうかを判別する工程
を含む材料の破壊強度の予測方法。
a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S+S (10)
An=ΣA(x,y) (11)
A first step of scanning the fracture surface of the material, measuring the position (x, y) and height z (x, y) of the fracture surface, and quantifying the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. A third step of calculating an area A (x, y) between, and
Including the step of performing the first to third steps on the entire fractured surface and determining whether the ratio An / A obtained from the surface roughness An and the measurement area A of the fractured surface obtained by the equation (11) is equal to or greater than a threshold value. A method for predicting the fracture strength of materials.
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 + S 2 (10)
An = ΣA (x, y) (11)
タイヤの破断面を走査し、破断面の位置(x,y)と高さz(x,y)を計測してこの破断面の状態を数値化する第1工程、
位置(x,y)、位置(x+1,y)、位置(x,y+1)、位置(x+1,y+1)の高さzと各位置間の測定間隔pを用いて式(1)〜(5)より各位置間の距離a(x,y)(位置(x,y)と位置(x+1,y)との距離)、b(x,y)(位置(x+1,y)と位置(x+1,y+1)との距離)、c(x,y)(位置(x+1,y+1)と位置(x,y+1)との距離)、d(x,y)(位置(x,y)と位置(x,y+1)との距離)、e(x,y)(位置(x,y)と位置(x+1,y+1)との距離)を算出する第2工程、
式(6)〜(9)に示されたヘロンの公式を用いて算出した三角形の面積S(x,y)(位置(x,y)と位置(x+1,y)と位置(x+1,y+1)との面積)、S(x,y)(位置(x,y)と位置(x,y+1)と位置(x+1,y+1)との面積)を式(10)で足し合わせることによって4点間の面積A(x,y)を算出する第3工程、および、
第1工程〜第3工程を破断面全体で行い、式(11)で求められた破断面の表面粗さAnと測定面積Aから求められる比An/Aが1.55以上となるタイヤを作製できるゴム組成物。
a(x,y)=[{z(x+1,y)−z(x,y)}+p1/2 (1)
b(x,y)=[{z(x+1,y+1)−z(x+1,y)}+p1/2 (2)
c(x,y)=[{z(x,y+1)−z(x+1,y+1)}+p1/2 (3)
d(x,y)=[{z(x,y)−z(x,y+1)}+p1/2 (4)
e(x,y)=[{z(x+1,y+1)−z(x,y)}+p+p1/2 (5)
(x,y)=(a+b+e)/2 (6)
(x,y)=(c+d+e)/2 (7)
(x,y)={s×(s−a)×(s−b)×(s−e}1/2 (8)
(x,y)=[s×(s−c)×(s−d)×(s−e)}1/2 (9)
A(x,y)=S+S (10)
An=ΣA(x,y) (11)
A first step of scanning the fracture surface of the tire, measuring the position (x, y) and height z (x, y) of the fracture surface, and quantifying the state of the fracture surface;
Expressions (1) to (5) using the height z of the position (x, y), position (x + 1, y), position (x, y + 1), position (x + 1, y + 1) and the measurement interval p between the positions. Further, the distance a (x, y) between each position (the distance between the position (x, y) and the position (x + 1, y)), b (x, y) (the position (x + 1, y) and the position (x + 1, y + 1). ), C (x, y) (distance between position (x + 1, y + 1) and position (x, y + 1)), d (x, y) (position (x, y) and position (x, y + 1) ), E (x, y) (distance between position (x, y) and position (x + 1, y + 1)),
Triangle area S 1 (x, y) (position (x, y), position (x + 1, y), position (x + 1, y + 1)) calculated using the Heron formula shown in equations (6) to (9) ), S 2 (x, y) (the area of position (x, y), position (x, y + 1), and position (x + 1, y + 1)) is added by equation (10) to obtain 4 points. A third step of calculating an area A (x, y) between, and
The first step to the third step are performed on the entire fractured surface, and a tire in which the ratio An / A obtained from the surface roughness An and the measurement area A of the fractured surface obtained by the equation (11) is 1.55 or more is manufactured. Rubber composition that can be made.
a (x, y) = [{z (x + 1, y) −z (x, y)} 2 + p 2 ] 1/2 (1)
b (x, y) = [{z (x + 1, y + 1) −z (x + 1, y)} 2 + p 2 ] 1/2 (2)
c (x, y) = [{z (x, y + 1) −z (x + 1, y + 1)} 2 + p 2 ] 1/2 (3)
d (x, y) = [{z (x, y) −z (x, y + 1)} 2 + p 2 ] 1/2 (4)
e (x, y) = [{z (x + 1, y + 1) −z (x, y)} 2 + p 2 + p 2 ] 1/2 (5)
s 1 (x, y) = (a + b + e) / 2 (6)
s 2 (x, y) = (c + d + e) / 2 (7)
S 1 (x, y) = {s 1 × (s 1 −a) × (s 1 −b) × (s 1 −e} 1/2 (8)
S 2 (x, y) = [s 2 × (s 2 −c) × (s 2 −d) × (s 2 −e)} 1/2 (9)
A (x, y) = S 1 + S 2 (10)
An = ΣA (x, y) (11)
JP2014246083A 2014-12-04 2014-12-04 Method for predicting fracture strength of material and rubber composition Active JP6463623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014246083A JP6463623B2 (en) 2014-12-04 2014-12-04 Method for predicting fracture strength of material and rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246083A JP6463623B2 (en) 2014-12-04 2014-12-04 Method for predicting fracture strength of material and rubber composition

Publications (2)

Publication Number Publication Date
JP2016109516A true JP2016109516A (en) 2016-06-20
JP6463623B2 JP6463623B2 (en) 2019-02-06

Family

ID=56123849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246083A Active JP6463623B2 (en) 2014-12-04 2014-12-04 Method for predicting fracture strength of material and rubber composition

Country Status (1)

Country Link
JP (1) JP6463623B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095057A (en) * 2020-12-29 2022-07-06 인하대학교 산학협력단 System for monitoring shipyard stockyard using drone image and method thereof
WO2024004952A1 (en) * 2022-06-30 2024-01-04 東洋鋼鈑株式会社 Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156255A (en) * 1974-11-12 1976-05-17 Nippon Electron Optics Lab Denshipuroobu nyoru hyomenarasasokuteihoho
US4860589A (en) * 1987-12-10 1989-08-29 Battelle Memorial Institute Procedure for estimating fracture energy from fracture surface roughness
JP2002162348A (en) * 2000-11-24 2002-06-07 Kimura Chuzosho:Kk Method for determining form of graphite
JP2014163832A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Fretting fatigue evaluation device, fretting fatigue evaluation method and fretting fatigue evaluation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156255A (en) * 1974-11-12 1976-05-17 Nippon Electron Optics Lab Denshipuroobu nyoru hyomenarasasokuteihoho
US4860589A (en) * 1987-12-10 1989-08-29 Battelle Memorial Institute Procedure for estimating fracture energy from fracture surface roughness
JP2002162348A (en) * 2000-11-24 2002-06-07 Kimura Chuzosho:Kk Method for determining form of graphite
JP2014163832A (en) * 2013-02-26 2014-09-08 Mitsubishi Heavy Ind Ltd Fretting fatigue evaluation device, fretting fatigue evaluation method and fretting fatigue evaluation program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220095057A (en) * 2020-12-29 2022-07-06 인하대학교 산학협력단 System for monitoring shipyard stockyard using drone image and method thereof
KR102588246B1 (en) 2020-12-29 2023-10-13 인하대학교 산학협력단 System for monitoring shipyard stockyard using drone image and method thereof
WO2024004952A1 (en) * 2022-06-30 2024-01-04 東洋鋼鈑株式会社 Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film

Also Published As

Publication number Publication date
JP6463623B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6057875B2 (en) tire
US9382408B2 (en) Rubber composition for tire rim cushion or rubber finishing and pneumatic tire using the same
JP6401010B2 (en) Fracture strength prediction method and tire rubber composition
JP6463623B2 (en) Method for predicting fracture strength of material and rubber composition
JP2017167066A (en) Friction performance prediction method
JP5091587B2 (en) Evaluation method of tire grip characteristics
JP5767656B2 (en) Rubber composition for calender molding and method for producing topping rubber using the same
JP6270212B2 (en) Evaluation method of crosslinked rubber
JP2016102150A (en) Rubber composition for tire bead insulation and pneumatic tire using the same
JP4510778B2 (en) Rubber composition for base tread
JP5881542B2 (en) Rubber composition for tread
JP3777181B2 (en) Rubber composition for tire and pneumatic tire using the same
JP4113878B2 (en) Rubber composition and pneumatic tire comprising the same
JP2010032427A (en) Fatigue testing method of rubber
JP2013140025A (en) Method for analyzing quantity of chemicals in polymer specimen
JP6259267B2 (en) Rubber composition for tire and fracture test method
JP2008303333A (en) Rubber composition, and tire with cap tread using the same
CN112883320B (en) Calculation method of wet land hysteresis friction coefficient of vulcanized rubber composition and application of calculation method in tire design
JP2013107464A (en) Pneumatic tire
JP2006328107A (en) Rubber composition for tire tread
JP6673414B2 (en) Evaluation method of ozone resistance and prediction method of ozone resistance life
CN112967768B (en) Calculation method of wet land adhesion friction coefficient of vulcanized rubber composition and application of method in tire design
JP6226550B2 (en) Method for evaluating low fuel consumption of breaker rubber, pneumatic tire, and vulcanized rubber
JP7464943B2 (en) Method for measuring elastic modulus of vulcanized rubber
JP2023180492A (en) Method for measuring connection amount change ratio of silane coupling agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190104

R150 Certificate of patent or registration of utility model

Ref document number: 6463623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250