JP2016108978A - Air-fuel ratio learning control device of internal combustion engine - Google Patents

Air-fuel ratio learning control device of internal combustion engine Download PDF

Info

Publication number
JP2016108978A
JP2016108978A JP2014244915A JP2014244915A JP2016108978A JP 2016108978 A JP2016108978 A JP 2016108978A JP 2014244915 A JP2014244915 A JP 2014244915A JP 2014244915 A JP2014244915 A JP 2014244915A JP 2016108978 A JP2016108978 A JP 2016108978A
Authority
JP
Japan
Prior art keywords
air
internal combustion
combustion engine
fuel ratio
ratio learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014244915A
Other languages
Japanese (ja)
Other versions
JP6497048B2 (en
Inventor
大貴 間瀬
Taiki Mase
大貴 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2014244915A priority Critical patent/JP6497048B2/en
Priority to DE102015015637.3A priority patent/DE102015015637B4/en
Priority to CN201510883710.8A priority patent/CN105673232B/en
Publication of JP2016108978A publication Critical patent/JP2016108978A/en
Application granted granted Critical
Publication of JP6497048B2 publication Critical patent/JP6497048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio learning control device of an internal combustion engine capable of performing accurate learning control without the usage of a control valve.SOLUTION: An air-fuel ratio learning control device of an internal combustion engine (11) includes a fuel injection valve (22) for injecting fuel to an intake passage (18), a canister (24) communicated with the intake passage (18) so that evaporated gas is released to the intake passage (18), an oxygen sensor (31) for detecting concentration of remaining oxygen in exhaust gas circulating in an exhaust passage (19), and a control unit (25) for controlling an amount of fuel injected from the fuel injection valve (22) by performing learning control so that an air-fuel ratio based on a detection value from the oxygen sensor (31) approaches a target air-fuel ratio. The control unit (25) includes gas release amount calculating means for calculating an estimation value of a gas total release amount from the canister (24) in accordance with a state of the internal combustion engine (11).SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の空熱比学習制御装置に関する。   The present invention relates to an air-heat ratio learning control device for an internal combustion engine.

従来、酸素センサの検出値に基づく空燃比と、目標空燃比との偏差に基づいて学習終了条件を判定し、学習終了条件の成立時にはキャニスタからのエバポガス(蒸発燃料)の放出を許可し、学習終了条件の不成立時には一時的に学習制御を停止してエバポガスの流出を許可するようにした空燃比学習制御装置が知られている(例えば、特許文献1参照)。   Conventionally, the learning end condition is determined based on the deviation between the air-fuel ratio based on the detected value of the oxygen sensor and the target air-fuel ratio, and when the learning end condition is satisfied, the release of the evaporative gas (evaporated fuel) from the canister is permitted, and learning is performed. There is known an air-fuel ratio learning control device in which learning control is temporarily stopped when an end condition is not satisfied to allow evaporative gas to flow out (see, for example, Patent Document 1).

しかしながら、特許文献1で開示されたものは、キャニスタから吸気通路へのエバポガスの流通を制御する制御弁を備えた構成となっており、そのような構成では、制御弁が必要となるだけではなく、その制御弁の作動を制御するための構成が必要であり、コストが高くなってしまう。その一方で、エバポガスが吸気通路に流入することによる空燃比への影響を軽減したいという課題もある。   However, the one disclosed in Patent Document 1 has a configuration including a control valve for controlling the flow of the evaporation gas from the canister to the intake passage. In such a configuration, not only the control valve is required. The structure for controlling the operation of the control valve is necessary, and the cost is increased. On the other hand, there is also a problem that it is desired to reduce the influence on the air-fuel ratio caused by the evaporation gas flowing into the intake passage.

そこで、コストの増大を回避した簡単な構成でエバポガスの呼気流路への流入による空燃比への影響を軽減するため、キャニスタからの呼気通路のエバポガスが放出されていると予測される間は、学習制御で定まる燃料噴射量の減量に所定の制限をかけることが知られている(例えば、特許文献2参照)。   Therefore, in order to reduce the influence on the air-fuel ratio due to the inflow of the evaporative gas into the expiratory flow path with a simple configuration that avoids an increase in cost, while the evaporative gas in the expiratory passage from the canister is predicted to be released, It is known to apply a predetermined limit to the reduction in the fuel injection amount determined by the learning control (see, for example, Patent Document 2).

特許第3404872号公報Japanese Patent No. 3,404,872 特開2011−074848号公報JP 2011-074848 A

特許文献2で開示されたものでは、通常、エバポガスは暖気運転中に吸気通路に放出されて燃焼されるものであるので、エンジンの冷却水温が所定の水温以上に達して暖気が終了したと判断し得る時点でエバポガスの放出が完了したと判断しているため、本来エバポガスの影響がなくなり、学習制御に制限を掛ける必要がない場合でも制限を掛けてしまうという不利益がある。   In the one disclosed in Patent Document 2, since the evaporative gas is normally discharged into the intake passage and burned during the warm-up operation, it is determined that the warm-up is finished when the engine coolant temperature reaches or exceeds a predetermined water temperature. Since it is determined that the release of the evaporative gas has been completed at a possible time, there is a disadvantage that the evaporative gas is originally not affected, and the restriction is imposed even when it is not necessary to restrict the learning control.

本発明はかかる点に鑑みてなされたものであり、制御弁を使用することなく、正確な学習制御を行うことができる内燃機関の空燃比学習制御装置を提供することを目的とする。   The present invention has been made in view of this point, and an object of the present invention is to provide an air-fuel ratio learning control device for an internal combustion engine that can perform accurate learning control without using a control valve.

本発明の内燃機関の空燃比学習制御装置は、吸気通路に燃料を噴射する燃料噴射弁と、エバポガスを前記吸気通路に放出するようにして前記吸気通路に連通するように設けられたキャニスタと、排気通路を流通する排ガスの残存酸素濃度を検出する酸素センサと、前記酸素センサの検出値に基づく空熱比を目標空熱比に近づけるための学習制御を行って前記燃料噴射弁からの燃料噴射量を制御する制御手段と、を備え、前記制御手段は、内燃機関の状態に応じて前記キャニスタからのガス総放出量推定値を算出するガス放出量算出手段を備えることを特徴とする。   An air-fuel ratio learning control device for an internal combustion engine according to the present invention includes a fuel injection valve that injects fuel into an intake passage, a canister that is provided so as to communicate with the intake passage so as to discharge an evaporation gas into the intake passage, An oxygen sensor for detecting the residual oxygen concentration of the exhaust gas flowing through the exhaust passage, and fuel injection from the fuel injection valve by performing learning control to bring the air heat ratio based on the detected value of the oxygen sensor closer to the target air heat ratio Control means for controlling the amount, wherein the control means comprises gas discharge amount calculation means for calculating a total gas discharge amount estimated value from the canister according to the state of the internal combustion engine.

この構成によれば、内燃機関の状態に応じてキャニスタからのガス総放出量推定値を算出して、キャニスタから吸気通路に放出されるエバポガスの有無を推定でき、制御弁で遮断しなくてもエバポガスの影響を受けない状況を推定できるので、制御弁を使用することなく、正確な学習制御を行うことができる。   According to this configuration, it is possible to estimate the total amount of gas released from the canister according to the state of the internal combustion engine, and to estimate the presence or absence of the evaporative gas discharged from the canister to the intake passage. Since it is possible to estimate a situation that is not affected by evaporative gas, accurate learning control can be performed without using a control valve.

本発明の内燃機関の空燃比学習制御装置において、前記ガス放出量算出手段は、前記内燃機関のエンジン回転数及びスロットル開度に応じて予め設定された前記キャニスタのガス瞬時放出マップを基に前記ガス総放出量推定値を算出することが好ましい。この場合、既存のセンサ構成でキャニスタ内のエバポガスの放出完了や残量を容易に推定できる。   In the air-fuel ratio learning control apparatus for an internal combustion engine according to the present invention, the gas emission amount calculating means is based on the instantaneous gas release map of the canister set in advance according to the engine speed and throttle opening of the internal combustion engine. It is preferable to calculate the estimated total gas release amount. In this case, it is possible to easily estimate the emission completion and remaining amount of the evaporation gas in the canister with the existing sensor configuration.

本発明の内燃機関の空燃比学習制御装置において、前記制御手段は、前記酸素センサの検出値に基づいて目標空熱比に近づくようにフィードバック補正値を算出してフィードバック制御を行うフィードバック補正算出手段と、前記フィードバック補正値の平均値とその中央値との差を空熱比学習補正値として算出する空燃比学習補正算出手段と、前記空燃比学習補正値を用いて最終噴射時間を算出する最終噴射時間算出手段と、を備え、前記ガス総放出量推定値が所定の閾値以上に達した場合に、前記空燃比学習補正算出手段により前記空熱比学習補正値を算出することが好ましい。この場合、学習補正値算出の開始に必要なキャニスタ内のガス放出完了の判断に、ガス総排出量推定値を用いることで、例えば、学習補正値算出の開始を「所定時間後」とする場合に比べてより合理的なタイミングで学習補正値算出を開始することができる。これにより、学習の即時性及び精度が向上し、適切な燃料噴射量の補正が可能になり、走行性能が向上する。   In the air-fuel ratio learning control apparatus for an internal combustion engine according to the present invention, the control means calculates a feedback correction value so as to approach a target air-heat ratio based on a detection value of the oxygen sensor, and performs feedback control to perform feedback control. And an air-fuel ratio learning correction calculating means for calculating a difference between an average value of the feedback correction values and a median value thereof as an air-heat ratio learning correction value, and a final calculation for calculating a final injection time using the air-fuel ratio learning correction value. It is preferable that the air-fuel ratio learning correction value is calculated by the air-fuel ratio learning correction calculation unit when the estimated total gas release amount reaches a predetermined threshold value or more. In this case, for example, when the start of the learning correction value calculation is set to “after a predetermined time” by using the estimated total gas discharge amount for the determination of the gas discharge completion in the canister necessary for the start of the learning correction value calculation. Compared to, learning correction value calculation can be started at a more reasonable timing. This improves the immediacy and accuracy of learning, makes it possible to correct the fuel injection amount appropriately, and improves traveling performance.

本発明の内燃機関の空燃比学習制御装置において、前記閾値は、スロットル開度の任意の範囲毎に異なるように設定されていることが好ましい。この場合、スロットル開度に応じて学習補正値算出の開始条件が異なる。これにより、例えば、スロットル微開時にはキャニスタからのエバポガスの放出がされ難いが、閾値(Kn)を低くし、学習制御に無駄な制限を掛けることがなくなる。つまり、比較的短い時間で学習補正値算出が実行することができ、さらに学習の即時性及び精度が向上する。   In the air-fuel ratio learning control apparatus for an internal combustion engine according to the present invention, it is preferable that the threshold value is set to be different for each arbitrary range of the throttle opening. In this case, the learning correction value calculation start condition varies depending on the throttle opening. Thus, for example, when the throttle is slightly opened, the evaporative gas is not easily released from the canister, but the threshold (Kn) is lowered and the learning control is not subject to unnecessary restrictions. That is, the learning correction value can be calculated in a relatively short time, and the immediacy and accuracy of learning are further improved.

本発明の内燃機関の空燃比学習制御装置によれば、制御弁を使用することなく、正確な学習制御を行うことができるので、コストの削減やレイアウト性の向上を図ることができる。   According to the air-fuel ratio learning control apparatus for an internal combustion engine of the present invention, accurate learning control can be performed without using a control valve, so that cost reduction and layout improvement can be achieved.

本実施の形態に係る内燃機関の模式図である。1 is a schematic diagram of an internal combustion engine according to an embodiment. 本実施の形態に係る制御ユニットを示すブロック図である。It is a block diagram which shows the control unit which concerns on this Embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air-heat ratio learning control apparatus of the internal combustion engine which concerns on this Embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置における学習許可判定の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the learning permission determination in the air-heat ratio learning control apparatus of the internal combustion engine which concerns on this Embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ処理を示すフローチャートである。It is a flowchart which shows the evaporation flag process in the air-heat ratio learning control apparatus of the internal combustion engine which concerns on this Embodiment. 本実施の形態に係る瞬時パージ流量マップを示す説明図である。It is explanatory drawing which shows the instantaneous purge flow rate map which concerns on this Embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ判定を示すフローチャートである。It is a flowchart which shows the evaporation flag determination in the air-heat ratio learning control apparatus of the internal combustion engine which concerns on this Embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置におけるフィードバック補正と空燃比学習補正の動作例を示すタイミングチャートである。6 is a timing chart showing an operation example of feedback correction and air-fuel ratio learning correction in the air-fuel ratio learning control apparatus for an internal combustion engine according to the present embodiment. 本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ処理の動作例を示すタイミングチャートである。It is a timing chart which shows the operation example of the evaporation flag process in the air-heat ratio learning control apparatus of the internal combustion engine which concerns on this Embodiment.

以下、添付図面を参照して、本実施の形態に係る内燃機関の空燃比学習制御装置について説明する。なお、本実施の形態に係る内燃機関の空燃比学習制御装置は、以下に示す構成に限定されるものではなく、適宜変更が可能である。内燃機関の空燃比学習制御装置は、どのような車両に適用されてもよく、例えば、自動二輪車、バギータイプの自動三輪車又は自動四輪車にも適用可能である。   Hereinafter, an air-fuel ratio learning control apparatus for an internal combustion engine according to the present embodiment will be described with reference to the accompanying drawings. The air-fuel ratio learning control apparatus for an internal combustion engine according to the present embodiment is not limited to the configuration shown below, and can be changed as appropriate. The air-fuel ratio learning control apparatus for an internal combustion engine may be applied to any vehicle, and can be applied to, for example, a motorcycle, a buggy type automatic three-wheeled vehicle, or an automatic four-wheeled vehicle.

先ず、図1及び図2を参照して、本実施の形態に係る内燃機関の概略構成について説明する。図1は、本実施の形態に係る内燃機関の模式図である。図2は、本実施の形態に係る制御ユニットを示すブロック図である。   First, with reference to FIG.1 and FIG.2, schematic structure of the internal combustion engine which concerns on this Embodiment is demonstrated. FIG. 1 is a schematic diagram of an internal combustion engine according to the present embodiment. FIG. 2 is a block diagram showing a control unit according to the present embodiment.

図1において、例えば、自動二輪車に搭載される水冷の内燃機関11のシリンダボア12に摺動可能に嵌合されるピストン13の頂部を臨ませる燃焼室14に混合気を供給するための吸気装置15と、燃焼室14からの排気ガスを排出するための排気装置16とが内燃機関11のシリンダヘッド17に接続されている。また、吸気装置15には吸気通路18が形成され、排気装置16には排気通路19が形成されている。また、シリンダヘッド17には燃焼室14に先端を臨ませる点火プラグ20が取り付けられる。   In FIG. 1, for example, an intake device 15 for supplying an air-fuel mixture to a combustion chamber 14 facing the top of a piston 13 slidably fitted to a cylinder bore 12 of a water-cooled internal combustion engine 11 mounted on a motorcycle. An exhaust device 16 for exhausting exhaust gas from the combustion chamber 14 is connected to the cylinder head 17 of the internal combustion engine 11. An intake passage 18 is formed in the intake device 15, and an exhaust passage 19 is formed in the exhaust device 16. A spark plug 20 is attached to the cylinder head 17 so that the tip of the cylinder head 17 faces the combustion chamber 14.

吸気装置15には、吸気通路18と流通する空気量を制御するためのスロットルバルブ21が開閉可能に配設される。また、スロットルバルブ21よりも下流側の吸気通路18に燃料噴射をするための燃料噴射弁22が付設されている。また、スロットルバルブ21よりも下流側の吸気通路18と燃料タンク23との間には、エバポガスを吸気通路18に放出するようにして吸気通路18に常時連通するキャニスタ24が設けられる。   A throttle valve 21 for controlling the amount of air flowing through the intake passage 18 is disposed in the intake device 15 so as to be openable and closable. A fuel injection valve 22 for injecting fuel into the intake passage 18 downstream of the throttle valve 21 is additionally provided. Further, between the intake passage 18 downstream of the throttle valve 21 and the fuel tank 23, a canister 24 that always communicates with the intake passage 18 is provided so as to discharge the evaporated gas to the intake passage 18.

点火プラグ20による点火タイミング及び燃料噴射弁22からの燃料噴射量の作動は制御ユニット25によって制御される。スロットルバルブ21と同軸上に設けられたスロットルポジションセンサ26の検出値、吸気通路18の圧力を測定する吸気圧センサ27の検出値、ピストン13に連結されたクランク軸28と同軸上に設けられたクランク角度センサ29の検出値、エンジン冷却水の水温を検出する水温センサ30の検出値、及び、排気通路19を流通する排ガス中の残存酸素濃度を検出するように排気装置16に取り付けられる酸素センサ31の検出値が、制御ユニット25に入力されるように構成されている。   The operation of the ignition timing by the spark plug 20 and the fuel injection amount from the fuel injection valve 22 is controlled by the control unit 25. A detection value of a throttle position sensor 26 provided coaxially with the throttle valve 21, a detection value of an intake pressure sensor 27 that measures the pressure of the intake passage 18, and a coaxial shaft 28 connected to the piston 13. The detected value of the crank angle sensor 29, the detected value of the water temperature sensor 30 for detecting the coolant temperature of the engine cooling water, and the oxygen sensor attached to the exhaust device 16 so as to detect the residual oxygen concentration in the exhaust gas flowing through the exhaust passage 19. 31 detection values are input to the control unit 25.

図2に示すように、制御ユニット25のうち、基本噴射時間算出手段41は、クランク角度センサ29により検出されるエンジン回転数、及び、スロットルポジションセンサ26により検出されるスロットル開度又は吸気圧センサ27により検出される吸気圧に基づいて推定される内燃機関11の吸入空気量により基本燃料噴射時間の算出を行う。   As shown in FIG. 2, in the control unit 25, the basic injection time calculating means 41 includes an engine speed detected by the crank angle sensor 29 and a throttle opening or intake pressure sensor detected by the throttle position sensor 26. The basic fuel injection time is calculated from the intake air amount of the internal combustion engine 11 estimated based on the intake pressure detected by the engine 27.

また、フィードバック補正算出手段42は、酸素センサ31で得られる酸素濃度に基づいて目標空燃比に近づくようにフィードバック補正値を算出してフィードバック制御を行う。つまり、酸素センサ31に基づいて排気のリッチ又はリーンの程度を判定し、判定結果に基づいてフィードバック補正値の算出を行う。   The feedback correction calculation means 42 performs feedback control by calculating a feedback correction value so as to approach the target air-fuel ratio based on the oxygen concentration obtained by the oxygen sensor 31. That is, the degree of exhaust rich or lean is determined based on the oxygen sensor 31, and the feedback correction value is calculated based on the determination result.

また、空燃比学習補正算出手段43は、フィードバック補正算出手段42で得られた現在のフィードバック補正値の平均値と補正値の中央値(1.00)との差を空燃比学習補正値として算出する。つまり、現在のフィードバック補正値が中央値に近づくように補正を行う。   Further, the air-fuel ratio learning correction calculating unit 43 calculates the difference between the average value of the current feedback correction values obtained by the feedback correction calculating unit 42 and the median value (1.00) of the correction values as the air-fuel ratio learning correction value. To do. That is, correction is performed so that the current feedback correction value approaches the median value.

また、最終噴射時間算出手段44は、基本噴射時間算出手段41で得られた基本噴射時間、フィードバック補正算出手段42で得られたフィードバック補正値、及び、空燃比学習補正算出手段43で得られた空燃比学習補正値に基づいて演算を行い、最終噴射時間を算出し、算出された最終噴射時間で燃料噴射弁22の駆動を行う。   The final injection time calculation means 44 is obtained by the basic injection time obtained by the basic injection time calculation means 41, the feedback correction value obtained by the feedback correction calculation means 42, and the air-fuel ratio learning correction calculation means 43. An operation is performed based on the air-fuel ratio learning correction value, a final injection time is calculated, and the fuel injection valve 22 is driven at the calculated final injection time.

また、制御ユニット25において、学習許可判定手段45は、空燃比学習補正算出手段43による学習制御の実施を許可するか否かの判定を行う。   Further, in the control unit 25, the learning permission determination means 45 determines whether or not to allow the air-fuel ratio learning correction calculation means 43 to perform learning control.

さらに、制御ユニット25において、ガス放出量算出手段46は、内燃機関11の状態に応じてキャニスタ24からのエバポガスの総放出量の推定値(以下、ガス総放出量推定値という)を算出する。ガス放出量算出手段46は、内燃機関11のエンジン回転数(NE)と、内燃機関11の負荷状態を推定するためのスロットル開度(VT)又は吸気圧(PM)とに応じて予め設定されたキャニスタ24のガス瞬時放出マップを基にガス総放出量推定値を算出する。   Further, in the control unit 25, the gas emission amount calculating means 46 calculates an estimated value of the total amount of evaporated evaporative gas from the canister 24 (hereinafter referred to as a total gas emission amount estimated value) according to the state of the internal combustion engine 11. The gas discharge amount calculation means 46 is preset according to the engine speed (NE) of the internal combustion engine 11 and the throttle opening (VT) or intake pressure (PM) for estimating the load state of the internal combustion engine 11. Based on the instantaneous gas release map of the canister 24, an estimated total gas release amount is calculated.

以下、空熱比学習制御について、図3〜図7を参照して詳細に説明する。図3は、本実施の形態に係る内燃機関の空熱比学習制御装置の動作を示すフローチャートである。図3に示すように、先ず、各種センサ26、27、29、31の出力を読み込む(S11)。すなわち、クランク角度センサ29からエンジン回転数(NE)、スロットルポジションセンサ26からスロットル開度(VT)、吸気圧センサ27から吸気圧(PM)、及び、水温センサ30からエンジン冷却水の水温(Temperature)を、制御ユニット25に入力する。   Hereinafter, the air-heat ratio learning control will be described in detail with reference to FIGS. FIG. 3 is a flowchart showing the operation of the air-heat ratio learning control apparatus for the internal combustion engine according to the present embodiment. As shown in FIG. 3, first, the outputs of the various sensors 26, 27, 29, and 31 are read (S11). That is, the engine speed (NE) from the crank angle sensor 29, the throttle opening (VT) from the throttle position sensor 26, the intake pressure (PM) from the intake pressure sensor 27, and the coolant temperature from the water temperature sensor 30 (Temperature). ) Is input to the control unit 25.

次いで、エンジン回転数(NE)が所定値以上か否かに基づいて、内燃機関11が稼働中であるかどうか判定する(S12)。内燃機関11が稼働中であれば、学習許可判定を行う(S13)。学習許可判定とは、空燃比学習補正算出手段43による学習制御(後述のS15)の実施の可否を判定することである。学習許可判定について後で詳細に説明する。一方、内燃機関11が稼働中でなければ処理を終了する。   Next, it is determined whether or not the internal combustion engine 11 is in operation based on whether or not the engine speed (NE) is equal to or greater than a predetermined value (S12). If the internal combustion engine 11 is in operation, a learning permission determination is performed (S13). The learning permission determination is to determine whether or not the learning control (S15 described later) by the air-fuel ratio learning correction calculating unit 43 can be performed. The learning permission determination will be described in detail later. On the other hand, if the internal combustion engine 11 is not operating, the process is terminated.

次に、学習許可判定の最終出力を示す学習フラグ(learn_flug)が「1」であるか否か判定を行う(S14)。学習フラグが「1」であれば、今回のサイクルでの学習制御を許可し、学習制御を行い(S15)、空熱比学習補正値を最終噴射時間に反映し、燃料噴射弁22を制御する(S16)。一方、学習フラグが「1」でなければ、今回のサイクルでの学習制御を許可せず、S11に戻る。   Next, it is determined whether or not a learning flag (learn_flag) indicating the final output of the learning permission determination is “1” (S14). If the learning flag is “1”, learning control in this cycle is permitted, learning control is performed (S15), the air heat ratio learning correction value is reflected in the final injection time, and the fuel injection valve 22 is controlled. (S16). On the other hand, if the learning flag is not “1”, the learning control in the current cycle is not permitted, and the process returns to S11.

図4を参照して学習許可判定の詳細について説明する。図4は、本実施の形態に係る内燃機関の空熱比学習制御装置における学習許可判定の動作を示すフローチャートである。図4に示すように、エンジン回転数(NE)、スロットル開度(VT)などの各種運転状態により少なくとも1つのフラグ処理(S21)を行う。このフラグ処理よって出力される学習制御判定用フラグとしては、例えば、以下のものを挙げることができるが、これらに限定されるものではない。
・エンジン回転数―スロットル開度フラグ(NE−VT_flug)
・水温フラグ(Temperture_flug)
・Δスロットル開度フラグ(ΔVT_flug)
・エバポフラグ(evapo_flug)
Details of the learning permission determination will be described with reference to FIG. FIG. 4 is a flowchart showing the learning permission determination operation in the air-heat ratio learning control apparatus for the internal combustion engine according to the present embodiment. As shown in FIG. 4, at least one flag process (S21) is performed according to various operating states such as the engine speed (NE) and the throttle opening (VT). Examples of the learning control determination flag output by this flag processing include, but are not limited to, the following.
-Engine speed-throttle opening flag (NE-VT_flag)
・ Water temperature flag (Temperature_flag)
・ Δ throttle opening flag (ΔVT_flag)
-Evapo flag (evapo_flag)

S21において出力される学習制御判定用フラグの状態を判断し(S22)、全てのフラグの値が「1」である場合、学習フラグ(learn_flug)の値を「1」に設定し(S23)、いずれか一つのフラグの値が「1」でないならば、学習フラグの値を「0」に設定する(S24)。   The state of the learning control determination flag output in S21 is determined (S22). If all the flag values are “1”, the learning flag (learn_flag) is set to “1” (S23), If the value of any one flag is not “1”, the value of the learning flag is set to “0” (S24).

図5を参照して、図4のS21に示す少なくとも1つのフラグ処理のうち、エバポフラグ処理について詳細に説明する。図5は、本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ処理を示すフローチャートである。エバポフラグ処理とは、スロットル開度(VT)の値によって異なる条件でエバポフラグを立てるか否か判定することをいう。図5に示すように、先ず、エンジン回転数(NE)及びスロットル開度(VT)を読み込む(S31)。   With reference to FIG. 5, the evaporative flag process among the at least one flag process shown in S21 of FIG. 4 will be described in detail. FIG. 5 is a flowchart showing an evaporation flag process in the air-heat ratio learning control apparatus for the internal combustion engine according to the present embodiment. The evaporation flag process refers to determining whether or not to set the evaporation flag under different conditions depending on the throttle opening (VT) value. As shown in FIG. 5, first, the engine speed (NE) and the throttle opening (VT) are read (S31).

ガス放出量算出手段46は、エンジン回転数及びスロットル開度から検索される瞬時パージ流量マップを予め記憶しておき、S31で読み込んだ現在のエンジン回転数(NE)及びスロットル開度(VT)により現在の瞬時パージ流量(flow_I(NE,VT))を検索する(S32)。図6は、本実施の形態に係る瞬時パージ流量マップを示す説明図である。図6に示すように、瞬時パージ流量マップは、x軸にエンジン回転数(NE)を、y軸をスロットル開度(VT)、z軸を瞬時パージ流量(flow_I)とする2次配列である。   The gas discharge amount calculation means 46 stores in advance an instantaneous purge flow rate map searched from the engine speed and throttle opening, and uses the current engine speed (NE) and throttle opening (VT) read in S31. The current instantaneous purge flow rate (flow_I (NE, VT)) is searched (S32). FIG. 6 is an explanatory diagram showing an instantaneous purge flow rate map according to the present embodiment. As shown in FIG. 6, the instantaneous purge flow rate map is a secondary array with the engine speed (NE) on the x-axis, the throttle opening (VT) on the y-axis, and the instantaneous purge flow (flow_I) on the z-axis. .

次に、ガス放出量算出手段46において、前回までの総パージ流量(flow_T)に今回の瞬間パージ流量(flow_I)を加算して、今回までの総パージ流量(flow_T)を演算する(S33)。つまり、エンジン始動時から所定の間隔ごとに検索された瞬時パージ流量(flow_I(NE,VT))を積算して、エンジン始動時からの総パージ流量(flow_T)、すなわちガス総放出量推定値を算出する。   Next, the gas discharge amount calculation means 46 adds the current instantaneous purge flow rate (flow_I) to the previous total purge flow rate (flow_T) to calculate the total purge flow rate (flow_T) up to this time (S33). That is, the instantaneous purge flow rate (flow_I (NE, VT)) retrieved at predetermined intervals from the time of engine start is integrated to obtain the total purge flow rate (flow_T) from the time of engine start, that is, the estimated total gas discharge amount. calculate.

次に、現在のスロットル開度(VT)によって3つ以上の処理に分岐する。すなわち、例えば、VT<Aであれば(S34)、エバポフラグ判定(1)を実施し(S35)、A≦VT<Bであれば(S36)、エバポフラグ判定(2)を実施し(S37)、B≦VTであればエバポフラグ判定(3)を実施する(S38)。   Next, the process branches to three or more processes depending on the current throttle opening (VT). That is, for example, if VT <A (S34), the evaporation flag determination (1) is performed (S35). If A ≦ VT <B (S36), the evaporation flag determination (2) is performed (S37). If B ≦ VT, an evaporation flag determination (3) is performed (S38).

エバポフラグ判定(1)〜(3)について説明する。図7は、本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ判定を示すフローチャートである。エバポフラグ判定とは、総パージ流量(flow_T)に基づいてエバポフラグを立てるか否かを判定することをいう。図7に示すように、今回までの総パージ流量(flow_T)が閾値Kn(nは1以上の整数)以上か否かを判定する(S41)。閾値(Kn)は、スロットル開度(VT)の任意の範囲毎に異なっている。エバポフラグ判定(1)、すなわちVT<Aである場合は閾値K1を、エバポフラグ判定(2)、すなわちA≦VT<Bである場合は閾値K2を、エバポフラグ判定(3)、すなわちB≦VTである場合は閾値K3を、それぞれ閾値として用いる。ここで、閾値K1〜K3の関係は、K1<K2<K3である。つまり、スロットル開度(VT)が小さいほど閾値を小さく設定し、スロットル開度(VT)が大きいほど閾値が大きく設定している。   The evaporation flag determinations (1) to (3) will be described. FIG. 7 is a flowchart showing evaporation flag determination in the air-heat ratio learning control apparatus for the internal combustion engine according to the present embodiment. The evaporation flag determination refers to determining whether or not to set an evaporation flag based on the total purge flow rate (flow_T). As shown in FIG. 7, it is determined whether or not the total purge flow rate (flow_T) up to this time is equal to or greater than a threshold Kn (n is an integer of 1 or more) (S41). The threshold (Kn) is different for each arbitrary range of the throttle opening (VT). Evaporation flag determination (1), that is, when VT <A, threshold value K1 is set. Evaporation flag determination (2), that is, when A ≦ VT <B, threshold value K2 is set, and evaporation flag determination (3), that is, B ≦ VT. In this case, the threshold value K3 is used as the threshold value. Here, the relationship between the threshold values K1 to K3 is K1 <K2 <K3. That is, the smaller the throttle opening (VT), the smaller the threshold is set, and the larger the throttle opening (VT), the larger the threshold is set.

S41において、エバポフラグ判定がYESであればエバポフラグを「1」とし(S42)、エバポフラグ判定がNOであればエバポフラグを「0」とする(S43)。   In S41, if the evaporation flag determination is YES, the evaporation flag is set to “1” (S42), and if the evaporation flag determination is NO, the evaporation flag is set to “0” (S43).

なお、ここでは内燃機関11の負荷状態を推定することを目的とするセンサとして、スロットルポジションセンサ26を用い、瞬間パージ流量マップのy軸をスロットル開度(VT)としているが、吸気圧センサ27を用い、y軸を吸気圧(PM)としても良い。   Here, the throttle position sensor 26 is used as a sensor for estimating the load state of the internal combustion engine 11 and the y-axis of the instantaneous purge flow rate map is the throttle opening (VT). And the y-axis may be the intake pressure (PM).

上述のエバポフラグ処理によって、内燃機関11の状態(エンジン回転数(NE)及びスロットル開度(VT))に応じてキャニスタ24からのガス総放出量推定値に相当する総パージ流量(flow_T)(瞬時パージ流量(flow_I)の積算値)が閾値Kn以上である場合、エバポフラグが「1」に設定される。そして、図4に示すS22において、他の学習判定用フラグが「1」であれば、学習フラグが「1」に設定される。この結果、図3に示すS14において学習フラグが「1」であるので、学習制御(S15)が実施される。   By the above-described evaporation flag process, the total purge flow rate (flow_T) (instantaneous value) corresponding to the estimated total gas discharge amount from the canister 24 according to the state of the internal combustion engine 11 (engine speed (NE) and throttle opening (VT)). When the purge flow rate (flow_I) is equal to or greater than the threshold Kn, the evaporation flag is set to “1”. In S22 shown in FIG. 4, if the other learning determination flag is “1”, the learning flag is set to “1”. As a result, since the learning flag is “1” in S14 shown in FIG. 3, learning control (S15) is performed.

図8は、本実施の形態に係る内燃機関の空熱比学習制御装置におけるフィードバック補正と空燃比学習補正の動作例を示すタイミングチャートである。なお、図8中及び以降に示される数値は、本発明の概念を説明するために用いる仮の数値であり、適宜変更可能なものである。図8中、線(1)は、Oフィードバック補正中央値(1.00)を、線(2)は、Oフィードバック補正平均値を、線(3)は、Oフィードバック補正値を、線(4)は、空燃比学習補正値を、それぞれ示す。図8に示すように、S1−1段階では、制御ユニット25は、Oフィードバック補正の補正値を監視し、平均値を算出している。ここでは、Oフィードバック補正の平均値(0.95)と中央値(1.00)は、0.05のずれがある。 FIG. 8 is a timing chart showing an operation example of feedback correction and air-fuel ratio learning correction in the internal combustion engine air-heat ratio learning control apparatus according to the present embodiment. Note that the numerical values shown in FIG. 8 and thereafter are provisional numerical values used for explaining the concept of the present invention and can be changed as appropriate. In FIG. 8, the line (1) indicates the O 2 feedback correction median (1.00), the line (2) indicates the O 2 feedback correction average value, and the line (3) indicates the O 2 feedback correction value. Line (4) indicates the air-fuel ratio learning correction value. As shown in FIG. 8, in step S1-1, the control unit 25 monitors the correction value for O 2 feedback correction and calculates an average value. Here, the average value (0.95) of O 2 feedback correction and the median value (1.00) are different by 0.05.

S1−2段階では、T11のタイミングで学習制御が実施されている。S1−1段階においてOフィードバック補正の平均値と中央値との差が0.05であったが、この段階の空燃比学習補正値は0.01だけ減算され、0.99になった。空燃比学習補正値による噴射時間の補正が行われたため、Oフィードバック補正の平均値は0.01だけオフセットし、中央値(1.00)との差は0.04になった。 In the S1-2 stage, learning control is performed at the timing of T11. The difference between the average value and the median value of the O 2 feedback correction at the S1-1 stage was 0.05, but the air-fuel ratio learning correction value at this stage was subtracted by 0.01 to reach 0.99. Since the injection time was corrected by the air-fuel ratio learning correction value, the average value of O 2 feedback correction was offset by 0.01, and the difference from the median value (1.00) was 0.04.

S1−3段階では、T12のタイミングで再度空燃比学習値の更新(0.01減算)が行われ、空燃比学習補正値は0.98となり、Oフィードバック補正の平均値のずれ量は0.03になった。以降、ずれ量が0.00になるまで同様の処理を繰り返す。 In step S1-3, the air-fuel ratio learning value is updated again (0.01 subtraction) at the timing of T12, the air-fuel ratio learning correction value becomes 0.98, and the deviation amount of the average value of O 2 feedback correction is 0. .03. Thereafter, the same processing is repeated until the deviation amount becomes 0.00.

図9は、本実施の形態に係る内燃機関の空熱比学習制御装置におけるエバポフラグ処理の動作例を示すタイミングチャートである。図9中、線(a)は、エバポフラグを、線(b)は、閾値(kn)を、線(c)は、総パージ流量(flow_T)を、線(d)は、瞬時パージ流量(flow_I)を、線(e)は、スロットル開度(VT)を、それぞれ示す。図9に示すように、S2−1段階では、内燃機関11が稼働中で、現在のスロットル開度(VT)及びエンジン回転数(NE)から瞬時パージ流量(flow_I)が検索されている。また、瞬時パージ流量(flow_I)をある周期毎に積算し、総パージ流量(flow_T)が算出されている。また、閾値(kn)はスロットル開度(VT)毎に検索されている。このS2−1段階では、総パージ流量(flow_T)は閾値(kn)よりも小さいため、エバポフラグは「0」であった。   FIG. 9 is a timing chart showing an operation example of the evaporation flag process in the air-heat ratio learning control apparatus for the internal combustion engine according to the present embodiment. In FIG. 9, the line (a) indicates the evaporation flag, the line (b) indicates the threshold value (kn), the line (c) indicates the total purge flow rate (flow_T), and the line (d) indicates the instantaneous purge flow rate (flow_I). ), And the line (e) indicates the throttle opening (VT). As shown in FIG. 9, in step S2-1, the internal combustion engine 11 is in operation, and the instantaneous purge flow rate (flow_I) is retrieved from the current throttle opening (VT) and engine speed (NE). Further, the instantaneous purge flow rate (flow_I) is integrated every certain period, and the total purge flow rate (flow_T) is calculated. The threshold value (kn) is searched for each throttle opening (VT). In this S2-1 stage, the total purge flow rate (flow_T) is smaller than the threshold value (kn), so the evaporation flag was “0”.

S2−2段階では、T21のタイミングで総パージ流量(flow_T)が閾値(kn)よりも大きくなったので、エバポフラグが「1」になった。   In the S2-2 stage, the total purge flow rate (flow_T) becomes larger than the threshold value (kn) at the timing of T21, so the evaporation flag becomes “1”.

S2−3段階では、T22のタイミングでスロットル開度(VT)によって閾値(kn)の値が変更された。ここで、総パージ流量(flow_T)は再び閾値(kn)より小さくなったので、エバポフラグは「0」になった。以降、内燃機関11の稼働中(S2−4段階、S2−5段階及びそれ以降)は、総パージ流量(flow_T)と閾値(kn)の比較によるエバポフラグ判定を、T23、T24・・・のタイミングで繰り返す。   In step S2-3, the value of the threshold (kn) is changed by the throttle opening (VT) at the timing of T22. Here, since the total purge flow rate (flow_T) again became smaller than the threshold value (kn), the evaporation flag became “0”. Thereafter, during the operation of the internal combustion engine 11 (S2-4 stage, S2-5 stage and thereafter), the evaporation flag determination based on the comparison between the total purge flow rate (flow_T) and the threshold value (kn) is performed at timings T23, T24. Repeat with.

以上説明したように、本実施の形態に係る内燃機関の空熱比学習制御装置によれば、制御ユニット25において、ガス放出量算出手段46が内燃機関11の状態に応じてキャニスタ24からのガス総放出量推定値を算出しているので、吸気通路18へのエバポガス放出の有無を推定できる。この際、制御弁(パージソレノイドバルブ)を設け、エバポガスを遮断しなくてもエバポガスの影響を受けない状況を推定できるので、制御弁を使用することなく、正確な学習制御を行うことができる。   As described above, according to the air-fuel ratio learning control device for an internal combustion engine according to the present embodiment, the gas discharge amount calculation means 46 in the control unit 25 has the gas from the canister 24 according to the state of the internal combustion engine 11. Since the estimated total discharge amount is calculated, it is possible to estimate whether or not the evaporative gas is discharged into the intake passage 18. At this time, a control valve (purge solenoid valve) is provided, and a situation that is not affected by the evaporative gas can be estimated even if the evaporative gas is not shut off. Therefore, accurate learning control can be performed without using the control valve.

また、制御弁を設けなくて済むことで、コストの削減やレイアウト性の向上を図ることができる。   Further, since it is not necessary to provide a control valve, costs can be reduced and layout can be improved.

また、ガス放出量算出手段46は、エンジン回転数(NE)及びスロットル開度(VT)から予め設定された瞬時パージ流量マップに基づいてキャニスタ24からのエバポガスの放出量を算出しているので、既存のセンサ構成でキャニスタ24内のガス放出完了やガス残量を容易に推定することができる。   Further, since the gas discharge amount calculating means 46 calculates the amount of evaporation of the evaporation gas from the canister 24 based on the instantaneous purge flow rate map set in advance from the engine speed (NE) and the throttle opening (VT). With the existing sensor configuration, it is possible to easily estimate the gas discharge completion and the remaining gas amount in the canister 24.

また、学習許可判定手段45は、学習補正値算出の開始に必要なキャニスタ24内のガス放出完了の判断に、ガス総排出量推定値(総パージ流量flow_T)を用いることで、例えば、学習補正値算出の開始を「所定時間後」とする場合に比べてより合理的なタイミングで学習補正値算出を開始することができる。これにより、学習の即時性及び精度が向上し、適切な燃料噴射量の補正が可能になり、走行性能が向上する。   In addition, the learning permission determination unit 45 uses the estimated total gas discharge amount (total purge flow rate flow_T) to determine the completion of gas discharge in the canister 24 necessary for starting the learning correction value calculation, for example, learning correction. The learning correction value calculation can be started at a more rational timing than when the value calculation start is “after a predetermined time”. This improves the immediacy and accuracy of learning, makes it possible to correct the fuel injection amount appropriately, and improves traveling performance.

また、スロットル開度(VT)条件を複数の範囲に分け、その範囲毎に閾値(Kn)を変えているので、スロットル開度(VT)に応じて学習補正値算出の開始条件が異なる。これにより、例えば、スロットル微開時にはキャニスタ24からのエバポガスの放出がされ難いが、閾値(Kn)を低くし、学習制御に無駄な制限を掛けることがなくなる。つまり、比較的短い時間で学習補正値算出が実行することができ、さらに学習の即時性及び精度が向上する。   Further, the throttle opening (VT) condition is divided into a plurality of ranges, and the threshold value (Kn) is changed for each range. Therefore, the learning correction value calculation start condition varies depending on the throttle opening (VT). Thus, for example, when the throttle is slightly opened, the evaporative gas is not easily released from the canister 24, but the threshold (Kn) is lowered and the learning control is not subjected to unnecessary restriction. That is, the learning correction value can be calculated in a relatively short time, and the immediacy and accuracy of learning are further improved.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

上記実施の形態では、瞬時パージ流量マップのパラメータとして、スロットル開度(VT)を用いたが、これに代えて、吸気圧(PM)を用いても良い。また、吸気温度やエンジン冷却水温などの他のパラメータを適宜追加しても良い。   In the above embodiment, the throttle opening (VT) is used as the parameter of the instantaneous purge flow map, but intake pressure (PM) may be used instead. Also, other parameters such as intake air temperature and engine coolant temperature may be added as appropriate.

以上説明したように、本発明は、内燃機関の空燃比学習制御装置を提供し、自動二輪車及び自動四輪車などのエンジンに有用である。   As described above, the present invention provides an air-fuel ratio learning control apparatus for an internal combustion engine, and is useful for engines such as motorcycles and automobiles.

11 内燃機関
15 吸気装置
16 排気装置
18 吸気通路
19 排気通路
22 燃料噴射弁
24 キャニスタ
25 制御ユニット
26 スロットルポジションセンサ
29 クランク角度センサ
31 酸素センサ
41 基本噴射時間算出手段
42 フィードバック補正算出手段
43 空熱比学習補正手段
44 最終噴射時間算出手段
45 学習許可判定手段
46 ガス放出量算出手段
DESCRIPTION OF SYMBOLS 11 Internal combustion engine 15 Intake device 16 Exhaust device 18 Intake passage 19 Exhaust passage 22 Fuel injection valve 24 Canister 25 Control unit 26 Throttle position sensor 29 Crank angle sensor 31 Oxygen sensor 41 Basic injection time calculation means 42 Feedback correction calculation means 43 Air heat ratio Learning correction means 44 Final injection time calculation means 45 Learning permission determination means 46 Gas emission amount calculation means

Claims (4)

吸気通路に燃料を噴射する燃料噴射弁と、エバポガスを前記吸気通路に放出するようにして前記吸気通路に連通するように設けられたキャニスタと、排気通路を流通する排ガスの残存酸素濃度を検出する酸素センサと、前記酸素センサの検出値に基づく空熱比を目標空熱比に近づけるための学習制御を行って前記燃料噴射弁からの燃料噴射量を制御する制御手段と、を備え、
前記制御手段は、内燃機関の状態に応じて前記キャニスタからのガス総放出量推定値を算出するガス放出量算出手段を備えることを特徴とする内燃機関の空熱比学習制御装置。
A fuel injection valve that injects fuel into the intake passage, a canister that is connected to the intake passage so as to release the evaporation gas to the intake passage, and a residual oxygen concentration in the exhaust gas that flows through the exhaust passage is detected. An oxygen sensor, and a control means for controlling a fuel injection amount from the fuel injection valve by performing learning control for bringing an air heat ratio based on a detection value of the oxygen sensor close to a target air heat ratio,
An air-heat ratio learning control apparatus for an internal combustion engine, characterized in that the control means comprises a gas emission amount calculation means for calculating an estimated value of total gas emission from the canister according to the state of the internal combustion engine.
前記ガス放出量算出手段は、前記内燃機関のエンジン回転数及びスロットル開度に応じて予め設定された前記キャニスタのガス瞬時放出マップを基に前記ガス総放出量推定値を算出することを特徴とする請求項1記載の内燃機関の空熱比学習制御装置。   The gas discharge amount calculating means calculates the estimated total gas discharge amount based on a gas instantaneous discharge map of the canister set in advance according to an engine speed and a throttle opening of the internal combustion engine. The air-heat ratio learning control apparatus for an internal combustion engine according to claim 1. 前記制御手段は、前記酸素センサの検出値に基づいて目標空熱比に近づくようにフィードバック補正値を算出してフィードバック制御を行うフィードバック補正算出手段と、前記フィードバック補正値の平均値とその中央値との差を空熱比学習補正値として算出する空燃比学習補正算出手段と、前記空燃比学習補正値を用いて最終噴射時間を算出する最終噴射時間算出手段と、を備え、
前記ガス総放出量推定値が所定の閾値以上に達した場合に、前記空燃比学習補正算出手段により前記空熱比学習補正値を算出することを特徴とする請求項1又は請求項2記載の内燃機関の空熱比学習制御装置。
The control means includes feedback correction calculation means for performing feedback control by calculating a feedback correction value so as to approach a target air-heat ratio based on a detection value of the oxygen sensor, an average value of the feedback correction value, and a median value thereof An air-fuel ratio learning correction calculating means for calculating the difference between the air-fuel ratio learning correction value and a final injection time calculating means for calculating a final injection time using the air-fuel ratio learning correction value,
The air-fuel ratio learning correction value is calculated by the air-fuel ratio learning correction calculating means when the estimated total gas release amount reaches a predetermined threshold value or more. An air-heat ratio learning control device for an internal combustion engine.
前記閾値は、スロットル開度の任意の範囲毎に異なるように設定されていることを特徴とする請求項3記載の内燃機関の空熱比学習制御装置。   4. The air-heat ratio learning control device for an internal combustion engine according to claim 3, wherein the threshold value is set to be different for each arbitrary range of the throttle opening.
JP2014244915A 2014-12-03 2014-12-03 Air-fuel ratio learning control device for internal combustion engine Active JP6497048B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014244915A JP6497048B2 (en) 2014-12-03 2014-12-03 Air-fuel ratio learning control device for internal combustion engine
DE102015015637.3A DE102015015637B4 (en) 2014-12-03 2015-12-02 AIR-FUEL RATIO LEARNING CONTROL DEVICE FOR COMBUSTION ENGINE
CN201510883710.8A CN105673232B (en) 2014-12-03 2015-12-03 The learning control device for air-fuel ratio of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014244915A JP6497048B2 (en) 2014-12-03 2014-12-03 Air-fuel ratio learning control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2016108978A true JP2016108978A (en) 2016-06-20
JP6497048B2 JP6497048B2 (en) 2019-04-10

Family

ID=55974957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014244915A Active JP6497048B2 (en) 2014-12-03 2014-12-03 Air-fuel ratio learning control device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6497048B2 (en)
CN (1) CN105673232B (en)
DE (1) DE102015015637B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120200A (en) * 2017-06-26 2017-09-01 山东大学 Gaseous-pressure tail gas oxygen content two close cycles air intake control system and control method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188975A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Control device of internal combustion engine
JP6863247B2 (en) 2017-11-22 2021-04-21 トヨタ自動車株式会社 Control device of internal combustion engine and learning method of learning value in internal combustion engine
JP6942665B2 (en) * 2018-03-28 2021-09-29 愛三工業株式会社 Evaporative fuel processing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177546A (en) * 1994-12-26 1996-07-09 Nissan Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JPH09100732A (en) * 1995-10-06 1997-04-15 Nissan Motor Co Ltd Air-fuel ratio controller of internal combustion engine
JP2000257487A (en) * 1999-03-08 2000-09-19 Toyota Motor Corp Vaporized fuel processing unit for internal combustion engine
JP2001304055A (en) * 1992-04-28 2001-10-31 Denso Corp Air-fuel ratio control device for internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299546A (en) * 1992-04-28 1994-04-05 Nippondenso, Co., Ltd. Air-fuel ratio control apparatus of internal combustion engine
JP3404872B2 (en) 1994-03-18 2003-05-12 株式会社デンソー Air-fuel ratio control device for internal combustion engine
US5529047A (en) * 1994-02-21 1996-06-25 Nippondenso Co., Ltd. Air-fuel ratio system for an internal combustion engine
JP2002081350A (en) * 2000-09-07 2002-03-22 Suzuki Motor Corp Air/fuel ratio controller of internal combustion engine
US6651631B2 (en) * 2001-03-14 2003-11-25 Nissan Motor Co., Ltd. Fuel vapor emission control device for an engine
JP4656092B2 (en) * 2007-06-11 2011-03-23 トヨタ自動車株式会社 Control device for internal combustion engine
JP2010024991A (en) * 2008-07-18 2010-02-04 Hitachi Ltd Control device for internal combustion engine
JP5513053B2 (en) * 2009-09-30 2014-06-04 本田技研工業株式会社 Air-fuel ratio learning control device for motorcycle engine
CN103443428B (en) * 2011-03-10 2015-06-24 丰田自动车株式会社 Internal combustion engine control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304055A (en) * 1992-04-28 2001-10-31 Denso Corp Air-fuel ratio control device for internal combustion engine
JPH08177546A (en) * 1994-12-26 1996-07-09 Nissan Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JPH09100732A (en) * 1995-10-06 1997-04-15 Nissan Motor Co Ltd Air-fuel ratio controller of internal combustion engine
JP2000257487A (en) * 1999-03-08 2000-09-19 Toyota Motor Corp Vaporized fuel processing unit for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120200A (en) * 2017-06-26 2017-09-01 山东大学 Gaseous-pressure tail gas oxygen content two close cycles air intake control system and control method

Also Published As

Publication number Publication date
CN105673232B (en) 2019-10-11
JP6497048B2 (en) 2019-04-10
CN105673232A (en) 2016-06-15
DE102015015637A1 (en) 2016-06-09
DE102015015637B4 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US11199149B2 (en) Diagnosis device for fuel supply system
JP6497048B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP5352540B2 (en) Fuel injection system for internal combustion engine for vehicle
JP2007120392A (en) Air fuel ratio control device for internal combustion engine
JP2008057542A (en) Operation method of internal combustion engine, and its control method
JP2011074848A (en) Air-fuel ratio learning control device for internal combustion engine
JP4752636B2 (en) Control device for internal combustion engine
JP5411730B2 (en) Air-fuel ratio learning control device for vehicle internal combustion engine
JP6037020B2 (en) Engine fuel injection control device and engine fuel injection control method
JP2021032133A (en) Engine controller
JP2009138556A (en) Estimating device and estimating method of fuel concentration of flexible fuel engine
JP5867441B2 (en) Control device for internal combustion engine
JP2010174737A (en) Control device for diesel engine
JP2011080424A (en) Internal combustion engine fuel injection control device
JP2012255371A (en) Control device of internal combustion engine
JP2009150239A (en) Engine control device
JP5500088B2 (en) Control device for internal combustion engine
KR102406117B1 (en) Apparatus and method for controlling fuel injection
JP4883321B2 (en) Control device for internal combustion engine
JP6126025B2 (en) EGR device
JP6879460B2 (en) Engine control
JP6645174B2 (en) Liquid fuel temperature control system for dual fuel diesel engine
JP6404090B2 (en) EGR valve control device
JP6604259B2 (en) Control device for internal combustion engine
JP2016056703A (en) Internal combustion engine fuel injection control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190225

R151 Written notification of patent or utility model registration

Ref document number: 6497048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151