JP2016105402A - 発光装置の作製方法 - Google Patents

発光装置の作製方法 Download PDF

Info

Publication number
JP2016105402A
JP2016105402A JP2015247719A JP2015247719A JP2016105402A JP 2016105402 A JP2016105402 A JP 2016105402A JP 2015247719 A JP2015247719 A JP 2015247719A JP 2015247719 A JP2015247719 A JP 2015247719A JP 2016105402 A JP2016105402 A JP 2016105402A
Authority
JP
Japan
Prior art keywords
layer
substrate
peeled
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015247719A
Other languages
English (en)
Other versions
JP6329123B2 (ja
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
高山 徹
Toru Takayama
徹 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015247719A priority Critical patent/JP6329123B2/ja
Publication of JP2016105402A publication Critical patent/JP2016105402A/ja
Application granted granted Critical
Publication of JP6329123B2 publication Critical patent/JP6329123B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

【課題】曲面を有する基材に貼りつけられたOLEDを有する発光装置の作製方法を提供する。【解決手段】基板10上に素子を含む被剥離層11aを形成する際、素子のチャネルとして機能する領域のチャネル長方向13bを全て同一方向に配置し、チャネル長方向と同一方向14bに走査するレーザー光の照射を行い、素子を完成させた後、さらに、チャネル長方向と異なっている方向19、即ちチャネル幅方向に湾曲した曲面を有する基材に貼り付けて曲面を有する発光装置を作製する。【選択図】図1

Description

本発明は、剥離した被剥離層を基材に貼りつけて転写させた薄膜トランジスタ(以下、
TFTという)で構成された回路を有する半導体装置およびその作製方法に関する。例え
ば、液晶モジュールに代表される電気光学装置やELモジュールに代表される発光装置、
およびその様な装置を部品として搭載した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装
置全般を指し、電気光学装置、発光装置、半導体回路および電子機器は全て半導体装置で
ある。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用
いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタは
ICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチ
ング素子として開発が急がれている。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用
いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタは
ICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチ
ング素子として開発が急がれている。
このような画像表示装置を利用したアプリケーションは様々なものが期待されているが
、特に携帯機器への利用が注目されている。現在、ガラス基板や石英基板が多く使用され
ているが、割れやすく、重いという欠点がある。また、大量生産を行う上で、ガラス基板
や石英基板は大型化が困難であり、不向きである。そのため、可撓性を有する基板、代表
的にはフレキシブルなプラスチックフィルムの上にTFT素子を形成することが試みられ
ている。
しかしながら、プラスチックフィルムの耐熱性が低いためプロセスの最高温度を低くせ
ざるを得ず、結果的にガラス基板上に形成する時ほど良好な電気特性のTFTを形成でき
ないのが現状である。そのため、プラスチックフィルムを用いた高性能な発光素子や液晶
表示装置は実現されていない。
もし、プラスチックフィルム等の可撓性を有する基板の上に有機発光素子(OLED:
Organic Light Emitting Device)が形成された発光装置や、液晶表示装置を作製するこ
とができれば、厚みが薄く軽量であるということに加えて、曲面を有するディスプレイや
、ショーウィンドウ等などにも用いることができる。
よって、その用途は携帯機器のみに限られず、応用範囲は非常に広い。
本発明は、曲面を有する基材に被剥離層を貼りつけた半導体装置およびその作製方法を
提供することを課題とする。特に、曲面を有するディスプレイ、具体的には曲面を有する
基材に貼りつけられたOLEDを有する発光装置、曲面を有する基材に貼りつけられた液
晶表示装置の提供を課題とする。
また、本発明は、フレキシブルなフィルム(湾曲することが可能なフィルム)
にTFTを代表とする様々な素子(薄膜ダイオード、シリコンのPIN接合からなる光電
変換素子やシリコン抵抗素子)を貼りつけた半導体装置およびその作製方法を提供するこ
とを課題とする。
本発明は、基板上に素子を含む被剥離層を形成する際、素子のチャネルとして機能する
領域のチャネル長方向を全て同一方向に配置し、該チャネル長方向と同一方向に走査する
レーザー光の照射を行い、素子を完成させた後、さらに、前記チャネル長方向と異なって
いる方向、即ちチャネル幅方向に湾曲した曲面を有する基材に貼り付けて曲面を有するデ
ィスプレイを実現するものである。なお、被剥離層を曲面を有する基材に貼り合わせた場
合には、基材の曲面に沿って被剥離層も曲げられることとなる。本発明は、素子のチャネ
ル長方向が全て同一方向に配置されており、チャネル長方向と基材が湾曲している方向と
が異なっているため、素子を含む被剥離層が曲がったとしても素子特性への影響を最小限
に抑えることができる。即ち、ある方向(ここでは基材が湾曲している方向)への変形に
強い半導体装置を提供することも可能となる。
本明細書で開示する作製方法に関する発明の構成は、基板上に素子を含む被剥離層を形
成する工程と、前記素子を含む被剥離層に支持体を接着した後、該支持体を基板から物理
的手段により剥離する工程と、 前記素子を含む被剥離層に転写体を接着し、前記支持体
と前記転写体との間に前記素子を挟む工程とを有する半導体装置の作製方法であって、前
記素子は、絶縁膜を間に挟んでゲート電極と重なる半導体層をチャネルとする薄膜トラン
ジスタであり、前記半導体層を形成する工程は、前記チャネルのチャネル長方向と同一方
向で走査するレーザー光の照射を行う処理を有することを特徴とする半導体装置の作製方
法である。
ただし、上記構成において、被剥離層の機械的強度が十分である場合には、被剥離層を
固定する転写体を貼り合わせなくともよい。
なお、上記構成において、前記薄膜トランジスタは複数設けられ、且つ、該複数の薄膜
トランジスタのチャネル長方向は全て同一方向に配置されていることを特徴としている。
また、上記構成において、前記支持体は、凸状または凹状に湾曲した曲面を有し、前記
支持体が湾曲している方向と前記チャネル長方向は異なっていることを特徴としている。
また、転写体を貼り付ける場合、支持体の曲面に沿って転写体も凸状または凹状に湾曲し
た曲面を有する。従って、上記構成において、前記転写体は、凸状または凹状に湾曲した
曲面を有し、前記支持体が湾曲している方向と前記チャネル長方向は異なっていることを
特徴としている。
また、上記構成において、液晶表示装置を形成する場合、前記支持体は対向基板であっ
て、前記素子は画素電極を有しており、該画素電極と、前記対向基板との間には液晶材料
が充填されていることを特徴としている。
また、上記構成において、OLEDを有する発光装置を形成する場合、前記支持体は封
止材であって、前記素子は発光素子であることを特徴としている。
また、上記構成において、剥離方法としては、特に限定されず、被剥離層と基板との間
に分離層を設け、該分離層を薬液(エッチャント)で除去して被剥離層と基板とを分離す
る方法や、被剥離層と基板との間に非晶質シリコン(またはポリシリコン)からなる分離
層を設け、基板を通過させてレーザー光を照射して非晶質シリコンに含まれる水素を放出
させることにより、空隙を生じさせて被剥離層と基板を分離させる方法などを用いること
が可能である。なお、レーザー光を用いて剥離する場合においては、剥離前に水素が放出
しないように熱処理温度を410℃以下として被剥離層に含まれる素子を形成することが
望ましい。
また、他の剥離方法として、2層間の膜応力を利用して剥離を行う剥離方法を用いても
よい。この剥離方法は、基板上に設けた金属層、好ましくは窒化金属層を設け、さらに前
記窒化金属層に接して酸化層を設け、該酸化層の上に素子を形成し、成膜処理または50
0℃以上の熱処理を行っても、膜剥がれ(ピーリング)が生じずに、物理的手段で容易に
酸化層の層内または界面において、きれいに分離できるものである。さらに剥離を助長さ
せるため、前記物理的手段により剥離する前に、加熱処理またはレーザー光の照射を行う
処理を行ってもよい。
以上に示した本発明の作製方法により得られる半導体装置は様々な特徴を有している。
本明細書で開示する発明の構成1は、凸状または凹状に湾曲した曲面を有する基材上に
、複数の薄膜トランジスタが設けられ、該複数の薄膜トランジスタのチャネル長方向は全
て同一方向に配置され、且つ、前記チャネル長方向は、前記基材の湾曲している方向とは
異なっていることを特徴とする半導体装置である。
また、本発明は、画素部と駆動回路とにそれぞれ異なる薄膜トランジスタを形成した場
合においても適用することができ、他の発明の構成2は、凸状または凹状に湾曲した曲面
を有する基材上に、画素部と駆動回路部が設けられ、前記画素部に設けられた薄膜トラン
ジスタのチャネル長方向と、前記駆動回路部に設けられた薄膜トランジスタのチャネル長
方向は同一方向に配置され、且つ、前記チャネル長方向は、前記基材の湾曲している方向
とは異なっていることを特徴とする半導体装置である。なお、パターンのデザインルール
は5〜20μm程度であり、駆動回路及び画素部にそれぞれ106〜107個程度のTFT
が基板上に作り込まれている。
また、上記各構成において、前記チャネル長方向は、前記薄膜トランジスタの半導体層
に照射されたレーザー光の走査方向と同一方向であることを特徴としている。基板上にレ
ーザーアニールにより結晶化させた半導体膜で薄膜トランジスタのチャネルを形成する場
合、結晶の成長方向とキャリアの移動方向とを揃えると高い電界効果移動度を得ることが
できる。即ち、結晶成長方向とチャネル長方向とを一致させることで電界効果移動度が実
質的に高くすることができる。連続発振するレーザービームを非単結晶半導体膜に照射し
て結晶化させる場合には、固液界面が保持され、レーザービームの走査方向に連続的な結
晶成長を行わせることが可能である。レーザー光としては、エキシマレーザー等の気体レ
ーザーや、YAGレーザーなどの固体レーザーや、半導体レーザーを用いればよい。また
、レーザー発振の形態は、連続発振、パルス発振のいずれでもよく、レーザービームの形
状も線状または矩形状でもよい。
また、上記各構成において、前記湾曲している方向と前記チャネル長方向は直交してい
ることを特徴としている。即ち、チャネル長方向は直交する方向とはチャネル幅方向であ
り、他の発明の構成3は、 凸状または凹状に湾曲した曲面を有する基材上に、複数の薄
膜トランジスタが設けられ、該複数の薄膜トランジスタのチャネル幅方向は全て同一方向
に配置され、且つ、前記チャネル幅方向は、前記基材の湾曲している方向と同一方向であ
ることを特徴とする半導体装置である。
なお、上記構成3においては、前記チャネル幅方向は、前記薄膜トランジスタの半導体
層に照射されたレーザー光の走査方向と直交することになる。
また、曲面を有する基材は、凸状または凹状に湾曲しているが、ある一方向に湾曲して
いる場合、曲率を持つ方向と曲率を持たない方向とを有する曲面を有しているとも言える
。従って、他の発明の構成4は、曲率を持つ方向と曲率を持たない方向とを有する曲面を
備えた基材表面上に設けられた複数の薄膜トランジスタのチャネル長方向は全て同一方向
に配置され、且つ、前記チャネル長方向と曲率を持たない方向とが同一方向であることを
特徴とする半導体装置である。
なお、上記構成4において、前記チャネル長方向は、前記薄膜トランジスタの半導体層
に照射されたレーザー光の走査方向と同一方向であることを特徴としている。
また、本発明は、フレキシブルなフィルム(湾曲することが可能なフィルム)
、好ましくは、一方向に湾曲するフィルムに被剥離層を貼り付ける場合にも適用できる。
なお、このフレキシブルフィルムは通常の状態では湾曲しておらず、なんらかの外部の力
によって、ある方向に曲げられるものとしている。他の発明の構成5は、 凸状または凹
状に湾曲することが可能な基材上に、複数の薄膜トランジスタが設けられ、該複数の薄膜
トランジスタのチャネル長方向は全て同一方向に配置され、且つ、前記基材が湾曲する方
向は、前記チャネル長方向と異なっていることを特徴とする半導体装置である。
なお、上記構成5において、前記チャネル長方向は、前記薄膜トランジスタの半導体層
に照射されたレーザー光の走査方向と同一方向であることを特徴としている。また、上記
構成5において、前記湾曲する方向と前記チャネル長方向は直交している、即ち、前記湾
曲する方向とチャネル幅方向は同一方向である。
なお、本明細書中において、転写体とは、剥離された後、被剥離層と接着させるもので
あり、曲面を有していれば、特に限定されず、プラスチック、ガラス、金属、セラミック
ス等、いかなる組成の基材でもよい。また、本明細書中において、支持体とは、物理的手
段により剥離する際に被剥離層と接着するためのものであり、特に限定されず、プラスチ
ック、ガラス、金属、セラミックス等、いかなる組成の基材でもよい。また、転写体の形
状および支持体の形状も特に限定されず、平面を有するもの、曲面を有するもの、可曲性
を有するもの、フィルム状のものであってもよい。また、軽量化を最優先するのであれば
、フィルム状のプラスチック基板、例えば、ポリエチレンテレフタレート(PET)、ポ
リエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネー
ト(PC)、ナイロン、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PS
F)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリブチレンテレフ
タレート(PBT)などのプラスチック基板が好ましい。
本発明により、大面積基板の全面にわたって、TFTを形成する半導体領域の位置に合わ
せてレーザービームを照射して結晶化させ、スループット良く大粒径の結晶半導体膜を形
成することができ、しかもTFTの特性を向上させるとともに、曲面を有するディスプレ
イを実現することができる。
本発明を示す工程図である。(実施の形態) 本発明における各方向を示す図である。(実施の形態) レーザー照射装置の一態様を示す配置図である。(実施例1) レーザー照射装置の一態様を示す配置図である。(実施例1) TFTが設けられた基板の構成と、TFTを構成する半導体領域の配置とレーザービームの走査方向の関係を説明する図である。 半導体膜におけるレーザービームの走査方向と、トップゲート型TFTの作製工程を説明する図である。 半導体膜におけるレーザービームの走査方向と、ボトムゲート型TFTの作製工程を説明する図である。 実施例3を示す工程図である。
本発明の実施形態について、以下に説明する。
以下に本発明を用いた代表的な作製手順を簡略に図1、図2を用いて示す。
図1(A)中、10は基板、11aは被剥離層、12は剥離層に設けられた画素部、1
3aは画素部に設けられた半導体層、13bは半導体層13aのチャネル長方向、14a
はレーザー光の照射領域、14bはレーザー光の照射方向をそれぞれ指している。
図1(A)は、被剥離層を完成させる途中の作製工程図であり、半導体層にレーザー光
を照射する処理を示す簡略図である。このレーザー光の照射処理によってレーザー結晶化
やレーザーアニールを行うことができる。発振はパルス発振、連続発振のいずれの形態で
も良いが、半導体膜の溶融状態を保って連続的に結晶成長させるためには、連続発振のモ
ードを選択することが望ましい。
図1(A)では、被剥離層に含まれる多数の半導体層のチャネル長方向は全て同一方向
に配置されている。また、レーザー光の照射方向、即ち走査方向は、チャネル長方向と同
一とする。こうすることによって、結晶成長方向とチャネル長方向とを一致させることで
電界効果移動度が実質的に高くすることができる。なお、図1(A)では、線状レーザー
光を照射した例を示したが、特に限定されない。また、ここでは半導体層をパターニング
した後にレーザー光照射を行うが、パターニングする前にレーザー光照射を行ってもよい
次いで、電極および配線や絶縁膜等を形成してTFTを代表とする様々な素子(薄膜ダ
イオード、シリコンのPIN接合からなる光電変換素子やシリコン抵抗素子など)を形成
し、被剥離層11bを完成させた後、基板10から剥離する。
なお、剥離する方法は、特に限定されないが、ここでは、熱処理温度や基板の種類に制
約を受けない剥離方法である、金属層または窒化物層と酸化物層との膜応力を利用した剥
離方法を用いる。まず、図1(A)の状態を得る前に、基板10上に窒化物層または金属
層(図示しない)を形成する。窒化物層または金属層として代表的な一例はTi、W、A
l、Ta、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、Ir
、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料か
らなる単層、またはこれらの積層、或いは、これらの窒化物、例えば、窒化チタン、窒化
タングステン、窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用い
ればよい。次いで、窒化物層または金属層上に酸化物層(図示しない)を形成する。酸化
物層として代表的な一例は酸化シリコン、酸化窒化シリコン、酸化金属材料を用いればよ
い。なお、酸化物層は、スパッタ法、プラズマCVD法、塗布法などのいずれの成膜方法
を用いてもよい。この酸化物層の膜応力と、窒化物層または金属層の膜応力とを異ならせ
ることが重要である。各々の膜厚は、1nm〜1000nmの範囲で適宜設定し、各々の
膜応力を調節すればよい。また、基板と窒化物層または金属層との間に絶縁層や金属層を
設け、基板10との密着性を向上させてもよい。次いで、酸化物層上に半導体層を形成し
、被剥離層11aを得ればよい。なお、上記剥離方法は、酸化物層の膜応力と、窒化物層
または金属層の膜応力が異なっていても、被剥離層の作製工程における熱処理によって膜
剥がれなどが生じない。また、上記剥離方法は、酸化物層の膜応力と、窒化物層または金
属層の膜応力が異なっているため、比較的小さな力で引き剥がすことができる。
また、ここでは、被剥離層11bの機械的強度が十分であると仮定した例を示しているが
、被剥離層11bの機械的強度が不十分である場合には、被剥離層11bを固定する支持
体(図示しない)を貼りつけた後、剥離することが好ましい。
なお、被剥離層11bを引き剥がす際には、被剥離層11bが曲らないようにし、被剥離
層にクラックを生じさせないようにすることも重要である。
こうして、酸化物層上に形成された被剥離層11bを基板10から分離することができる
。剥離後の状態を図1(B)に示す。なお、図1(B)に示す段階では半導体層だけでな
く、電極や配線などが形成されているが、簡略化のため、ここでは図示しない。
剥離後の被剥離層11cは、湾曲させることができる。湾曲させた状態を図1(C)に
示す。被剥離層11cは方向19に示す方向に湾曲している。なお、曲面を有する転写体
(図示しない)に貼り付けることも可能であることは言うまでもない。
図1(C)中、15は駆動回路(X方向)、16aは駆動回路(X方向)に設けられた
半導体層、16bは半導体層16aのチャネル長方向、17は駆動回路(Y方向)、18
aは駆動回路(Y方向)に設けられた半導体層、18bは半導体層18aのチャネル長方
向をそれぞれ指している。
以上のように、本発明は、レーザー光の照射方向14bと、被剥離層に設けられた全て
の半導体層のチャネル長方向13b、16b、18bとを同一方向とし、これらの方向と
湾曲している方向19とが直交するように設定することが最大の特徴である。
なお、これらの方向の相互関係をさらに明瞭にするため、一つのTFTに着目した場合
を図2に示す。図2では、半導体層20、ゲート電極21、電極(ソース電極またはドレ
イン電極)22、23を有するTFTが簡略に示してある。なお、このTFTは公知の技
術を用いて形成することができ、非晶質構造を有する半導体膜(アモルファスシリコン等
)を公知の結晶化技術により結晶構造を有する半導体膜(ポリシリコン等)を形成した後
、所望の形状にパターニングを施して半導体層20を形成し、ゲート絶縁膜(図示しない
)で覆った後、ゲート絶縁膜を間に挟んで半導体層20と一部重なるようにゲート電極2
1を形成し、n型またはp型を付与する不純物元素を半導体層の一部に添加してソース領
域またはドレイン領域を形成し、ゲート電極を覆う層間絶縁膜(図示しない)を形成し、
層間絶縁膜上にソース領域またはドレイン領域に電気的に接続する電極(ソース電極また
はドレイン電極)22、23を形成すればよい。
本発明においては、このTFTを作製する上で、レーザー光の走査方向25が図2に示
した方向であるレーザー光を用いる。また、ゲート絶縁膜を間に挟んでゲート電極21と
重なる半導体層20の部分はチャネルとして機能し、チャネル長方向24は図2に示した
方向となる。レーザー光の走査方向25とチャネル長方向24は同一の方向となる。また
、チャネル長方向24と直交する方向であるチャネル幅方向は、湾曲している方向26と
同一の方向であり、湾曲している方向26は図2に示した方向となる。なお、図2ではト
ップゲート型TFTを例に示したが、本発明はTFT構造に限定することなく適用するこ
とができ、例えばボトムゲート型(逆スタガ型)TFTや順スタガ型TFTに適用するこ
とが可能である。
また、本発明は様々な半導体装置の作製方法に用いることができる。特に、転写体や支
持体をプラスチック基板とすることで、軽量化が図れる。
液晶表示装置を作製する場合は、支持体を対向基板とし、シール材を接着材として用い
て支持体を被剥離層に接着すればよい。この場合、被剥離層に設けられた素子は画素電極
を有しており、該画素電極と、前記対向基板との間には液晶材料が充填されるようにする
。また、液晶表示装置を作製する順序は、特に限定されず、支持体としての対向基板を貼
りつけ、液晶を注入した後に基板を剥離して転写体としてのプラスチック基板を貼りつけ
てもよいし、画素電極を形成した後、基板を剥離し、第1の転写体としてのプラスチック
基板を貼り付けた後、第2の転写体としての対向基板を貼りつけてもよい。
また、OLEDを有する装置として代表される発光装置を作製する場合は、支持体を封
止材として、外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入すること
を防ぐように発光素子を外部から完全に遮断することが好ましい。また、OLEDを有す
る装置として代表される発光装置を作製する場合は、支持体だけでなく、転写体も同様、
十分に外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐ
ことが好ましい。また、発光装置を作製する順序は、特に限定されず、発光素子を形成し
た後、支持体としてのプラスチック基板を貼りつけ、基板を剥離し、転写体としてのプラ
スチック基板を貼りつけてもよいし、発光素子を形成した後、基板を剥離して、第1の転
写体としてのプラスチック基板を貼り付けた後、第2の転写体としてのプラスチック基板
を貼りつけてもよい。また、水分や酸素の透過による劣化を抑えることを重要視するなら
、剥離後に被剥離層に接する薄膜を成膜することによって、剥離の際に生じるクラックを
修復し、被剥離層に接する薄膜として熱伝導性を有する膜、具体的にはアルミニウムの窒
化物またはアルミニウムの窒化酸化物を用いることによって、素子の発熱を拡散させて素
子の劣化を抑える効果とともに、転写体、具体的にはプラスチック基板の変形や変質を保
護する効果を得ることができる。また、この熱伝導性を有する膜は、外部からの水分や酸
素等の不純物の混入を防ぐ効果も有する。
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行う
こととする。
ここでは、本発明に適したレーザー処理装置の例を示す。
レーザーアニールよるアモルファスシリコンの結晶化は、溶融−固化の過程を経て成さ
れるが、詳細には結晶核の生成とその核からの結晶成長との段階に分けて考えられている
。しかしながら、パルスレーザービームを用いたレーザーアニールは、結晶核の生成位置
と生成密度を制御することができず、自然発生するままにまかせている。従って、結晶粒
はガラス基板の面内で任意の位置に形成され、そのサイズも0.2〜0.5μm程度と小
さなものしか得られていない。結晶粒界には多数の欠陥が生成され、それがTFTの電界
効果移動度を制限する要因であると考えられている。
一方、連続発振レーザーを走査して溶融−固化させながら結晶化する方法は、ゾーンメル
ティング法に近い方法であると考えられるが、大きなビームサイズが得られず、大面積基
板の全面に渡って結晶化を成し遂げるには、かなりの時間を要することは自明であった。
本実施例では、大面積基板の全面にわたって、TFTを形成する位置に概略合わせてレ
ーザービームを照射して結晶化させ、スループット良く大粒径の結晶半導体膜を形成する
ことができるレーザー処理装置を以下に示す。
本実施例のレーザー照射装置は、レーザービームを主走査方向に偏向させる第1可動ミ
ラーと、主走査方向に偏向されたレーザービームを受光して、副走査方向に走査する長尺
の第2可動ミラーとを備え、第2可動ミラーはその長尺方向の軸を中心とした回転角によ
り、レーザービームを副走査方向に走査して、載置台上の被処理物に当該レーザービーム
を照射する手段を備えている。
また、他のレーザー照射装置として、レーザービームを第1主走査方向に偏向させる第
1可動ミラーと、第1主走査方向に偏向されたレーザービームを受光して、第1副走査方
向に走査する長尺の第2可動ミラーとを備えた第1のレーザービーム走査系と、レーザー
ビームを第2主走査方向に偏向させる第3可動ミラーと、第2主走査方向に偏向されたレ
ーザービームを受光して、第2副走査方向に走査する長尺の第4可動ミラーとを備えた第
2のレーザービーム走査系と、第2可動ミラーはその長尺方向の軸を中心とした回転角に
より、レーザービームを第1副走査方向に走査して、載置台上の被処理物に当該レーザー
ビームを照射する手段と第4可動ミラーはその長尺方向の軸を中心とした回転角により、
レーザービームを第2副走査方向に走査して、載置台上の被処理物に当該レーザービーム
を照射する手段とを備えているレーザー照射装置としてもよい。
上記構成において、第1及び第2可動ミラーはガルバノミラー又はポリゴンミラーを適
用し、レーザービームを供給するレーザーは、固体レーザー、気体レーザーを適用すれば
よい。
上記構成において、レーザービームを第1可動ミラーで主走査方向に走査し、第2可動
ミラーで副走査方向に走査することにより、被処理物上において任意の位置にレーザービ
ームを照射することが可能となる。また、このようなレーザービーム走査手段を複数設け
、二軸方向からレーザービームを被形成面に照射することによりレーザー処理の時間を短
縮することができる。
以下、図面を参照して本実施例のレーザー照射装置を説明する。
図3は本実施例のレーザー処理装置の望ましい一例を示す。図示したレーザー処理装置は
、連続発振又はパルス発振が可能な固体レーザー101、レーザービームを集光するため
のコリメータレンズ又はシリンドリカルレンズなどのレンズ102、レーザービームの光
路を変える固定ミラー103、レーザービームを2次元方向に放射状にスキャンするガル
バノミラー104、ガルバノミラー104からのレーザービームを受けて載置台106の
被照射面にレーザービームを向ける可動ミラー105から成っている。ガルバノミラー1
04と可動ミラー105の光軸を交差させ、それぞれ図示するθ方向にミラーを回転させ
ることにより、載置台106上に置かれた基板107の全面にわたってレーザービームを
走査させることができる。可動ミラー105はfθミラーとして、光路差を補正して被照
射面におけるビーム形状を補正することもできる。
図3はガルバノミラー104と、可動ミラー105により載置台106上に置かれた基
板107の一軸方向にレーザービームを走査する方式である。より好ましい形態としては
、図4に示すように、図3の構成に加えて、ハーフミラー108、固定ミラー109、ガ
ルバノミラー110、可能ミラー111を加えて二軸方向(XとY方向)同時にレーザー
ビームを走査しても良い。このような構成にすることにより処理時間を短縮することがで
きる。尚、ガルバノミラー104、110はポリゴンミラーと置き換えても良い。
レーザーとして好ましいものは固体レーザーであり、YAG、YVO4、YLF、YA
512などの結晶にNd、Tm、Hoをドープした結晶を使ったレーザーが適用される
。発振波長の基本波はドープする材料によっても異なるが、1μmから2μmの波長で発振
する。非単結晶半導体膜の結晶化には、レーザービームを半導体膜で選択的に吸収させる
ために、当該発振波長の第2高調波〜第4高調波を適用するのが好ましい。代表的には、
アモルファスシリコンの結晶化に際して、Nd:YAGレーザー(基本波1064nm)の
第2高調波(532nm)を用いる。
その他に、アルゴンレーザー、クリプトンレーザー、エキシマレーザーなどの気体レー
ザーを適用することもできる。
また、レーザー光を照射する雰囲気は、酸素を含む雰囲気、窒素を含む雰囲気、不活性
雰囲気や、真空のいずれでもよいが、目的に応じて適宜選択すればよい。
発振はパルス発振、連続発振のいずれの形態でも良いが、半導体膜の溶融状態を保って
連続的に結晶成長させるためには、連続発振のモードを選択することが望ましい。
基板上にレーザーアニールにより結晶化させた半導体膜でTFTを形成する場合、結晶
の成長方向とキャリアの移動方向とを揃えると高い電界効果移動度を得ることができる。
即ち、結晶成長方向とチャネル長方向とを一致させることで電界効果移動度が実質的に高
くすることができる。
連続発振するレーザービームを非単結晶半導体膜に照射して結晶化させる場合には、固
液界面が保持され、レーザービームの走査方向に連続的な結晶成長を行わせることが可能
である。図4で示すように、駆動回路一体型のアクティブマトリクス型液晶表示装置を形
成するためのTFT基板(主としてTFTが形成された基板)112では、画素部113
の周辺に駆動回路114、115が設けられるが、図4に示すのはそのようなレイアウト
を考慮したレーザー照射装置の形態である。前述の如く、二軸方向からレーザービームを
入射する構成では、ガルバノミラー104、110及び可動ミラー105、111の組み
合わせにより、図中矢印で示すX方向及びY方向にレーザービームを同期又は非同期させ
て照射することが可能であり、TFTのレイアウトに合わせて、場所を指定してレーザー
ビームを照射することを可能としている。
図5はTFTが設けられた基板112と、レーザービームの照射方向との関係を詳細に
示すものである。基板112には画素部113、駆動回路部114、115が形成される
領域を点線で示している。結晶化の段階では、全面に非単結晶半導体膜が形成されている
が、TFTを形成するための半導体領域は基板端に形成されたアライメントマーカー等に
より特定することができる。
例えば、駆動回路部114は走査線駆動回路を形成する領域であり、その部分拡大図5
01にはTFTの半導体領域204とレーザービーム201の走査方向を示している。半
導体領域204の形状は任意なものを適用することができるが、いずれにしてもチャネル
長方向とレーザービームの走査方向201とを揃えている。また、駆動回路部114と交
差する方向に延在する駆動回路部115はデータ線駆動回路を形成する領域であり、半導
体領域205の配列と、レーザービーム202の走査方向を一致させる(拡大図502)
。また、画素部113も同様であり、拡大図503に示す如く半導体領域206の配列を
揃えて、チャネル長方向にレーザービーム203を走査させる。レーザービームを走査す
る方向は一方向に限定されず、往復走査をしても良い。
次に、図6を参照して、非単結晶半導体膜の結晶化と、形成された結晶半導体膜を用い
てTFTを形成する工程を説明する。図6(1−B)は縦断面図であり、非単結晶半導体
膜403がガラス基板401上に形成されている。非単結晶半導体膜403の代表的な一
例はアモルファスシリコン膜であり、その他にアモルファスシリコンゲルマニウム膜など
を適用することができる。厚さは10〜200nmが適用可能であるが、レーザービームの
波長及びエネルギー密度によりさらに厚くしても良い。また、ガラス基板401と非単結
晶半導体膜403との間にはブロッキング層402を設け、ガラス基板からアルカリ金属
などの不純物が半導体膜中へ拡散しないための手段を施しておくことが望ましい。ブロッ
キング層402としては、窒化シリコン膜、酸化窒化シリコン膜などを適用する。
また、剥離を行うためにブロッキング層402と基板401との間に金属層または窒化
金属層と酸化物層の積層409を形成する。金属層または窒化物層としては、Ti、Al
、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、I
r、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料
からなる単層、またはこれらの積層の窒化物、例えば、窒化チタン、窒化タングステン、
窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用いればよい。ここ
ではスパッタ法で膜厚100nmの窒化チタン膜を用いる。なお、基板と密着性が悪い場
合にはバッファ層を設ければよい。タングステン単層や窒化タングステンは密着性がよく
好ましい材料の一つである。また、酸化物層としては、酸化シリコン材料または酸化金属
材料からなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚20
0nmの酸化シリコン膜を用いる。この窒化金属層と酸化物層の結合力は熱処理には強く
、膜剥がれ(ピーリングとも呼ばれる)などが生じないが、物理的手段で簡単に酸化物層
の層内、あるいは界面において剥離することができる。なお、ここではガラス基板を用い
たが、上記剥離法はさまざまな基板を用いることが可能である。基板401は石英基板、
セラミック基板、シリコン基板、金属基板またはステンレス基板を用いても良い。
次いで、レーザービーム400の照射によって結晶化が成され、結晶半導体膜404を
形成することができる。レーザービーム400は図6(1−A)に示すように、想定され
るTFTの半導体領域405の位置に合わせて走査するものである。ビーム形状は矩形、
線形、楕円系など任意なものとすることができる。光学系にて集光したレーザービームは
、中央部と端部で必ずしもエネルギー強度が一定ではないので、半導体領域405がビー
ムの端部にかからないようにすることが望ましい。
レーザービームの走査は一方向のみの走査でなく、往復走査をしても良い。その場合に
は1回の走査毎にレーザーエネルギー密度を変え、段階的に結晶成長をさせることも可能
である。また、アモルファスシリコンを結晶化させる場合にしばしば必要となる水素出し
の処理を兼ねることも可能であり、最初に低エネルギー密度で走査し、水素を放出した後
、エネルギー密度を上げて2回目に走査で結晶化を完遂させても良い。
このようなレーザービームの照射方法において、連続発振のレーザービームを照射する
ことにより大粒径の結晶成長を可能とする。勿論、それはレーザービームの走査速度やエ
ネルギー密度等の詳細なパラメータを適宜設定する必要があるが、走査速度を10〜80
cm/secとすることによりそれを実現することができる。パルスレーザーを用いた溶融−固
化を経た結晶成長速度は1m/secとも言われているが、それよりも遅い速度でレーザービ
ームを走査して、徐冷することにより固液界面における連続的な結晶成長が可能となり、
結晶の大粒径化を実現することができる。
本実施例のレーザー照射装置は、このような状況において、基板の任意の位置を指定し
てレーザービーム照射して結晶化することを可能とするものであり、二軸方向からレーザ
ービームを照射することにより、さらにスループットを向上させることができる。
また、レーザー光を照射することによって、基板との剥離がより小さな力できれいに剥
離でき、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
さらに剥離を助長させるため、粒状の酸化物(例えば、ITO(酸化インジウム酸化ス
ズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)
を窒化物層または金属層または窒化金属層と酸化物層との界面に設けてもよい。
その後、図6(2−A)及び(2−B)に示すように、形成された結晶半導体膜をエッ
チングして、島状に分割された半導体領域405を形成する。トップゲート型TFTの場
合には、半導体領域405上にゲート絶縁膜406、ゲート電極407、一導電型不純物
領域408を形成してTFTを形成することができる。その後、公知の技術を用い、必要
に応じて配線や層間絶縁膜等を形成して素子を形成すれば良い。
こうしてTFTを有する素子を得たら、実施の形態に従って基板401を剥離する。本実
施例では、ブロッキング層402上に形成されたものが実施の形態に示した被剥離層11
bに相当する。被剥離層の機械的強度が不十分である場合には、被剥離層を固定する支持
体(図示しない)を貼りつけた後、剥離することが好ましい。
引き剥がすことで簡単に酸化物層上に形成された被剥離層を基板から分離することがで
きる。剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を有
する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
本実施例においても、本発明は、レーザー光の照射方向(走査方向)と、被剥離層に設け
られた全ての半導体層204〜206、および405のチャネル長方向とを同一方向とし
、これらの方向と湾曲している方向とが直交するように設定する。こうすることで曲面を
有するディスプレイを実現することができる。
また、本実施例は、実施の形態と自由に組み合わせることができる。
実施例1ではトップゲート型TFTの例を示したが、ここではボトムゲート型TFTの
例を示す。TFTの構造以外は実施例1と同じであるのでここでは省略する。
図7を参照して、非単結晶半導体膜の結晶化と、形成された結晶半導体膜を用いてTF
Tを形成する工程を説明する。
図7(1−B)は縦断面図であり、ゲート電極507がガラス基板上に形成され、ゲート
電極を覆うゲート絶縁膜506上に非単結晶半導体膜503が形成されている。非単結晶
半導体膜503の代表的な一例はアモルファスシリコン膜であり、その他にアモルファス
シリコンゲルマニウム膜などを適用することができる。厚さは10〜200nmが適用可能
であるが、レーザービームの波長及びエネルギー密度によりさらに厚くしても良い。また
、ガラス基板501とゲート電極との間にはブロッキング層502を設け、ガラス基板か
らアルカリ金属などの不純物が半導体膜中へ拡散しないための手段を施しておくことが望
ましい。ブロッキング層502としては、窒化シリコン膜、酸化窒化シリコン膜などを適
用する。
また、剥離を行うためにブロッキング層502と基板501との間に金属層または窒化
金属層と酸化物層の積層509を形成する。金属層または窒化物層としては、Ti、Al
、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、I
r、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料
からなる単層、またはこれらの積層の窒化物、例えば、窒化チタン、窒化タングステン、
窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用いればよい。ここ
ではスパッタ法で膜厚100nmの窒化チタン膜を用いる。なお、基板と密着性が悪い場
合にはバッファ層を設ければよい。タングステン単層や窒化タングステンは密着性がよく
好ましい材料の一つである。また、酸化物層としては、酸化シリコン材料または酸化金属
材料からなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚20
0nmの酸化シリコン膜を用いる。この窒化金属層と酸化物層の結合力は熱処理には強く
、膜剥がれ(ピーリングとも呼ばれる)などが生じないが、物理的手段で簡単に酸化物層
の層内、あるいは界面において剥離することができる。
次いで、レーザービーム500の照射によって結晶化が成され、結晶半導体膜504を
形成することができる。レーザービームは実施例1に示したレーザー処理装置を用いて得
られる。レーザービーム500は図7(1−A)に示すように、想定されるTFTの半導
体領域505の位置に合わせて走査するものである。
ビーム形状は矩形、線形、楕円系など任意なものとすることができる。光学系にて集光し
たレーザービームは、中央部と端部で必ずしもエネルギー強度が一定ではないので、半導
体領域505がビームの端部にかからないようにすることが望ましい。
レーザービームの走査は一方向のみの走査でなく、往復走査をしても良い。その場合に
は1回の走査毎にレーザーエネルギー密度を変え、段階的に結晶成長をさせることも可能
である。また、アモルファスシリコンを結晶化させる場合にしばしば必要となる水素出し
の処理を兼ねることも可能であり、最初に低エネルギー密度で走査し、水素を放出した後
、エネルギー密度を上げて2回目に走査で結晶化を完遂させても良い。
このようなレーザービームの照射方法において、連続発振のレーザービームを照射する
ことにより大粒径の結晶成長を可能とする。勿論、それはレーザービームの走査速度やエ
ネルギー密度等の詳細なパラメータを適宜設定する必要があるが、走査速度を10〜80
cm/secとすることによりそれを実現することができる。パルスレーザーを用いた溶融−固
化を経た結晶成長速度は1m/secとも言われているが、それよりも遅い速度でレーザービ
ームを走査して、徐冷することにより固液界面における連続的な結晶成長が可能となり、
結晶の大粒径化を実現することができる。
また、レーザー光を照射することによって、基板との剥離がより小さな力できれいに剥
離でき、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
さらに剥離を助長させるため、粒状の酸化物(例えば、ITO(酸化インジウム酸化ス
ズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)
を窒化物層または金属層または窒化金属層と酸化物層との界面に設けてもよい。
その後、図7(2−A)及び(2−B)に示すように、形成された結晶半導体膜をエッ
チングして、島状に分割された半導体領域505を形成する。ここでは半導体領域505
上にエッチングストッパーを設け、一導電型不純物領域508を形成してTFTを形成す
ることができる。その後、公知の技術を用い、必要に応じて配線や層間絶縁膜等を形成し
て素子を形成すれば良い。
こうしてTFTを有する素子を得たら、実施の形態に従って基板501を剥離する。本実
施例では、ブロッキング層502上に形成されたものが実施の形態に示した被剥離層11
bに相当する。被剥離層の機械的強度が不十分である場合には、被剥離層を固定する支持
体(図示しない)を貼りつけた後、剥離することが好ましい。
引き剥がすことで簡単に酸化物層上に形成された被剥離層を基板から分離することがで
きる。剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を有
する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
本実施例においても、レーザー光の照射方向(走査方向)と、被剥離層に設けられた全て
の半導体層505のチャネル長方向とを同一方向とし、これらの方向と湾曲している方向
とが直交するように設定する。こうすることで曲面を有するディスプレイを実現すること
ができる。
また、本実施例は、実施の形態と自由に組み合わせることができる。
実施例1および実施例2においては、剥離法として2層間の膜応力(応力歪み)を利用
して剥離を行う剥離方法を用いたが、特に限定されず、被剥離層と基板との間に分離層を
設け、該分離層を薬液(エッチャント)で除去して被剥離層と基板とを分離する方法や、
被剥離層と基板との間に非晶質シリコン(またはポリシリコン)からなる分離層を設け、
基板を通過させてレーザー光を照射して非晶質シリコンに含まれる水素を放出させること
により、空隙を生じさせて被剥離層と基板を分離させる方法などを用いることが可能であ
る。
ここでは分離層として水素を多量に含む非晶質シリコン(またはポリシリコン)を用い
、分離層にレーザー光を照射することによって剥離する例を図8に示す。
図8(A)中、600は基板、601は分離層、602は被剥離層である。
図8(A)において、基板600は透光性を有する基板、ガラス基板、石英基板などを
用いる。
次いで、分離層601を形成する。分離層601としてはアモルファスシリコンまたは
ポリシリコンを用いる。なお、分離層601は、スパッタ法、プラズマCVD法などの成
膜方法を用い、適宜、膜中に多量の水素を含ませるとよい。
次いで、分離層601上に被剥離層602を形成する。(図8(A))被剥離層602
は、TFTを代表とする様々な素子(薄膜ダイオード、シリコンのPIN接合からなる光
電変換素子やシリコン抵抗素子)を含む層とすればよい。また、基板600の耐え得る範
囲の熱処理を行うことができる。ただし、分離層601は、被剥離層602の作製工程に
おける熱処理によって膜剥がれなどが生じないようにする。本実施例のように、レーザー
光を用いて剥離する場合においては、剥離前に水素が放出しないように熱処理温度を41
0℃以下として被剥離層に含まれる素子を形成することが望ましい。
次いで、基板600を通過させ、分離層にレーザー光を照射する。(図8(B))レー
ザー光としては、エキシマレーザー等の気体レーザーや、YAGレーザーなどの固体レー
ザーや、半導体レーザーを用いればよい。また、レーザー発振の形態は、連続発振、パル
ス発振のいずれでもよく、レーザービームの形状も線状または矩形状でもよい。本実施例
において、実施例1に示したレーザー照射装置を用いる。実施例1に示したレーザー照射
装置を用いることによって、大面積基板の全面にわたって、スループット良くレーザービ
ームを照射することができる。また、実施例1に示したレーザー照射装置は、結晶化や剥
離に用いるだけでなく様々なレーザーアニールに用いることができる。
上記レーザー光の照射によって分離層601に含まれる水素を放出させることにより、
空隙を生じさせて被剥離層603と基板600を分離させる。(図8(C))実施例1に
示したレーザー照射装置を用いることによって、大きな面積を有する被剥離層を全面に渡
って歩留まりよく剥離することが可能となる。
剥離後の状態を図8(D)に示す。また、ここでは、被剥離層602の機械的強度が十分
であると仮定した例を示しているが、被剥離層602の機械的強度が不十分である場合に
は、被剥離層602を固定する支持体(図示しない)を貼りつけた後、剥離することが好
ましい。
また、剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を
有する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
本実施例においても、レーザー光の照射方向(走査方向)と、被剥離層に設けられた全て
の半導体層のチャネル長方向とを同一方向とし、これらの方向と湾曲している方向とが直
交するように設定する。こうすることで曲面を有するディスプレイを実現することができ
る。
また、本実施例は、実施の形態、実施例1、または実施例2と自由に組み合わせること
ができる。
なお、本実施例と実施例1と組み合わせる場合には、実施例1の409に代えて本実施例
の分離層601を用い、裏面からレーザーを照射し、剥離すればよい。
また、同様に本実施例と実施例2と組み合わせる場合には、実施例2の509に代えて本
実施例の分離層601を用い、裏面からレーザーを照射し、剥離すればよい。

Claims (1)

  1. 可撓性を有する第1の基板と、
    前記第1の基板上の、素子を含む層と、
    前記第1の基板と前記素子を含む層との間の、接着層と、
    前記素子を含む層上の、可撓性を有する第2の基板と、を有し、
    前記第1の基板及び前記第2の基板の各々は、第1の方向に湾曲されるものであり、
    前記素子を含む層は、画素部と、前記画素部の周辺に配置された回路と、を有し、
    前記画素部は、第1のトランジスタと、前記第1のトランジスタと電気的に接続された発光素子と、を有し、
    前記回路は、第2のトランジスタを有し、
    前記第1のトランジスタと前記第2のトランジスタとは、前記第1のトランジスタのチャネル長方向と前記第2のトランジスタのチャネル長方向とが、第2の方向に沿うように配置されており、
    前記第2の方向は、前記第1の方向と直交するような方向である発光装置の作製方法であって、
    前記第1のトランジスタの第1の半導体層を、レーザー光を用いて結晶化する工程と、
    前記第2のトランジスタの第2の半導体層を、レーザー光を用いて結晶化する工程と、を有し、
    前記第1の半導体層における前記レーザー光の走査方向と、前記第2の半導体層における前記レーザー光の走査方向とは、前記第2の方向に沿うような方向であることを特徴とする発光装置の作製方法。
JP2015247719A 2015-12-18 2015-12-18 半導体装置の作製方法 Expired - Lifetime JP6329123B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015247719A JP6329123B2 (ja) 2015-12-18 2015-12-18 半導体装置の作製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015247719A JP6329123B2 (ja) 2015-12-18 2015-12-18 半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014237234A Division JP6012694B2 (ja) 2014-11-24 2014-11-24 発光装置の作製方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017057444A Division JP6329292B2 (ja) 2017-03-23 2017-03-23 半導体装置

Publications (2)

Publication Number Publication Date
JP2016105402A true JP2016105402A (ja) 2016-06-09
JP6329123B2 JP6329123B2 (ja) 2018-05-23

Family

ID=56102820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015247719A Expired - Lifetime JP6329123B2 (ja) 2015-12-18 2015-12-18 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP6329123B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288522A (ja) * 1995-02-16 1996-11-01 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH10163495A (ja) * 1996-11-26 1998-06-19 Sharp Corp 半導体装置及びその製造方法
JPH11274506A (ja) * 1998-03-23 1999-10-08 Seiko Epson Corp 半導体発光素子の製造方法、半導体発光素子および表示装置
JP2000306834A (ja) * 1999-02-12 2000-11-02 Semiconductor Energy Lab Co Ltd レーザ照射方法およびレーザ照射装置および半導体装置
JP6012694B2 (ja) * 2014-11-24 2016-10-25 株式会社半導体エネルギー研究所 発光装置の作製方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288522A (ja) * 1995-02-16 1996-11-01 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JPH10163495A (ja) * 1996-11-26 1998-06-19 Sharp Corp 半導体装置及びその製造方法
JPH11274506A (ja) * 1998-03-23 1999-10-08 Seiko Epson Corp 半導体発光素子の製造方法、半導体発光素子および表示装置
JP2000306834A (ja) * 1999-02-12 2000-11-02 Semiconductor Energy Lab Co Ltd レーザ照射方法およびレーザ照射装置および半導体装置
JP6012694B2 (ja) * 2014-11-24 2016-10-25 株式会社半導体エネルギー研究所 発光装置の作製方法

Also Published As

Publication number Publication date
JP6329123B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5057619B2 (ja) 半導体装置の作製方法
JP6437680B2 (ja) 発光装置の作製方法
JP2003229548A (ja) 乗物、表示装置、および半導体装置の作製方法
JP6012694B2 (ja) 発光装置の作製方法
JP5470414B2 (ja) 発光装置及び電子機器
JP5380561B2 (ja) 半導体装置
JP5613814B2 (ja) 携帯機器
JP6329292B2 (ja) 半導体装置
JP6329123B2 (ja) 半導体装置の作製方法
JP2014212323A (ja) 半導体装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6329123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term