JP5057619B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP5057619B2
JP5057619B2 JP2001234293A JP2001234293A JP5057619B2 JP 5057619 B2 JP5057619 B2 JP 5057619B2 JP 2001234293 A JP2001234293 A JP 2001234293A JP 2001234293 A JP2001234293 A JP 2001234293A JP 5057619 B2 JP5057619 B2 JP 5057619B2
Authority
JP
Japan
Prior art keywords
layer
peeled
substrate
direction
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2001234293A
Other languages
English (en)
Other versions
JP2003045890A5 (ja
JP2003045890A (ja
Inventor
舜平 山崎
徹 高山
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2001234293A priority Critical patent/JP5057619B2/ja
Publication of JP2003045890A publication Critical patent/JP2003045890A/ja
Publication of JP2003045890A5 publication Critical patent/JP2003045890A5/ja
Application granted granted Critical
Publication of JP5057619B2 publication Critical patent/JP5057619B2/ja
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F2001/13613Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit the semiconductor element is formed on a first substrate and thereafter transferred to the final cell substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/28Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part
    • H01L27/32Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part with components specially adapted for light emission, e.g. flat-panel displays using organic light-emitting diodes [OLED]
    • H01L27/3241Matrix-type displays
    • H01L27/3244Active matrix displays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Description

【0001】
【発明の属する技術分野】
本発明は、剥離した被剥離層を基材に貼りつけて転写させた薄膜トランジスタ(以下、TFTという)で構成された回路を有する半導体装置およびその作製方法に関する。例えば、液晶モジュールに代表される電気光学装置やELモジュールに代表される発光装置、およびその様な装置を部品として搭載した電子機器に関する。
【0002】
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、発光装置、半導体回路および電子機器は全て半導体装置である。
【0003】
【従来の技術】
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数〜数百nm程度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。
【0004】
このような画像表示装置を利用したアプリケーションは様々なものが期待されているが、特に携帯機器への利用が注目されている。現在、ガラス基板や石英基板が多く使用されているが、割れやすく、重いという欠点がある。また、大量生産を行う上で、ガラス基板や石英基板は大型化が困難であり、不向きである。そのため、可撓性を有する基板、代表的にはフレキシブルなプラスチックフィルムの上にTFT素子を形成することが試みられている。
【0005】
しかしながら、プラスチックフィルムの耐熱性が低いためプロセスの最高温度を低くせざるを得ず、結果的にガラス基板上に形成する時ほど良好な電気特性のTFTを形成できないのが現状である。そのため、プラスチックフィルムを用いた高性能な発光素子や液晶表示装置は実現されていない。
【0006】
【発明が解決しようとする課題】
もし、プラスチックフィルム等の可撓性を有する基板の上に有機発光素子(OLED:Organic Light Emitting Device)が形成された発光装置や、液晶表示装置を作製することができれば、厚みが薄く軽量であるということに加えて、曲面を有するディスプレイや、ショーウィンドウ等などにも用いることができる。よって、その用途は携帯機器のみに限られず、応用範囲は非常に広い。
【0007】
本発明は、曲面を有する基材に被剥離層を貼りつけた半導体装置およびその作製方法を提供することを課題とする。特に、曲面を有するディスプレイ、具体的には曲面を有する基材に貼りつけられたOLEDを有する発光装置、曲面を有する基材に貼りつけられた液晶表示装置の提供を課題とする。
【0008】
また、本発明は、フレキシブルなフィルム(湾曲することが可能なフィルム)にTFTを代表とする様々な素子(薄膜ダイオード、シリコンのPIN接合からなる光電変換素子やシリコン抵抗素子)を貼りつけた半導体装置およびその作製方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、基板上に素子を含む被剥離層を形成する際、素子のチャネルとして機能する領域のチャネル長方向を全て同一方向に配置し、該チャネル長方向と同一方向に走査するレーザー光の照射を行い、素子を完成させた後、さらに、前記チャネル長方向と異なっている方向、即ちチャネル幅方向に湾曲した曲面を有する基材に貼り付けて曲面を有するディスプレイを実現するものである。なお、被剥離層を曲面を有する基材に貼り合わせた場合には、基材の曲面に沿って被剥離層も曲げられることとなる。本発明は、素子のチャネル長方向が全て同一方向に配置されており、チャネル長方向と基材が湾曲している方向とが異なっているため、素子を含む被剥離層が曲がったとしても素子特性への影響を最小限に抑えることができる。即ち、ある方向(ここでは基材が湾曲している方向)への変形に強い半導体装置を提供することも可能となる。
【0010】
本明細書で開示する作製方法に関する発明の構成は、
基板上に素子を含む被剥離層を形成する工程と、
前記素子を含む被剥離層に支持体を接着した後、該支持体を基板から物理的手段により剥離する工程と、
前記素子を含む被剥離層に転写体を接着し、前記支持体と前記転写体との間に前記素子を挟む工程とを有する半導体装置の作製方法であって、
前記素子は、絶縁膜を間に挟んでゲート電極と重なる半導体層をチャネルとする薄膜トランジスタであり、前記半導体層を形成する工程は、前記チャネルのチャネル長方向と同一方向で走査するレーザー光の照射を行う処理を有することを特徴とする半導体装置の作製方法である。
【0011】
ただし、上記構成において、被剥離層の機械的強度が十分である場合には、被剥離層を固定する転写体を貼り合わせなくともよい。
【0012】
なお、上記構成において、前記薄膜トランジスタは複数設けられ、且つ、該複数の薄膜トランジスタのチャネル長方向は全て同一方向に配置されていることを特徴としている。
【0013】
また、上記構成において、前記支持体は、凸状または凹状に湾曲した曲面を有し、前記支持体が湾曲している方向と前記チャネル長方向は異なっていることを特徴としている。また、転写体を貼り付ける場合、支持体の曲面に沿って転写体も凸状または凹状に湾曲した曲面を有する。従って、上記構成において、前記転写体は、凸状または凹状に湾曲した曲面を有し、前記支持体が湾曲している方向と前記チャネル長方向は異なっていることを特徴としている。
【0014】
また、上記構成において、液晶表示装置を形成する場合、前記支持体は対向基板であって、前記素子は画素電極を有しており、該画素電極と、前記対向基板との間には液晶材料が充填されていることを特徴としている。
【0015】
また、上記構成において、OLEDを有する発光装置を形成する場合、前記支持体は封止材であって、前記素子は発光素子であることを特徴としている。
【0016】
また、上記構成において、剥離方法としては、特に限定されず、被剥離層と基板との間に分離層を設け、該分離層を薬液(エッチャント)で除去して被剥離層と基板とを分離する方法や、被剥離層と基板との間に非晶質シリコン(またはポリシリコン)からなる分離層を設け、基板を通過させてレーザー光を照射して非晶質シリコンに含まれる水素を放出させることにより、空隙を生じさせて被剥離層と基板を分離させる方法などを用いることが可能である。なお、レーザー光を用いて剥離する場合においては、剥離前に水素が放出しないように熱処理温度を410℃以下として被剥離層に含まれる素子を形成することが望ましい。
【0017】
また、他の剥離方法として、2層間の膜応力を利用して剥離を行う剥離方法を用いてもよい。この剥離方法は、基板上に設けた金属層、好ましくは窒化金属層を設け、さらに前記窒化金属層に接して酸化層を設け、該酸化層の上に素子を形成し、成膜処理または500℃以上の熱処理を行っても、膜剥がれ(ピーリング)が生じずに、物理的手段で容易に酸化層の層内または界面において、きれいに分離できるものである。さらに剥離を助長させるため、前記物理的手段により剥離する前に、加熱処理またはレーザー光の照射を行う処理を行ってもよい。
【0018】
以上に示した本発明の作製方法により得られる半導体装置は様々な特徴を有している。
【0019】
本明細書で開示する発明の構成1は、
凸状または凹状に湾曲した曲面を有する基材上に、複数の薄膜トランジスタが設けられ、該複数の薄膜トランジスタのチャネル長方向は全て同一方向に配置され、且つ、前記チャネル長方向は、前記基材の湾曲している方向とは異なっていることを特徴とする半導体装置である。
【0020】
また、本発明は、画素部と駆動回路とにそれぞれ異なる薄膜トランジスタを形成した場合においても適用することができ、他の発明の構成2は、
凸状または凹状に湾曲した曲面を有する基材上に、画素部と駆動回路部が設けられ、前記画素部に設けられた薄膜トランジスタのチャネル長方向と、前記駆動回路部に設けられた薄膜トランジスタのチャネル長方向は同一方向に配置され、且つ、前記チャネル長方向は、前記基材の湾曲している方向とは異なっていることを特徴とする半導体装置である。なお、パターンのデザインルールは5〜20μm程度であり、駆動回路及び画素部にそれぞれ106〜107個程度のTFTが基板上に作り込まれている。
【0021】
また、上記各構成において、前記チャネル長方向は、前記薄膜トランジスタの半導体層に照射されたレーザー光の走査方向と同一方向であることを特徴としている。基板上にレーザーアニールにより結晶化させた半導体膜で薄膜トランジスタのチャネルを形成する場合、結晶の成長方向とキャリアの移動方向とを揃えると高い電界効果移動度を得ることができる。即ち、結晶成長方向とチャネル長方向とを一致させることで電界効果移動度が実質的に高くすることができる。連続発振するレーザービームを非単結晶半導体膜に照射して結晶化させる場合には、固液界面が保持され、レーザービームの走査方向に連続的な結晶成長を行わせることが可能である。レーザー光としては、エキシマレーザー等の気体レーザーや、YAGレーザーなどの固体レーザーや、半導体レーザーを用いればよい。また、レーザー発振の形態は、連続発振、パルス発振のいずれでもよく、レーザービームの形状も線状または矩形状でもよい。
【0022】
また、上記各構成において、前記湾曲している方向と前記チャネル長方向は直交していることを特徴としている。即ち、チャネル長方向は直交する方向とはチャネル幅方向であり、他の発明の構成3は、
凸状または凹状に湾曲した曲面を有する基材上に、複数の薄膜トランジスタが設けられ、該複数の薄膜トランジスタのチャネル幅方向は全て同一方向に配置され、且つ、前記チャネル幅方向は、前記基材の湾曲している方向と同一方向であることを特徴とする半導体装置である。
【0023】
なお、上記構成3においては、前記チャネル幅方向は、前記薄膜トランジスタの半導体層に照射されたレーザー光の走査方向と直交することになる。
【0024】
また、曲面を有する基材は、凸状または凹状に湾曲しているが、ある一方向に湾曲している場合、曲率を持つ方向と曲率を持たない方向とを有する曲面を有しているとも言える。従って、他の発明の構成4は、曲率を持つ方向と曲率を持たない方向とを有する曲面を備えた基材表面上に設けられた複数の薄膜トランジスタのチャネル長方向は全て同一方向に配置され、且つ、前記チャネル長方向と曲率を持たない方向とが同一方向であることを特徴とする半導体装置である。
【0025】
なお、上記構成4において、前記チャネル長方向は、前記薄膜トランジスタの半導体層に照射されたレーザー光の走査方向と同一方向であることを特徴としている。
【0026】
また、本発明は、フレキシブルなフィルム(湾曲することが可能なフィルム)、好ましくは、一方向に湾曲するフィルムに被剥離層を貼り付ける場合にも適用できる。なお、このフレキシブルフィルムは通常の状態では湾曲しておらず、なんらかの外部の力によって、ある方向に曲げられるものとしている。他の発明の構成5は、
凸状または凹状に湾曲することが可能な基材上に、複数の薄膜トランジスタが設けられ、該複数の薄膜トランジスタのチャネル長方向は全て同一方向に配置され、且つ、前記基材が湾曲する方向は、前記チャネル長方向と異なっていることを特徴とする半導体装置である。
【0027】
なお、上記構成5において、前記チャネル長方向は、前記薄膜トランジスタの半導体層に照射されたレーザー光の走査方向と同一方向であることを特徴としている。また、上記構成5において、前記湾曲する方向と前記チャネル長方向は直交している、即ち、前記湾曲する方向とチャネル幅方向は同一方向である。
【0028】
なお、本明細書中において、転写体とは、剥離された後、被剥離層と接着させるものであり、曲面を有していれば、特に限定されず、プラスチック、ガラス、金属、セラミックス等、いかなる組成の基材でもよい。また、本明細書中において、支持体とは、物理的手段により剥離する際に被剥離層と接着するためのものであり、特に限定されず、プラスチック、ガラス、金属、セラミックス等、いかなる組成の基材でもよい。また、転写体の形状および支持体の形状も特に限定されず、平面を有するもの、曲面を有するもの、可曲性を有するもの、フィルム状のものであってもよい。また、軽量化を最優先するのであれば、フィルム状のプラスチック基板、例えば、ポリエチレンテレフタレート(PET)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ナイロン、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリブチレンテレフタレート(PBT)などのプラスチック基板が好ましい。
【0029】
【発明の実施の形態】
本発明の実施形態について、以下に説明する。
【0030】
以下に本発明を用いた代表的な作製手順を簡略に図1、図2を用いて示す。
【0031】
図1(A)中、10は基板、11aは被剥離層、12は剥離層に設けられた画素部、13aは画素部に設けられた半導体層、13bは半導体層13aのチャネル長方向、14aはレーザー光の照射領域、14bはレーザー光の照射方向をそれぞれ指している。
【0032】
図1(A)は、被剥離層を完成させる途中の作製工程図であり、半導体層にレーザー光を照射する処理を示す簡略図である。このレーザー光の照射処理によってレーザー結晶化やレーザーアニールを行うことができる。発振はパルス発振、連続発振のいずれの形態でも良いが、半導体膜の溶融状態を保って連続的に結晶成長させるためには、連続発振のモードを選択することが望ましい。
【0033】
図1(A)では、被剥離層に含まれる多数の半導体層のチャネル長方向は全て同一方向に配置されている。また、レーザー光の照射方向、即ち走査方向は、チャネル長方向と同一とする。こうすることによって、結晶成長方向とチャネル長方向とを一致させることで電界効果移動度が実質的に高くすることができる。なお、図1(A)では、線状レーザー光を照射した例を示したが、特に限定されない。また、ここでは半導体層をパターニングした後にレーザー光照射を行うが、パターニングする前にレーザー光照射を行ってもよい。
【0034】
次いで、電極および配線や絶縁膜等を形成してTFTを代表とする様々な素子(薄膜ダイオード、シリコンのPIN接合からなる光電変換素子やシリコン抵抗素子など)を形成し、被剥離層11bを完成させた後、基板10から剥離する。
【0035】
なお、剥離する方法は、特に限定されないが、ここでは、熱処理温度や基板の種類に制約を受けない剥離方法である、金属層または窒化物層と酸化物層との膜応力を利用した剥離方法を用いる。まず、図1(A)の状態を得る前に、基板10上に窒化物層または金属層(図示しない)を形成する。窒化物層または金属層として代表的な一例はTi、W、Al、Ta、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料からなる単層、またはこれらの積層、或いは、これらの窒化物、例えば、窒化チタン、窒化タングステン、窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用いればよい。次いで、窒化物層または金属層上に酸化物層(図示しない)を形成する。酸化物層として代表的な一例は酸化シリコン、酸化窒化シリコン、酸化金属材料を用いればよい。なお、酸化物層は、スパッタ法、プラズマCVD法、塗布法などのいずれの成膜方法を用いてもよい。この酸化物層の膜応力と、窒化物層または金属層の膜応力とを異ならせることが重要である。各々の膜厚は、1nm〜1000nmの範囲で適宜設定し、各々の膜応力を調節すればよい。また、基板と窒化物層または金属層との間に絶縁層や金属層を設け、基板10との密着性を向上させてもよい。次いで、酸化物層上に半導体層を形成し、被剥離層11aを得ればよい。なお、上記剥離方法は、酸化物層の膜応力と、窒化物層または金属層の膜応力が異なっていても、被剥離層の作製工程における熱処理によって膜剥がれなどが生じない。また、上記剥離方法は、酸化物層の膜応力と、窒化物層または金属層の膜応力が異なっているため、比較的小さな力で引き剥がすことができる。また、ここでは、被剥離層11bの機械的強度が十分であると仮定した例を示しているが、被剥離層11bの機械的強度が不十分である場合には、被剥離層11bを固定する支持体(図示しない)を貼りつけた後、剥離することが好ましい。なお、被剥離層11bを引き剥がす際には、被剥離層11bが曲らないようにし、被剥離層にクラックを生じさせないようにすることも重要である。
【0036】
こうして、酸化物層上に形成された被剥離層11bを基板10から分離することができる。剥離後の状態を図1(B)に示す。なお、図1(B)に示す段階では半導体層だけでなく、電極や配線などが形成されているが、簡略化のため、ここでは図示しない。
【0037】
剥離後の被剥離層11cは、湾曲させることができる。湾曲させた状態を図1(C)に示す。被剥離層11cは方向19に示す方向に湾曲している。なお、曲面を有する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
【0038】
図1(C)中、15は駆動回路(X方向)、16aは駆動回路(X方向)に設けられた半導体層、16bは半導体層16aのチャネル長方向、17は駆動回路(Y方向)、18aは駆動回路(Y方向)に設けられた半導体層、18bは半導体層18aのチャネル長方向をそれぞれ指している。
【0039】
以上のように、本発明は、レーザー光の照射方向14bと、被剥離層に設けられた全ての半導体層のチャネル長方向13b、16b、18bとを同一方向とし、これらの方向と湾曲している方向19とが直交するように設定することが最大の特徴である。
【0040】
なお、これらの方向の相互関係をさらに明瞭にするため、一つのTFTに着目した場合を図2に示す。図2では、半導体層20、ゲート電極21、電極(ソース電極またはドレイン電極)22、23を有するTFTが簡略に示してある。なお、このTFTは公知の技術を用いて形成することができ、非晶質構造を有する半導体膜(アモルファスシリコン等)を公知の結晶化技術により結晶構造を有する半導体膜(ポリシリコン等)を形成した後、所望の形状にパターニングを施して半導体層20を形成し、ゲート絶縁膜(図示しない)で覆った後、ゲート絶縁膜を間に挟んで半導体層20と一部重なるようにゲート電極21を形成し、n型またはp型を付与する不純物元素を半導体層の一部に添加してソース領域またはドレイン領域を形成し、ゲート電極を覆う層間絶縁膜(図示しない)を形成し、層間絶縁膜上にソース領域またはドレイン領域に電気的に接続する電極(ソース電極またはドレイン電極)22、23を形成すればよい。
【0041】
本発明においては、このTFTを作製する上で、レーザー光の走査方向25が図2に示した方向であるレーザー光を用いる。また、ゲート絶縁膜を間に挟んでゲート電極21と重なる半導体層20の部分はチャネルとして機能し、チャネル長方向24は図2に示した方向となる。レーザー光の走査方向25とチャネル長方向24は同一の方向となる。また、チャネル長方向24と直交する方向であるチャネル幅方向は、湾曲している方向26と同一の方向であり、湾曲している方向26は図2に示した方向となる。なお、図2ではトップゲート型TFTを例に示したが、本発明はTFT構造に限定することなく適用することができ、例えばボトムゲート型(逆スタガ型)TFTや順スタガ型TFTに適用することが可能である。
【0042】
また、本発明は様々な半導体装置の作製方法に用いることができる。特に、転写体や支持体をプラスチック基板とすることで、軽量化が図れる。
【0043】
液晶表示装置を作製する場合は、支持体を対向基板とし、シール材を接着材として用いて支持体を被剥離層に接着すればよい。この場合、被剥離層に設けられた素子は画素電極を有しており、該画素電極と、前記対向基板との間には液晶材料が充填されるようにする。また、液晶表示装置を作製する順序は、特に限定されず、支持体としての対向基板を貼りつけ、液晶を注入した後に基板を剥離して転写体としてのプラスチック基板を貼りつけてもよいし、画素電極を形成した後、基板を剥離し、第1の転写体としてのプラスチック基板を貼り付けた後、第2の転写体としての対向基板を貼りつけてもよい。
【0044】
また、OLEDを有する装置として代表される発光装置を作製する場合は、支持体を封止材として、外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐように発光素子を外部から完全に遮断することが好ましい。また、OLEDを有する装置として代表される発光装置を作製する場合は、支持体だけでなく、転写体も同様、十分に外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐことが好ましい。また、発光装置を作製する順序は、特に限定されず、発光素子を形成した後、支持体としてのプラスチック基板を貼りつけ、基板を剥離し、転写体としてのプラスチック基板を貼りつけてもよいし、発光素子を形成した後、基板を剥離して、第1の転写体としてのプラスチック基板を貼り付けた後、第2の転写体としてのプラスチック基板を貼りつけてもよい。また、水分や酸素の透過による劣化を抑えることを重要視するなら、剥離後に被剥離層に接する薄膜を成膜することによって、剥離の際に生じるクラックを修復し、被剥離層に接する薄膜として熱伝導性を有する膜、具体的にはアルミニウムの窒化物またはアルミニウムの窒化酸化物を用いることによって、素子の発熱を拡散させて素子の劣化を抑える効果とともに、転写体、具体的にはプラスチック基板の変形や変質を保護する効果を得ることができる。また、この熱伝導性を有する膜は、外部からの水分や酸素等の不純物の混入を防ぐ効果も有する。
【0045】
以上の構成でなる本発明について、以下に示す実施例でもってさらに詳細な説明を行うこととする。
【0046】
(実施例)
[実施例1]
ここでは、本発明に適したレーザー処理装置の例を示す。
【0047】
レーザーアニールよるアモルファスシリコンの結晶化は、溶融−固化の過程を経て成されるが、詳細には結晶核の生成とその核からの結晶成長との段階に分けて考えられている。しかしながら、パルスレーザービームを用いたレーザーアニールは、結晶核の生成位置と生成密度を制御することができず、自然発生するままにまかせている。従って、結晶粒はガラス基板の面内で任意の位置に形成され、そのサイズも0.2〜0.5μm程度と小さなものしか得られていない。結晶粒界には多数の欠陥が生成され、それがTFTの電界効果移動度を制限する要因であると考えられている。
【0048】
一方、連続発振レーザーを走査して溶融−固化させながら結晶化する方法は、ゾーンメルティング法に近い方法であると考えられるが、大きなビームサイズが得られず、大面積基板の全面に渡って結晶化を成し遂げるには、かなりの時間を要することは自明であった。
【0049】
本実施例では、大面積基板の全面にわたって、TFTを形成する位置に概略合わせてレーザービームを照射して結晶化させ、スループット良く大粒径の結晶半導体膜を形成することができるレーザー処理装置を以下に示す。
【0050】
本実施例のレーザー照射装置は、レーザービームを主走査方向に偏向させる第1可動ミラーと、主走査方向に偏向されたレーザービームを受光して、副走査方向に走査する長尺の第2可動ミラーとを備え、第2可動ミラーはその長尺方向の軸を中心とした回転角により、レーザービームを副走査方向に走査して、載置台上の被処理物に当該レーザービームを照射する手段を備えている。
【0051】
また、他のレーザー照射装置として、レーザービームを第1主走査方向に偏向させる第1可動ミラーと、第1主走査方向に偏向されたレーザービームを受光して、第1副走査方向に走査する長尺の第2可動ミラーとを備えた第1のレーザービーム走査系と、レーザービームを第2主走査方向に偏向させる第3可動ミラーと、第2主走査方向に偏向されたレーザービームを受光して、第2副走査方向に走査する長尺の第4可動ミラーとを備えた第2のレーザービーム走査系と、第2可動ミラーはその長尺方向の軸を中心とした回転角により、レーザービームを第1副走査方向に走査して、載置台上の被処理物に当該レーザービームを照射する手段と第4可動ミラーはその長尺方向の軸を中心とした回転角により、レーザービームを第2副走査方向に走査して、載置台上の被処理物に当該レーザービームを照射する手段とを備えているレーザー照射装置としてもよい。
【0052】
上記構成において、第1及び第2可動ミラーはガルバノミラー又はポリゴンミラーを適用し、レーザービームを供給するレーザーは、固体レーザー、気体レーザーを適用すればよい。
【0053】
上記構成において、レーザービームを第1可動ミラーで主走査方向に走査し、第2可動ミラーで副走査方向に走査することにより、被処理物上において任意の位置にレーザービームを照射することが可能となる。また、このようなレーザービーム走査手段を複数設け、二軸方向からレーザービームを被形成面に照射することによりレーザー処理の時間を短縮することができる。
【0054】
以下、図面を参照して本実施例のレーザー照射装置を説明する。
【0055】
図3は本実施例のレーザー処理装置の望ましい一例を示す。図示したレーザー処理装置は、連続発振又はパルス発振が可能な固体レーザー101、レーザービームを集光するためのコリメータレンズ又はシリンドリカルレンズなどのレンズ102、レーザービームの光路を変える固定ミラー103、レーザービームを2次元方向に放射状にスキャンするガルバノミラー104、ガルバノミラー104からのレーザービームを受けて載置台106の被照射面にレーザービームを向ける可動ミラー105から成っている。ガルバノミラー104と可動ミラー105の光軸を交差させ、それぞれ図示するθ方向にミラーを回転させることにより、載置台106上に置かれた基板107の全面にわたってレーザービームを走査させることができる。可動ミラー105はfθミラーとして、光路差を補正して被照射面におけるビーム形状を補正することもできる。
【0056】
図3はガルバノミラー104と、可動ミラー105により載置台106上に置かれた基板107の一軸方向にレーザービームを走査する方式である。より好ましい形態としては、図4に示すように、図3の構成に加えて、ハーフミラー108、固定ミラー109、ガルバノミラー110、可能ミラー111を加えて二軸方向(XとY方向)同時にレーザービームを走査しても良い。このような構成にすることにより処理時間を短縮することができる。尚、ガルバノミラー104、110はポリゴンミラーと置き換えても良い。
【0057】
レーザーとして好ましいものは固体レーザーであり、YAG、YVO4、YLF、YAl512などの結晶にNd、Tm、Hoをドープした結晶を使ったレーザーが適用される。発振波長の基本波はドープする材料によっても異なるが、1μmから2μmの波長で発振する。非単結晶半導体膜の結晶化には、レーザービームを半導体膜で選択的に吸収させるために、当該発振波長の第2高調波〜第4高調波を適用するのが好ましい。代表的には、アモルファスシリコンの結晶化に際して、Nd:YAGレーザー(基本波1064nm)の第2高調波(532nm)を用いる。
【0058】
その他に、アルゴンレーザー、クリプトンレーザー、エキシマレーザーなどの気体レーザーを適用することもできる。
【0059】
また、レーザー光を照射する雰囲気は、酸素を含む雰囲気、窒素を含む雰囲気、不活性雰囲気や、真空のいずれでもよいが、目的に応じて適宜選択すればよい。
【0060】
発振はパルス発振、連続発振のいずれの形態でも良いが、半導体膜の溶融状態を保って連続的に結晶成長させるためには、連続発振のモードを選択することが望ましい。
【0061】
基板上にレーザーアニールにより結晶化させた半導体膜でTFTを形成する場合、結晶の成長方向とキャリアの移動方向とを揃えると高い電界効果移動度を得ることができる。即ち、結晶成長方向とチャネル長方向とを一致させることで電界効果移動度が実質的に高くすることができる。
【0062】
連続発振するレーザービームを非単結晶半導体膜に照射して結晶化させる場合には、固液界面が保持され、レーザービームの走査方向に連続的な結晶成長を行わせることが可能である。図4で示すように、駆動回路一体型のアクティブマトリクス型液晶表示装置を形成するためのTFT基板(主としてTFTが形成された基板)112では、画素部113の周辺に駆動回路114、115が設けられるが、図4に示すのはそのようなレイアウトを考慮したレーザー照射装置の形態である。前述の如く、二軸方向からレーザービームを入射する構成では、ガルバノミラー104、110及び可動ミラー105、111の組み合わせにより、図中矢印で示すX方向及びY方向にレーザービームを同期又は非同期させて照射することが可能であり、TFTのレイアウトに合わせて、場所を指定してレーザービームを照射することを可能としている。
【0063】
図5はTFTが設けられた基板112と、レーザービームの照射方向との関係を詳細に示すものである。基板112には画素部113、駆動回路部114、115が形成される領域を点線で示している。結晶化の段階では、全面に非単結晶半導体膜が形成されているが、TFTを形成するための半導体領域は基板端に形成されたアライメントマーカー等により特定することができる。
【0064】
例えば、駆動回路部114は走査線駆動回路を形成する領域であり、その部分拡大図501にはTFTの半導体領域204とレーザービーム201の走査方向を示している。半導体領域204の形状は任意なものを適用することができるが、いずれにしてもチャネル長方向とレーザービームの走査方向201とを揃えている。また、駆動回路部114と交差する方向に延在する駆動回路部115はデータ線駆動回路を形成する領域であり、半導体領域205の配列と、レーザービーム202の走査方向を一致させる(拡大図502)。また、画素部113も同様であり、拡大図503に示す如く半導体領域206の配列を揃えて、チャネル長方向にレーザービーム203を走査させる。レーザービームを走査する方向は一方向に限定されず、往復走査をしても良い。
【0065】
次に、図6を参照して、非単結晶半導体膜の結晶化と、形成された結晶半導体膜を用いてTFTを形成する工程を説明する。図6(1−B)は縦断面図であり、非単結晶半導体膜403がガラス基板401上に形成されている。非単結晶半導体膜403の代表的な一例はアモルファスシリコン膜であり、その他にアモルファスシリコンゲルマニウム膜などを適用することができる。厚さは10〜200nmが適用可能であるが、レーザービームの波長及びエネルギー密度によりさらに厚くしても良い。また、ガラス基板401と非単結晶半導体膜403との間にはブロッキング層402を設け、ガラス基板からアルカリ金属などの不純物が半導体膜中へ拡散しないための手段を施しておくことが望ましい。ブロッキング層402としては、窒化シリコン膜、酸化窒化シリコン膜などを適用する。
【0066】
また、剥離を行うためにブロッキング層402と基板401との間に金属層または窒化金属層と酸化物層の積層409を形成する。金属層または窒化物層としては、Ti、Al、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料からなる単層、またはこれらの積層の窒化物、例えば、窒化チタン、窒化タングステン、窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚100nmの窒化チタン膜を用いる。なお、基板と密着性が悪い場合にはバッファ層を設ければよい。タングステン単層や窒化タングステンは密着性がよく好ましい材料の一つである。また、酸化物層としては、酸化シリコン材料または酸化金属材料からなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚200nmの酸化シリコン膜を用いる。この窒化金属層と酸化物層の結合力は熱処理には強く、膜剥がれ(ピーリングとも呼ばれる)などが生じないが、物理的手段で簡単に酸化物層の層内、あるいは界面において剥離することができる。なお、ここではガラス基板を用いたが、上記剥離法はさまざまな基板を用いることが可能である。基板401は石英基板、セラミック基板、シリコン基板、金属基板またはステンレス基板を用いても良い。
【0067】
次いで、レーザービーム400の照射によって結晶化が成され、結晶半導体膜404を形成することができる。レーザービーム400は図6(1−A)に示すように、想定されるTFTの半導体領域405の位置に合わせて走査するものである。ビーム形状は矩形、線形、楕円系など任意なものとすることができる。光学系にて集光したレーザービームは、中央部と端部で必ずしもエネルギー強度が一定ではないので、半導体領域405がビームの端部にかからないようにすることが望ましい。
【0068】
レーザービームの走査は一方向のみの走査でなく、往復走査をしても良い。その場合には1回の走査毎にレーザーエネルギー密度を変え、段階的に結晶成長をさせることも可能である。また、アモルファスシリコンを結晶化させる場合にしばしば必要となる水素出しの処理を兼ねることも可能であり、最初に低エネルギー密度で走査し、水素を放出した後、エネルギー密度を上げて2回目に走査で結晶化を完遂させても良い。
【0069】
このようなレーザービームの照射方法において、連続発振のレーザービームを照射することにより大粒径の結晶成長を可能とする。勿論、それはレーザービームの走査速度やエネルギー密度等の詳細なパラメータを適宜設定する必要があるが、走査速度を10〜80cm/secとすることによりそれを実現することができる。パルスレーザーを用いた溶融−固化を経た結晶成長速度は1m/secとも言われているが、それよりも遅い速度でレーザービームを走査して、徐冷することにより固液界面における連続的な結晶成長が可能となり、結晶の大粒径化を実現することができる。
【0070】
本実施例のレーザー照射装置は、このような状況において、基板の任意の位置を指定してレーザービーム照射して結晶化することを可能とするものであり、二軸方向からレーザービームを照射することにより、さらにスループットを向上させることができる。
【0071】
また、レーザー光を照射することによって、基板との剥離がより小さな力できれいに剥離でき、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
【0072】
さらに剥離を助長させるため、粒状の酸化物(例えば、ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)を窒化物層または金属層または窒化金属層と酸化物層との界面に設けてもよい。
【0073】
その後、図6(2−A)及び(2−B)に示すように、形成された結晶半導体膜をエッチングして、島状に分割された半導体領域405を形成する。トップゲート型TFTの場合には、半導体領域405上にゲート絶縁膜406、ゲート電極407、一導電型不純物領域408を形成してTFTを形成することができる。その後、公知の技術を用い、必要に応じて配線や層間絶縁膜等を形成して素子を形成すれば良い。
【0074】
こうしてTFTを有する素子を得たら、実施の形態に従って基板401を剥離する。本実施例では、ブロッキング層402上に形成されたものが実施の形態に示した被剥離層11bに相当する。被剥離層の機械的強度が不十分である場合には、被剥離層を固定する支持体(図示しない)を貼りつけた後、剥離することが好ましい。
【0075】
引き剥がすことで簡単に酸化物層上に形成された被剥離層を基板から分離することができる。剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を有する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
【0076】
本実施例においても、本発明は、レーザー光の照射方向(走査方向)と、被剥離層に設けられた全ての半導体層204〜206、および405のチャネル長方向とを同一方向とし、これらの方向と湾曲している方向とが直交するように設定する。こうすることで曲面を有するディスプレイを実現することができる。
【0077】
また、本実施例は、実施の形態と自由に組み合わせることができる。
【0078】
[実施例2]
実施例1ではトップゲート型TFTの例を示したが、ここではボトムゲート型TFTの例を示す。TFTの構造以外は実施例1と同じであるのでここでは省略する。
【0079】
図7を参照して、非単結晶半導体膜の結晶化と、形成された結晶半導体膜を用いてTFTを形成する工程を説明する。
【0080】
図7(1−B)は縦断面図であり、ゲート電極507がガラス基板上に形成され、ゲート電極を覆うゲート絶縁膜506上に非単結晶半導体膜503が形成されている。非単結晶半導体膜503の代表的な一例はアモルファスシリコン膜であり、その他にアモルファスシリコンゲルマニウム膜などを適用することができる。厚さは10〜200nmが適用可能であるが、レーザービームの波長及びエネルギー密度によりさらに厚くしても良い。また、ガラス基板501とゲート電極との間にはブロッキング層502を設け、ガラス基板からアルカリ金属などの不純物が半導体膜中へ拡散しないための手段を施しておくことが望ましい。ブロッキング層502としては、窒化シリコン膜、酸化窒化シリコン膜などを適用する。
【0081】
また、剥離を行うためにブロッキング層502と基板501との間に金属層または窒化金属層と酸化物層の積層509を形成する。金属層または窒化物層としては、Ti、Al、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、Ir、Ptから選ばれた元素、または前記元素を主成分とする合金材料若しくは化合物材料からなる単層、またはこれらの積層の窒化物、例えば、窒化チタン、窒化タングステン、窒化タンタル、窒化モリブデンからなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚100nmの窒化チタン膜を用いる。なお、基板と密着性が悪い場合にはバッファ層を設ければよい。タングステン単層や窒化タングステンは密着性がよく好ましい材料の一つである。また、酸化物層としては、酸化シリコン材料または酸化金属材料からなる単層、またはこれらの積層を用いればよい。ここではスパッタ法で膜厚200nmの酸化シリコン膜を用いる。この窒化金属層と酸化物層の結合力は熱処理には強く、膜剥がれ(ピーリングとも呼ばれる)などが生じないが、物理的手段で簡単に酸化物層の層内、あるいは界面において剥離することができる。
【0082】
次いで、レーザービーム500の照射によって結晶化が成され、結晶半導体膜504を形成することができる。レーザービームは実施例1に示したレーザー処理装置を用いて得られる。レーザービーム500は図7(1−A)に示すように、想定されるTFTの半導体領域505の位置に合わせて走査するものである。ビーム形状は矩形、線形、楕円系など任意なものとすることができる。光学系にて集光したレーザービームは、中央部と端部で必ずしもエネルギー強度が一定ではないので、半導体領域505がビームの端部にかからないようにすることが望ましい。
【0083】
レーザービームの走査は一方向のみの走査でなく、往復走査をしても良い。その場合には1回の走査毎にレーザーエネルギー密度を変え、段階的に結晶成長をさせることも可能である。また、アモルファスシリコンを結晶化させる場合にしばしば必要となる水素出しの処理を兼ねることも可能であり、最初に低エネルギー密度で走査し、水素を放出した後、エネルギー密度を上げて2回目に走査で結晶化を完遂させても良い。
【0084】
このようなレーザービームの照射方法において、連続発振のレーザービームを照射することにより大粒径の結晶成長を可能とする。勿論、それはレーザービームの走査速度やエネルギー密度等の詳細なパラメータを適宜設定する必要があるが、走査速度を10〜80cm/secとすることによりそれを実現することができる。パルスレーザーを用いた溶融−固化を経た結晶成長速度は1m/secとも言われているが、それよりも遅い速度でレーザービームを走査して、徐冷することにより固液界面における連続的な結晶成長が可能となり、結晶の大粒径化を実現することができる。
【0085】
また、レーザー光を照射することによって、基板との剥離がより小さな力できれいに剥離でき、大きな面積を有する被剥離層を全面に渡って剥離することを可能とする。
【0086】
さらに剥離を助長させるため、粒状の酸化物(例えば、ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In23―ZnO)、酸化亜鉛(ZnO)等)を窒化物層または金属層または窒化金属層と酸化物層との界面に設けてもよい。
【0087】
その後、図7(2−A)及び(2−B)に示すように、形成された結晶半導体膜をエッチングして、島状に分割された半導体領域505を形成する。ここでは半導体領域505上にエッチングストッパーを設け、一導電型不純物領域508を形成してTFTを形成することができる。その後、公知の技術を用い、必要に応じて配線や層間絶縁膜等を形成して素子を形成すれば良い。
【0088】
こうしてTFTを有する素子を得たら、実施の形態に従って基板501を剥離する。本実施例では、ブロッキング層502上に形成されたものが実施の形態に示した被剥離層11bに相当する。被剥離層の機械的強度が不十分である場合には、被剥離層を固定する支持体(図示しない)を貼りつけた後、剥離することが好ましい。
【0089】
引き剥がすことで簡単に酸化物層上に形成された被剥離層を基板から分離することができる。剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を有する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
【0090】
本実施例においても、レーザー光の照射方向(走査方向)と、被剥離層に設けられた全ての半導体層505のチャネル長方向とを同一方向とし、これらの方向と湾曲している方向とが直交するように設定する。こうすることで曲面を有するディスプレイを実現することができる。
【0091】
また、本実施例は、実施の形態と自由に組み合わせることができる。
【0092】
[実施例3]
実施例1および実施例2においては、剥離法として2層間の膜応力(応力歪み)を利用して剥離を行う剥離方法を用いたが、特に限定されず、被剥離層と基板との間に分離層を設け、該分離層を薬液(エッチャント)で除去して被剥離層と基板とを分離する方法や、被剥離層と基板との間に非晶質シリコン(またはポリシリコン)からなる分離層を設け、基板を通過させてレーザー光を照射して非晶質シリコンに含まれる水素を放出させることにより、空隙を生じさせて被剥離層と基板を分離させる方法などを用いることが可能である。
【0093】
ここでは分離層として水素を多量に含む非晶質シリコン(またはポリシリコン)を用い、分離層にレーザー光を照射することによって剥離する例を図8に示す。
【0094】
図8(A)中、600は基板、601は分離層、602は被剥離層である。
【0095】
図8(A)において、基板600は透光性を有する基板、ガラス基板、石英基板などを用いる。
【0096】
次いで、分離層601を形成する。分離層601としてはアモルファスシリコンまたはポリシリコンを用いる。なお、分離層601は、スパッタ法、プラズマCVD法などの成膜方法を用い、適宜、膜中に多量の水素を含ませるとよい。
【0097】
次いで、分離層601上に被剥離層602を形成する。(図8(A))被剥離層602は、TFTを代表とする様々な素子(薄膜ダイオード、シリコンのPIN接合からなる光電変換素子やシリコン抵抗素子)を含む層とすればよい。また、基板600の耐え得る範囲の熱処理を行うことができる。ただし、分離層601は、被剥離層602の作製工程における熱処理によって膜剥がれなどが生じないようにする。本実施例のように、レーザー光を用いて剥離する場合においては、剥離前に水素が放出しないように熱処理温度を410℃以下として被剥離層に含まれる素子を形成することが望ましい。
【0098】
次いで、基板600を通過させ、分離層にレーザー光を照射する。(図8(B))レーザー光としては、エキシマレーザー等の気体レーザーや、YAGレーザーなどの固体レーザーや、半導体レーザーを用いればよい。また、レーザー発振の形態は、連続発振、パルス発振のいずれでもよく、レーザービームの形状も線状または矩形状でもよい。本実施例において、実施例1に示したレーザー照射装置を用いる。実施例1に示したレーザー照射装置を用いることによって、大面積基板の全面にわたって、スループット良くレーザービームを照射することができる。また、実施例1に示したレーザー照射装置は、結晶化や剥離に用いるだけでなく様々なレーザーアニールに用いることができる。
【0099】
上記レーザー光の照射によって分離層601に含まれる水素を放出させることにより、空隙を生じさせて被剥離層603と基板600を分離させる。(図8(C))実施例1に示したレーザー照射装置を用いることによって、大きな面積を有する被剥離層を全面に渡って歩留まりよく剥離することが可能となる。
【0100】
剥離後の状態を図8(D)に示す。また、ここでは、被剥離層602の機械的強度が十分であると仮定した例を示しているが、被剥離層602の機械的強度が不十分である場合には、被剥離層602を固定する支持体(図示しない)を貼りつけた後、剥離することが好ましい。
【0101】
また、剥離後の被剥離層は、ある一方向に湾曲させることができる。被剥離層は曲面を有する転写体(図示しない)に貼り付けることも可能であることは言うまでもない。
【0102】
本実施例においても、レーザー光の照射方向(走査方向)と、被剥離層に設けられた全ての半導体層のチャネル長方向とを同一方向とし、これらの方向と湾曲している方向とが直交するように設定する。こうすることで曲面を有するディスプレイを実現することができる。
【0103】
また、本実施例は、実施の形態、実施例1、または実施例2と自由に組み合わせることができる。
【0104】
なお、本実施例と実施例1と組み合わせる場合には、実施例1の409に代えて本実施例の分離層601を用い、裏面からレーザーを照射し、剥離すればよい。
【0105】
また、同様に本実施例と実施例2と組み合わせる場合には、実施例2の509に代えて本実施例の分離層601を用い、裏面からレーザーを照射し、剥離すればよい。
【0106】
【発明の効果】
本発明により、大面積基板の全面にわたって、TFTを形成する半導体領域の位置に合わせてレーザービームを照射して結晶化させ、スループット良く大粒径の結晶半導体膜を形成することができ、しかもTFTの特性を向上させるとともに、曲面を有するディスプレイを実現することができる。
【図面の簡単な説明】
【図1】 本発明を示す工程図である。(実施の形態)
【図2】 本発明における各方向を示す図である。(実施の形態)
【図3】 レーザー照射装置の一態様を示す配置図である。(実施例1)
【図4】 レーザー照射装置の一態様を示す配置図である。(実施例1)
【図5】 TFTが設けられた基板の構成と、TFTを構成する半導体領域の配置とレーザービームの走査方向の関係を説明する図である。
【図6】 半導体膜におけるレーザービームの走査方向と、トップゲート型TFTの作製工程を説明する図である。
【図7】 半導体膜におけるレーザービームの走査方向と、ボトムゲート型TFTの作製工程を説明する図である。
【図8】 実施例3を示す工程図である。

Claims (8)

  1. 基板上に被剥離層を形成し、
    前記被剥離層に支持体を接着し、
    前記被剥離層及び前記支持体を前記基板から物理的手段により剥離し、
    前記被剥離層に転写体を接着し、前記支持体と前記転写体との間に前記被剥離層を挟む半導体装置の作製方法であって、
    前記被剥離層は、絶縁膜を間に挟んでゲート電極と重なる半導体層をチャネルとする複数の薄膜トランジスタを有し、
    前記転写体は凸状または凹状に湾曲した曲面を有し、
    前記複数の薄膜トランジスタのチャネル長方向は、前記転写体の湾曲している方向と直交する方向に沿うような方向であることを特徴とする半導体装置の作製方法。
  2. 請求項において、前記支持体は対向基板であって、
    前記被剥離層は画素電極を有しており、
    前記画素電極と、前記対向基板との間には液晶材料が充填されていることを特徴とする半導体装置の作製方法。
  3. 請求項において、前記支持体は封止材であって、前記被剥離層は発光素子を有することを特徴とする半導体装置の作製方法。
  4. 基板上に被剥離層を形成し、
    前記被剥離層を前記基板から物理的手段により剥離し、
    前記被剥離層に第1の転写体を接着し、
    前記被剥離層に第2の転写体を接着し、前記第1の転写体と第2の転写体との間に前記素子を挟む半導体装置の作製方法であって、
    前記被剥離層は、複数の薄膜トランジスタを有し、
    前記第2の転写体は、凸状または凹状に湾曲した曲面を有し、
    前記複数の薄膜トランジスタのチャネル長方向は、前記転写体の湾曲している方向と直交する方向に沿うような方向であることを特徴とする半導体装置の作製方法。
  5. 請求項において、前記第2の転写体は対向基板であって、
    前記被剥離層は画素電極を有しており、
    前記画素電極と、前記対向基板との間には液晶材料が充填されていることを特徴とする半導体装置の作製方法。
  6. 請求項において、前記第2の転写体は封止材であって、
    前記被剥離層は発光素子を有することを特徴とする半導体装置の作製方法。
  7. 請求項乃至請求項のいずれか一において、前記複数の薄膜トランジスタのチャネル長方向は全て同一方向に配置されていることを特徴とする半導体装置の作製方法。
  8. 請求項乃至請求項のいずれか一において、前記複数の薄膜トランジスタを形成する工程で、前記半導体層に前記チャネルのチャネル長方向と同一方向で走査するレーザー光の照射を行うことを特徴とする半導体装置の作製方法。
JP2001234293A 2001-08-01 2001-08-01 半導体装置の作製方法 Active JP5057619B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234293A JP5057619B2 (ja) 2001-08-01 2001-08-01 半導体装置の作製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001234293A JP5057619B2 (ja) 2001-08-01 2001-08-01 半導体装置の作製方法
US10/208,246 US7180091B2 (en) 2001-08-01 2002-07-31 Semiconductor device and manufacturing method thereof
US11/639,284 US7442957B2 (en) 2001-08-01 2006-12-15 Semiconductor device and manufacturing method thereof
US12/251,533 US7777409B2 (en) 2001-08-01 2008-10-15 Semiconductor device including a flexible support

Publications (3)

Publication Number Publication Date
JP2003045890A JP2003045890A (ja) 2003-02-14
JP2003045890A5 JP2003045890A5 (ja) 2008-08-14
JP5057619B2 true JP5057619B2 (ja) 2012-10-24

Family

ID=19065926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234293A Active JP5057619B2 (ja) 2001-08-01 2001-08-01 半導体装置の作製方法

Country Status (2)

Country Link
US (3) US7180091B2 (ja)
JP (1) JP5057619B2 (ja)

Families Citing this family (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415208B2 (en) 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP5057619B2 (ja) * 2001-08-01 2012-10-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW554398B (en) * 2001-08-10 2003-09-21 Semiconductor Energy Lab Method of peeling off and method of manufacturing semiconductor device
JP4209606B2 (ja) * 2001-08-17 2009-01-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW558743B (en) * 2001-08-22 2003-10-21 Semiconductor Energy Lab Peeling method and method of manufacturing semiconductor device
TWI282126B (en) * 2001-08-30 2007-06-01 Semiconductor Energy Lab Method for manufacturing semiconductor device
US7317205B2 (en) * 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
KR100944886B1 (ko) 2001-10-30 2010-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제조 방법
US7133737B2 (en) * 2001-11-30 2006-11-07 Semiconductor Energy Laboratory Co., Ltd. Program for controlling laser apparatus and recording medium for recording program for controlling laser apparatus and capable of being read out by computer
TWI264121B (en) * 2001-11-30 2006-10-11 Semiconductor Energy Lab A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device
TWI267145B (en) * 2001-11-30 2006-11-21 Semiconductor Energy Lab Manufacturing method for a semiconductor device
US7214573B2 (en) * 2001-12-11 2007-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device that includes patterning sub-islands
JP4141138B2 (ja) * 2001-12-21 2008-08-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4030758B2 (ja) * 2001-12-28 2008-01-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6953735B2 (en) 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
US6847050B2 (en) * 2002-03-15 2005-01-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and semiconductor device comprising the same
JP4693411B2 (ja) 2002-10-30 2011-06-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6881975B2 (en) * 2002-12-17 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4554152B2 (ja) * 2002-12-19 2010-09-29 株式会社半導体エネルギー研究所 半導体チップの作製方法
JP4101643B2 (ja) * 2002-12-26 2008-06-18 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7436050B2 (en) 2003-01-22 2008-10-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a flexible printed circuit
JP4389447B2 (ja) * 2003-01-28 2009-12-24 セイコーエプソン株式会社 電気光学装置の製造方法
JP2004247373A (ja) 2003-02-12 2004-09-02 Semiconductor Energy Lab Co Ltd 半導体装置
US7973313B2 (en) * 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
JP4566578B2 (ja) * 2003-02-24 2010-10-20 株式会社半導体エネルギー研究所 薄膜集積回路の作製方法
JP4823705B2 (ja) * 2003-02-24 2011-11-24 株式会社半導体エネルギー研究所 薄膜集積回路の作製方法及びicラベルの作製方法
TWI328837B (en) * 2003-02-28 2010-08-11 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
JP4526771B2 (ja) 2003-03-14 2010-08-18 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2004089049A1 (ja) * 2003-03-28 2004-10-14 Tdk Corporation 多層基板およびその製造方法
US7476629B2 (en) 2003-04-21 2009-01-13 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing thin film transistor
US7220627B2 (en) 2003-04-21 2007-05-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device where the scanning direction changes between regions during crystallization and process
US7397592B2 (en) 2003-04-21 2008-07-08 Semiconductor Energy Laboratory Co., Ltd. Beam irradiation apparatus, beam irradiation method, and method for manufacturing a thin film transistor
JP4503343B2 (ja) * 2003-04-21 2010-07-14 株式会社半導体エネルギー研究所 ビーム照射装置、ビーム照射方法、及び薄膜トランジスタの作製方法
CN100489569C (zh) 2003-10-28 2009-05-20 株式会社半导体能源研究所 制作光学膜的方法
US8928562B2 (en) * 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7601236B2 (en) 2003-11-28 2009-10-13 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing display device
JP5121119B2 (ja) * 2003-12-26 2013-01-16 株式会社半導体エネルギー研究所 チップ搭載物
US7566010B2 (en) 2003-12-26 2009-07-28 Semiconductor Energy Laboratory Co., Ltd. Securities, chip mounting product, and manufacturing method thereof
WO2005076359A1 (en) 2004-02-06 2005-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2005096380A1 (en) * 2004-04-02 2005-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of the same
JP4865248B2 (ja) * 2004-04-02 2012-02-01 株式会社半導体エネルギー研究所 半導体装置
KR101504579B1 (ko) * 2004-06-04 2015-03-23 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
JP5008289B2 (ja) * 2004-09-24 2012-08-22 株式会社半導体エネルギー研究所 半導体装置の作製方法、剥離方法
KR101223197B1 (ko) * 2004-09-24 2013-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치 및 그의 제조방법
US7307006B2 (en) * 2005-02-28 2007-12-11 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR100698692B1 (ko) * 2005-07-20 2007-03-23 삼성에스디아이 주식회사 평판표시장치
AU2008352028B2 (en) * 2008-03-06 2014-01-09 Amit Goyal Semiconductor-based, large-area, flexible, electronic devices on {110}less than100greater than oriented substrates
JP4680850B2 (ja) * 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 薄膜トランジスタ及びその製造方法
KR100701405B1 (ko) * 2005-11-21 2007-03-28 동부일렉트로닉스 주식회사 모스트랜지스터 및 그 제조방법
TWM315956U (en) * 2006-12-29 2007-07-21 Bothhand Entpr Inc Improved structure of composite circuit substrate
JP5084323B2 (ja) * 2007-03-29 2012-11-28 株式会社リコー 半導体装置
JP2008249968A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp アクティブマトリクス方式の表示装置及びその製造方法
JP4538767B2 (ja) 2008-03-25 2010-09-08 ソニー株式会社 表示装置の製造方法および表示装置、ならびに薄膜トランジスタ基板の製造方法および薄膜トランジスタ基板
US9509313B2 (en) 2009-04-14 2016-11-29 Monolithic 3D Inc. 3D semiconductor device
US7986042B2 (en) 2009-04-14 2011-07-26 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US10157909B2 (en) 2009-10-12 2018-12-18 Monolithic 3D Inc. 3D semiconductor device and structure
US8395191B2 (en) 2009-10-12 2013-03-12 Monolithic 3D Inc. Semiconductor device and structure
US10043781B2 (en) 2009-10-12 2018-08-07 Monolithic 3D Inc. 3D semiconductor device and structure
US8492886B2 (en) 2010-02-16 2013-07-23 Monolithic 3D Inc 3D integrated circuit with logic
US9711407B2 (en) * 2009-04-14 2017-07-18 Monolithic 3D Inc. Method of manufacturing a three dimensional integrated circuit by transfer of a mono-crystalline layer
US8378715B2 (en) 2009-04-14 2013-02-19 Monolithic 3D Inc. Method to construct systems
US8754533B2 (en) * 2009-04-14 2014-06-17 Monolithic 3D Inc. Monolithic three-dimensional semiconductor device and structure
US8362482B2 (en) 2009-04-14 2013-01-29 Monolithic 3D Inc. Semiconductor device and structure
US9577642B2 (en) 2009-04-14 2017-02-21 Monolithic 3D Inc. Method to form a 3D semiconductor device
US9099526B2 (en) 2010-02-16 2015-08-04 Monolithic 3D Inc. Integrated circuit device and structure
US8058137B1 (en) 2009-04-14 2011-11-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8384426B2 (en) * 2009-04-14 2013-02-26 Monolithic 3D Inc. Semiconductor device and structure
US8427200B2 (en) 2009-04-14 2013-04-23 Monolithic 3D Inc. 3D semiconductor device
US8405420B2 (en) * 2009-04-14 2013-03-26 Monolithic 3D Inc. System comprising a semiconductor device and structure
US8669778B1 (en) 2009-04-14 2014-03-11 Monolithic 3D Inc. Method for design and manufacturing of a 3D semiconductor device
US8642416B2 (en) 2010-07-30 2014-02-04 Monolithic 3D Inc. Method of forming three dimensional integrated circuit devices using layer transfer technique
US8373439B2 (en) 2009-04-14 2013-02-12 Monolithic 3D Inc. 3D semiconductor device
US8273610B2 (en) 2010-11-18 2012-09-25 Monolithic 3D Inc. Method of constructing a semiconductor device and structure
US8148728B2 (en) 2009-10-12 2012-04-03 Monolithic 3D, Inc. Method for fabrication of a semiconductor device and structure
US8911653B2 (en) * 2009-05-21 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
US8576209B2 (en) 2009-07-07 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Display device
US8691663B2 (en) * 2009-11-06 2014-04-08 Alliance For Sustainable Energy, Llc Methods of manipulating stressed epistructures
US10217667B2 (en) 2011-06-28 2019-02-26 Monolithic 3D Inc. 3D semiconductor device, fabrication method and system
US9953925B2 (en) 2011-06-28 2018-04-24 Monolithic 3D Inc. Semiconductor system and device
US9219005B2 (en) 2011-06-28 2015-12-22 Monolithic 3D Inc. Semiconductor system and device
US8461035B1 (en) 2010-09-30 2013-06-11 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
TWI457880B (en) * 2010-09-30 2014-10-21 E Ink Holdings Inc Curved display module and display device
US8114757B1 (en) 2010-10-11 2012-02-14 Monolithic 3D Inc. Semiconductor device and structure
US8026521B1 (en) 2010-10-11 2011-09-27 Monolithic 3D Inc. Semiconductor device and structure
US8379458B1 (en) 2010-10-13 2013-02-19 Monolithic 3D Inc. Semiconductor device and structure
US8373230B1 (en) 2010-10-13 2013-02-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
US8163581B1 (en) 2010-10-13 2012-04-24 Monolith IC 3D Semiconductor and optoelectronic devices
US8362800B2 (en) 2010-10-13 2013-01-29 Monolithic 3D Inc. 3D semiconductor device including field repairable logics
US8476145B2 (en) 2010-10-13 2013-07-02 Monolithic 3D Inc. Method of fabricating a semiconductor device and structure
US8536023B2 (en) 2010-11-22 2013-09-17 Monolithic 3D Inc. Method of manufacturing a semiconductor device and structure
US8629472B2 (en) * 2010-12-02 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and lighting device
US8541819B1 (en) 2010-12-09 2013-09-24 Monolithic 3D Inc. Semiconductor device and structure
US9099424B1 (en) 2012-08-10 2015-08-04 Monolithic 3D Inc. Semiconductor system, device and structure with heat removal
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8450804B2 (en) 2011-03-06 2013-05-28 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8975670B2 (en) 2011-03-06 2015-03-10 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8581349B1 (en) 2011-05-02 2013-11-12 Monolithic 3D Inc. 3D memory semiconductor device and structure
US8597965B2 (en) 2011-05-12 2013-12-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device using the light-emitting device
US8687399B2 (en) 2011-10-02 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US9197804B1 (en) 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
US9029173B2 (en) 2011-10-18 2015-05-12 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
JP5907722B2 (ja) 2011-12-23 2016-04-26 株式会社半導体エネルギー研究所 発光装置の作製方法
US9000557B2 (en) 2012-03-17 2015-04-07 Zvi Or-Bach Semiconductor device and structure
US8557632B1 (en) 2012-04-09 2013-10-15 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
TWI645578B (zh) 2012-07-05 2018-12-21 半導體能源研究所股份有限公司 發光裝置及發光裝置的製造方法
JP2014016444A (ja) * 2012-07-09 2014-01-30 Sony Corp 表示装置及び電子機器
WO2014024900A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting device
CN107918453A (zh) 2012-09-03 2018-04-17 株式会社半导体能源研究所 显示装置及电子装置
KR20140042553A (ko) 2012-09-28 2014-04-07 삼성디스플레이 주식회사 유기 발광 표시 장치
US8574929B1 (en) 2012-11-16 2013-11-05 Monolithic 3D Inc. Method to form a 3D semiconductor device and structure
US8686428B1 (en) 2012-11-16 2014-04-01 Monolithic 3D Inc. Semiconductor device and structure
US8742476B1 (en) 2012-11-27 2014-06-03 Monolithic 3D Inc. Semiconductor device and structure
US8674470B1 (en) 2012-12-22 2014-03-18 Monolithic 3D Inc. Semiconductor device and structure
US10115663B2 (en) 2012-12-29 2018-10-30 Monolithic 3D Inc. 3D semiconductor device and structure
US9385058B1 (en) 2012-12-29 2016-07-05 Monolithic 3D Inc. Semiconductor device and structure
US9871034B1 (en) 2012-12-29 2018-01-16 Monolithic 3D Inc. Semiconductor device and structure
WO2014129519A1 (en) 2013-02-20 2014-08-28 Semiconductor Energy Laboratory Co., Ltd. Peeling method, semiconductor device, and peeling apparatus
US8902663B1 (en) 2013-03-11 2014-12-02 Monolithic 3D Inc. Method of maintaining a memory state
US8994404B1 (en) 2013-03-12 2015-03-31 Monolithic 3D Inc. Semiconductor device and structure
US9117749B1 (en) 2013-03-15 2015-08-25 Monolithic 3D Inc. Semiconductor device and structure
US10224279B2 (en) 2013-03-15 2019-03-05 Monolithic 3D Inc. Semiconductor device and structure
US9021414B1 (en) 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
CN109273622A (zh) 2013-08-06 2019-01-25 株式会社半导体能源研究所 剥离方法
TW201515213A (en) 2013-09-06 2015-04-16 Semiconductor Energy Lab Light-emitting device and method for manufacturing light-emitting device
GB2519088B (en) * 2013-10-08 2015-09-16 M Solv Ltd Laser scanning system for laser release
JP2015173249A (ja) 2013-11-06 2015-10-01 株式会社半導体エネルギー研究所 剥離方法及び発光装置
WO2015087192A1 (en) 2013-12-12 2015-06-18 Semiconductor Energy Laboratory Co., Ltd. Peeling method and peeling apparatus
WO2015125046A1 (en) 2014-02-19 2015-08-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and peeling method
TW201543299A (en) 2014-03-13 2015-11-16 Semiconductor Energy Lab Touch panel
DE112015001780T5 (de) 2014-04-11 2017-01-19 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierende Vorrichtung
KR101663407B1 (ko) * 2015-02-10 2016-10-07 가천대학교 산학협력단 가요성 기판 및 이를 포함하는 유기소자
JP2017135381A (ja) 2016-01-26 2017-08-03 株式会社半導体エネルギー研究所 剥離の起点の形成方法及び剥離方法
JP2017191317A (ja) 2016-04-07 2017-10-19 株式会社半導体エネルギー研究所 表示装置

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322382C2 (ja) * 1983-06-22 1989-01-05 Preh, Elektrofeinmechanische Werke Jakob Preh Nachf. Gmbh & Co, 8740 Bad Neustadt, De
JPH073520B2 (ja) * 1985-04-26 1995-01-18 三菱電機株式会社 マトリクス型表示装置
US4883561A (en) 1988-03-29 1989-11-28 Bell Communications Research, Inc. Lift-off and subsequent bonding of epitaxial films
JPH02257618A (en) * 1989-03-29 1990-10-18 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5258325A (en) 1990-12-31 1993-11-02 Kopin Corporation Method for manufacturing a semiconductor device using a circuit transfer film
DE69325110T2 (de) 1992-03-13 1999-12-09 Kopin Corp Am kopf getragene anzeigevorrichtung
EP0659282B1 (en) 1992-09-11 1998-11-25 Kopin Corporation Color filter system for display panels
US7075501B1 (en) 1990-12-31 2006-07-11 Kopin Corporation Head mounted display system
US5206749A (en) 1990-12-31 1993-04-27 Kopin Corporation Liquid crystal display having essentially single crystal transistors pixels and driving circuits
US5376561A (en) 1990-12-31 1994-12-27 Kopin Corporation High density electronic circuit modules
JP2701629B2 (ja) 1991-11-01 1998-01-21 カシオ計算機株式会社 液晶表示装置およびその製造方法
JPH05347186A (ja) 1992-06-12 1993-12-27 Clarion Co Ltd エレクトロルミネセンス・ディスプレイ
JP3242452B2 (ja) * 1992-06-19 2001-12-25 三菱電機株式会社 薄膜太陽電池の製造方法
US5781164A (en) 1992-11-04 1998-07-14 Kopin Corporation Matrix display systems
JP3238223B2 (ja) * 1993-01-20 2001-12-10 株式会社東芝 液晶表示装置および表示装置
JPH06280026A (ja) 1993-03-24 1994-10-04 Semiconductor Energy Lab Co Ltd 成膜装置及び成膜方法
JPH06349735A (ja) * 1993-06-12 1994-12-22 Semiconductor Energy Lab Co Ltd 半導体装置
US6051453A (en) * 1993-09-07 2000-04-18 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor device
JPH07109573A (ja) * 1993-10-12 1995-04-25 Semiconductor Energy Lab Co Ltd ガラス基板および加熱処理方法
US6096581A (en) 1994-03-09 2000-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for operating an active matrix display device with limited variation in threshold voltages
JP3150840B2 (ja) 1994-03-11 2001-03-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3234714B2 (ja) * 1994-04-27 2001-12-04 シャープ株式会社 半導体装置およびその製造方法
DE4415132C2 (de) * 1994-04-29 1997-03-20 Siemens Ag Verfahren zur formgebenden Bearbeitung von dünnen Wafern und Solarzellen aus kristallinem Silizium
JP3698749B2 (ja) 1995-01-11 2005-09-21 株式会社半導体エネルギー研究所 液晶セルの作製方法およびその作製装置、液晶セルの生産システム
JP3364081B2 (ja) 1995-02-16 2003-01-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5757456A (en) * 1995-03-10 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating involving peeling circuits from one substrate and mounting on other
US5834327A (en) 1995-03-18 1998-11-10 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
JP4063896B2 (ja) 1995-06-20 2008-03-19 Tdk株式会社 有色シースルー光起電力装置
US5817548A (en) 1995-11-10 1998-10-06 Sony Corporation Method for fabricating thin film transistor device
DE19547691C1 (de) * 1995-12-20 1997-04-24 Lohmann Therapie Syst Lts Verfahren zur Herstellung transdermaler therapeutischer Pflaster (TTS)
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
USRE38466E1 (en) * 1996-11-12 2004-03-16 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
US6127199A (en) * 1996-11-12 2000-10-03 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
KR100500520B1 (ko) * 1996-08-27 2005-07-12 세이코 엡슨 가부시키가이샤 전사 방법 및 액티브 매트릭스 기판 제조 방법
EP0951057B1 (en) 1996-11-11 2004-05-06 Catalysts & Chemicals Industries Co., Ltd. Substrate flattening method
JP3899566B2 (ja) * 1996-11-25 2007-03-28 セイコーエプソン株式会社 有機el表示装置の製造方法
DE69728022T2 (de) * 1996-12-18 2004-08-12 Canon K.K. Vefahren zum Herstellen eines Halbleiterartikels unter Verwendung eines Substrates mit einer porösen Halbleiterschicht
EP0851513B1 (en) 1996-12-27 2007-11-21 Canon Kabushiki Kaisha Method of producing semiconductor member and method of producing solar cell
JPH10223608A (ja) 1997-02-04 1998-08-21 Sony Corp 半導体装置の製造方法
SG63832A1 (en) * 1997-03-26 1999-03-30 Canon Kk Substrate and production method thereof
US6033974A (en) * 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US6448152B1 (en) * 2001-02-20 2002-09-10 Silicon Genesis Corporation Method and system for generating a plurality of donor wafers and handle wafers prior to an order being placed by a customer
JPH1126733A (ja) * 1997-07-03 1999-01-29 Seiko Epson Corp 薄膜デバイスの転写方法、薄膜デバイス、薄膜集積回路装置,アクティブマトリクス基板、液晶表示装置および電子機器
JP3139426B2 (ja) * 1997-10-15 2001-02-26 日本電気株式会社 半導体装置
JPH11135882A (ja) * 1997-10-28 1999-05-21 Sharp Corp 化合物半導体基板、及び化合物半導体基板の製造方法、並びに発光素子
JPH11160734A (ja) * 1997-11-28 1999-06-18 Semiconductor Energy Lab Co Ltd 液晶電気光学装置
US6306729B1 (en) * 1997-12-26 2001-10-23 Canon Kabushiki Kaisha Semiconductor article and method of manufacturing the same
JP3809733B2 (ja) 1998-02-25 2006-08-16 セイコーエプソン株式会社 薄膜トランジスタの剥離方法
JP4126747B2 (ja) 1998-02-27 2008-07-30 セイコーエプソン株式会社 3次元デバイスの製造方法
JP3619058B2 (ja) * 1998-06-18 2005-02-09 キヤノン株式会社 半導体薄膜の製造方法
US6423614B1 (en) 1998-06-30 2002-07-23 Intel Corporation Method of delaminating a thin film using non-thermal techniques
US6582996B1 (en) 1998-07-13 2003-06-24 Fujitsu Limited Semiconductor thin film forming method
US6117797A (en) * 1998-09-03 2000-09-12 Micron Technology, Inc. Attachment method for heat sinks and devices involving removal of misplaced encapsulant
US6268695B1 (en) * 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
EP1157421A1 (en) 1999-02-05 2001-11-28 Alien Technology Corporation Apparatuses and methods for forming assemblies
EP1041624A1 (en) 1999-04-02 2000-10-04 Alcatel Method of transferring ultra-thin substrates and application of the method to the manufacture of a multilayer thin film device
US6664169B1 (en) 1999-06-08 2003-12-16 Canon Kabushiki Kaisha Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
TW543206B (en) * 1999-06-28 2003-07-21 Semiconductor Energy Lab EL display device and electronic device
TW473783B (en) 1999-08-13 2002-01-21 Semiconductor Energy Lab Laser apparatus, laser annealing method, and manufacturing method of a semiconductor device
US6391220B1 (en) * 1999-08-18 2002-05-21 Fujitsu Limited, Inc. Methods for fabricating flexible circuit structures
JP2001085715A (ja) * 1999-09-09 2001-03-30 Canon Inc 半導体層の分離方法および太陽電池の製造方法
JP2001085154A (ja) 1999-09-16 2001-03-30 Denso Corp 表示装置
US6455397B1 (en) * 1999-11-16 2002-09-24 Rona E. Belford Method of producing strained microelectronic and/or optical integrated and discrete devices
JP2001177101A (ja) * 1999-12-20 2001-06-29 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP4478268B2 (ja) 1999-12-28 2010-06-09 セイコーエプソン株式会社 薄膜デバイスの製造方法
TW494447B (en) 2000-02-01 2002-07-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
JP2001267578A (ja) 2000-03-17 2001-09-28 Sony Corp 薄膜半導体装置及びその製造方法
US6492026B1 (en) 2000-04-20 2002-12-10 Battelle Memorial Institute Smoothing and barrier layers on high Tg substrates
JP3265301B2 (ja) * 2000-06-05 2002-03-11 株式会社東芝 半導体装置とその製造方法
JP2002026182A (ja) * 2000-07-07 2002-01-25 Sanyo Electric Co Ltd 半導体装置の製造方法
SG136795A1 (en) * 2000-09-14 2007-11-29 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US6774010B2 (en) * 2001-01-25 2004-08-10 International Business Machines Corporation Transferable device-containing layer for silicon-on-insulator applications
JP2002328624A (ja) 2001-04-26 2002-11-15 Sony Corp 車両用表示装置
CN1212114C (zh) 2001-04-27 2005-07-27 昆明制药集团股份有限公司 口服灯盏花素缓释制剂
US6875671B2 (en) * 2001-09-12 2005-04-05 Reveo, Inc. Method of fabricating vertical integrated circuits
US6664730B2 (en) 2001-07-09 2003-12-16 Universal Display Corporation Electrode structure of el device
US8415208B2 (en) * 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
US6677254B2 (en) 2001-07-23 2004-01-13 Applied Materials, Inc. Processes for making a barrier between a dielectric and a conductor and products produced therefrom
US6814832B2 (en) * 2001-07-24 2004-11-09 Seiko Epson Corporation Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
JP2003109773A (ja) * 2001-07-27 2003-04-11 Semiconductor Energy Lab Co Ltd 発光装置、半導体装置およびそれらの作製方法
JP5057619B2 (ja) * 2001-08-01 2012-10-24 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW554398B (en) * 2001-08-10 2003-09-21 Semiconductor Energy Lab Method of peeling off and method of manufacturing semiconductor device
JP4209606B2 (ja) 2001-08-17 2009-01-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
TW558743B (en) * 2001-08-22 2003-10-21 Semiconductor Energy Lab Peeling method and method of manufacturing semiconductor device
TWI282126B (en) 2001-08-30 2007-06-01 Semiconductor Energy Lab Method for manufacturing semiconductor device
US7317205B2 (en) 2001-09-10 2008-01-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing a semiconductor device
US7112517B2 (en) 2001-09-10 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Laser treatment device, laser treatment method, and semiconductor device fabrication method
JP2003091245A (ja) 2001-09-18 2003-03-28 Semiconductor Energy Lab Co Ltd 表示装置
KR100944886B1 (ko) * 2001-10-30 2010-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제조 방법
TWI264121B (en) 2001-11-30 2006-10-11 Semiconductor Energy Lab A display device, a method of manufacturing a semiconductor device, and a method of manufacturing a display device
TWI272641B (en) * 2002-07-16 2007-02-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
CN1231065C (zh) 2003-11-14 2005-12-07 西安交通大学 一种天地网远程教育系统的实现方法

Also Published As

Publication number Publication date
US20070085138A1 (en) 2007-04-19
US20030047732A1 (en) 2003-03-13
JP2003045890A (ja) 2003-02-14
US7180091B2 (en) 2007-02-20
US20090108263A1 (en) 2009-04-30
US7442957B2 (en) 2008-10-28
US7777409B2 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
US6645830B2 (en) Exfoliating method, transferring method of thin film device, and thin film device, thin film integrated circuit device and liquid crystal display device produced by the same
US6392810B1 (en) Laser irradiation apparatus, laser irradiation method, beam homogenizer, semiconductor device, and method of manufacturing the semiconductor device
US7534700B2 (en) Method of fabricating a semiconductor device having a film in contact with a debonded layer
JP4166455B2 (ja) 偏光フィルム及び発光装置
US8830413B2 (en) Peeling method and method for manufacturing display device using the peeling method
KR101088104B1 (ko) 반도체장치의 제조방법
KR100884053B1 (ko) 박리방법 및 반도체장치의 제작방법
JP5315393B2 (ja) 結晶性半導体膜の作製方法
US9202987B2 (en) Semiconductor device and peeling off method and method of manufacturing semiconductor device
US7825002B2 (en) Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device
US9093324B2 (en) Semiconductor apparatus and fabrication method of the same
JP5648019B2 (ja) 表示装置の作製方法
US20040069751A1 (en) Method of irradiating laser, laser irradiation system, and manufacturing method of semiconductor device
US7109073B2 (en) Method for fabricating semiconductor device
JP4619462B2 (ja) 薄膜素子の転写方法
KR100985012B1 (ko) 반도체 장치
KR101028352B1 (ko) 반도체 장치를 제작하는 방법 및 디스플레이 장치를 제작하는 방법
KR100494479B1 (ko) 액티브 매트릭스 기판의 제조 방법
US7351617B2 (en) Semiconductor device and a method of manufacturing the same
US20030024635A1 (en) Method for transferring element, method for producing element, integrated circuit, circuit board, electro-optical device, IC card, and electronic appliance
US20040183133A1 (en) Semiconductor device and method of manufacturing the same
EP1603163A2 (en) Three-dimensional semiconductor device
WO2011070855A1 (ja) 半導体装置の製造方法および半導体装置
EP1014452B1 (en) Method of detaching thin-film device
CN100347809C (zh) 制造半导体器件的方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250