JP2016105203A - 光学素子およびその製造方法、ならびに原盤の製造方法 - Google Patents

光学素子およびその製造方法、ならびに原盤の製造方法 Download PDF

Info

Publication number
JP2016105203A
JP2016105203A JP2016028029A JP2016028029A JP2016105203A JP 2016105203 A JP2016105203 A JP 2016105203A JP 2016028029 A JP2016028029 A JP 2016028029A JP 2016028029 A JP2016028029 A JP 2016028029A JP 2016105203 A JP2016105203 A JP 2016105203A
Authority
JP
Japan
Prior art keywords
master
optical element
structures
lattice pattern
track
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016028029A
Other languages
English (en)
Inventor
遠藤 惣銘
Somei Endo
惣銘 遠藤
林部 和弥
Kazuya Hayashibe
和弥 林部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2016028029A priority Critical patent/JP2016105203A/ja
Publication of JP2016105203A publication Critical patent/JP2016105203A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

【課題】反射防止特性に優れた光学素子を提供する。【解決手段】反射防止機能を有する光学素子は、基体と、基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体とを備える。各構造体は、基体表面において複数列のトラックをなすように配置されているとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成する。基体の表面に対する構造体の充填率が、65%以上である。【選択図】図1

Description

本発明は、光学素子およびその製造方法、ならびにそれに用いられる原盤の製造方法に関する。詳しくは、凸部または凹部からなる構造体が表面に可視光の波長以下の微細ピッチで多数配置されてなる光学素子に関する。
従来より、ガラス、プラスチックなどの透光性基板を用いた光学素子においては、光の表面反射を抑えるための表面処理が行われているものがある。この種の表面処理として、光学素子表面に微細かつ緻密な凹凸(モスアイ;蛾の目)を形成するものがある(例えば非特許文献1参照)。
一般に、光学素子表面に周期的な凹凸形状を設けた場合、ここを光が透過するときには回折が発生し、透過光の直進成分が大幅に減少する。しかし、凹凸形状のピッチが透過する光の波長よりも短い場合には回折は発生せず、例えば凹凸形状を後述するような矩形としたときに、そのピッチや深さなどに対応する単一波長の光に対して有効な反射防止効果を得ることができる。
電子線露光を用いて作製したモスアイ構造体としては、微細なテント形状のモスアイ構造体(ピッチ約300nm、深さ約400nm)が開示されている(例えば非特許文献2参照)。このモスアイ構造体では、反射率1%以下の高性能な反射防止特性を得ることができる。
「光技術コンタクト」 Vol.43, No.11 (2005), 630-637参照 NTTアドバンストテクノロジ(株)、“波長依存性のない反射防止体(モスアイ)用成形金型原盤“、[online]、[平成20年2月27日検索]、インターネット<http://keytech.ntt-at.co.jp/nano/prd_0033.html>
しかし、近年では、液晶表示装置などの各種表示装置の視認性を向上するために、更に優れた反射防止特性を実現することが熱望されている。また、CCD(Charge Coupled Device)イメージセンサ素子やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ素子、フォトダイオード(Photo Diode:PD)などのパッケージにはカバーガラスが用いられるが、このカバーガラスの反射防止特性を向上することも強く望まれるようになっている。
したがって、本発明の目的は、反射防止特性に優れた光学素子およびその製造方法、ならびにそれに用いられる原盤の製造方法を提供することにある。
上述の課題を解決するために、第1の発明は、
基体と、
基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
を備え、
各構造体は、基体表面において複数列のトラックをなすように配置されているとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
基体の表面に対する構造体の充填率が、65%以上である、反射防止機能を有する光学素子である。
第2の発明は、
基体と、
基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
を備え、
各構造体は、基体表面において複数列のトラックをなすように配置されているとともに、準六方格子パターンを形成し、
同一トラック内における構造体の配置ピッチをP1、構造体底面のトラック方向の径を2rとしたとき、配置ピッチP1に対する径2rの比率((2r/P1)×100)が、85%以上である、反射防止機能を有する光学素子である。
第3の発明は、
基体と、
基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
を備え、
各構造体は、基体表面において複数列のトラックをなすように配置されているとともに、四方格子パターンまたは準四方格子パターンを形成し、
同一トラック内における構造体の配置ピッチをP1、構造体底面のトラック方向の径を2rとしたとき、配置ピッチP1に対する径2rの比率((2r/P1)×100)が、90%以上である、反射防止機能を有する光学素子である。
第4の発明は、
円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
レジスト層が形成された原盤を回転させるとともに、レーザ光のスポットを円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
レジスト層を現像して、原盤の表面にレジストパターンを形成する工程と、
レジストパターンをマスクとするエッチング処理を施すことで、原盤の表面に凹状または凸状の構造体を形成する工程と
を備え、
潜像の形成工程では、潜像が、基体表面において複数列のトラックをなすように配置されるとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
原盤の表面に対する構造体の充填率が、65%以上である、反射防止機能を有する光学素子の作製用原盤の製造方法である。
第5の発明は、
円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
レジスト層が形成された原盤を回転させるとともに、レーザ光のスポットを円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
レジスト層を現像して、原盤の表面にレジストパターンを形成する工程と、
レジストパターンをマスクとするエッチング処理を施すことで、原盤の表面に凹状または凸状の構造体を形成する工程と
を備え、
潜像の形成工程では、潜像が、基体表面において複数列のトラックをなすように配置されるとともに、準六方格子パターンを形成し、
同一トラック内における構造体の配置ピッチをP1、構造体のトラック方向の径を2rとしたとき、配置ピッチP1に対する径2rの比率((2r/P1)×100)が、85%以上の範囲内である、反射防止機能を有する光学素子の作製用原盤の製造方法である。
第6の発明は、
円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
レジスト層が形成された原盤を回転させるとともに、レーザ光のスポットを円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
レジスト層を現像して、原盤の表面にレジストパターンを形成する工程と、
レジストパターンをマスクとするエッチング処理を施すことで、原盤の表面に凹状または凸状の構造体を形成する工程と
を備え、
潜像の形成工程では、潜像が、基体表面において複数列のトラックをなすように配置されるとともに、四方格子パターンまたは準四方格子パターンを形成し、
同一トラック内における構造体の配置ピッチをP1、構造体のトラック方向の径を2rとしたとき、配置ピッチP1に対する径2rの比率((2r/P1)×100)が、64%以上の範囲内である、反射防止機能を有する光学素子の作製用原盤の製造方法である。
第7の発明は、
円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
レジスト層が形成された原盤を回転させるとともに、レーザ光のスポットを円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
レジスト層を現像して、原盤の表面にレジストパターンを形成する工程と、
レジストパターンをマスクとするエッチング処理を施すことで、原盤の表面に凹状または凸状の構造体を形成する工程と、
構造体が形成された原盤を用いて、構造体が転写された光学素子を作製する工程と
を備え、
潜像の形成工程では、潜像が、原盤表面において複数列のトラックをなすように配置されるとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
構造体の転写の工程は、
シロキサン樹脂を含む樹脂層を基体上に形成する工程と、
樹脂層に原盤を押し付け、原盤の構造体を転写する工程と
を備え、
原盤の表面に対する構造体の充填率が、65%以上である、反射防止機能を有する、反射防止機能を有する光学素子の製造方法である。
この発明において、主構造体を四方格子状または準四方格子状に周期的に配置することが好ましい。ここで、四方格子とは、正四角形状の格子のことをいう。準四方格子とは、正四角形状の格子とは異なり、歪んだ正四角形状の格子のことをいう。
例えば、構造体が直線上に配置されている場合には、準四方格子とは、正四角形状の格子を直線状の配列方向(トラック方向)に引き伸ばして歪ませた四方格子のことをいう。構造体が蛇行して配列されている場合には、準四方格子とは、正四角形状の格子を構造体の蛇行配列により歪ませた四方格子をいう。または、正四角形状の格子を直線状の配列方向(トラック方向)に引き伸ばして歪ませ、かつ、構造体の蛇行配列により歪ませた四方格子のことをいう。
この発明において、構造体を六方格子状または準六方格子状に周期的に配置することが好ましい。ここで、六方格子とは、正六角形状の格子のことをいう。準六方格子とは、正六角形状の格子とは異なり、歪んだ正六角形状の格子のことをいう。
例えば、構造体が直線上に配置されている場合には、準六方格子とは、正六角形状の格子を直線状の配列方向(トラック方向)に引き伸ばして歪ませた六方格子のことをいう。構造体が蛇行して配列されている場合には、準六方格子とは、正六角形状の格子を構造体の蛇行配列により歪ませた六方格子をいう。または、正六角形状の格子を直線状の配列方向(トラック方向)に引き伸ばして歪ませ、かつ、構造体の蛇行配列により歪ませた六方格子のことをいう。
この発明において、楕円には、数学的に定義される完全な楕円のみならず、多少の歪みが付与された楕円も含まれる。円形には、数学的に定義される完全な円(真円)のみならず、多少の歪みが付与された円形も含まれる。
この発明において、同一トラック内における構造体の配置ピッチP1は、隣接する2つのトラック間における構造体の配置ピッチP2よりも長いことが好ましい。このようにすることで、楕円錐または楕円錐台形状を有する構造体の充填率を向上することができるので、反射防止特性を向上することができる。
この発明において、各構造体が、基体表面において六方格子パターン、または準六方格子パターンを形成している場合には、同一トラック内における構造体の配置ピッチをP1、隣接する2つのトラック間における構造体の配置ピッチをP2としたとき、比率P1/P2が、1.00≦P1/P2≦1.1、または1.00<P1/P2≦1.1の関係を満たすことが好ましい。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体の充填率を向上することができるので、反射防止特性を向上することができる。
この発明において、各構造体が、基体表面において六方格子パターン、または準六方格子パターンを形成している場合には、各構造体は、トラックの延在方向に長軸方向を有し、中央部の傾きが先端部および底部の傾きよりも急峻に形成された楕円錐または楕円錐台形状であることが好ましい。このような形状にすることで、反射防止特性および透過特性を向上することができる。
この発明において、各構造体が、基体表面において六方格子パターン、または準六方格子パターンを形成している場合には、トラックの延在方向における構造体の高さまたは深さは、トラックの列方向における構造体の高さまたは深さよりも小さいことが好ましい。このような関係を満たさない場合には、トラックの延在方向の配置ピッチを長くする必要が生じるため、トラックの延在方向における構造体の充填率が低下する。このように充填率が低下すると、反射特性の低下を招くことになる。
この発明において、構造体が、基体表面において四方格子パターンまたは準四方格子パターンを形成している場合には、同一トラック内における構造体の配置ピッチP1は、隣接する2つのトラック間における構造体の配置ピッチP2よりも長いことが好ましい。このようにすることで、楕円錐または楕円錐台形状を有する構造体の充填率を向上することができるので、反射防止特性を向上することができる。
構造体が、基体表面において四方格子パターンまたは準四方格子パターンを形成している場合には、同一トラック内における構造体の配置ピッチをP1、隣接する2つのトラック間における構造体の配置ピッチをP2としたとき、比率P1/P2が、1.4<P1/P2≦1.5の関係を満たすことが好ましい。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体の充填率を向上することができるので、反射防止特性を向上することができる。
構造体が、基体表面において四方格子パターンまたは準四方格子パターンを形成している場合には、各構造体は、トラックの延在方向に長軸方向を有し、中央部の傾きが先端部および底部の傾きよりも急峻に形成された楕円錐または楕円錐台形状であることが好ましい。このような形状にすることで、反射防止特性および透過特性を向上することができる。
構造体が、基体表面において四方格子パターンまたは準四方格子パターンを形成している場合には、トラックに対して45度方向または約45度方向における構造体の高さまたは深さは、トラックの列方向における構造体の高さまたは深さよりも小さいことが好ましい。このような関係を満たさない場合には、トラックに対して45度方向または約45度方向における配置ピッチを長くする必要が生じるため、トラックに対して45度方向または約45度方向における構造体の充填率が低下する。このように充填率が低下すると、反射特性の低下を招くことになる。
本発明では、微細ピッチで基体表面に多数配設けられた構造体が、複数列のトラックをなしていると共に、隣接する3列のトラック間において、六方格子パターン、準六方格子パターン、四方格子パターンまたは準四方格子パターンをなしている。したがって、表面における構造体の充填密度を高くすることができ、これにより可視光の反射防止効率を高め、反射防止特性に優れた透過率の極めて高い光学素子を得ることができる。また、構造体の作製に光ディスクの記録技術を利用した場合には、光学素子作製用原盤を短時間で効率良く製造することができるとともに基体の大型化にも対応でき、これにより、光学素子の生産性の向上を図ることができる。また、構造体の微細配列を光入射面だけでなく光出射面にも設けた場合には、透過特性をより一層向上させることができる。
以上説明したように、本発明によれば、反射防止性に優れた光学素子を実現できる。
図1Aは、本発明の第1の実施形態に係る光学素子の構成の一例を示す概略平面図、図1Bは、図1Aに示した光学素子の一部を拡大して表す平面図、図1Cは、図1BのトラックT1、T3、・・・における断面図、図1Dは、図1BのトラックT2、T4、・・・における断面図、図1Eは、図1BのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図、図1Fは、図1BのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。 図2は、図1Aに示した光学素子の一部を拡大して表す斜視図である。 図3Aは、図1Aに示した光学素子のトラック延在方向の断面図、図3Bは、図1Aに示した光学素子1のθ方向の断面図である。 図4は、図1Aに示した光学素子1の一部を拡大して表す斜視図である。 図5は、図1Aに示した光学素子1の一部を拡大して表す斜視図である。 図6は、図1Aに示した光学素子1の一部を拡大して表す斜視図である。 図7は、構造体の境界が不明瞭な場合の構造体底面の設定方法について説明するための図である。 図8A〜図8Dは、構造体の底面の楕円率を変化させたときの底面形状を示す図である。 図9Aは、円錐形状または円錐台形状を有する構造体の配置の一例を示す図、図9Bは、楕円錐形状または楕円錐台形状を有する構造体3の配置の一例を示す図である。 図10Aは、光学素子を作製するためのロールマスタの構成の一例を示す斜視図、図10Bは、光学素子を作製するためのロールマスタの構成の一例を示す平面図である。 図11は、ロール原盤露光装置の構成の一例を示す概略図である。 図12A〜図12Cは、本発明の第1の実施形態による光学素子の製造方法を説明するための工程図である。 図13A〜図13Cは、本発明の第1の実施形態による光学素子の製造方法を説明するための工程図である。 図14Aは、本発明の第2の実施形態に係る光学素子の構成の一例を示す概略平面図、図14Bは、図14Aに示した光学素子の一部を拡大して表す平面図、図14Cは、図14BのトラックT1、T3、・・・における断面図、図14Dは、図14BのトラックT2、T4、・・・における断面図、図14Eは、図14BのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図、図14Fは、図14BのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。 図15は、構造体の底面の楕円率を変化させたときの底面形状を示す図である。 図16Aは、光学素子を作製するためのロールマスタの構成の一例を示す斜視図、図16Bは、光学素子を作製するためのロールマスタの構成の一例を示す平面図である。 図17Aは、本発明の第3の実施形態に係る光学素子の構成の一例を示す概略平面図である。図17Bは、図17Aに示した光学素子の一部を拡大して表す平面図である。図17Cは、図17BのトラックT1、T3、・・・における断面図である。図17Dは、図17BのトラックT2、T4、・・・における断面図である。 図18Aは、光学素子を作製するためのディスクマスタの構成の一例を示す平面図である。図18Bは、図18Aに示したディスクマスタの一部を拡大して表す平面図である。 図19は、ディスク原盤露光装置の構成の一例を示す概略図である。 図20Aは、本発明の第4の実施形態に係る光学素子の構成の一例を示す概略平面図、図20Bは、図20Aに示した光学素子の一部を拡大して表す平面図である。 図21Aは、本発明の第5の実施形態に係る光学素子の構成の一例を示す概略平面図、図21Bは、図21Aに示した光学素子の一部を拡大して表す平面図、図21Cは、図21BのトラックT1、T3、・・・における断面図、図21Dは、図21BのトラックT2、T4、・・・における断面図である。 図22は、図21Aに示した光学素子の一部を拡大して表す斜視図である。 本発明の第6の実施形態に係る光学素子の構成の一例を示す断面図である。 図24A〜図24Dは、本発明の第6の実施形態に係る光学素子の製造方法を説明するための工程図である。 図25は、本発明の第5の実施形態に係る液晶表示装置の構成の一例を示す。 図26は、本発明の第6の実施形態に係る液晶表示装置の構成の一例を示す。 図27は、本発明の第7の実施形態に係る液晶表示装置の構成の一例を示す。 図28は、本発明の第8の実施形態に係るイメージセンサ素子のパッケージの構成の一例を示す断面図である。 図29は、実施例1の光学素子における反射率の波長依存性を示すグラフである。 図30は、実施例2の光学素子における反射率の波長依存性を示すグラフである。 図31は、実施例3の光学素子における透過率の波長依存性を示すグラフである。 図32は、実施例4の光学素子における透過率の波長依存性を示すグラフである。 図33は、実施例5の光学素子における反射率の波長依存性を示すグラフである。 図34は、実施例6の光学素子のTop Viewを示すSEM写真である。 図35は、実施例7の光学素子のTop Viewを示すSEM写真である。 図36は、実施例8の光学素子のTop Viewを示すSEM写真である。 図37は、試験例1のシミュレーションの結果を示すグラフである。 図38は、試験例2のシミュレーションの結果を示すグラフである。 図39は、試験例3のシミュレーションの結果を示すグラフである。 図40は、試験例4のシミュレーションの結果を示すグラフである。 図41は、試験例5のシミュレーションの結果を示すグラフである。 図42は、試験例6のシミュレーションの結果を示すグラフである。 図43は、試験例5のシミュレーションの結果を示すグラフである。 図44は、試験例7のシミュレーション結果を示すグラフ、図44Bは、試験例8のシミュレーション結果を示すグラフである。 図45Aは、試験例9のシミュレーション結果を示すグラフ、図45Bは、試験例10のシミュレーション結果を示すグラフである。 図46Aは、試験例11のシミュレーション結果を示すグラフ、図46Bは、試験例12のシミュレーション結果を示すグラフである。 図47Aは、構造体を六方格子状に配列したときの充填率を説明するための図、図47Bは、構造体を四方格子状に配列したときの充填率を説明するための図である。 図48は、試験例15のシミュレーション結果を示すグラフである。 図49は、実施例9の光学素子の透過特性を示すグラフである。 図50Aは、実施例10の光学素子の反射特性を示すグラフである。図50Bは、実施例10の光学素子の透過特性を示すグラフである。 図51Aは、比較例1の光学素子の透過特性を示すグラフである。図51Bは、比較例2の光学素子の透過特性を示すグラフである。
本発明の実施形態について図面を参照しながら以下の順序で説明する。
1.第1の実施形態(直線状でかつ六方格子状に構造体を2次元配列した例:図1参照)
2.第2の実施形態(直線状でかつ四方格子状に構造体を2次元配列した例:図14参照

3.第3の実施形態(円弧状でかつ六方格子状に構造体を2次元配列した例:図17参照

4.第4の実施形態(構造体を蛇行させて配列した例:図20参照)
5.第5の実施形態(凹形状の構造体を基体表面に形成した例:図21参照)
6.第6の実施形態(室温ナノインプリント技術を用いて光学素子を作製した例:図23参照)
7.第7の実施形態(表示装置に対する第1の適用例:図25参照)
8.第8の実施形態(表示装置に対する第2の適用例:図26参照)
9.第9の実施形態(表示装置に対する第3の適用例:図27参照)
11.第10の実施形態(イメージセンサ素子のパッケージに対する適用例、図28参照)
<1.第1の実施形態>
[光学素子の構成]
図1Aは、本発明の第1の実施形態に係る光学素子の構成の一例を示す概略平面図である。図1Bは、第1Aに示した光学素子の一部を拡大して表す平面図である。図1Cは、図1BのトラックT1、T3、・・・における断面図である。図1Dは、図1BのトラックT2、T4、・・・における断面図である。図1Eは、図1BのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図1Fは、図1BのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図2、図4〜図6は、図1Aに示した光学素子1の一部を拡大して表す斜視図である。図3Aは、図1Aに示した光学素子のトラックの延在方向(X方向(以下、適宜トラック方向ともいう))の断面図である。図3Bは、図1Aに示した光学素子のθ方向の断面図である。
光学素子1は、例えば、入射光の入射角に応じた反射防止効果を有する光学シート(サブ波長構造体)である。この光学素子1は、種々の波長域を有する光学機器(例えば、カメラなどの光学機器)、ディスプレイ、光エレクトロニクス、望遠鏡などの種々の光デバイスに適用して好適なものである。
光学素子1は、主面を有する基体2と、反射の低減を目的とする光の波長以下の微細ピッチで主面に配置された、凸部である複数の構造体3とを備える。この光学素子1は、基体2を図2の−Z方向に透過する光について、構造体3とその周囲の空気との界面における反射を防止する機能を有している。
以下、光学素子1に備えられる基体2、および構造体3について順次説明する。
(基体)
基体2は、例えば、透明性を有する透明基体である。基体2の材料としては、例えば、ポリカーボネート(PC)やポリエチレンテレフタレート(PET)などの透明性合成樹脂、ガラスなどを主成分とするものが挙げられるが、これらの材料に特に限定されるものではない。基体2の形状としては、例えば、シート状、プレート状、ブロック状を挙げることができるが、特にこれらの形状に限定されるものではない。ここで、シートにはフィルムが含まれるものと定義する。基体2の形状は、カメラなどの光学機器などにおいて、所定の反射防止機能が必要とされる部分の形状などに合わせて適宜選択することが好ましい。
(構造体)
基体2の表面には、凸部である構造体3が多数配列されている。この構造体3は、反射の低減を目的とする光の波長帯域以下の短い配置ピッチ、例えば可視光の波長と同程度の配置ピッチで周期的に2次元配置されている。ここで、配置ピッチとは、配置ピッチP1および配置ピッチP2を意味する。反射の低減を目的とする光の波長帯域は、例えば、紫外光の波長帯域、可視光の波長帯域または赤外光の波長帯域である。ここで、紫外光の波長帯域とは10nm〜360nmの波長帯域、可視光の波長帯域とは360nm〜830nmの波長帯域、赤外光の波長帯域とは830nm〜1mmの波長帯域をいう。具体的には、配置ピッチは、175nm以上350nm以下であることが好ましい。配置ピッチが175nm未満であると、構造体3の作製が困難となる傾向がある。一方、配置ピッチが350nmを超えると、可視光の回折が生じる傾向がある。
光学素子1の各構造体3は、基体2の表面において複数列のトラックT1,T2,T3,・・・(以下総称して「トラックT」ともいう。)をなすような配置形態を有する。本発明において、トラックとは、構造体3が列をなして直線状に連なった部分のことをいう。また、列方向とは、基体2の成形面において、トラックの延在方向(X方向)に直交する方向)のことをいう。
構造体3は、隣接する2つのトラックT間において、半ピッチずれた位置に配置されている。具体的には、隣接する2つのトラックT間において、一方のトラック(例えばT1)に配列された構造体3の中間位置(半ピッチずれた位置)に、他方のトラック(例えばT2)の構造体3が配置されている。その結果、図1Bに示すように、隣接する3列のトラック(T1〜T3)間においてa1〜a7の各点に構造体3の中心が位置する六方格子パターンまたは準六方格子パターンを形成するように構造体3が配置されている。この第1の実施形態において、六方格子パターンとは、正六角形状の格子パターンのことをいう。また、準六方格子パターンとは、正六角形状の格子パターンとは異なり、トラックの延在方向(X軸方向)に引き伸ばされ歪んだ六方格子パターンのことをいう。
構造体3が準六方格子パターンを形成するように配置されている場合には、図1Bに示すように、同一トラック(例えばT1)内における構造体3の配置ピッチP1(a1〜a2間距離)は、隣接する2つのトラック(例えばT1およびT2)間における構造体3の配置ピッチ、すなわちトラックの延在方向に対して±θ方向における構造体3の配置ピッチP2(例えばa1〜a7、a2〜a7間距離)よりも長くなっていることが好ましい。このように構造体3を配置することで、構造体3の充填密度の更なる向上を図れるようになる。
構造体3が、成形の容易さの観点から、錐体形状、または錐体形状をトラック方向に延伸または収縮させた錐体形状を有することが好ましい。構造体3が、軸対称な錐体形状、または錐体形状をトラック方向に延伸または収縮させた錐体形状を有することが好ましい。隣接する構造体3に接合されている場合には、構造体3が、隣接する構造体3に接合されている下部を除いて軸対称な錐体形状、または錐体形状をトラック方向に延伸または収縮させた錐体形状を有することが好ましい。錐体形状としては、例えば、円錐形状、円錐台形状、楕円錐形状、楕円錐台形状などを挙げることができる。ここで、錐体形状とは、上述のように、円錐形状および円錐台形状以外にも、楕円錐形状、楕円錐台形状を含む概念である。また、円錐台形状とは、円錐形状の頂部を切り落とした形状をいい、楕円錐台形状とは、楕円錐の頂部を切り落とした形状のことをいう。
構造体3は、図2および図4に示すように、底面が長軸と短軸をもつ楕円形、長円形または卵型の錐体構造で、頂部が曲面である楕円錐形状であることが好ましい。もしくは、図5に示すように、底面が長軸と短軸をもつ楕円形、長円形または卵型の錐体構造で、頂部が平坦である楕円錐台形状であることが好ましい。このような形状にすると、列方向の充填率を向上させることができるからである。
反射特性の向上の観点からすると、頂部の傾きが緩やかで中央部から底部に徐々に急峻な傾きの錐体形状(図4参照)が好ましい。また、反射特性および透過特性の向上の観点からすると、中央部の傾きが底部および頂部より急峻な錐形形状(図2参照)、または、頂部が平坦な錐体形状(図5参照)であることが好ましい。構造体3が楕円錐形状または楕円錐台形状を有する場合、その底面の長軸方向が、トラックの延在方向と平行となることが好ましい。図2などでは、各構造体3は、それぞれ同一の形状を有しているが、構造体3の形状はこれに限定されるものではなく、基体表面に2種以上の形状の構造体3が形成されていてもよい。また、構造体3は、基体2と一体的に形成されていてもよい。
また、図2、図4〜図6に示すように、構造体3の周囲の一部または全部に突出部5を設けることが好ましい。このようにすると、構造体3の充填率が低い場合でも、反射率を低く抑えることができるからである。具体的には例えば、突出部5は、図2、図4、および図5に示すように、隣り合う構造体3の間に設けられる。また、細長い突出部5が、図6に示すように、構造体3の周囲の全体またはその一部に設けられるようにしてもよい。この細長い突出部5は、例えば、構造体3の頂部から下部の方向に向かって延びている。突出部5の形状としては、断面三角形状および断面四角形状などを挙げることができるが、特にこれらの形状に限定されるものではなく、成形の容易さなどを考慮して選択することができる。また、構造体3の周囲の一部または全部の表面を荒らし、微細の凹凸を形成するようにしてもよい。具体的には例えば、隣り合う構造体3の間の表面を荒らし、微細な凹凸を形成するようにしてもよい。また、構造体3の表面、例えば頂部に微小な穴を形成するようにしてもよい。
構造体3は図示する凸部形状のものに限らず、基体2の表面に形成した凹部で構成されていてもよい。構造体3の高さは特に限定されず、例えば420nm程度、具体的には415nm〜421nmである。なお、構造体3を凹部形状とした場合には、構造体3の深さとなる。
トラックの延在方向における構造体3の高さH1は、列方向における構造体3の高さH2よりも小さいことが好ましい。すなわち、構造体3の高さH1、H2がH1<H2の関係を満たすことが好ましい。H1≧H2の関係を満たすように構造体3を配列すると、トラックの延在方向の配置ピッチP1を長くする必要が生じるため、トラックの延在方向における構造体3の充填率が低下するためである。このように充填率が低下すると、反射特性の低下を招くことになる。
なお、構造体3のアスペクト比は全て同一である場合に限らず、各構造体3が一定の高さ分布(例えばアスペクト比0.83〜1.46程度の範囲)をもつように構成されていてもよい。高さ分布を有する構造体3を設けることで、反射特性の波長依存性を低減することができる。したがって、優れた反射防止特性を有する光学素子1を実現することができる。
ここで、高さ分布とは、2種以上の高さ(深さ)を有する構造体3が基体2の表面に設けられていることを意味する。すなわち、基準となる高さを有する構造体3と、この構造体3とは異なる高さを有する構造体3とが基体2の表面に設けられていることを意味する。基準とは異なる高さを有する構造体3は、例えば基体2の表面に周期的または非周期的(ランダム)に設けられている。その周期性の方向としては、例えばトラックの延在方向、列方向などが挙げられる。
構造体3の周縁部に裾部3aを設けることが好ましい。光学素子の製造工程において光学素子を金型などから容易に剥離することが可能になるからである。ここで、裾部3aとは、構造体3の底部の周縁部に設けられた突出部を意味する。この裾部3aは、上記剥離特性の観点からすると、構造体3の頂部から下部の方向に向かって、なだらかに高さが低下する曲面を有することが好ましい。なお、裾部3aは、構造体3の周縁部の一部にのみ設けてもよいが、上記剥離特性の向上の観点からすると、構造体3の周縁部の全部に設けることが好ましい。また、構造体3が凹部である場合には、裾部は、構造体3である凹部の開口周縁に設けられた曲面となる。
構造体3の高さ(深さ)は特に限定されず、透過させる光の波長領域に応じて適宜設定され、例えば236nm〜450nm程度の範囲に設定される。構造体3のアスペクト比(高さ/配置ピッチ)は、0.81〜1.46の範囲に設定することが好ましく、より好ましくは0.94〜1.28の範囲である。0.81未満であると反射特性および透過特性が低下する傾向にあり、1.46を超えると光学素子の作製時において剥離特性が低下し、レプリカの複製が綺麗に取れなくなる傾向があるからである。
また、構造体3のアスペクト比は、反射特性をより向上させる観点からすると、0.94〜1.46の範囲に設定することが好ましい。また、構造体3のアスペクト比は、透過特性をより向上させる観点からすると、0.81〜1.28の範囲に設定することが好ましい。
なお、本発明においてアスペクト比は、以下の式(1)により定義される。
アスペクト比=H/P・・・(1)
但し、H:構造体の高さ、P:平均配置ピッチ(平均周期)
ここで、平均配置ピッチPは以下の式(2)により定義される。
平均配置ピッチP=(P1+P2+P2)/3 ・・・(2)
但し、P1:トラックの延在方向の配置ピッチ(トラック延在方向周期)、P2:トラックの延在方向に対して±θ方向(但し、θ=60°−δ、ここで、δは、好ましくは0°<δ≦11°、より好ましくは3°≦δ≦6°)の配置ピッチ(θ方向周期)
また、構造体3の高さHは、構造体3の列方向の高さとする。構造体3のトラック延在方向(X方向)の高さは、列方向(Y方向)の高さよりも小さく、また、構造体3のトラック延在方向以外の部分における高さは列方向の高さとほぼ同一であるため、サブ波長構造体の高さを列方向の高さで代表する。但し、構造体3が凹部である場合、上記式(1)における構造体の高さHは、構造体の深さHとする。
同一トラック内における構造体3の配置ピッチをP1、隣接する2つのトラック間における構造体3の配置ピッチをP2としたとき、比率P1/P2が、1.00≦P1/P2≦1.1、または1.00<P1/P2≦1.1の関係を満たすことが好ましい。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体3の充填率を向上することができるので、反射防止特性を向上することができる。
基体表面における構造体3の充填率は、100%を上限として、65%以上、好ましくは73%以上、より好ましくは86%以上の範囲内である。充填率をこのような範囲にすることで、反射防止特性を向上することができる。充填率を向上させるためには、隣接する構造体3の下部同士を接合する、または、構造体底面の楕円率を調整などして構造体3に歪みを付与することが好ましい。
ここで、構造体3の充填率(平均充填率)は以下のようにして求めた値である。
まず、光学素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影する。次に、撮影したSEM写真から無作為に単位格子Ucを選び出し、その単位格子Ucの配置ピッチP1、およびトラックピッチTpを測定する(図1B参照)。また、その単位格子Ucの中央に位置する構造体3の底面の面積Sを画像処理により測定する。次に、測定した配置ピッチP1、トラックピッチTp、および底面の面積Sを用いて、以下の式(3)より充填率を求める。
充填率=(S(hex.)/S(unit))×100・・・(3)
単位格子面積:S(unit)=P1×2Tp
単位格子内に存在する構造体の底面の面積:S(hex.)=2S
上述した充填率算出の処理を、撮影したSEM写真から無作為に選び出された10箇所の単位格子について行う。そして、測定値を単純に平均(算術平均)して充填率の平均率を求め、これを基体表面における構造体3の充填率とする。
構造体3が重なっているときや、構造体3の間に突出部5などの副構造体があるときの充填率は、構造体3の高さに対して5%の高さに対応する部分を閾値として面積比を判定する方法で充填率を求めることができる。
図7は、構造体3の境界が不明瞭な場合の充填率の算出方法について説明するための図である。構造体3の境界が不明瞭な場合には、断面SEM観察により、図7に示すように、構造体3の高さhの5%(=(d/h)×100)に相当する部分を閾値とし、その高さdで構造体3の径を換算し充填率を求めるようにする。構造体3の底面が楕円である場合には、長軸および短軸で同様の処理を行う。
図8は、構造体3の底面の楕円率を変化させたときの底面形状を示す図である。図8A〜図8Dに示す楕円の楕円率はそれぞれ、100%、110%、120%、141%である。このように楕円率を変化させることで、基体表面における構造体3の充填率を変化させることができる。構造体3が準六方格子パターンを形成する場合には、構造体底面の楕円率eは、100%<e<150%以下であることが好ましい。この範囲にすることで、構造体3の充填率を向上し、優れた反射防止特性を得ることができるからである。
ここで、楕円率eは、構造体底面のトラック方向(X方向)の径をa、それとは直交する列方向(Y方向)の径をbとしたときに、(a/b)×100で定義される。なお、構造体3の径a、bは以下のようにして求めた値である。光学素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影し、撮影したSEM写真から無作為に構造体3を10個抽出する。次に、抽出した構造体3それぞれの底面の径a、bを測定する。そして、測定値a、bそれぞれを単純に平均(算術平均)して径a、bの平均値を求め、これを構造体3の径a、bとする。
図9Aは、円錐形状または円錐台形状を有する構造体3の配置の一例を示す。図9Bは、楕円錐形状または楕円錐台形状を有する構造体3の配置の一例を示す。図9Aおよび図9Bに示すように、構造体3が、その下部同士を重ね合うようにして接合されていていることが好ましい。具体的には、構造体3の下部が、隣接関係にある構造体3の一部または全部の下部と接合されていることが好ましい。より具体的には、トラック方向において、θ方向において、またはそれら両方向において、構造体3の下部同士を接合することが好ましい。より具体的には、トラック方向において、θ方向において、またはそれら両方向において、構造体3の下部同士を接合することが好ましい。図9A、図9Bでは、隣接関係にある構造体3の全部の下部を接合する例が示されている。このように構造体3を接合することで、構造体3の充填率を向上することができる。構造体同士は、屈折率を考慮した光路長で使用環境下の光の波長帯域の最大値の1/4以下の部分で接合されていることが好ましい。これにより、優れた反射防止特性を得ることができる。
図9Bに示すように、楕円錐形状または楕円錐台形状を有する構造体3の下部同士を接合した場合には、例えば、接合部a、b、cの順序で接合部の高さが浅くなる。
配置ピッチP1に対する径2rの比率((2r/P1)×100)が、85%以上、好ましくは90%以上、より好ましくは95%以上である。このような範囲にすることで、構造体3の充填率を向上し、反射防止特性を向上できるからである。比率((2r/P1)×100)が大きくなり、構造体3の重なりが大きくなりすぎると反射防止特性が低減する傾向にある。したがって、屈折率を考慮した光路長で使用環境下の光の波長帯域の最大値の1/4以下の部分で構造体同士が接合されるように、比率((2r/P1)×100)の上限値を設定することが好ましい。ここで、配置ピッチP1は、構造体3のトラック方向の配置ピッチ、径2rは、構造体底面のトラック方向の径である。なお、構造体底面が円形である場合、径2rは直径となり、構造体底面が楕円形である場合、径2rは長径となる。
[ロールマスタの構成]
図10は、上述の構成を有する光学素子を作製するためのロールマスタの構成の一例を示す。図10に示すように、ロールマスタ11は、例えば、原盤12の表面に凹部である構造体13が可視光などの光の波長と同程度のピッチで多数配置された構成を有している。原盤12は、円柱状または円筒状の形状を有する。原盤12の材料は、例えばガラスを用いることができるが、この材料に特に限定されるものではない。後述するロール原盤露光装置を用い、2次元パターンが空間的にリンクし、1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、CAVで適切な送りピッチでパターニングする。これにより、六方格子パターンまたは準六方格子パターンを記録することができる。極性反転フォマッター信号の周波数とロールの回転数を適切に設定することにより、所望の記録領域に空間周波数が一様な格子パターンを形成する。
[光学素子の製造方法]
次に、図11〜図13を参照しながら、以上のように構成される光学素子1の製造方法について説明する。
第1の実施形態に係る光学素子の製造方法は、原盤にレジスト層を形成するレジスト成膜工程、ロール原盤露光装置を用いてレジスト膜にモスアイパターンの潜像を形成する露光工程、潜像が形成されたレジスト層を現像する現像工程を備える。さらに、プラズマエッチングを用いてロールマスタを製作するエッチング工程、紫外線硬化樹脂により複製基板を製作する複製工程とを備える。
(露光装置の構成)
まず、図11を参照して、モスアイパターンの露光工程に用いるロール原盤露光装置の構成について説明する。このロール原盤露光装置は、光学ディスク記録装置をベースとして構成されている。
レーザー光源21は、記録媒体としての原盤12の表面に着膜されたレジストを露光するための光源であり、例えば波長λ=266nmの記録用のレーザー光15を発振するものである。レーザー光源21から出射されたレーザー光15は、平行ビームのまま直進し、電気光学素子(EOM:Electro Optical Modulator)22へ入射する。電気光学素子22を透過したレーザー光15は、ミラー23で反射され、変調光学系25に導かれる。
ミラー23は、偏光ビームスプリッタで構成されており、一方の偏光成分を反射し他方の偏光成分を透過する機能をもつ。ミラー23を透過した偏光成分はフォトダイオード24で受光され、その受光信号に基づいて電気光学素子22を制御してレーザー光15の位相変調を行う。
変調光学系25において、レーザー光15は、集光レンズ26により、ガラス(SiO2)などからなる音響光学素子(AOM:Acoust-Optic Modulator)27に集光される。レーザー光15は、音響光学素子27により強度変調され発散した後、レンズ28によって平行ビーム化される。変調光学系25から出射されたレーザー光15は、ミラー31によって反射され、移動光学テーブル32上に水平かつ平行に導かれる。
移動光学テーブル32は、ビームエキスパンダ33、および対物レンズ34を備えている。移動光学テーブル32に導かれたレーザー光15は、ビームエキスパンダ33により所望のビーム形状に整形された後、対物レンズ34を介して、原盤12上のレジスト層へ照射される。原盤12は、スピンドルモータ35に接続されたターンテーブル36の上に載置されている。そして、原盤12を回転させるとともに、レーザー光15を原盤12の高さ方向に移動させながら、レジスト層へレーザー光15を間欠的に照射することにより、レジスト層の露光工程が行われる。形成された潜像は、円周方向に長軸を有する略楕円形になる。レーザー光15の移動は、移動光学テーブル32の矢印R方向への移動によって行われる。
露光装置は、図1Bに示した六方格子または準六方格子の2次元パターンに対応する潜像をレジスト層に形成するための制御機構37を備えている。制御機構37は、フォマッター29とドライバ30とを備える。フォマッター29は、極性反転部を備え、この極性反転部が、レジスト層に対するレーザー光15の照射タイミングを制御する。ドライバ30は、極性反転部の出力を受けて、音響光学素子27を制御する。
このロール原盤露光装置では、2次元パターンが空間的にリンクするように1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、音響光学素子27により強度変調している。角速度一定(CAV)で適切な回転数と適切な変調周波数と適切な送りピッチでパターニングすることにより、六方格子または準六方格子パターンを記録することができる。例えば、図10Bに示すように、円周方向の周期を315nm、円周方向に対して約60度方向(約−60度方向)の周期を300nmにするには、送りピッチを251nmにすればよい(ピタゴラスの法則)。極性反転フォマッター信号の周波数はロールの回転数(1800rpm、900rpm、450rpm)により変化させる(表1参照)。所望の記録領域に空間周波数(円周315nm周期、円周方向約60度方向(約−60度方向)300nm周期)が一様な準六方格子パターンは、遠紫外線レーザー光を移動光学テーブル32上のビームエキスパンダ(BEX)33により5倍のビーム径に拡大し、開口数(NA)0.9の対物レンズ34を介して原盤12上のレジスト層に照射し、微細な潜像を形成することにより得られる。
(レジスト成膜工程)
まず、図12Aに示すように、円柱状の原盤12を準備する。この原盤12は、例えばガラス原盤である。次に、図12Bに示すように、原盤12の表面にレジスト層14を形成する。レジスト層14の材料としては、例えば有機系レジスト、および無機系レジストのいずれを用いてもよい。有機系レジストとしては、例えばノボラック系レジストや化学増幅型レジストを用いることができる。また、無機系レジストとしては、例えば、タングステンやモリブデンなどの1種または2種以上の遷移金属からなる金属酸化物を用いることができる。
(露光工程)
次に、図12Cに示すように、上述したロール原盤露光装置を用いて、原盤12を回転させると共に、レーザー光(露光ビーム)15をレジスト層14に照射する。このとき、レーザー光15を原盤12の高さ方向(円柱状または円筒状の原盤12の中心軸に平行な方向)に移動させながら、レーザー光15を間欠的に照射することで、レジスト層14を全面にわたって露光する。これにより、レーザー光15の軌跡に応じた潜像16が、可視光波長と同程度のピッチでレジスト層14の全面にわたって形成される。
潜像16は、例えば、原盤表面において複数列のトラックをなすように配置されるとともに、六方格子パターンまたは準六方格子パターンを形成する。潜像16は、例えば、トラックの延在方向に長軸方向を有する楕円形状である。
(現像工程)
次に、原盤12を回転させながら、レジスト層14上に現像液を滴下して、図13Aに示すように、レジスト層14を現像処理する。図示するように、レジスト層14をポジ型のレジストにより形成した場合には、レーザー光15で露光した露光部は、非露光部と比較して現像液に対する溶解速度が増すので、潜像(露光部)16に応じたパターンがレジスト層14に形成される。
(エッチング工程)
次に、原盤12の上に形成されたレジスト層14のパターン(レジストパターン)をマスクとして、原盤12の表面をエッチング処理する。これにより、図13Bに示すように、トラックの延在方向に長軸方向をもつ楕円錐形状または楕円錐台形状の凹部、すなわち構造体13を得ることができる。エッチング方法は、例えばドライエッチングによって行われる。このとき、エッチング処理とアッシング処理を交互に行うことにより、例えば、錐体状の構造体13のパターンを形成することができる。また、レジスト層14の3倍以上の深さ(選択比3以上)のガラスマスターを作製でき、構造体3の高アスペクト比化を図ることができる。ドライエッチングとしては、ロールエッチング装置を用いたプラズマエッチングが好ましい。ロールエッチング装置は、円柱状の電極を有するプラズマエッチング装置であり、この円柱状の電極を筒状の原盤12の空洞内に挿入し、原盤12の柱面に対してプラズマエッチングを施すように構成されている。
以上により、例えば、深さ120nm程度から350nm程度の凹形状の六方格子パターンまたは準六方格子パターンを有するロールマスタ11が得られる。
(複製工程)
次に、例えば、ロールマスタ11と転写材料を塗布したシートなどの基体2を密着させ、紫外線を照射し硬化させながら剥離する。これにより、図13Cに示すように、凸部である複数の構造体が基体2の主面に形成され、モスアイ紫外線硬化複製シートなどの光学素子1が作製される。
転写材料は、例えば、紫外線硬化材料と、開始剤とからなり、必要に応じてフィラーや機能性添加剤などを含んでいる。
紫外線硬化材料は、例えば、単官能モノマー、二官能モノマー、多官能モノマーなどからなり、具体的には、以下に示す材料を単独または、複数混合したものである。
単官能モノマーとしては、例えば、カルボン酸類(アクリル酸)、ヒドロキシ類(2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート)、アルキル、脂環類(イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボニルアクリレート、シクロヘキシルアクリレート)、その他機能性モノマー(2−メトキシエチルアクリレート、メトキシエチレンクリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N−ジメチルアクリルアミド、アクリロイルモルホリン、N−イソプロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−ビニルピロリドン、2−(パーフルオロオクチル)エチル アクリレート、3−パーフルオロヘキシル−2−ヒドロキシプロピルアクリレート、3−パーフルオロオクチルー2−ヒドロキシプロピル アクリレート、2−(パーフルオロデシル)エチル アクリレート、2−(パーフルオロー3−メチルブチル)エチル アクリレート)、2,4,6−トリブロモフェノールアクリレート、2,4,6−トリブロモフェノールメタクリレート、2−(2,4,6−トリブロモフェノキシ)エチルアクリレート)、2−エチルヘキシルアクリレートなどを挙げることができる。
二官能モノマーとしては、例えば、トリ(プロピレングリコール)ジアクリレート、トリメチロールプロパン ジアリルエーテル、ウレタンアクリレートなどを挙げることができる。
多官能モノマーとしては、例えば、トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタ及びヘキサアクリレート、ジトリメチロールプロパンテトラアクリレートなどを挙げることができる。
開始剤としては、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンなどを挙げることができる。
フィラーとしては、例えば、無機微粒子および有機微粒子のいずれも用いることができる。無機微粒子としては、例えば、SiO2、TiO2、ZrO2、SnO2、Al23などの金属酸化物微粒子を挙げることができる。
機能性添加剤としては、例えば、レベリング剤、表面調整剤、消泡剤などを挙げることができる。基体2の材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート−スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、ガラスなどが挙げられる。
基体2の成形方法は特に限定されず、射出成形体でも押し出し成形体でも、キャスト成形体でもよい。必要応じて、コロナ処理などの表面処理を基体表面に施すようにしてもよい。
<2.第2の実施形態>
[光学素子の構成]
図14Aは、本発明の第2の実施形態に係る光学素子の構成の一例を示す概略平面図である。図14Bは、図14Aに示した光学素子の一部を拡大して表す平面図である。図14Cは、図14BのトラックT1、T3、・・・における断面図である。図14Dは、図14BのトラックT2、T4、・・・における断面図である。図14Eは、図14BのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図14Fは、図14BのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。
第2の実施形態に係る光学素子1は、各構造体3が、隣接する3列のトラック間において四方格子パターンまたは準四方格子パターンをなしている点において、第1の実施形態のものとは異なっている。本発明において、準四方格子パターンとは、正四方格子パターンと異なり、トラックの延在方向(X方向)に引き伸ばされ歪んだ四方格子パターンを意味する。
構造体3の高さまたは深さは特に限定されず、例えば、159nm〜312nm程度である。トラックに対して(約)45度方向ピッチP2は、例えば、275nm〜297nm程度である。構造体3のアスペクト比(高さ/配置ピッチ)は、例えば、0.54〜1.13程度である。更に、各構造体3のアスペクト比は全て同一である場合に限らず、各構造体3が一定の高さ分布をもつように構成されていてもよい。
同一トラック内における構造体3の配置ピッチP1は、隣接する2つのトラック間における構造体3の配置ピッチP2よりも長いことが好ましい。また、同一トラック内における構造体3の配置ピッチをP1、隣接する2つのトラック間における構造体3の配置ピッチをP2としたとき、P1/P2が1.4<P1/P2≦1.5の関係を満たすことが好ましい。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体3の充填率を向上することができるので、反射防止特性を向上することができる。また、トラックに対して45度方向または約45度方向における構造体3の高さまたは深さは、トラックの延在方向における構造体3の高さまたは深さよりも小さいことが好ましい。
トラックの延在方向に対して斜となる構造体3の配列方向(θ方向)の高さH2は、トラックの延在方向における構造体3の高さH1よりも小さいことが好ましい。すなわち、構造体3の高さH1、H2がH1>H2の関係を満たすことが好ましい。
図15は、構造体3の底面の楕円率を変化させたときの底面形状を示す図である。楕円31、32、33の楕円率はそれぞれ、100%、163.3%、141%である。このように楕円率を変化させることで、基体表面における構造体3の充填率を変化させることができる。構造体3が四方格子または準四方格子パターンを形成する場合には、構造体底面の楕円率eは、150%≦e≦180%であることが好ましい。この範囲にすることで、構造体3の充填率を向上し、優れた反射防止特性を得ることができるからである。
基体表面における構造体3の充填率は、100%を上限として、65%以上、好ましくは73%以上、より好ましくは86%以上の範囲内である。充填率をこのような範囲にすることで、反射防止特性を向上することができる。ここで、構造体3の充填率(平均充填率)は以下のようにして求めた値である。
まず、光学素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影する。次に、撮影したSEM写真から無作為に単位格子Ucを選び出し、その単位格子Ucの配置ピッチP1、およびトラックピッチTpを測定する(図14B参照)。また、その単位格子Ucに含まれる4つの構造体3のいずれかの底面の面積Sを画像処理により測定する。次に、測定した配置ピッチP1、トラックピッチTp、および底面の面積Sを用いて、以下の式(4)より充填率を求める。
充填率=(S(tetra)/S(unit))×100・・・(2)
単位格子面積:S(unit)=2×((P1×Tp)×(1/2))=P1×Tp
単位格子内に存在する構造体の底面の面積:S(tetra)=S
上述した充填率算出の処理を、撮影したSEM写真から無作為に選び出された10箇所の単位格子について行う。そして、測定値を単純に平均(算術平均)して充填率の平均率を求め、これを基体表面における構造体3の充填率とする。
配置ピッチP1に対する径2rの比率((2r/P1)×100)が、64%以上、好ましくは69%以上、より好ましくは73%以上である。このような範囲にすることで、構造体3の充填率を向上し、反射防止特性を向上できるからである。ここで、配置ピッチP1は、構造体3のトラック方向の配置ピッチ、径2rは、構造体底面のトラック方向の径である。なお、構造体底面が円形である場合、径2rは直径となり、構造体底面が楕円形である場合、径2rは長径となる。
図16は、上述の構成を有する光学素子を作製するためのロールマスタの構成の一例を示す。このロールマスタは、その表面において凹状の構造体13が四方格子パターンまたは準四方格子パターンをなしている点において、第1の実施形態のものとは異なっている。
[ロールマスタの構成]
ロール原盤露光装置を用い、2次元パターンが空間的にリンクし、1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、CAVで適切な送りピッチでパターニングする。これにより、四方格子パターン、または準六方格子パターンを記録することができる。極性反転フォマッター信号の周波数とロールの回転数を適切に設定することにより、所望の記録領域に空間周波数が一様な格子パターンをレーザー光の照射により原盤12上のレジストに形成することが好ましい。
<3.第3の実施形態>
[光学素子の構成]
図17Aは、本発明の第3の実施形態に係る光学素子の構成の一例を示す概略平面図である。図17Bは、図17Aに示した光学素子の一部を拡大して表す平面図である。図17Cは、図17BのトラックT1、T3、・・・における断面図である。図17Dは、図17BのトラックT2、T4、・・・における断面図である。
第3の実施形態に係る光学素子1は、トラックTが円弧状の形状を有し、構造体3が円弧状に配置されている点において、第1の実施形態のものとは異なっている。図17Bに示すように、隣接する3列のトラック(T1〜T3)間においてa1〜a7の各点に構造体3の中心が位置する準六方格子パターンを形成するように構造体3が配置されている。ここで、準六方格子パターンとは、正六方格子パターンとは異なり、トラックTの円弧状に沿って歪んだ六方格子パターンを意味する。あるいは、正六方格子パターンとは異なり、トラックTの円弧状に沿って歪み、かつ、トラックの延在方向(X軸方向)に引き伸ばされ歪んだ六方格子パターンを意味する。
上述した以外の光学素子1の構成は、第1の実施形態と同様であるので説明を省略する。
[ディスクマスタの構成]
図18A、図18Bは、上述の構成を有する光学素子を作製するためのディスクマスタの構成の一例を示す。図18A、図18Bに示すように、ディスクマスタ41は、円盤状の原盤42の表面に凹部である構造体43が多数配列された構成を有している。この構造体13は、光学素子1の使用環境下の光の波長帯域以下、例えば可視光の波長と同程度のピッチで周期的に2次元配列されている。構造体43は、例えば、同心円状またはスパイラル状のトラック上に配置されている。
上述した以外のディスクマスタ41の構成は、第1の実施形態のロールマスタ11と同様であるので説明を省略する。
[光学素子の製造方法]
まず、図19を参照して、上述した構成を有するディスクマスタ41を作製するための露光装置について説明する。
移動光学テーブル32は、ビームエキスパンダ33、ミラー38および対物レンズ34を備えている。移動光学テーブル32に導かれたレーザー光15は、ビームエキスパンダ33により所望のビーム形状に整形された後、ミラー38および対物レンズ34を介して、円盤状の原盤42上のレジスト層へ照射される。原盤42は、スピンドルモータ35に接続されたターンテーブル(図示を省略する。)の上に載置されている。そして、原盤42を回転させるとともに、レーザー光15を原盤42の回転半径方向に移動させながら、原盤42上のレジスト層へレーザー光を間欠的に照射することにより、レジスト層の露光工程が行われる。形成された潜像は、円周方向に長軸を有する略楕円形になる。レーザー光15の移動は、移動光学テーブル32の矢印R方向への移動によって行われる。
図19に示した露光装置においては、レジスト層に対して図17Bに示した六方格子または準六方格子の2次元パターンからなる潜像を形成するための制御機構37を備えている。制御機構37は、フォマッター29とドライバ30とを備える。フォマッター29は、極性反転部を備え、この極性反転部が、レジスト層に対するレーザー光15の照射タイミングを制御する。ドライバ30は、極性反転部の出力を受けて、音響光学素子27を制御する。
制御機構37は、潜像の2次元パターンが空間的にリンクするように、1トラック毎に、AOM27によるレーザー光15の強度変調と、スピンドルモータ35の駆動回転速度と、移動光学テーブル32の移動速度とをそれぞれ同期させる。原盤42は、角速度一定(CAV)で回転制御される。そして、スピンドルモータ35による原盤42の適切な回転数と、AOM27によるレーザー強度の適切な周波数変調と、移動光学テーブル32によるレーザー光15の適切な送りピッチとでパターニングを行う。これにより、レジスト層に対して六方格子パターン、または準六方格子パターンの潜像が形成される。
更に、極性反転部の制御信号を、空間周波数(潜像のパターン密度であり、P1:330、P2:300nm、または、P1:315nm、P2:275nm、または、P1:300nm、P2:265nm)が一様になるように徐々に変化させる。より具体的には、レジスト層に対するレーザー光15の照射周期を1トラック毎に変化させながら露光を行い、各トラックTにおいてP1がほぼ330nm(あるいは315nm、300nm)となるように制御機構37においてレーザー光15の周波数変調を行う。即ち、トラック位置が円盤状の原盤42の中心から遠ざかるに従い、レーザー光の照射周期が短くなるように変調制御する。これにより、基板全面において空間周波数が一様なナノパターンを形成することが可能となる。
以下、本発明の第3の実施形態に係る光学素子の製造方法の一例について説明する。
まず、上述した構成を有する露光装置を用いて、円盤状の原盤上に形成されたレジスト層を露光する以外は、第1の実施形態と同様にしてディスクマスタ41を作製する。次に、このディスクマスタ41と、紫外線硬化樹脂を塗布したアクリルシートなどの基体2とを密着させ、紫外線を照射し紫外線硬化樹脂を硬化させた後、ディスクマスタ41から基体2を剥離する。これにより、複数の構造体3が表面に配列された円盤状の光学素子1が得られる。次に、この円盤状の光学素子1から、矩形状などの所定形状の光学素子1を切り出す。これにより、目的とする光学素子1が作製される。
この第3の実施形態によれば、直線状に構造体3を配列した場合と同様に、生産性が高く、優れた反射防止特性を有する光学素子1を得ることができる。
<4.第4の実施形態>
図20Aは、本発明の第4の実施形態に係る光学素子の構成の一例を示す概略平面図である。図20Bは、図20Aに示した光学素子の一部を拡大して表す平面図である。
第4の実施形態に係る光学素子1は、構造体3を蛇行するトラック(以下ウォブルトラックと称する。)上に配列している点において、第1の実施形態とは異なっている。基体2上における各トラックのウォブルは、同期していることが好ましい。すなわち、ウォブルは、シンクロナイズドウォブルであることが好ましい。このようにウォブルを同期させることで、六方格子または準六方格子の単位格子形状を保持し、充填率を高く保つことができる。ウォブルトラックの波形としては、例えば、サイン波、三角波などを挙げることができる。ウォブルトラックの波形は、周期的な波形に限定されるものではなく、非周期的な波形としてもよい。ウォブルトラックのウォブル振幅は、例えば±10μm程度に選択される。
この第4の実施形態において、上記以外のことは、第1の実施形態と同様である。
第4の実施形態によれば、構造体3をウォブルトラック上に配列していので、外観上のムラの発生を抑制できる。
<5.第5の実施形態>
図21Aは、本発明の第5の実施形態に係る光学素子の構成の一例を示す概略平面図である。図21Bは、図21Aに示した光学素子の一部を拡大して表す平面図である。図21Cは、図21BのトラックT1、T3、・・・における断面図である。図21Dは、図21BのトラックT2、T4、・・・における断面図である。図22は、図21Aに示した光学素子の一部を拡大して表す斜視図である。
第5の実施形態に係る光学素子1は、凹部である構造体3が基体表面に多数配列されている点において、第1の実施形態のものとは異なっている。この構造体3の形状は、第1の実施形態における構造体3の凸形状を反転して凹形状としたものである。なお、上述のように構造体3を凹部とした場合、凹部である構造体3の開口部(凹部の入り口部分)を下部、基体2の深さ方向の最下部(凹部の最も深い部分)を頂部と定義する。すなわち、非実体的な空間である構造体3により頂部、および下部を定義する。また、第5の実施形態では、構造体3が凹部であるため、式(1)などにおける構造体3の高さHは、構造体3の深さHとなる。
この第5の実施形態において、上記以外のことは、第1の実施形態と同様である。
この第5の実施形態では、第1の実施形態における凸形状の構造体3の形状を反転して凹形状としているので、第1の実施形態と同様の効果を得ることができる。
<6.第6の実施形態>
[光学素子の構成]
図23は、本発明の第6の実施形態に係る光学素子の構成の一例を示す断面図である。図23に示すように、第6の実施形態に係る光学素子1は、シロキサン樹脂を用いて得られた構造体3を基体2上に備える点において、第1の実施形態とは異なっている。
本発明は、耐熱性、および高透過性を有するカバーガラス、窓材などの光学素子、およびそれを備えるイメージセンサ素子(例えば、CCDイメージセンサ素子、CMOSイメージセンサ素子など)、フォトダイオード、半導体レーザ素子などのパッケージに対して適用して好適なものである。また、本発明は、高硬度、および耐熱性を有するフロントパネルなどの光学素子、およびそれを備えるディスプレイに適用して好適なものである。より具体的には、本発明は、デジタルカメラ(例えば一眼レフカメラ、コンパクトカメラなど)、携帯電話用デジタルカメラ、産業機械用カメラ、監視カメラ、画像認識装置用カメラなどの種々のカメラに備えられるイメージセンサのパッケージに適用して好適なものである。
[光学素子の製造方法]
図24は、本発明の第6の実施形態に係る光学素子の製造方法を説明するための工程図である。この光学素子の製造方法は、室温ナノインプリント技術を利用したものである。
本発明の第6の実施形態に係る光学素子の製造方法は、基体上にシロキサン樹脂を含む膜形成組成物を塗布して樹脂層を形成する工程と、樹脂層にモールドを押し付けて形状を転写する工程と、樹脂層からモールドを剥離する工程と、モールドを剥離した後の樹脂層に減圧下で紫外線を照射する工程とを備えることを特徴とする。
(樹脂層形成工程)
まず、図24Aに示すように、シロキサン樹脂を含む膜形成組成物を基体2上に塗布して樹脂層61を形成する。塗布方法としては、例えばスピンコート法などを用いることができるが、特に限定されるものではない。基体2としては、例えばガラスを主成分とするガラス基板(例えば白板または石英)を用いることができる。シロキサン樹脂としては、シルセスキオキサン樹脂を用いることが好ましい。膜成形組成物は、シロキサン樹脂などの成分を適当な有機溶媒に溶解して溶液の形態で用いることが好ましい。また、必要に応じて有機層や無機層を基体2上に形成するようにしてもよい。また、樹脂層61の膜厚は、製造する構造体2の種類にもよるが、300nm以上500nm以下が好ましい。
(形状転写工程)
次に、図24Bに示すように、基体2上に形成された樹脂層61に、所定形状のモールド62を押し当て、モールドの形状を樹脂層61に転写する。モールド61としては、例えば、第3の実施形態において用いた金型41を用いることができるが、特に限定されるものではない。例えば、第1〜第2、および第4〜第5の実施形態に係る光学素子1にメッキ処理などを施すことにより作製された金型を用いることも可能である。モールド62のプレス圧力は、5MPa〜100MPa程度であることが好ましい。また、プレス時間は、樹脂層61の膜厚にもよるが、10秒〜20秒程度であることが好ましい。このようにモールド62を押し付けた状態で所定時間プレスすることにより、樹脂層61の形状がより硬化する。
(剥離工程)
次に、図24Cに示すように、樹脂層61からモールド62を剥離する。これにより、モールド61の形状が転写された構造体3が基体2上に形成される。
(照射工程)
次に、図24Dに示すように、モールド62を剥離した後の樹脂層61に10Torr程度の減圧下で紫外線Lを照射した後、樹脂層61を300℃〜400℃で加熱することが好ましい。このように加熱することにより硬化効率が高くなる。例えば、300℃加熱で鉛筆硬度7H〜9H、400℃加熱で8H〜9Hの硬度が得られる。さらに、300℃〜400℃で加熱して樹脂層61を硬化した場合、このようにして作製された光学素子1の耐熱性は500℃以上であり、リフロープロセスには充分な耐熱性であった。以上により、モールド62の形状が転写された構造体3を基体2上に形成することができる。
第6の実施形態に係る光学素子1は、例えば、イメージセンサ素子のパッケージに備えられるカバーガラスおよび窓材、ならびにディスプレイのプロントパネルなどとして利用することができる。したがって、耐熱性、および高透過性を有するカバーガラスまたは窓材、高硬度、および耐熱性を有するフロントパネル、およびそれを備えるディスプレイなどを提供することができる。
<7.第7の実施形態>
[液晶表示装置の構成]
図25は、本発明の第7の実施形態に係る液晶表示装置の構成の一例を示す。図25に示すように、この液晶表示装置は、光を出射するバックライト53と、バックライト53から出射された光を時間的空間的に変調して画像を表示する液晶パネル51とを備える。液晶パネル51の両面にはそれぞれ、光学部品である偏光子51a、51bが設けられている。液晶パネル51の表示面側に設けられた偏光子51bには、光学素子1が設けられている。ここでは、光学素子1が一主面に設けられた偏光子51bを反射防止機能付き偏光子52と称する。この反射防止機能付き偏光子52は、反射防止機能付き光学部品の一例である。
以下、液晶表示装置を構成するバックライト53、液晶パネル51、偏光子51a、51b、および光学素子1について順次説明する。
(バックライト)
バックライト53としては、例えば直下型バックライト、エッジ型バックライト、平面光源型バックライトを用いることができる。バックライト53は、例えば、光源、反射板、光学フィルムなどを備える。光源としては、例えば、冷陰極蛍光管(Cold Cathode Fluorescent Lamp:CCFL)、熱陰極蛍光管(Hot Cathode Fluorescent Lamp:HCFL)、有機エレクトロルミネッセンス(Organic ElectroLuminescence:OEL)、無機エレクトロルミネッセンス(IEL:Inorganic ElectroLuminescence)および発光ダイオード(Light Emitting Diode:LED)などが用いられる。
(液晶パネル)
液晶パネル51としては、例えば、ツイステッドネマチック(Twisted Nematic:TN)モード、スーパーツイステッドネマチック(Super Twisted Nematic:STN)モード、垂直配向(Vertically Aligned:VA)モード、水平配列(In-Plane Switching:IPS)モード、光学補償ベンド配向(Optically Compensated Birefringence:OCB)モード、強誘電性(Ferroelectric Liquid Crystal:FLC)モード、高分子分散型液晶(Polymer Dispersed Liquid Crystal:PDLC)モード、相転移型ゲスト・ホスト(Phase Change Guest Host:PCGH)モードなどの表示モードのものを用いることができる。
(偏光子)
液晶パネル51の両面には、例えば偏光子51a、51bがその透過軸が互いに直交するようにして設けられる。偏光子51a、51bは、入射する光のうち直交する偏光成分の一方のみを通過させ、他方を吸収により遮へいするものである。偏光子51a、51bとしては、例えば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムなどの親水性高分子フィルムに、ヨウ素や二色性染料などの二色性物質を吸着させて一軸延伸させたものを用いることができる。偏光子51a、51bの両面には、トリアセチルセルロース(TAC)フィルムなどの保護層を設けることが好ましい。このように保護層を設ける場合、光学素子1の基体2が保護層を兼ねる構成とすることが好ましい。このような構成とすることで、反射防止機能付き偏光子52を薄型化できるからである。
(光学素子)
光学素子1は、上述の第1〜第4の実施形態のいずれかのものと同様であるので説明を省略する。
第7の実施形態によれば、液晶表示装置の表示面に光学素子1を設けているので、液晶表示装置の表示面の反射防止機能を向上することができる。したがって、液晶表示装置の視認性を向上することができる。
<8.第8の実施形態>
[液晶表示装置の構成]
図26は、本発明の第8の実施形態に係る液晶表示装置の構成の一例を示す。この液晶表示装置は、液晶パネル51の前面側に前面部材54を備え、液晶パネル51の前面、前面部材54の前面および裏面の少なくとも1つの面に、光学素子1を備える点において、第5の実施形態のものとは異なっている。図26では、液晶パネル51の前面、ならびに前面部材54の前面および裏面のすべての面に、光学素子1を備える例が示されている。液晶パネル51と前面部材54との間には、例えば空気層が形成されている。上述の第5の実施形態と同様の部分には同一の符号を付して説明を省略する。なお、本発明において、前面とは表示面となる側の面、すなわち観察者側となる面を示し、裏面とは表示面と反対となる側の面を示す。
前面部材54は、液晶パネル51の前面(観察者側)に機械的、熱的、および耐候的保護や、意匠性を目的として用いるフロントパネルなどである。前面部材54は、例えば、シート状、フィルム状、または板状を有する。前面部材54の材料としては、例えば、ガラス、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)などを用いることができるが、特にこれらの材料に限定されるものではなく、透明性を有する材料であれば用いることができる。
第8の実施形態によれば、第7の実施形態と同様に、液晶表示装置の視認性を向上することができる。
<9.第9の実施形態>
図28は、本発明の第9の実施形態係るイメージセンサ素子のパッケージの構成の一例を示す断面図である。図28に示すように、このパッケージ71は、イメージセンサ素子72と、イメージセンサ素子72の開口窓を覆うように固着されたカバーガラス73とを備える。イメージセンサ素子72は、例えば、CCDイメージセンサ素子、COMSイメージセンサ素子などである。カバーガラス73としては、例えば、第6の実施形態に係る光学素子1を用いることが好ましい。
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1)
まず、外径126mmのガラスロール原盤を準備し、このガラス原盤の表面に以下のようにしてレジストを着膜した。すなわち、シンナーでフォトレジストを1/10に希釈し、この希釈レジストをディップによりガラスロール原盤の円柱面上に厚さ130nm程度に塗布することにより、レジストを着膜した。次に、記録媒体としてのガラス原盤を、図11に示したロール原盤露光装置に搬送し、レジストを露光することにより、1つの螺旋状に連なるとともに、隣接する3列のトラック間において六方格子パターンをなす潜像がレジストにパターニングされた。
具体的には、六方格子パターンが形成されるべき領域に対して、前記ガラスロール原盤表面まで露光するパワー0.50mj/mのレーザー光を照射し凹形状の準六方格子パターンを形成した。なお、図13Aに示すように、トラック列の列方向のレジスト厚さは120nm程度、トラックの延在方向のレジスト厚さは100nm程度であった。
次に、ガラスロール原盤上のレジストに現像処理を施して、露光した部分のレジストを溶解させて現像を行った。具体的には、図示しない現像機のターンテーブル上に未現像のガラスロール原盤を載置し、ターンテーブルごと回転させつつガラスロール原盤の表面に現像液を滴下してその表面のレジストを現像した。これにより、レジスト層が準六方格子パターンに開口しているレジストガラス原盤が得られた。
次に、ロールプラズマエッチングを用い、CHF3ガス雰囲気中でのプラズマエッチングを行った。これにより、ガラスロール原盤の表面において、レジスト層から露出している準六方格子パターンの部分のみエッチングが進行し、その他の領域はフォトレジストがマスクとなりエッチングはされず、楕円錐形状の凹部が得られた。このときのパターンでのエッチング量(深さ)はエッチング時間によって変化させた。最後に、O2アッシングにより完全にフォトレジストを除去することにより、凹形状の六方格子パターンのモスアイガラスロールマスタが得られた。列方向における凹部の深さは、トラックの延在方向における凹部の深さより深かった。
上記モスアイガラスロールマスタと紫外線硬化樹脂を塗布したアクリルシートなどを密着させ、紫外線を照射し硬化させながら剥離することにより、光学素子(図13C)を作製した。
(実施例2)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、準六方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(実施例3)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、四方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(実施例4)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、準四方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(形状の評価)
上述のようにして作製した実施例1〜4の光学素子について、原子間力顕微鏡(AFM:Atomic Force Microscope)により観察を行った。そして、AFMの断面プロファイルから各実施例の構造体の高さを求めた。その結果を表2および表3に示す。
実施例1、2における光学素子のモスアイ形状は、六方格子、準六方格子の凸形状の楕円錐台(楕円錐)である。上記AFM断面形状測定から、トラックの延在方向における構造体の高さは、トラックの列方向にける構造体の高さより小さいことがわかる。また、トラックの延在方向以外における構造体の高さが、トラックの列方向における構造体の高さとほぼ同一であることから、構造体の高さをトラックの列方向における高さで代表する。
実施例3、4における光学素子のモスアイ形状は、四方格子、準四方格子の凸形状の楕円錐台(楕円錐)である。上記AFM断面形状測定から、トラックの延在方向に対して45度方向の構造体の高さは、トラックの列方向にける構造体の高さより小さいことがわかる。また、トラックの延在方向に対して45度方向以外の構造体の高さが、トラックの列方向における構造体の高さとほぼ同一であることから、構造体の高さをトラックの列方向における高さで代表する。
(反射率/透過率の評価)
実施例1〜4の光学素子の反射率および透過率を日本分光の評価装置(V−550)を用いて評価した。図29、図30にそれぞれ、実施例1、実施例2の光学素子における反射率の波長依存性を示す。図31、図32にそれぞれ、実施例3、実施例4の光学素子における透過率の波長依存性を示す。
実施例1、2の光学素子では、反射率の波長依存性があるが、モスアイパターンのない基板の反射率が4.5%であり、UV光から可視光(波長350〜800nm)領域では、0.15%の平均反射率であり、充分に小さい値になっている。トラックの延在方向における構造体の高さが低い光学素子において、充分な反射防止効果が得られることが確認できた。
実施例3、4では、可視光(波長400〜800nm)領域で、98〜99%であり充分な透過特性が得られている。入射角30度までは、波長650nm、540nm、460nmのRGB光では、透過率99%であり、角度依存性も充分である。トラックの延在方向に対して45度方向における構造体の高さが低い光学素子において、充分な透過特性が得られることも確認できた。
上記光学素子のモスアイ形状は、上述したように、六方格子、準六方格子、または四方格子、準四方格子の凸形状の楕円錐台(楕円錐)であり、アスペクト比が0.94〜1.14である光学素子において、充分な反射防止特性を得ることができた。また、モスアイガラスマスターにおいても、凹形状の楕円錐溝であることが確認できた。
(実施例5)
まず、実施例2と同様にして、モスアイガラスマスターを得た。次に、モスアイガラスマスター上に紫外線硬化樹脂を塗布した後、アクリルシート(0.20mm厚)を紫外線硬化樹脂上に密着させ、紫外線を照射し硬化させ剥離することにより、モスアイ紫外線硬化複製シートを得た。
次に、Φ25mm平凸レンズ(焦点距離70mm)の凸面に、モスアイ紫外線硬化複製シート裏面を密着させた。その後、80℃の湯浴中においてレンズホルダーで、平凸レンズとモスアイ紫外線硬化複製シートをさらに密着させながら、モスアイ紫外線硬化複製シートを凸レンズ形状に曲げていった。次に、湯浴に数分間放置した後取り出し、レンズホルダーをはずし、凸レンズ形状に曲げたモスアイ紫外線硬化複製シートを作製した。
次に、凸レンズ形状に曲げたモスアイ紫外線硬化複製シートの凹凸パターン上に無電界メツキ法などによりニツケル皮膜でなる導電化膜を形成した。次に、導電化膜が形成された光デイスク原盤を電鋳装置に取り付け、電気メツキ法により導電化膜上に300±5〔μm〕程度の厚さになるようにニツケルメツキ層を形成した。次に、モスアイ紫外線硬化複製シートからニツケルメツキ層をカッターなどで剥離し、そのニツケルメツキ層信号形成面のフォトレジストをアセトンなどを用いて洗浄し、凸レンズ形状に曲げたモスアイNi金属マスターを作製した。
次に、凸レンズ形状に曲げたモスアイ成形複製基板を以下のようにして作製した。上記凸レンズ形状に曲げたモスアイNi金属マスターを金型に配置し、ポリカーボネート(屈折率1.59)の透明樹脂を用いて射出成形により基板を成形した。これにより、信号形成面に形成された略六方格子パターンが透明樹脂に転写されて、凸レンズ形状に曲げられたモスアイ成形複製基板が作製された。
(反射率/透過率の評価)
実施例5の光学素子の反射率を日本分光の評価装置(V−550)を用いて評価した。図33に、実施例5の光学素子における反射率の波長依存性を示す。
(実施例6)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、準六方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(実施例7)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、四方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(実施例8)
1トラック毎に極性反転フォマッター信号の周波数と、ロールの回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、四方格子パターンをレジスト層に記録した。これ以外のことは、実施例1と同様にして光学素子を作製した。
(形状の評価)
上述のようにして作製した実施例6〜8の光学素子を、走査型電子顕微鏡(SEM:Scanning Electron Microscope)によりTop Viewで観察した。その結果を表4に示す。
図34から、実施例6では、構造体は準六方格子状に配列されていることがわかる。また、構造体の底面の形状は楕円形状であることがわかる。
図35、図36から、実施例7、8では、構造体は四方格子状には配列されていることがわかる。また、構造体の底面の形状は楕円形状であることがわかる。また、実施例8では、構造体の下部同士が重ね合わされて配置されていることがわかる。
次に、RCWA(Rigorous Coupled Wave Analysis)シミュレーションにより構造体の高さと反射率との関係について検討した。
(試験例1)
構造体の底面径(直径)2rを配置ピッチP1に対して85%、90%、95%、99%の大きさにして、RCWAシミュレーションを行った。その結果を図37に示す。以下に、シミュレーションの条件を示す。
構造体形状:釣鐘型
偏光:無偏光
屈折率:1.48
トラックピッチTp:320nm
構造体の高さ:365nm
アスペクト比:1.14
構造体の配列:六方格子
図37から、構造体の底面径の大きさが変わり、充填率が下がると、反射率が悪化することがわかる。
(試験例2)
トラック方向の構造体間に、アスペクト比0.3の低い突出部を設ける以外は、試験例1と同様にして、RCWAシミュレーションを行った。その結果を図38に示す。
図38から、トラック方向の構造体間に低い突出部がある場合、充填率が下がっても、反射率を低く抑えることができることがわかる。
(試験例3)
トラック方向の構造体間に、構造体の高さの1/4に層とする低い突出部を設け、構造体の高さを変えて、以下の条件でRCWAシミュレーションを行った。その結果を図39に示す。
構造体形状:釣鐘型
偏光:無偏光
屈折率:1.48
トラックピッチTp:320nm
構造体の底面径:トラックピッチTpの90%
アスペクト比:0.93、1.00、1.14、1.30(各々、深さ0.270、0.320、0.385、0.415μm)
構造体の配列:六方格子
(試験例4)
試験例3の各々の高さの構造体を同じ割合で存在させ、深さ分布を持たせた場合の結果(Ave.)を、試験例3のグラフに追加したものを図40に示す。
図39、図40から、トラック方向の構造体間に低い突出部を設け、構造体に高さ分布を持たせると、波長依存性の少ない低反射特性が得られることがわかる。
(試験例5)
トラックピッチを変えて、RCWAシミュレーションを行った。その結果を図41、図43に示す。以下に、シミュレーションの条件を示す。
構造体形状:釣鐘型
偏光:無偏光
格子配置:六方格子
屈折率:1.48
トラックピッチTp:0.09〜0.30μm
構造体の高さ:0.09〜0.30μm
アスペクト比:1.0に統一
構造体の底面径:トラックピッチTpの99%の大きさ(充填率:ほぼ最大)
(試験例6)
構造体の周囲に微細の突出部を設ける以外は試験例5と同様にして、RCWAシミュレーションを行った。その結果を図42に示す。
図41、図42から、トラックピッチTpが大きい場合、構造体の周囲に微細の突出部を設けると、反射率が低減する傾向があるが、構造体自体が小さいと、むしろ反射率が悪化する傾向があることがわかる(特に、図42中、領域R1および領域R2参照)。
また、図43から、トラックピッチTpが0.3μmであると、波長400nmでの回折抑制が低下する傾向があることがわかる。
(試験例7)
トラックピッチを0.25μmとし、構造体の高さ、およびアスペクト比を変えて、RCWAシミュレーションを行った。その結果を図44Aに示す。以下に、シミュレーションの条件を示す。
構造体形状:釣鐘型
偏光:無偏光
格子配置:六方格子
屈折率:1.48
トラックピッチTp:0.25μm
構造体の高さ:0.15nm、0.2nm、0.25nm、0.3nm
アスペクト比:0.6、0.8、1.0、1.2
構造体の底面径:トラックピッチTpの99%
(試験例8)
構造体の周囲に微細の突出部を設ける以外は試験例7と同様にして、RCWAシミュレーションを行った。その結果を図44Bに示す。
(試験例9)
トラックピッチを0.15μm、構造体の高さを0.09μm、0.12μm、0.15μm、0.18μm、アスペクト比を0.6、0.8、1.0、1.2とする以外は、試験例7と同様にして、RCWAシミュレーションを行った。その結果を図45Aに示す。
(試験例10)
構造体の周囲に微細の突出部を設ける以外は試験例9と同様にして、RCWAシミュレーションを行った。その結果を図45Bに示す。
(試験例11)
トラックピッチを0.09μm、構造体の高さを0.072μm、0.09μm、0.108μm、0.126μm、0.144μm、アスペクト比を0.8、1.0、1.2、1.4、1.6とした。これ以外は、試験例7と同様にして、RCWAシミュレーションを行った。その結果を図46Aに示す。
(試験例12)
構造体の周囲に微細の突出部を設ける以外は試験例11と同様にして、RCWAシミュレーションを行った。その結果を図46Bに示す。
図44〜図46から、反射率Rを1%程度以下に抑えるためには、トラックピッチTp0.15μm、アスペクト比1.0が限界であると考えられる。また、微細の突出部を設けた場合にも、トラックピッチTpが狭い場合には、反射率抑制の効果が小さくなる傾向があることがわかる。
次に、RCWA(Rigorous Coupled Wave Analysis)シミュレーションにより、比率((2r/P1)×100)と反射防止特性との関係について検討を行った。
(試験例13)
図47Aは、構造体を六方格子状に配列したときの充填率を説明するための図である。図47Aに示すにように、構造体を六方格子状に配列した場合において、比率((2r/P1)×100)(但し、P1:同一トラック内における構造体の配置ピッチ、r:構造体底面の半径)を変化させたときの充填率を以下の式(2)により求めた。
充填率=(S(hex.)/S(unit))×100 ・・・(2)
単位格子面積:S(unit)=2r×(2√3)r
単位格子内に存在する構造体の底面の面積:S(hex.)=2×πr2
(但し、2r>P1のときは作図上から求める。)
例えば、配置ピッチP1=2、構造体底面の半径r=1とした場合、S(unit)、S(hex.)、比率((2r/P1)×100)、充填率は以下に示す値となる。
S(unit)=6.9282
S(hex.)=6.28319
(2r/P1)×100=100.0%
充填率=(S(hex.)/S(unit))×100=90.7%
表5に、上述の式(2)により求めた充填率と比率((2r/P1)×100)との関係を示す。
(試験例14)
図47Bは、構造体を四方格子状に配列したときの充填率を説明するための図である。図47Bに示すにように、構造体を四方格子状に配列した場合において、比率((2r/P1)×100)、比率((2r/P2)×100)、(但し、P1:同一トラック内における構造体の配置ピッチ、P2:トラックに対して45度方向の配置ピッチ、r:構造体底面の半径)を変化させたときの充填率を以下の式(3)により求めた。
充填率=(S(tetra)/S(unit))×100 ・・・(3)
単位格子面積:S(unit)=2r×2r
単位格子内に存在する構造体の底面の面積:S(tetra)=πr2
(但し、2r>P1のときは作図上から求める。)
例えば、配置ピッチP2=2、構造体底面の半径r=1とした場合、S(unit)、S(tetra)、比率((2r/P1)×100)、比率((2r/P2)×100)、充填率は以下に示す値となる。
S(unit)=4
S(tetra)=3.14159
(2r/P1)×100=70.7%
(2r/P2)×100=100.0%
充填率=(S(tetra)/S(unit))×100=78.5%
表6に、上述の式(3)により求めた充填率と、比率((2r/P1)×100)、比率((2r/P2)×100)との関係を示す。また、四方格子の配置ピッチP1とP2との関係はP1=√2×P2となる。
(試験例15)
配置ピッチP1に対する構造体底面の直径2rの比率((2r/P1)×100)を80%、85%、90%、95%、99%の大きさにして、以下の条件で反射率をシミュレーションにより求めた。その結果のグラフを図48に示す。
構造体形状:釣鐘型
偏光:無偏光
屈折率:1.48
配置ピッチP1:320nm
構造体の高さ:415nm
アスペクト比:1.30
構造体の配列:六方格子
図48から、比率((2r/P1)×100)が85%以上あれば、可視域の波長域(0.4〜0.7μm)において、平均反射率RがR<0.5%となり、十分な反射防止効果が得られる。このとき底面の充填率は65%以上である。また、比率((2r/P1)×100)が90%以上あれば、可視域の波長域において平均反射率RがR<0.3%となり、より高性能な反射防止効果が得られる。このとき底面の充填率は73%以上であり、上限を100%として充填率が高いほど性能が良くなる。構造体同士が重なり合う場合は、構造体高さは一番低い位置からの高さを考えることとする。また、四方格子においても、充填率と反射率の傾向は同様であることを確認した。
(実施例9)
まず、ディスク状(円盤状)のガラス原盤を準備し、このガラス原盤の表面に以下のようにしてレジストを着膜した。すなわち、シンナーでフォトレジストを1/10に希釈し、この希釈レジストをスピンコート法によりガラス原盤の一主面上に厚さ130nm程度に塗布することにより、レジスト層を形成した。次に、記録媒体としてのガラス原盤を、図19に示したディスク原盤露光装置に搬送し、レジスト層を露光することにより、隣接する3列のトラック間において四方格子パターンをなす潜像がレジスト層にパターニングされた。
具体的には、四方格子パターンが形成されるべき領域に対して、前記ガラス原盤表面まで露光するパワー0.50mW/mのレーザー光を照射し凹形状の四方格子パターンを形成した。なお、トラック列の列方向のレジスト厚さは120nm程度、トラックの延在方向のレジスト厚さは100nm程度であった。
次に、ガラス原盤上のレジスト層に現像処理を施して、露光した部分のレジスト層を溶解させて現像を行った。具体的には、図示しない現像機のターンテーブル上に未現像のガラス原盤を載置し、ターンテーブルごと回転させつつガラス原盤の表面に現像液を滴下してその表面のレジストを現像した。これにより、レジスト層が四方格子パターンに開口しているレジストガラス原盤が得られた。
次に、CHF3ガス雰囲気中でのプラズマエッチングを行った。これにより、ガラス原盤の表面において、レジスト層から露出している四方格子パターンの部分のみエッチングが進行し、その他の領域はフォトレジストがマスクとなりエッチングはされず、楕円錐形状の凹部が得られた。このときのパターンでのエッチング量(深さ)はエッチング時間によって変化させた。最後に、O2アッシングにより完全にレジスト層を除去した。
以上により、円周方向の配置ピッチP1が250nm、凹部の深さが285nmである四方格子パターンを有するディスクマスタが得られた。このディスクマスタの凹凸形状をAFMにより観察したところ、列方向における凹部の深さは、トラックの延在方向における凹部の深さより深かった。
次に、シロキサン樹脂を含む膜形成組成物を、スピンコート法によりガラス基板上に塗布して樹脂層を形成した。次に、ディスクマスタ(モールド)を樹脂層に対して押し付けた後、ディスクマスタを剥離することにより、光学素子を作製した。
(実施例10)
1トラック毎に極性反転フォマッター信号の周波数と、原盤の回転数と、適切な送りピッチとを調整することで、レジスト層をパターニングすることにより、準六方格子パターンをレジスト層に記録した。これ以外のことは、実施例9と同様にして、以下に示す構成を有するディスクマスタを作製した。
円周方向の配置ピッチP1:270nm
円周方向に対して約60度方向(約−60度方向)の配置ピッチP2:240nm
凹部の深さ:184nm
格子パターン:準六方格子パターン
(比較例1)
カバーガラスとして用いられている市販の高品位ガラス(日本電気硝子株式会社製)をサンプルとして準備した。
(比較例2)
5層から10層程度の多層ARをカバーガラスの両面に形成することにより、サンプルとしての光学素子を得た。
(反射率/透過率の評価)
実施例9、10、比較例1、2の光学素子の反射率および透過率を日本分光の評価装置(V−550)を用いて評価した。図49に、実施例9の光学素子の透過特性を示す。図50A、図50Bにそれぞれ、実施例10の光学素子の反射特性および透過特性を示す。図51Aに、比較例2の光学素子の透過特性を示す。また、図51Bに、別途測定された比較例1の光学素子の透過特性を示す。
比較例1では、カバーガラスの表面と裏面の反射5%により、ゴーストが生じる。
比較例2では、5層から10層程度の多層ARをカバーガラス両面に設けて、透過特性を向上させ、ゴーストが生じにくくしているが、赤の波長650nmより長波長で透過特性は悪化する傾向がある。また、イメージセンサ素子のカバーガラスは、リフロープロセス230℃、30分程度であり、耐熱性が必要である。
実施例9では、赤の波長650nmよりも長波長の波長域においても、透過特性の低下がほとんどなく、可視光領域(波長400nm〜850nm)において、優れた透過特性が得られている。
実施例10では、入射角50度で入射する光に対しては、反射率が波長の増加に伴って増加する傾向がある。しかし、入射角30度以下で入射する光に対しては、反射率がわずかに増加する傾向を示すものの、2%以下に抑えられており、優れた反射防止特性が得られている。また、実施例10では、実施例9と同様に、可視光領域(波長400nm〜850nm)において、優れた透過特性が得られている。
以上、本発明の実施例を反射防止基板で説明したが、上述した実施例は本発明の技術的思想に基いて様々に変形可能である。
以上、本発明の実施形態および実施例について具体的に説明したが、本発明は、上述の実施形態および実施例に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態および実施例において挙げた構成、方法、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、形状、材料および数値などを用いてもよい。
また、上述の実施形態の各構成は、本発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。
また、上述の実施形態では、本発明を液晶表示装置に適用する場合を例として説明したが、本発明は液晶表示装置以外の各種表示装置に対しても適用可能である。例えば、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface-conduction Electron-emitter Display:SED)などの各種表示装置に対しても本発明は適用可能である。
また、上述の実施形態において、構造体のピッチを適宜変更することで正面から斜めの方向に回折光を発生させることにより、覗き込み防止機能を光学素子に付与するようにしてもよい。
また、上述の実施形態において、構造体が形成された基体表面上に、低屈折率層をさらに形成するようにしてもよい。低屈折率層は、基体および構造体を構成する材料より低い屈折率を有する材料を主成分としていることが好ましい。このような低屈折率層の材料としては、例えばフッ素系樹脂などの有機系材料、またはLiF、MgF2などの無機系の低屈折率材料が挙げられる。
また、上述の実施形態では、感光性樹脂により光学素子を製造する場合を例として説明したが、光学素子の製造方法はこの例に限定されるものでない。例えば、熱転写や射出成形により光学素子を製造するようにしてもよい。
また、上述の実施形態では、円柱状または円筒状の原盤の外周面に凹状または凸状の構造体を形成する場合を例として説明したが、原盤が円筒状である場合には、原盤の内周面に凹状または凸状の構造体を形成するようにしてもよい。
1 光学素子
2 基体
3 構造体
4 凸部
11 ロールマスタ
12 基体
13 構造体
14 レジスト層
15 レーザー光
16 潜像
21 レーザー
22 電気光学変調器
23,31 ミラー
24 フォトダイオード
26 集光レンズ
27 音響光学変調器
28 コリメータレンズ
29 フォマッター
30 ドライバ
32 移動光学テーブル系
33 ビームエキスパンダ
34 対物レンズ
35 スピンドルモータ
36 ターンテーブル
37 制御機構

Claims (20)

  1. 基体と、
    上記基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
    を備え、
    上記各構造体は、上記基体表面において複数列のトラックをなすように配置されているとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
    上記基体の表面に対する上記構造体の充填率が、65%以上である、反射防止機能を有する光学素子。
  2. 上記基体の表面に対する上記構造体の充填率が、73%以上である請求項1記載の光学素子。
  3. 上記基体の表面に対する上記構造体の充填率が、86%以上である請求項2記載の光学素子。
  4. 上記各構造体は、直線状を有する複数列のトラックをなすように配置されているとともに、準六方格子パターンを形成し、
    上記トラックの延在方向における上記構造体の高さまたは深さは、上記トラックの列方向における上記構造体の高さまたは深さよりも小さい請求項1記載の光学素子。
  5. 上記各構造体は、直線状を有する複数列のトラックをなすように配置されているとともに、四方格子パターンまたは準四方格子パターンを形成し、
    上記トラックの延在方向に対して斜となる配列方向における上記構造体の高さまたは深さは、上記トラックの延在方向における上記構造体の高さまたは深さよりも小さい請求項1記載の光学素子。
  6. 同一トラック内における上記構造体の配置ピッチP1は、隣接する2つのトラック間における上記構造体の配置ピッチP2よりも長い請求項1記載の光学素子。
  7. 上記各構造体は、上記基体表面において六方格子パターン、または準六方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、隣接する2つのトラック間における上記構造体の配置ピッチをP2としたとき、
    比率P1/P2が、1.00≦P1/P2≦1.1、または1.00<P1/P2≦1.1の関係を満たす請求項1記載の光学素子。
  8. 上記構造体は、上記基体表面において四方格子パターンまたは準四方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、隣接する2つのトラック間における上記構造体の配置ピッチをP2としたとき、
    比率P1/P2が、1.4<P1/P2≦1.5の関係を満たす請求項1記載の光学素子。
  9. 基体と、
    上記基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
    を備え、
    上記各構造体は、上記基体表面において複数列のトラックをなすように配置されているとともに、準六方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、上記構造体底面のトラック方向の径を2rとしたとき、上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、85%以上である、反射防止機能を有する光学素子。
  10. 上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、90%以上である請求項9記載の光学素子。
  11. 上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、95%以上である請求項10記載の光学素子。
  12. 基体と、
    上記基体の表面に可視光の波長以下の微細ピッチで多数配置された、凸部または凹部からなる構造体と
    を備え、
    上記各構造体は、上記基体表面において複数列のトラックをなすように配置されているとともに、四方格子パターンまたは準四方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、上記構造体底面のトラック方向の径を2rとしたとき、上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、64%以上である、反射防止機能を有する光学素子。
  13. 上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、69%以上である、反射防止機能を有する請求項12記載の光学素子。
  14. 上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、73%以上である請求項13記載の光学素子。
  15. 請求項1〜14のいずれか1項に記載の光学素子を備える表示装置。
  16. 請求項1〜14のいずれか1項に記載の光学素子を備えるパッケージ。
  17. 円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
    上記レジスト層が形成された上記原盤を回転させるとともに、レーザ光のスポットを上記円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、上記レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
    上記レジスト層を現像して、上記原盤の表面にレジストパターンを形成する工程と、
    上記レジストパターンをマスクとするエッチング処理を施すことで、上記原盤の表面に凹状または凸状の構造体を形成する工程と
    を備え、
    上記潜像の形成工程では、上記潜像が、上記原盤表面において複数列のトラックをなすように配置されるとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
    上記原盤の表面に対する上記構造体の充填率が、65%以上である、反射防止機能を有する光学素子の作製用原盤の製造方法。
  18. 円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
    上記レジスト層が形成された上記原盤を回転させるとともに、レーザ光のスポットを上記円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、上記レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
    上記レジスト層を現像して、上記原盤の表面にレジストパターンを形成する工程と、
    上記レジストパターンをマスクとするエッチング処理を施すことで、上記原盤の表面に凹状または凸状の構造体を形成する工程と
    を備え、
    上記潜像の形成工程では、上記潜像が、上記原盤表面において複数列のトラックをなすように配置されるとともに、準六方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、上記構造体のトラック方向の径を2rとしたとき、上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、85%以上の範囲内である、反射防止機能を有する光学素子の作製用原盤の製造方法。
  19. 円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
    上記レジスト層が形成された上記原盤を回転させるとともに、レーザ光のスポットを上記円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、上記レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
    上記レジスト層を現像して、上記原盤の表面にレジストパターンを形成する工程と、
    上記レジストパターンをマスクとするエッチング処理を施すことで、上記原盤の表面に凹状または凸状の構造体を形成する工程と
    を備え、
    上記潜像の形成工程では、上記潜像が、上記原盤表面において複数列のトラックをなすように配置されるとともに、四方格子パターンまたは準四方格子パターンを形成し、
    同一トラック内における上記構造体の配置ピッチをP1、上記構造体のトラック方向の径を2rとしたとき、上記配置ピッチP1に対する上記径2rの比率((2r/P1)×100)が、64%以上の範囲内である、反射防止機能を有する光学素子の作製用原盤の製造方法。
  20. 円柱状または円筒状の原盤の周面上にレジスト層を形成する工程と、
    上記レジスト層が形成された上記原盤を回転させるとともに、レーザ光のスポットを上記円柱状または円筒状の原盤の中心軸と平行に相対移動させながら、上記レジスト層にレーザ光を間欠的に照射して、可視光波長よりも短いピッチで潜像を形成する工程と、
    上記レジスト層を現像して、上記原盤の表面にレジストパターンを形成する工程と、
    上記レジストパターンをマスクとするエッチング処理を施すことで、上記原盤の表面に凹状または凸状の構造体を形成する工程と、
    上記構造体が形成された上記原盤を用いて、上記構造体が転写された光学素子を作製する工程と
    を備え、
    上記潜像の形成工程では、上記潜像が、上記原盤表面において複数列のトラックをなすように配置されるとともに、準六方格子パターン、四方格子パターンまたは準四方格子パターンを形成し、
    上記構造体の転写の工程は、
    シロキサン樹脂を含む樹脂層を基体上に形成する工程と、
    上記樹脂層に上記原盤を押し付け、上記原盤の構造体を転写する工程と
    を備え、
    上記原盤の表面に対する上記構造体の充填率が、65%以上である、反射防止機能を有する、反射防止機能を有する光学素子の製造方法。
JP2016028029A 2016-02-17 2016-02-17 光学素子およびその製造方法、ならびに原盤の製造方法 Pending JP2016105203A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016028029A JP2016105203A (ja) 2016-02-17 2016-02-17 光学素子およびその製造方法、ならびに原盤の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016028029A JP2016105203A (ja) 2016-02-17 2016-02-17 光学素子およびその製造方法、ならびに原盤の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014206475A Division JP2015004993A (ja) 2014-10-07 2014-10-07 光学素子およびその製造方法、ならびに原盤の製造方法

Publications (1)

Publication Number Publication Date
JP2016105203A true JP2016105203A (ja) 2016-06-09

Family

ID=56102449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016028029A Pending JP2016105203A (ja) 2016-02-17 2016-02-17 光学素子およびその製造方法、ならびに原盤の製造方法

Country Status (1)

Country Link
JP (1) JP2016105203A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051851A1 (ja) * 2016-09-16 2018-03-22 デクセリアルズ株式会社 原盤、転写物、および原盤の製造方法
JP2021062624A (ja) * 2020-12-25 2021-04-22 デクセリアルズ株式会社 原盤、および転写物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030273A (ja) * 1999-07-22 2001-02-06 Dainippon Printing Co Ltd 金型ロールの製造方法、金型ロールおよび金型ロールを用いたレンズシートの製造方法
WO2008023816A1 (fr) * 2006-08-21 2008-02-28 Sony Corporation Élément optique, procédé de fabrication de maître pour fabriquer un élément optique et dispositif de conversion photoélectrique
JP2008176076A (ja) * 2007-01-18 2008-07-31 Sony Corp 光学素子およびその製造方法、ならびに光学素子作製用複製基板およびその製造方法
JP2008304637A (ja) * 2007-06-06 2008-12-18 Sony Corp 光学素子およびその製造方法、ならびに光学素子作製用複製基板およびその製造方法
JP2009104103A (ja) * 2007-10-01 2009-05-14 Omron Corp 反射防止シート、表示素子及びディスプレイ装置
JP2009166414A (ja) * 2008-01-18 2009-07-30 Tokyo Ohka Kogyo Co Ltd インプリント用膜形成組成物、並びに構造体の製造方法及び構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030273A (ja) * 1999-07-22 2001-02-06 Dainippon Printing Co Ltd 金型ロールの製造方法、金型ロールおよび金型ロールを用いたレンズシートの製造方法
WO2008023816A1 (fr) * 2006-08-21 2008-02-28 Sony Corporation Élément optique, procédé de fabrication de maître pour fabriquer un élément optique et dispositif de conversion photoélectrique
JP2008176076A (ja) * 2007-01-18 2008-07-31 Sony Corp 光学素子およびその製造方法、ならびに光学素子作製用複製基板およびその製造方法
JP2008304637A (ja) * 2007-06-06 2008-12-18 Sony Corp 光学素子およびその製造方法、ならびに光学素子作製用複製基板およびその製造方法
JP2009104103A (ja) * 2007-10-01 2009-05-14 Omron Corp 反射防止シート、表示素子及びディスプレイ装置
JP2009166414A (ja) * 2008-01-18 2009-07-30 Tokyo Ohka Kogyo Co Ltd インプリント用膜形成組成物、並びに構造体の製造方法及び構造体

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051851A1 (ja) * 2016-09-16 2018-03-22 デクセリアルズ株式会社 原盤、転写物、および原盤の製造方法
CN109791873A (zh) * 2016-09-16 2019-05-21 迪睿合株式会社 母盘、转印物及母盘的制造方法
US11602878B2 (en) 2016-09-16 2023-03-14 Dexerials Corporation Master, transfer copy, and method for manufacturing master
CN109791873B (zh) * 2016-09-16 2023-09-15 迪睿合株式会社 母盘、转印物及母盘的制造方法
JP2021062624A (ja) * 2020-12-25 2021-04-22 デクセリアルズ株式会社 原盤、および転写物
JP7091438B2 (ja) 2020-12-25 2022-06-27 デクセリアルズ株式会社 原盤、および転写物

Similar Documents

Publication Publication Date Title
JP4535200B2 (ja) 光学素子およびその製造方法、偏光子、表示装置、太陽電池、ならびに原盤の製造方法
JP2011053496A (ja) 光学素子およびその製造方法、ならびに原盤の製造方法
JP6049979B2 (ja) 光学素子、および表示装置
JP5439783B2 (ja) 光学素子、反射防止機能付き光学部品、および原盤
JP5257066B2 (ja) 光学素子、表示装置、反射防止機能付き光学部品、および原盤
JP6164085B2 (ja) 光学素子、表示装置および入力装置
JP4626721B1 (ja) 透明導電性電極、タッチパネル、情報入力装置、および表示装置
JP2011053495A (ja) 光学素子、およびその製造方法
JP5760566B2 (ja) 光学素子、光学系、撮像装置、光学機器、および原盤
JP2011076072A (ja) 光学素子、およびその製造方法
JP2016105203A (ja) 光学素子およびその製造方法、ならびに原盤の製造方法
JP2015004993A (ja) 光学素子およびその製造方法、ならびに原盤の製造方法
JP2014170066A (ja) 光学体、撮像装置、電子機器、および原盤
JP2014168868A (ja) 転写型および構造体の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170725