JP2016102443A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2016102443A
JP2016102443A JP2014240783A JP2014240783A JP2016102443A JP 2016102443 A JP2016102443 A JP 2016102443A JP 2014240783 A JP2014240783 A JP 2014240783A JP 2014240783 A JP2014240783 A JP 2014240783A JP 2016102443 A JP2016102443 A JP 2016102443A
Authority
JP
Japan
Prior art keywords
fuel injection
valve
fuel
sectional area
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014240783A
Other languages
Japanese (ja)
Other versions
JP6399910B2 (en
Inventor
一樹 吉村
Kazuki Yoshimura
一樹 吉村
石井 英二
Eiji Ishii
英二 石井
泰介 杉井
Taisuke Sugii
泰介 杉井
義人 安川
Yoshito Yasukawa
義人 安川
清隆 小倉
Kiyotaka Ogura
清隆 小倉
威生 三宅
Takeo Miyake
威生 三宅
敦士 中井
Atsushi Nakai
敦士 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2014240783A priority Critical patent/JP6399910B2/en
Priority to PCT/JP2015/076831 priority patent/WO2016084464A1/en
Publication of JP2016102443A publication Critical patent/JP2016102443A/en
Application granted granted Critical
Publication of JP6399910B2 publication Critical patent/JP6399910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve capable of reducing occurrence of bulky droplets, in a valve closing process at the time of fuel injection end.SOLUTION: A fuel injection valve includes: a deformable valve body 101; a valve seat surface 203 contacting with the valve body 101 and seating fuel; and a fuel injection hole 201 provided on a downstream side with respect to a seat position 204 on the side of the valve seat surface 203 with which the valve body 101 contacts. A fuel flow passage formed on the downstream side of the seat position 204 has a flow passage cross sectional area increase part 206 in which a cross sectional area increases toward the downstream side. In the flow passage cross sectional area increase part 206, an end part on an upstream side is positioned on the downstream side from a center 216 of an entrance opening surface of the fuel injection hole 201.SELECTED DRAWING: Figure 2

Description

本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁であって、弁体が弁座と当接することで燃料の漏洩を防止し、弁体が弁座面から離れることによって噴射を行なう、燃料噴射弁に関する。   The present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, wherein a valve body abuts against a valve seat to prevent fuel leakage, and injection is performed when the valve body is separated from a valve seat surface. The present invention relates to a fuel injection valve.

特開2013−160213号公報(特許文献1)には、変位可能な弁体と、弁体と当接して燃料をシートする弁座面と、弁座面と弁体とが当接する位置よりも下流側に設けられた燃料噴射孔とを有する燃料噴射弁において、弁座面の下流側に燃料噴射孔の入口開口が形成された噴射孔開口形成面を有し、弁座面と燃料噴射弁中心軸との成す角度が、噴射孔開口形成面と燃料噴射弁中心軸との成す角度よりも大きく形成されており、噴射孔開口形成面と弁体との間に形成される燃料流路の断面積が燃料の流れる方向に沿って一定となる領域を形成した状態で、弁体を開弁状態に維持可能にした燃料噴射弁が開示されている(要約参照)。   In JP 2013-160213 A (Patent Document 1), a displaceable valve body, a valve seat surface that contacts the valve body and seats fuel, and a position where the valve seat surface and the valve body contact each other are disclosed. A fuel injection valve having a fuel injection hole provided on the downstream side has an injection hole opening forming surface formed with an inlet opening of the fuel injection hole on the downstream side of the valve seat surface, and the valve seat surface and the fuel injection valve The angle formed by the central axis is formed larger than the angle formed by the injection hole opening forming surface and the fuel injection valve central axis, and the fuel flow path formed between the injection hole opening forming surface and the valve body is formed. There has been disclosed a fuel injection valve in which a valve body can be maintained in an open state in a state where a region in which a cross-sectional area is constant along a fuel flow direction is formed (see summary).

特開2010−38126号公報(特許文献2)には、シート部の直下において流路断面積が拡大するような環状窪みが弁体に施され、燃料噴射孔の入口開口の少なくとも一部が環状窪みによって覆われ、環状窪みの最深部から下流に向かって弁体の表面と弁座面との隙間が狭まるような流路形状を有する燃料噴射弁が開示されている(要約参照)。   Japanese Patent Laid-Open No. 2010-38126 (Patent Document 2) discloses that an annular recess that enlarges a cross-sectional area of a flow path is provided directly below a seat portion, and at least a part of an inlet opening of a fuel injection hole is annular. A fuel injection valve that is covered by a recess and has a flow path shape that narrows the gap between the surface of the valve body and the valve seat surface from the deepest portion of the annular recess toward the downstream is disclosed (see summary).

特開2013−160213号公報JP 2013-160213 A 特開2010−38126号公報JP 2010-38126 A

近年、自動車の排ガス規制が強化されている。この排ガス規制の強化に対応するため、筒内(燃焼室内)での燃料の気化を促進する必要がある。そして、気化を促進するために、燃料噴霧の微粒化が求められている。特に、燃料噴射終了時の閉弁過程においては、速度の遅い燃料が気化しにくい粗大な液滴となって噴射される。このような粗大な液滴が噴射されるのを防ぐ必要がある。   In recent years, exhaust gas regulations for automobiles have been strengthened. In order to cope with this stricter exhaust gas regulation, it is necessary to promote the vaporization of fuel in the cylinder (combustion chamber). And in order to accelerate | stimulate vaporization, atomization of fuel spray is calculated | required. In particular, in the valve closing process at the end of fuel injection, fuel with a low speed is injected as coarse droplets that are difficult to vaporize. It is necessary to prevent such coarse droplets from being ejected.

特許文献1においては、噴射孔開口形成面と弁体との間に形成される燃料流路の断面積が燃料の流れる方向に沿って一定となる領域を形成した状態で、弁体を開弁状態に維持可能にすることで、燃料の微粒化を図る技術が開示されている。しかし、特許文献1では、燃料噴射終了時に弁体が閉じていく過程(閉弁過程)における、燃料噴射孔上流側からの燃料流れについての検討が十分ではない。すなわち、閉弁過程において粗大な液滴が発生する課題についての配慮が十分ではない。   In Patent Document 1, the valve element is opened in a state where a region in which the cross-sectional area of the fuel flow path formed between the injection hole opening forming surface and the valve element is constant along the fuel flow direction is formed. A technique for atomizing fuel by making the state maintainable is disclosed. However, Patent Document 1 does not sufficiently study the fuel flow from the upstream side of the fuel injection hole in the process of closing the valve body at the end of fuel injection (valve closing process). That is, the consideration of the problem that coarse droplets are generated in the valve closing process is not sufficient.

また、特許文献2においては、燃料噴射孔の入口開口の少なくとも一部を弁体に形成した環状窪みによって覆い、燃料噴射孔の入口開口部の流路断面積を拡大させることによって、燃料の微粒化を促進する技術が開示されている。しかし、特許文献2の技術では、環状窪みがあることで、閉弁過程においては燃料が急に減速され、環状窪みがない場合と比較して速度の遅い燃料が増加する。このため、閉弁過程においては微粒化が阻害され、粗大な液滴の噴射量が増加する可能性がある。   Further, in Patent Document 2, at least a part of the inlet opening of the fuel injection hole is covered with an annular recess formed in the valve body, and the flow passage cross-sectional area of the inlet opening of the fuel injection hole is enlarged, so that the fuel fine particles A technique for promoting the conversion is disclosed. However, in the technique of Patent Document 2, the presence of the annular depression causes the fuel to be rapidly decelerated during the valve closing process, and the fuel with a slower speed is increased compared to the case where there is no annular depression. For this reason, atomization is hindered in the valve closing process, and there is a possibility that the ejection amount of coarse droplets increases.

本発明の目的は、燃料噴射終了時の閉弁過程において、粗大な液滴の発生を低減できる燃料噴射弁を提供することにある。   An object of the present invention is to provide a fuel injection valve that can reduce the generation of coarse droplets in the valve closing process at the end of fuel injection.

上記目的を達成するために、本発明の燃料噴射弁は、変位可能な弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁体が当接する弁座面側のシート位置よりも下流側に設けられた燃料噴射孔とを有する燃料噴射弁において、前記シート位置の下流側に形成される燃料流路は下流側に向かって断面積が増加する流路断面積増加部を有し、前記流路断面積増加部は、上流側の端部が前記燃料噴射孔の入口開口面の中心から下流側に位置する。   In order to achieve the above object, a fuel injection valve according to the present invention includes a displaceable valve body, a valve seat surface that contacts the valve body and seats fuel, and a valve seat surface side that contacts the valve body. In a fuel injection valve having a fuel injection hole provided on the downstream side of the seat position, the fuel passage formed on the downstream side of the seat position increases in the cross-sectional area of the fuel passage. The flow path cross-sectional area increasing portion has an upstream end located downstream from the center of the inlet opening surface of the fuel injection hole.

本発明によれば、閉弁過程において、粗大な燃料液滴の発生を低減することで、ガソリンエンジンの燃焼室壁面への燃料付着を低減する事ができる。これにより、排気性能を高めた内燃機関を実現する燃料噴射弁を提供することができる。   According to the present invention, it is possible to reduce fuel adhesion to the combustion chamber wall of a gasoline engine by reducing the generation of coarse fuel droplets in the valve closing process. Thereby, the fuel injection valve which implement | achieves the internal combustion engine which improved exhaust performance can be provided.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明に係る燃料噴射弁の実施例を示す断面図である。It is sectional drawing which shows the Example of the fuel injection valve which concerns on this invention. 本発明の第1実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is sectional drawing to which the vicinity of the valve body front-end | tip and fuel injection hole of the fuel injection valve which concerns on 1st Example of this invention was expanded. 本発明の第1実施例との比較例に係り、弁体先端及び燃料噴射孔の近傍を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of the vicinity of a valve body tip and a fuel injection hole according to a comparative example with the first embodiment of the present invention. 図2及び図3の弁座面上の任意の位置における流路断面積の関係を示した図である。It is the figure which showed the relationship of the flow-path cross-sectional area in the arbitrary positions on the valve-seat surface of FIG.2 and FIG.3. 本発明の第1実施例に係る燃料流れを説明するための図であり、燃料噴射弁の弁座面を燃料流れの上流側から見た図である。It is a figure for demonstrating the fuel flow which concerns on 1st Example of this invention, and is the figure which looked at the valve seat surface of the fuel injection valve from the upstream of the fuel flow. 本発明の第1実施例に係る燃料流れを説明するための図であり、燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is a figure for demonstrating the fuel flow which concerns on 1st Example of this invention, and is sectional drawing to which the vicinity of the valve body front-end | tip of a fuel injection valve and a fuel injection hole was expanded. 流路断面積拡大部を持たない燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is sectional drawing which expanded the vicinity of the valve body front-end | tip of a fuel injection valve which does not have a flow-path cross-sectional area expansion part, and a fuel injection hole. 図6及び図7の弁座面上の任意の位置における流路断面積の関係を示した図である。It is the figure which showed the relationship of the flow-path cross-sectional area in the arbitrary positions on the valve-seat surface of FIG.6 and FIG.7. 本発明の第1実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is sectional drawing to which the vicinity of the valve body front-end | tip and fuel injection hole of the fuel injection valve which concerns on 1st Example of this invention was expanded. 本発明の第2実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is sectional drawing to which the vicinity of the valve body front-end | tip and fuel injection hole of the fuel injection valve which concerns on 2nd Example of this invention was expanded. 本発明の第2実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。It is sectional drawing to which the vicinity of the valve body front-end | tip and fuel injection hole of the fuel injection valve which concerns on 2nd Example of this invention was expanded.

以下、本発明に係る実施例を説明する。以下の説明において、上下方向或いは上下方向における位置は、図1の紙面上における上下方向或いは上下方向における位置に基づいて定義される。この上下方向或いは上下方向における位置は燃料噴射弁の実装状態における上下方向或いは上下方向における位置を意味するものではない。   Examples according to the present invention will be described below. In the following description, the position in the vertical direction or the vertical direction is defined based on the position in the vertical direction or the vertical direction on the paper surface of FIG. This vertical direction or the position in the vertical direction does not mean the vertical direction or the vertical position in the mounted state of the fuel injection valve.

本発明の第1の実施例に係わる燃料噴射弁について、図1乃至図9を用いて以下説明する。   A fuel injection valve according to a first embodiment of the present invention will be described below with reference to FIGS.

[燃料噴射弁の基本動作説明]
図1に、本発明に係る燃料噴射弁の一実施例の断面図を示す。図1では、燃料噴射弁の一例として、筒内直接噴射式のガソリンエンジン向けの電磁式燃料噴射弁100を示しているが、本発明の効果は、ポート噴射式のガソリンエンジン向けの電磁式燃料噴射弁や、ピエゾ素子や磁歪素子で駆動される燃料噴射弁においても有効である。
[Basic operation of fuel injection valve]
FIG. 1 shows a cross-sectional view of one embodiment of a fuel injection valve according to the present invention. In FIG. 1, as an example of the fuel injection valve, an in-cylinder direct injection type electromagnetic fuel injection valve 100 for a gasoline engine is shown, but the effect of the present invention is an electromagnetic fuel for a port injection type gasoline engine. It is also effective in a fuel injection valve driven by an injection valve, a piezo element or a magnetostrictive element.

図1において、燃料は燃料供給口112から供給され、燃料噴射弁100の内部に供給される。図1に示す電磁式燃料噴射弁100は、通常時閉型の電磁駆動式であって、コイル108に通電がないときには、弁体101がスプリング110によって付勢されてシート部材102に押し付けられ、燃料がシールされるようになっている。このとき、筒内噴射用燃料噴射弁では、供給される燃料圧力がおよそ1MPa乃至50MPaの範囲である。   In FIG. 1, the fuel is supplied from the fuel supply port 112 and supplied into the fuel injection valve 100. The electromagnetic fuel injection valve 100 shown in FIG. 1 is a normally closed electromagnetic drive type, and when the coil 108 is not energized, the valve body 101 is urged by the spring 110 and pressed against the seat member 102. The fuel is sealed. At this time, in the in-cylinder fuel injection valve, the supplied fuel pressure is in the range of about 1 MPa to 50 MPa.

図2に、第1実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図を示す。   FIG. 2 shows an enlarged cross-sectional view of the vicinity of the tip of the fuel injection valve and the fuel injection hole of the fuel injection valve according to the first embodiment.

電磁式燃料噴射弁100が閉弁状態にあるときには、弁体101はその先端部がノズル体104に溶接などで接合されたシート部材102に設けられた円錐面からなる弁座面203と当接することによって、燃料のシールを保つようになっている。このとき、弁体101側の接触部(弁体側当接部202)は略球面状に形成された球面部位202aによって形成されており、円錐面状の弁座面203と球面状の弁体側当接部202との接触はほぼ線接触の状態になっている。球面状の弁体側当接部202は、弁体101の軸心方向(弁軸心方向)に沿う断面において、少なくとも弁座面203との弁体側当接部202を含む部分が円弧状に形成されており、その円弧状を含む曲面で形成された凸状部が弁体101の先端部に周方向に沿って環状(リング状)を成すように形成されている。尚、本実施例においては、弁体の軸心は燃料噴射弁中心軸215と一致している。また、実線101aは開弁状態における弁体101の位置、点線101bは閉弁状態における弁体101の位置を表している。   When the electromagnetic fuel injection valve 100 is in the closed state, the valve body 101 comes into contact with a valve seat surface 203 formed of a conical surface provided on the seat member 102 whose tip is joined to the nozzle body 104 by welding or the like. As a result, the fuel seal is maintained. At this time, the contact part (valve element side contact part 202) on the valve element 101 side is formed by a spherical portion 202a formed in a substantially spherical shape, and a conical valve seat surface 203 and a spherical valve element side contact are formed. The contact with the contact portion 202 is almost in a line contact state. The spherical valve body-side contact portion 202 has an arcuate shape at least including the valve body-side contact portion 202 with the valve seat surface 203 in a cross section along the axial direction (valve axial direction) of the valve body 101. The convex part formed by the curved surface including the circular arc shape is formed in the tip part of the valve body 101 so as to form a ring (ring shape) along the circumferential direction. In this embodiment, the axis of the valve body coincides with the fuel injection valve central axis 215. The solid line 101a represents the position of the valve body 101 in the valve open state, and the dotted line 101b represents the position of the valve body 101 in the valve closed state.

図1に示したコネクタ111を介してコイル108に通電されると、電磁弁の磁気回路を構成するコア(固定コア)107、ヨーク109、アンカー(可動コア)106に磁束密度を生じる。開弁状態においては、コア107とアンカー106の相互に対向する端面(コア107の下端面及びアンカー106の上端面)の間には間隙g(図1参照)が設けられている。磁気回路に磁束密度を生じることにより、間隙gを介してコア107とアンカー106との間に磁気吸引力を生じる。磁気吸引力が、スプリング110の付勢力と前述の燃料圧力による力よりも大きくなると、弁体101はガイド部材103及び弁体ガイド105にガイドされながらアンカー106によってコア107側に吸引され、開弁状態となる。   When the coil 108 is energized via the connector 111 shown in FIG. 1, magnetic flux density is generated in the core (fixed core) 107, the yoke 109, and the anchor (movable core) 106 constituting the magnetic circuit of the electromagnetic valve. In the valve open state, a gap g (see FIG. 1) is provided between the mutually facing end surfaces of the core 107 and the anchor 106 (the lower end surface of the core 107 and the upper end surface of the anchor 106). By generating a magnetic flux density in the magnetic circuit, a magnetic attractive force is generated between the core 107 and the anchor 106 through the gap g. When the magnetic attraction force becomes larger than the force by the urging force of the spring 110 and the aforementioned fuel pressure, the valve body 101 is attracted to the core 107 side by the anchor 106 while being guided by the guide member 103 and the valve body guide 105 to open the valve. It becomes a state.

開弁状態になると、弁座面203と弁体101の弁体側当接部202との間に隙間St(ストローク)を生じ、燃料の噴射が開始される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換されて燃料噴射孔201に至り噴射される。なお、隙間Stは間隙gに等しい。   When the valve is opened, a gap St (stroke) is generated between the valve seat surface 203 and the valve element side contact portion 202 of the valve element 101, and fuel injection is started. When fuel injection is started, the energy given as the fuel pressure is converted into kinetic energy and injected into the fuel injection hole 201. The gap St is equal to the gap g.

[弁体と弁座面との間の燃料流路における特徴の説明]
次に、弁体101の詳細形状について図2乃至図4を用いて説明する。
[Description of characteristics in fuel flow path between valve body and valve seat surface]
Next, the detailed shape of the valve body 101 will be described with reference to FIGS.

図2に示すように、シート部材102は、弁体側当接部202と当接する点(弁座面側当接部)204を有する弁座面203と、複数の燃料噴射孔201とを有している。弁体側当接部202は弁体側シート部、また弁座面側当接部204は弁座面側シート部と呼ぶ場合もある。   As shown in FIG. 2, the seat member 102 includes a valve seat surface 203 having a point (valve seat surface side contact portion) 204 that contacts the valve body side contact portion 202, and a plurality of fuel injection holes 201. ing. The valve body side contact portion 202 may be referred to as a valve body side seat portion, and the valve seat surface side contact portion 204 may be referred to as a valve seat surface side seat portion.

弁体101は、弁座面203と当接する弁体側当接部202を有する球面部位202aと、円錐面(テーパー面)205と、弁体先端面206より構成されている。弁体先端面206は円錐面205に対して弁体101の先端側(アンカー106とは反対側)にあり、円錐面205は球面部位202aに対して弁体101の先端側にある。すなわち、燃料の流れる方向において、上流側から下流側に向かって、球面部位202a、円錐面205、弁体先端面206の順に配置されている。   The valve body 101 includes a spherical surface portion 202 a having a valve body side contact portion 202 that contacts the valve seat surface 203, a conical surface (tapered surface) 205, and a valve body front end surface 206. The valve body front end surface 206 is on the front end side of the valve body 101 with respect to the conical surface 205 (the side opposite to the anchor 106), and the conical surface 205 is on the front end side of the valve body 101 with respect to the spherical portion 202a. That is, in the fuel flow direction, the spherical portion 202a, the conical surface 205, and the valve element front end surface 206 are arranged in this order from the upstream side toward the downstream side.

図3に、本実施例(図2)との比較例を示す。なお、図3では、図2と同様に、弁体先端及び燃料噴射孔の近傍を拡大した断面図を示している。図3において図2と同一の番号が割り付けられているものは、本実施例と同一の機能、構成及び効果を有するものである。   FIG. 3 shows a comparative example with the present embodiment (FIG. 2). In addition, in FIG. 3, the cross-sectional view which expanded the vicinity of a valve body front-end | tip and a fuel-injection hole similarly to FIG. 2 is shown. 3 having the same numbers as those in FIG. 2 have the same functions, configurations and effects as those of the present embodiment.

図3の構成では、開弁状態において、弁座面203上の点Aから点Dに向って、更には点Dから下流側に向かって、弁体501と弁座面203との間隔が広くなるように構成されている。このため、比較例では、弁座面203上の点Aから点Dの下流側に向かって、流路断面積が漸増するように構成されている。なお、点Dは燃料噴射孔201の入口開口面と燃料噴射孔中心軸216との交点である。   In the configuration of FIG. 3, in the valve open state, the distance between the valve body 501 and the valve seat surface 203 is wide from the point A on the valve seat surface 203 toward the point D and further from the point D toward the downstream side. It is comprised so that it may become. For this reason, in the comparative example, the flow path cross-sectional area is configured to gradually increase from the point A on the valve seat surface 203 toward the downstream side of the point D. Point D is the intersection of the inlet opening surface of the fuel injection hole 201 and the fuel injection hole central axis 216.

図4は、開弁時(例えば、フルストローク時)における、弁座面上の各位置における燃料の流路断面積の変化の様子を示した図である。流路断面積は次のように定義している。例えば弁体101の点A’から弁座面203に対して垂直となるように引いた線分と、弁座面203との交点をAとする。点Aにおける、燃料噴射弁中心軸215からの距離(半径)をRAとし、燃料噴射孔開口形成面(本実施例では弁座面と同じ)203に対して垂直方向の、燃料噴射孔開口形成面203と弁体101との隙間をhAとするとき、2・π・RA・hAを点Aにおける流路断面積とする。以下、弁座面203の各位置における流路断面積は上記と同様の方法で求めるとする。実線401が図2の実施例の流路断面積と弁座面位置との関係、点線402が図3の比較例の流路断面積と弁座面位置との関係を表している。   FIG. 4 is a diagram illustrating a change in the flow path cross-sectional area of the fuel at each position on the valve seat surface when the valve is opened (for example, at the time of a full stroke). The channel cross-sectional area is defined as follows. For example, let A be the intersection of the valve seat surface 203 and the line segment drawn from the point A ′ of the valve body 101 so as to be perpendicular to the valve seat surface 203. The distance (radius) from the fuel injection valve central axis 215 at the point A is RA, and the fuel injection hole opening is formed in a direction perpendicular to the fuel injection hole opening forming surface (same as the valve seat surface in this embodiment) 203. When the gap between the surface 203 and the valve body 101 is hA, 2 · π · RA · hA is the flow path cross-sectional area at the point A. Hereinafter, it is assumed that the channel cross-sectional area at each position of the valve seat surface 203 is obtained by the same method as described above. The solid line 401 represents the relationship between the flow path cross-sectional area and the valve seat surface position of the embodiment of FIG. 2, and the dotted line 402 represents the relationship between the flow path cross-sectional area and the valve seat surface position of the comparative example of FIG.

図2を用いて、本実施例における弁体形状の特徴を説明する。開弁状態の弁体位置101aを表す実線で示すように、弁体101の球面部位202aは円錐面205と点A’で接続されている。燃料噴射弁中心軸215から垂直に円錐面205に引いた線分を、円錐面205を形成する円錐の半径とすると、この半径は、弁座面203と弁体101との間に形成される燃料の流路断面積が弁座面203の上流側から下流側に向かって減少するように決定される。円錐面205は弁体先端面206と点C’で接続している。弁体101が閉弁状態(図2の点線101b)にあるときに、点C’は燃料噴射孔中心軸216と弁体101とが交わる交点D’上、或いはこの交点D’よりも下流側(弁体先端側)に位置するようにする。弁体先端面206は円錐面205に対して凹状の面として形成されている。すなわち、弁体先端面206は燃料の流路断面積を増加させるために、弁体101の内側に凹むような形状となる。本実施例では、弁体101の凹部の開始位置は、閉弁状態の弁体101の位置101bと燃料噴射孔中心軸216とが交わる交点D’としている。つまり実線101a上にある点C’と点線101b上にある点D’は、それぞれ開弁状態と閉弁状態における同じ点を表している。   The characteristic of the valve body shape in a present Example is demonstrated using FIG. As indicated by the solid line representing the valve body position 101a in the valve open state, the spherical surface portion 202a of the valve body 101 is connected to the conical surface 205 at a point A ′. When a line segment perpendicularly drawn from the fuel injection valve central axis 215 to the conical surface 205 is a radius of the cone forming the conical surface 205, this radius is formed between the valve seat surface 203 and the valve body 101. The flow path cross-sectional area of the fuel is determined so as to decrease from the upstream side to the downstream side of the valve seat surface 203. The conical surface 205 is connected to the valve body distal end surface 206 at a point C ′. When the valve body 101 is in the closed state (dotted line 101b in FIG. 2), the point C ′ is on the intersection D ′ where the fuel injection hole central axis 216 and the valve body 101 intersect or on the downstream side of the intersection D ′. Position it on the valve body tip side. The valve body front end surface 206 is formed as a concave surface with respect to the conical surface 205. That is, the valve body front end surface 206 is shaped to be recessed inside the valve body 101 in order to increase the cross-sectional area of the fuel flow path. In the present embodiment, the starting position of the concave portion of the valve body 101 is an intersection D ′ where the position 101 b of the valve body 101 in the closed state and the fuel injection hole central axis 216 intersect. That is, the point C ′ on the solid line 101a and the point D ′ on the dotted line 101b represent the same points in the valve open state and the valve closed state, respectively.

上述した弁体先端の凹状の面206は、弁座面側のシート位置の下流側に形成される燃料流路に設けられ、下流側に向かって断面積が増加する流路断面積増加部を構成する。弁座面203に垂直な面を流路断面としているので、流路断面積増加部206は、上流側の端部が燃料噴射孔201の入口開口面の中心から下流側に位置し、燃料噴射孔201の入口開口縁の最も下流側に位置する部分よりも上流側に位置することになる。そして、流路断面積増加部は弁座面203と弁体101の凹部206とにより構成されている。   The concave surface 206 at the tip of the valve body described above is provided in a fuel flow path formed on the downstream side of the seat position on the valve seat surface side, and has a flow path cross-sectional area increasing portion whose cross-sectional area increases toward the downstream side. Configure. Since the surface perpendicular to the valve seat surface 203 is a flow path cross section, the flow path cross-sectional area increasing portion 206 has an upstream end located downstream from the center of the inlet opening surface of the fuel injection hole 201 and fuel injection. The hole 201 is positioned upstream of the most downstream portion of the inlet opening edge. The flow passage cross-sectional area increasing portion is constituted by the valve seat surface 203 and the concave portion 206 of the valve body 101.

開弁状態における燃料の流路断面積の変化について、図2、図3及び図4を用いて説明する。なお、図4において、実線401は本実施例(図2)における流路断面積の変化を表し、点線402は比較例の流路断面積の変化を表している。   The change in the flow path cross-sectional area of the fuel in the valve open state will be described with reference to FIGS. 2, 3, and 4. In FIG. 4, a solid line 401 represents a change in the channel cross-sectional area in the present example (FIG. 2), and a dotted line 402 represents a change in the channel cross-sectional area of the comparative example.

弁座面側当接部204から球面部位202aと円錐面205との接続点Aまでは、流路断面積は増加する。点Aから弁体凹部206の開始点に対応する点Cまでは、比較例(点線402)では流路断面積が増加し、本実施例(実線401)では流路断面積が減少する。そして点Cにおいて、流路断面積が減少から増加に転じる。   From the valve seat surface side contact portion 204 to the connection point A between the spherical surface portion 202a and the conical surface 205, the flow path cross-sectional area increases. From point A to point C corresponding to the starting point of the valve body recess 206, the flow path cross-sectional area increases in the comparative example (dotted line 402), and the flow path cross-sectional area decreases in the present embodiment (solid line 401). At point C, the flow path cross-sectional area starts from decreasing to increasing.

すなわち、弁座面側のシート位置の下流側に形成される燃料流路は、流路断面積増加部206の上流側に、下流側に向かって断面積が漸減する流路断面積漸減部を有する。この流路断面積漸減部は、弁体101側に形成された円錐面205と、弁座面203を形成する円錐面とにより、構成されている。   That is, the fuel flow path formed on the downstream side of the seat position on the valve seat surface side has a flow path cross-sectional area gradually decreasing portion that gradually decreases toward the downstream side on the upstream side of the flow path cross-sectional area increasing portion 206. Have. The channel cross-sectional area gradually decreasing portion is constituted by a conical surface 205 formed on the valve body 101 side and a conical surface forming the valve seat surface 203.

また、点Cにおいては、開弁時(フルストローク時)の弁座面側当接部204における流路断面積よりも大きな隙間hCとすることで、噴射量は弁座面側当接部204における隙間Stによって調整することが可能となる。本実施例の燃料噴射弁は、このような流路断面積の変化を特徴として備えている。なお、本実施例では、点Cにおいて流路断面積が減少から増減に転じているが、減少から増減に転じる位置は点Cよりも下流側であってもよく、燃料噴射孔201の入口開口縁の最下流側位置Eよりも上流側であることが好ましい。   Further, at the point C, the injection amount is set to a clearance hC larger than the flow path cross-sectional area of the valve seat surface side contact portion 204 at the time of valve opening (at the time of full stroke). It is possible to adjust by the gap St. The fuel injection valve of the present embodiment is characterized by such a change in the flow path cross-sectional area. In the present embodiment, the flow path cross-sectional area is changed from decrease to increase / decrease at the point C, but the position where the flow passage changes from decrease to increase / decrease may be downstream of the point C, and the inlet opening of the fuel injection hole 201 It is preferable that it is upstream from the most downstream position E of the edge.

[ストロークの影響]
弁座面203と弁体101との間に形成される流路断面積は弁体101のストローク(St)によって変化する。例えば、ストロークの値によっては、弁座面側当接部204における流路断面積と点Cにおける流路断面積とにおいて、大小関係が逆転することがある。
[Stroke effect]
The cross-sectional area of the flow path formed between the valve seat surface 203 and the valve body 101 varies depending on the stroke (St) of the valve body 101. For example, depending on the value of the stroke, the magnitude relationship may be reversed between the flow path cross-sectional area at the valve seat surface side contact portion 204 and the flow path cross-sectional area at the point C.

例えば圧電素子等を用いて弁体を任意のストローク位置で開弁維持できる燃料噴射弁にあっては、燃料の流れる方向において流路断面積が図4の実線401のような傾向となるように、ストローク位置をフルストローク(最大ストローク)までの間で任意に選択して、円錐面205の形状と弁体先端面206(凹部)の形状とを設計できる。また、弁体を任意のストローク位置で開弁維持できない構成の燃料噴射弁にあっては、ストローク量を決めるストッパによって弁体の変位が規制された状態(フルストロークの状態)において、流路断面積が図4の実線401のような傾向となるように、円錐面205の形状と弁体先端面206の形状とを設計すればよい。   For example, in a fuel injection valve in which a valve element can be maintained open at an arbitrary stroke position using a piezoelectric element or the like, the flow path cross-sectional area tends to be as shown by a solid line 401 in FIG. The shape of the conical surface 205 and the shape of the valve body tip surface 206 (concave portion) can be designed by arbitrarily selecting the stroke position up to the full stroke (maximum stroke). In addition, in the case of a fuel injection valve having a structure in which the valve body cannot be maintained open at an arbitrary stroke position, the flow path is cut off in a state where the displacement of the valve body is regulated by a stopper that determines the stroke amount (full stroke state). What is necessary is just to design the shape of the conical surface 205 and the shape of the valve body front end surface 206 so that the area tends to be a solid line 401 in FIG.

本発明に係る実施例においては、燃料噴射弁の使用条件となるストローク量において、弁座面203と弁体101との間に形成される流路断面積の増減が、図4の点Aから点Dに示すような状態となるように設計することが求められる。   In the embodiment according to the present invention, the increase / decrease in the cross-sectional area of the flow path formed between the valve seat surface 203 and the valve body 101 is increased from the point A in FIG. It is required to design so as to be in a state as indicated by the point D.

[流れ及び効果の説明]
上記のように弁体101及び燃料噴射孔201を構成したことによる作用効果を、図4乃至図9を用いて説明する。
[Description of flow and effects]
The operation and effect obtained by configuring the valve body 101 and the fuel injection hole 201 as described above will be described with reference to FIGS.

図5に、燃料噴射弁の弁座面を燃料流れの上流側から見た図を示す。図5において、210a、210b、210c及び210dは燃料流れを示す。また、図5では、燃料噴射孔210として、2つの燃料噴射孔201a,201bを描いている。   FIG. 5 shows a view of the valve seat surface of the fuel injection valve as seen from the upstream side of the fuel flow. In FIG. 5, 210a, 210b, 210c and 210d indicate fuel flow. In FIG. 5, two fuel injection holes 201 a and 201 b are drawn as the fuel injection holes 210.

図5の燃料流れ(例えば210aや210b)に示すように、上流から流れてきた燃料は各燃料噴射孔201a,201bの上流側から各燃料噴射孔201a,201bへ流入する。燃料の一部(例えば210cや210d)は弁体101の先端側に一度集まってから、流れの方向を変えて、燃料噴射孔201a,201bの下流側から各燃料噴射孔201a,201bへ流入する。弁座面203と弁体101の隙間が徐々に小さくなる閉弁過程においてもこの流れは同様であり、燃料噴射孔201a,201bの上流側から燃料噴射孔201a,201bへ流入する燃料210aの速度を落とさないことで、速度による燃料の空気せん断分裂を促進し、粗大な液滴を低減することができる。よって本実施例では、図4の実線401で示すように、点Aから点Cまでは流路断面積を減少させるように円錐面205の形状を決定している。   As shown in the fuel flow in FIG. 5 (for example, 210a and 210b), the fuel flowing from the upstream flows into the fuel injection holes 201a and 201b from the upstream side of the fuel injection holes 201a and 201b. A part of the fuel (for example, 210c and 210d) once gathers at the tip side of the valve body 101, and then changes the flow direction to flow into the fuel injection holes 201a and 201b from the downstream side of the fuel injection holes 201a and 201b. . This flow is similar in the valve closing process in which the gap between the valve seat surface 203 and the valve body 101 gradually decreases, and the speed of the fuel 210a flowing into the fuel injection holes 201a and 201b from the upstream side of the fuel injection holes 201a and 201b. By preventing the drop, the air shear splitting of the fuel due to the speed can be promoted, and coarse droplets can be reduced. Therefore, in this embodiment, as indicated by the solid line 401 in FIG. 4, the shape of the conical surface 205 is determined from point A to point C so as to reduce the flow path cross-sectional area.

次に弁体先端面206の凹み形状(断面積の増加)の効果について図6乃至図8を用いて説明する。   Next, the effect of the concave shape (increase in cross-sectional area) of the valve body distal end surface 206 will be described with reference to FIGS.

図6に、燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図を示す。図6は、本実施例に係る燃料流れを説明するための図である。   FIG. 6 shows an enlarged cross-sectional view of the vicinity of the tip of the fuel injection valve and the fuel injection hole. FIG. 6 is a diagram for explaining the fuel flow according to the present embodiment.

図6に示すように、燃料噴射孔201の上流側からは燃料310aが燃料噴射孔201に向かって流れている。このとき、燃料噴射孔201に流入する燃料流れは剥離領域212aを形成する。一方、燃料噴射孔201の下流側からは燃料310bが燃料噴射孔201に向かって流れる。このとき、燃料噴射孔201に流入する燃料流れは剥離領域212bを形成する。   As shown in FIG. 6, the fuel 310 a flows from the upstream side of the fuel injection hole 201 toward the fuel injection hole 201. At this time, the fuel flow flowing into the fuel injection hole 201 forms a separation region 212a. On the other hand, the fuel 310 b flows from the downstream side of the fuel injection hole 201 toward the fuel injection hole 201. At this time, the fuel flow flowing into the fuel injection hole 201 forms a separation region 212b.

図7に、流路断面積拡大部を持たない燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図を示す。   FIG. 7 shows an enlarged cross-sectional view of the vicinity of the tip of the fuel injection valve and the fuel injection hole of the fuel injection valve that does not have the flow passage cross-sectional area enlarged portion.

図7に示すように、燃料噴射孔201の上流側からは燃料410aが燃料噴射孔201に向かって流れている。このとき、燃料噴射孔201に流入する燃料流れは剥離領域212aを形成する。一方、燃料噴射孔201の下流側からは燃料410bが燃料噴射孔201に向かって流れる。このとき、燃料噴射孔201に流入する燃料流れは剥離領域312を形成する。   As shown in FIG. 7, the fuel 410 a flows from the upstream side of the fuel injection hole 201 toward the fuel injection hole 201. At this time, the fuel flow flowing into the fuel injection hole 201 forms a separation region 212a. On the other hand, the fuel 410 b flows from the downstream side of the fuel injection hole 201 toward the fuel injection hole 201. At this time, the fuel flow flowing into the fuel injection hole 201 forms a separation region 312.

図8に、図6及び図7の弁座面上の任意の位置における流路断面積の関係を示す。図8において、実線402は図6の場合の流路断面積を示し、点線403は図7の場合の流路断面積を示す。   FIG. 8 shows the relationship of the flow path cross-sectional areas at arbitrary positions on the valve seat surface of FIGS. 6 and 7. In FIG. 8, the solid line 402 indicates the flow path cross-sectional area in the case of FIG. 6, and the dotted line 403 indicates the flow path cross-sectional area in the case of FIG. 7.

もし図7に示すように弁体先端面206の凹部がなかった場合、流路断面積の変化は図8の点線403で示すようになり、流路断面積の小さい燃料噴射孔201の下流側で、燃料の速度が大きくなる。よって図7に示すように燃料流れ410bは速度が大きく、噴射孔201に流入した場合、図6の剥離領域212bに対して大きな剥離領域312を形成することになる。   If there is no recess in the valve element front end face 206 as shown in FIG. 7, the change in the channel cross-sectional area becomes as shown by the dotted line 403 in FIG. 8, and the downstream side of the fuel injection hole 201 having a small channel cross-sectional area. As a result, the fuel speed increases. Therefore, as shown in FIG. 7, the fuel flow 410b has a high velocity, and when it flows into the injection hole 201, a large separation region 312 is formed with respect to the separation region 212b in FIG.

一方で、図6に示すような凹み形状206を設けることで、燃料噴射孔201の下流側において流路断面積を大きくすることができ、燃料の流速を小さくすることができる。これにより剥離の発生を抑制し、剥離領域212bを剥離領域312に対して小さくすることができる。これにより、閉弁過程の粗大液滴発生の低減が可能となる。   On the other hand, by providing the concave shape 206 as shown in FIG. 6, the cross-sectional area of the flow path can be increased on the downstream side of the fuel injection hole 201, and the flow velocity of the fuel can be decreased. Thereby, generation | occurrence | production of peeling can be suppressed and the peeling area | region 212b can be made small with respect to the peeling area | region 312. FIG. As a result, it is possible to reduce the generation of coarse droplets in the valve closing process.

本実施例では、円錐面205と弁座面203との間に形成される燃料の流路断面積を上流側から下流側に向けて漸減させており、開弁時の流量係数の増大により、開弁時の微粒化を促進することができる。これにより、本実施例では、開弁時の微粒化の促進と、閉弁過程の粗大液滴発生の低減との両立が可能となる。   In this embodiment, the flow path cross-sectional area of the fuel formed between the conical surface 205 and the valve seat surface 203 is gradually decreased from the upstream side toward the downstream side, and the flow rate coefficient at the time of valve opening increases. Atomization at the time of valve opening can be promoted. As a result, in this embodiment, it is possible to promote both atomization at the time of valve opening and reduction of generation of coarse droplets during the valve closing process.

図9を用いて弁体先端面の凹部の開始点(流路断面積の増加開始点)の有効範囲について説明する。図9は、本実施例に係る燃料噴射弁の弁体先端及び燃料噴射孔の近傍を拡大した断面図である。また、図9は、閉弁状態を表している。   The effective range of the starting point of the concave portion of the valve element front end surface (starting point of increase in flow path cross-sectional area) will be described with reference to FIG. FIG. 9 is an enlarged cross-sectional view of the vicinity of the valve body tip and the fuel injection hole of the fuel injection valve according to the present embodiment. FIG. 9 shows a valve closing state.

凹部206の開始点は閉弁状態の円錐面205と弁体先端面206と燃料噴射孔201との位置関係で定義される。すなわち、凹部206の開始点は、図5で説明したように、閉弁過程を含む開弁時に燃料の多くは燃料噴射孔201の上流側から流入することを考慮して決定する必要がある。また凹部206の開始点は、図6及び図7で説明した噴射孔下流側から流入する燃料の燃料噴射孔201内での剥離低減を考慮する必要がある。従って、弁体先端面の凹部206の開始点は、燃料噴射孔中心軸216を基準とした点D’から下流側で燃料噴射孔201の入口開口縁の最も下流側に位置する点(部分)Eに対応した点E’よりも上流側の範囲217にあることが望ましい。点E’は点Eから弁座面203に垂直に引いた線分と弁体101とが交わる交点である。   The starting point of the recess 206 is defined by the positional relationship among the conical surface 205 in the valve-closed state, the valve element front end surface 206 and the fuel injection hole 201. That is, as described with reference to FIG. 5, the starting point of the recess 206 needs to be determined in consideration of the fact that most of the fuel flows from the upstream side of the fuel injection hole 201 when the valve is opened including the valve closing process. Further, the starting point of the recess 206 needs to take into account the reduction in separation of the fuel flowing in from the downstream side of the injection hole described in FIGS. 6 and 7 in the fuel injection hole 201. Therefore, the starting point of the recess 206 on the front end surface of the valve body is a point (part) located on the most downstream side of the inlet opening edge of the fuel injection hole 201 downstream from the point D ′ with reference to the fuel injection hole central axis 216. It is desirable to be in the range 217 upstream of the point E ′ corresponding to E. A point E ′ is an intersection where a line segment perpendicular to the valve seat surface 203 from the point E intersects with the valve body 101.

これにより形成される弁体先端面206は、凹部の開始点が最も上流側にある場合は点線206aで示すような形状となり、凹部の開始点が最も下流側にある場合は実線206bで示すような形状となる。また、上記の弁体先端面の凹部206の開始点は、複数ある燃料噴射孔201のうち噴射孔中心が最も下流側にある燃料噴射孔を基準として定義される。   The valve element front end surface 206 formed thereby has a shape as indicated by a dotted line 206a when the start point of the recess is at the most upstream side, and is indicated by a solid line 206b when the start point of the recess is at the most downstream side. Shape. Further, the starting point of the recess 206 on the front end surface of the valve body is defined with reference to the fuel injection hole with the center of the injection hole being the most downstream among the plurality of fuel injection holes 201.

[その他]
本実施例において、燃料噴射孔201は円筒状の場合を説明したが、燃料噴射孔201が出口に向かい直線的または曲率を有し拡大縮小する場合においても、同様の作用効果が得られ、本発明の効果が損なわれるものではない。また、本実施例において弁座面203及び弁体101の一部は円錐形状として構成されているが、曲面を有していたとしても、燃料の流路断面積と弁座面203との位置関係が本実施例の関係になっていれば、同様の作用効果を得られる。
[Others]
In the present embodiment, the case where the fuel injection hole 201 is cylindrical has been described. However, even when the fuel injection hole 201 is linear or curved toward the outlet and is enlarged or reduced, the same effect can be obtained. The effects of the invention are not impaired. Further, in this embodiment, the valve seat surface 203 and a part of the valve body 101 are configured in a conical shape. However, even if the valve seat surface 203 has a curved surface, the position of the fuel flow passage cross-sectional area and the valve seat surface 203 If the relationship is that of the present embodiment, the same effect can be obtained.

本発明の第2実施例に係わる燃料噴射弁について、図10及び図11を用いて以下説明する。図10及び図11は本実施例における燃料噴射弁の弁体の構成を示す断面図であり、弁体先端及び燃料噴射孔の近傍を拡大した断面図である。図2と同一の番号が割り当てられているものは、第1実施例と同一もしくは同等の機能を有するものであり説明を省略する。   A fuel injection valve according to a second embodiment of the present invention will be described below with reference to FIGS. 10 and 11 are cross-sectional views showing the configuration of the valve body of the fuel injection valve in this embodiment, and are enlarged cross-sectional views of the vicinity of the valve body tip and the fuel injection hole. Those assigned the same numbers as in FIG. 2 have the same or equivalent functions as in the first embodiment, and will not be described.

第1実施例と異なる点は、弁体先端面206の形状である。第1実施例では弁体先端面206を凹み形状としたが、図10や図11に示すような曲面形状206cや弁体先端部を平面でカットした形状206dとしても、流路断面積が第1実施例で説明した条件を満たしていれば、有効である。すなわち、本実施例では、下流側に向かって断面積が増加する流路断面積増加部は曲面形状206cや弁体先端部を平面でカットした形状206dによって構成される。その他の構成については、第1実施例と同様である。   The difference from the first embodiment is the shape of the valve body distal end surface 206. In the first embodiment, the valve body tip surface 206 has a concave shape, but the cross-sectional area of the flow path is the same even when the curved surface shape 206c and the shape of the valve body tip portion 206d are cut as shown in FIGS. It is effective if the conditions described in one embodiment are satisfied. That is, in this embodiment, the flow passage cross-sectional area increasing portion whose cross-sectional area increases toward the downstream side is configured by the curved surface shape 206c or the shape 206d obtained by cutting the valve body tip portion with a flat surface. Other configurations are the same as those in the first embodiment.

[その他]
本実施例において、燃料噴射孔201は円筒状の場合を説明したが、燃料噴射孔201が出口に向かい直線的または曲率を有し拡大縮小する場合においても、同様の作用効果が得られ、本発明の効果が損なわれるものではない。また、本実施例において弁座面203及び弁体101の一部は円錐形状として構成されているが、曲面を有していたとしても、燃料の流路断面積と弁座面203との位置関係が本実施例の関係になっていれば、同様の作用効果を得られる。
[Others]
In the present embodiment, the case where the fuel injection hole 201 is cylindrical has been described. However, even when the fuel injection hole 201 is linear or curved toward the outlet and is enlarged or reduced, the same effect can be obtained. The effects of the invention are not impaired. Further, in this embodiment, the valve seat surface 203 and a part of the valve body 101 are configured in a conical shape. However, even if the valve seat surface 203 has a curved surface, the position of the fuel flow passage cross-sectional area and the valve seat surface 203 If the relationship is that of the present embodiment, the same effect can be obtained.

本発明に係る各実施例によれば、開弁時に、気化し易い、微粒化された燃料噴霧を筒内に直接噴射でき、さらに噴射終了時の閉弁過程においても、粗大な液滴の発生を低減することができる。すなわち、本発明に係る各実施例によれば、開弁時においては燃料噴射弁から噴射される噴霧の微粒化を促進しつつ、閉弁過程においては粗大な燃料液滴の発生を低減することで、ガソリンエンジンの燃焼室内の壁面への燃料付着を低減する事ができ、排気性能を高めた内燃機関を実現する燃料噴射弁を提供できる。   According to each embodiment of the present invention, atomized fuel spray, which is easily vaporized when the valve is opened, can be directly injected into the cylinder, and the generation of coarse droplets is also performed during the valve closing process at the end of injection. Can be reduced. That is, according to each embodiment of the present invention, the atomization of the spray injected from the fuel injection valve is promoted when the valve is opened, and the generation of coarse fuel droplets is reduced during the valve closing process. Thus, it is possible to provide a fuel injection valve that can reduce the adhesion of fuel to the wall surface of the combustion chamber of the gasoline engine and realize an internal combustion engine with improved exhaust performance.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

100…電磁式燃料噴射弁
101、501、601、701、801…弁体
101a、501a…開弁状態の弁体位置
101b、501b…閉弁状態の弁体位置
102…シート部材
103…ガイド部材
104…ノズル体
105…弁体ガイド
106…アンカー
107…コア
108…コイル
109…ヨーク
110…スプリング
111…コネクタ
112…燃料供給口
201、201a、201b…燃料噴射孔
202…弁体側当接部
202a…球面部位
203、303…弁座面
204…弁座面側当接部
205、505…弁体の円錐面
206、206a、206b、206c、206d…弁体先端面
210a、210b、210c、210d、310a、310b、410a、410b…燃料流れ
212、312…燃料剥離領域
215…燃料噴射弁中心軸
216…燃料噴射孔中心軸
217…流路断面積の増加開始点の有効範囲
401、402、403…位置と流路断面積の関係
DESCRIPTION OF SYMBOLS 100 ... Electromagnetic fuel injection valve 101,501,601,701,801 ... Valve body 101a, 501a ... Valve body position 101b, 501b of a valve opening state ... Valve body position 102 of a valve closing state ... Seat member 103 ... Guide member 104 ... Nozzle body 105 ... Valve body guide 106 ... Anchor 107 ... Core 108 ... Coil 109 ... Yoke 110 ... Spring 111 ... Connector 112 ... Fuel supply port 201, 201a, 201b ... Fuel injection hole 202 ... Valve body side contact part 202a ... Spherical surface Site 203, 303 ... Valve seat surface 204 ... Valve seat surface side contact portion 205, 505 ... Conical surface 206, 206a, 206b, 206c, 206d of valve body ... Valve body tip surface 210a, 210b, 210c, 210d, 310a, 310b, 410a, 410b ... Fuel flow 212, 312 ... Fuel separation region 215 ... Fuel injection valve center 216 ... fuel injection hole central axis 217 ... scope of increasing the starting point of the channel cross-sectional area 401, 402, 403 ... position and the flow path cross-sectional area relationship

Claims (5)

変位可能な弁体と、前記弁体と当接して燃料をシートする弁座面と、前記弁体が当接する弁座面側のシート位置よりも下流側に設けられた燃料噴射孔とを有する燃料噴射弁において、
前記シート位置の下流側に形成される燃料流路は下流側に向かって断面積が増加する流路断面積増加部を有し、
前記流路断面積増加部は、上流側の端部が前記燃料噴射孔の入口開口面の中心から下流側に位置することを特徴とする燃料噴射弁。
A displaceable valve body; a valve seat surface that contacts the valve body and seats fuel; and a fuel injection hole provided downstream of a seat position on the valve seat surface side that contacts the valve body. In the fuel injection valve,
The fuel flow path formed on the downstream side of the seat position has a flow path cross-sectional area increasing portion whose cross-sectional area increases toward the downstream side,
In the fuel injection valve, the upstream end of the flow path cross-sectional area increasing portion is located downstream from the center of the inlet opening surface of the fuel injection hole.
請求項1に記載の燃料噴射弁において、
前記流路断面積増加部は、前記燃料噴射孔の入口開口縁の最も下流側に位置する部分よりも上流側に位置することを特徴とする燃料噴射弁。
The fuel injection valve according to claim 1, wherein
The flow passage cross-sectional area increasing portion is located on the upstream side of the portion located on the most downstream side of the inlet opening edge of the fuel injection hole.
請求項2に記載の燃料噴射弁において、
前記燃料流路は、前記流路断面積増加部の上流側に、下流側に向かって断面積が漸減する流路断面積漸減部を有することを特徴とする燃料噴射弁。
The fuel injection valve according to claim 2,
The fuel injection valve according to claim 1, wherein the fuel flow path has a flow path cross-sectional area gradually decreasing portion that gradually decreases in cross section toward the downstream side, upstream of the flow path cross-sectional area increasing portion.
請求項3に記載の燃料噴射弁において、
前記流路断面積漸減部は、前記弁体側に形成された円錐面と、前記弁座面を形成する円錐面とによって構成されることを特徴とする燃料噴射弁。
The fuel injection valve according to claim 3,
The flow passage cross-sectional area gradually decreasing portion is constituted by a conical surface formed on the valve body side and a conical surface forming the valve seat surface.
請求項4に記載の燃料噴射弁において、
前記流路断面積増加部は、前記弁体側に形成された円錐面に対して凹状に形成された凹部によって構成されることを特徴とする燃料噴射弁。
The fuel injection valve according to claim 4, wherein
The flow passage cross-sectional area increasing portion is constituted by a concave portion formed in a concave shape with respect to a conical surface formed on the valve body side.
JP2014240783A 2014-11-28 2014-11-28 Fuel injection valve Active JP6399910B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014240783A JP6399910B2 (en) 2014-11-28 2014-11-28 Fuel injection valve
PCT/JP2015/076831 WO2016084464A1 (en) 2014-11-28 2015-09-24 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240783A JP6399910B2 (en) 2014-11-28 2014-11-28 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2016102443A true JP2016102443A (en) 2016-06-02
JP6399910B2 JP6399910B2 (en) 2018-10-03

Family

ID=56074043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240783A Active JP6399910B2 (en) 2014-11-28 2014-11-28 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP6399910B2 (en)
WO (1) WO2016084464A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481566A (en) * 1990-07-23 1992-03-16 Nissan Motor Co Ltd Fuel injection nozzle for diesel engine
JP2001317433A (en) * 2000-02-29 2001-11-16 Denso Corp Fuel injection nozzle
JP2008045465A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel injection valve
JP2009275646A (en) * 2008-05-16 2009-11-26 Denso Corp Fuel injection nozzle
DE102011003930A1 (en) * 2011-02-10 2012-08-16 Continental Automotive Gmbh Register nozzle for emission of exhaust gas from combustion engine, has nozzle needle lifting hollow needle from nozzle body during preset stroke, and sealing seats arranged on inner side of nozzle body, where one seat surrounds other seat

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0481566A (en) * 1990-07-23 1992-03-16 Nissan Motor Co Ltd Fuel injection nozzle for diesel engine
JP2001317433A (en) * 2000-02-29 2001-11-16 Denso Corp Fuel injection nozzle
JP2008045465A (en) * 2006-08-11 2008-02-28 Toyota Motor Corp Fuel injection valve
JP2009275646A (en) * 2008-05-16 2009-11-26 Denso Corp Fuel injection nozzle
DE102011003930A1 (en) * 2011-02-10 2012-08-16 Continental Automotive Gmbh Register nozzle for emission of exhaust gas from combustion engine, has nozzle needle lifting hollow needle from nozzle body during preset stroke, and sealing seats arranged on inner side of nozzle body, where one seat surrounds other seat

Also Published As

Publication number Publication date
JP6399910B2 (en) 2018-10-03
WO2016084464A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
US6042028A (en) Direct injection fuel injector spray nozzle and method
JP5933720B2 (en) Fuel injection valve
WO2013018135A1 (en) Fuel injection valve
JP2002500308A (en) Flat needle of pressurized vortex fuel injector
JP2010508468A (en) Fuel injection valve
JP5134063B2 (en) Fuel injection valve
EP2707592B1 (en) Fuel injector
JP2010038126A (en) Fuel injection valve
JP2008291738A (en) Fuel injection valve
JP6474694B2 (en) Fuel injection nozzle
JP6399910B2 (en) Fuel injection valve
JP6392689B2 (en) Fuel injection valve
JP6121870B2 (en) Atomization technology for fuel injectors
WO2018135263A1 (en) Fuel injection valve
JP2013160213A (en) Fuel injection valve
JP6501500B2 (en) Fuel injection valve
JP5631442B1 (en) Fuel injection valve
JP6899756B2 (en) Fuel injection valve
JP2017210890A (en) Flow rate regulation valve
US10677208B2 (en) Fuel injection device
JP6692220B2 (en) Fuel injection valve
JP5648539B2 (en) Fuel injection device
JP2015101978A (en) Fuel injection valve
JP2004308648A (en) Fuel injection valve
JP2006161732A (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350