JP2016101536A - Method of manufacturing phase change microcapsule having heat transfer skeleton layer - Google Patents

Method of manufacturing phase change microcapsule having heat transfer skeleton layer Download PDF

Info

Publication number
JP2016101536A
JP2016101536A JP2014239604A JP2014239604A JP2016101536A JP 2016101536 A JP2016101536 A JP 2016101536A JP 2014239604 A JP2014239604 A JP 2014239604A JP 2014239604 A JP2014239604 A JP 2014239604A JP 2016101536 A JP2016101536 A JP 2016101536A
Authority
JP
Japan
Prior art keywords
phase change
heat transfer
skeleton layer
microcapsule
change microcapsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014239604A
Other languages
Japanese (ja)
Other versions
JP5914622B1 (en
Inventor
石燕鳳
Yen Feng Shih
尤逸玄
Yi Hsiuan Yu
曾彦霖
Yen Lin Tseng
謝侯安
How An Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Chung Shan Institute of Science and Technology NCSIST
Original Assignee
National Chung Shan Institute of Science and Technology NCSIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Chung Shan Institute of Science and Technology NCSIST filed Critical National Chung Shan Institute of Science and Technology NCSIST
Priority to JP2014239604A priority Critical patent/JP5914622B1/en
Application granted granted Critical
Publication of JP5914622B1 publication Critical patent/JP5914622B1/en
Publication of JP2016101536A publication Critical patent/JP2016101536A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a phase change microcapsule having a heat transfer skeleton layer.SOLUTION: Widely used phase change microcapsule membrane materials are mostly organic polymer materials, a heat transfer coefficient of the organic polymer material is very low and the rate of heat transfer is inferior, though the membrane materials can prevent leakage of the phase change materials. The present invention relates to a method of manufacturing a phase change microcapsule having a heat transfer skeleton layer that adds a nano heat transfer material into the phase change microcapsule membrane material to increase the heat transfer coefficient. First, vinylsilane is polymerized with an acrylic monomer to generate a copolymer, and then an inorganic heat transfer material is added. Consequently, a phase change microcapsule having the phase change material as a core and the heat transfer material-containing copolymer as a skeleton is manufactured. Polar functional groups on the surface of the inorganic heat transfer material condense with the vinylsilane to form a chemical bond, and thus, compatibility between the heat transfer material and the copolymer is substantially increased. Consequently, the heat transfer material can be dispersed stably in a coating process by the microcapsules.SELECTED DRAWING: Figure 1

Description

本発明は相変化マイクロカプセルの膜材中にナノ伝熱材料を加える製造方法に関し、特に、相変化マイクロカプセルの膜材中に高伝熱性のナノ伝熱材料を加える製造方法に関する。まずビニルシランとアクリルモノマーを採用した重合で共重合体を生成した後、無機伝熱材料を加え、相変化材料を芯とし、伝熱材料を含む共重合体を骨格とした相変化マイクロカプセルを製造して、これにより伝熱骨格層を備えた相変化マイクロカプセルの製造という目的を達する。   The present invention relates to a manufacturing method of adding a nano heat transfer material into a film material of phase change microcapsules, and more particularly to a manufacturing method of adding a highly heat transfer nano heat transfer material into a film material of phase change microcapsules. First, a copolymer is produced by polymerization using vinyl silane and acrylic monomer, and then an inorganic heat transfer material is added to produce phase change microcapsules with the phase change material as the core and the copolymer containing the heat transfer material as the skeleton. Thus, the objective of producing phase change microcapsules with a heat transfer skeleton layer is achieved.

既知の通り、相変化材料(Phase change materials、PCM)は固相から液相に、または液相から固相に変化可能な物質であり、かつ相変化の発生時に大量の潜熱の吸収または放出を伴い、相変化材料の最大の特徴は、それが大量の潜熱を吸収または放出するとき、システムの温度を変化なく、または小さい変化範囲で維持できることにある。一般に相変化材料を応用するときは、その相変化時により多くの熱を吸収または放出できる潜熱値が比較的大きい相変化材料を選択することで、よりよい効果が得られる。しかし、相変化材料を直接応用すると、相変化の過程で溶融のために材料の漏洩及び損失が発生し、材料の使用寿命が短縮される。マイクロカプセルは微量の物質を骨格層とする方式で別の材料の表面を包み込む技術であり、マイクロカプセル技術を利用することで、相変化材料の溶融時に生じる体積変化と材料漏洩の問題を回避することができる。このほか、マイクロカプセル化後の材料は粒径が小さく、比表面積が大きいため、より大きな伝熱面積を提供する。   As is known, phase change materials (PCM) are substances that can change from the solid phase to the liquid phase, or from the liquid phase to the solid phase, and absorb or release a large amount of latent heat when the phase change occurs. Accordingly, the greatest feature of a phase change material is that when it absorbs or releases a large amount of latent heat, the temperature of the system can be kept unchanged or in a small range of change. In general, when a phase change material is applied, a better effect can be obtained by selecting a phase change material having a relatively large latent heat value that can absorb or release more heat during the phase change. However, if the phase change material is applied directly, leakage and loss of the material occur due to melting in the process of phase change, and the service life of the material is shortened. Microcapsule is a technology that envelops the surface of another material by using a small amount of substance as a skeletal layer. By using microcapsule technology, the problem of volume change and material leakage that occurs when the phase change material melts is avoided. be able to. In addition, since the material after microencapsulation has a small particle size and a large specific surface area, it provides a larger heat transfer area.

しかしながら、マイクロカプセル膜材は多くが有機高分子材料であり、その熱伝達係数が非常に低いため、膜材は相変化材料の漏洩を防止することはできるものの、熱の伝達速度を低下させてしまう。   However, many of the microcapsule membrane materials are organic polymer materials, and their heat transfer coefficient is very low, so the membrane materials can prevent the leakage of phase change materials, but reduce the heat transfer rate. End up.

従来のマイクロカプセル膜材の熱伝達係数が非常に低く、熱の伝達速度が低下する問題を解決するため、本発明の目的は、伝熱骨格層を備えた相変化マイクロカプセルの製造方法を提供することにある。   In order to solve the problem that the heat transfer coefficient of the conventional microcapsule membrane material is very low and the heat transfer rate is lowered, an object of the present invention is to provide a method of manufacturing a phase change microcapsule having a heat transfer skeleton layer There is to do.

上述の目的及びその他の目的を達するため、本発明の伝熱骨格層を備えた相変化マイクロカプセルの製造方法は、膜材中にナノ伝熱材料を加えることでその熱伝達係数を高め、相変化材料の熱の放出または吸収を加速し、効果的な伝熱、放熱、エネルギー貯蔵等の効果を達するとともに、まずビニルシランとアクリルモノマーを重合して共重合体を生成した後、ナノ伝熱材を加えると、ナノ伝熱材表面の極性官能基がビニルシランと縮合して化学結合を形成するため、ナノ伝熱材料と共重合体の相容性が大幅に向上され、同時にマイクロカプセルで相変化複合材料を被覆する二段階プロセス(塊状重合と乳化重合)でナノ伝熱材料を安定的に分散させることができ、伝熱骨格層を備えた相変化マイクロカプセルを製造することができる。   In order to achieve the above-mentioned object and other objects, the method of manufacturing a phase change microcapsule having the heat transfer skeleton layer of the present invention increases the heat transfer coefficient by adding a nano heat transfer material in the film material, Accelerates the release or absorption of heat from the change material, achieves effective heat transfer, heat dissipation, energy storage, etc., and first forms a copolymer by polymerizing vinyl silane and acrylic monomer, then nano heat transfer material Is added, the polar functional group on the surface of the nano heat transfer material is condensed with vinyl silane to form a chemical bond, which greatly improves the compatibility of the nano heat transfer material and the copolymer, and at the same time changes the phase in the microcapsule. The nano heat transfer material can be stably dispersed by a two-step process (bulk polymerization and emulsion polymerization) for coating the composite material, and phase change microcapsules having a heat transfer skeleton layer can be manufactured.

本発明の製造の流れは次の通りである。   The manufacturing flow of the present invention is as follows.

一、アクリルモノマーの改質
ビニルシラン(vinylsilane、VS)とアクリルモノマー(acrylic monomer、AM)を反応モノマーとし、有機溶剤を使用しない環境下で過酸化物により重合反応を開始させ、共重合体(VS−AM copolymer)を生成した。反応式を式(1)に示す。そのうち、ビニルシランはトリメトキシビニルシラン(trimethoxyvinylsilane)、またはトリエトキシビニルシラン(triethoxyvinyl silane)を採用する。アクリルモノマーはアクリル酸メチル、メタクリル酸メチル、またはメタクリル酸ヒドロキシエチルである。
1. Modification of acrylic monomer Using vinylsilane (VS) and acrylic monomer (AM) as reaction monomers, a polymerization reaction is initiated by peroxide in an environment that does not use an organic solvent. -AM copolymer) was generated. The reaction formula is shown in Formula (1). Among them, as the vinyl silane, trimethoxyvinyl silane or triethoxy vinyl silane is adopted. The acrylic monomer is methyl acrylate, methyl methacrylate, or hydroxyethyl methacrylate.

Figure 2016101536
Figure 2016101536

二、ナノ伝熱材を添加して改質アクリルモノマー上に接合させる
有機材料中に、高伝熱性質を持つナノ無機粉体を加える。前記ナノ無機粉体は、アルミナ(Al)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、または炭化ケイ素(SiC)を含み、有機材料の伝熱性を効果的に高め、高伝熱複合材料を製造することができる。本研究で合成した共重合体とナノ伝熱材は化学結合を形成することができ、その反応式を式(2)に示す。高伝熱性質の無機粉体と有機基材の相容性を効果的に増進することができる。
2. Add nano heat transfer material and bond it onto the modified acrylic monomer Add nano inorganic powder with high heat transfer properties to the organic material. The nano-inorganic powder includes alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), or silicon carbide (SiC), and effectively enhances the heat transfer property of the organic material, thereby achieving high heat transfer. Composite materials can be manufactured. The copolymer synthesized in this study and the nano heat transfer material can form chemical bonds, and the reaction formula is shown in Equation (2). It is possible to effectively enhance the compatibility between the inorganic powder having a high heat transfer property and the organic base material.

Figure 2016101536
Figure 2016101536

三、伝熱骨格層を備えた相変化マイクロカプセルの製造
伝熱骨格層を備えた相変化マイクロカプセルは、相変化材料を芯、共重合体を骨格とし、その製造の流れは次の通りである。
(1)図1に示すように、工程S110では、アクリルモノマーとビニルシランを用意する。
(2)図1に示すように、工程S120では、アクリルモノマーとビニルシランを撹拌して混合し、第一溶液を形成する。そのうち、ビニルシランはトリメトキシビニルシラン(trimethoxyvinylsilane)またはトリエトキシビニルシラン(triethoxyvinyl silane)等である。
(3)図1に示すように、工程S130では、工程S120で混合された混合物に、開始剤として微量の過酸化ベンゾイルを加え、油浴加熱下でプレ重合を行う。
(4)図1に示すように、工程S140では、相変化材料を用意する。
(5)図1に示すように、工程S150では、水溶液を加熱してポリビニルアルコールを溶解させ、ポリビニルアルコール水溶液を形成する。
(6)図1に示すように、工程S160では、相変化材料を工程S150で調製を完了したポリビニルアルコール水溶液に加え、温度を上昇させて相変化材料の融点を超過させ、液化動作を行い、その後液化した溶液を均一に撹拌する。
(7)図1に示すように、工程S170では、工程S130の反応を経た後のPMMAプレポリマーと工程S160の反応後の溶液を混合し、エチレングリコールジメタクリレートと伝熱材料(例えば窒化アルミニウム、窒化ホウ素、アルミナまたは炭化ケイ素)を加え、撹拌して分散させ、伝熱骨格層を備えた相変化マイクロカプセル溶液を形成する。
(8)図1に示すように、工程S180では、工程S170で形成された伝熱骨格層を備えた相変化マイクロカプセル溶液に開始剤として過酸化ベンゾイルを加え、油浴加熱でマイクロカプセルの重合被覆を完了する。
(9)図1に示すように、工程S190では、工程S180の処理を経た後のマイクロカプセルを氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、伝熱骨格層を備えた相変化マイクロカプセルを得る。
3. Manufacture of phase change microcapsules with heat transfer skeleton layer Phase change microcapsules with heat transfer skeleton layer have phase change material as core and copolymer as skeleton. is there.
(1) As shown in FIG. 1, in step S110, an acrylic monomer and vinyl silane are prepared.
(2) As shown in FIG. 1, in step S120, the acrylic monomer and vinyl silane are stirred and mixed to form a first solution. Among them, the vinyl silane is trimethoxyvinyl silane or triethoxy vinyl silane.
(3) As shown in FIG. 1, in step S130, a small amount of benzoyl peroxide is added as an initiator to the mixture mixed in step S120, and pre-polymerization is performed under oil bath heating.
(4) As shown in FIG. 1, in step S140, a phase change material is prepared.
(5) As shown in FIG. 1, in step S150, the aqueous solution is heated to dissolve the polyvinyl alcohol to form an aqueous polyvinyl alcohol solution.
(6) As shown in FIG. 1, in step S160, the phase change material is added to the polyvinyl alcohol aqueous solution prepared in step S150, the temperature is raised to exceed the melting point of the phase change material, and a liquefaction operation is performed. Thereafter, the liquefied solution is stirred uniformly.
(7) As shown in FIG. 1, in step S170, the PMMA prepolymer after the reaction in step S130 and the solution after the reaction in step S160 are mixed, and ethylene glycol dimethacrylate and a heat transfer material (for example, aluminum nitride, Boron nitride, alumina or silicon carbide) is added and stirred to disperse to form a phase change microcapsule solution with a heat transfer skeleton layer.
(8) As shown in FIG. 1, in step S180, benzoyl peroxide is added as an initiator to the phase change microcapsule solution provided with the heat transfer skeleton layer formed in step S170, and the microcapsules are polymerized by heating in an oil bath. Complete the coating.
(9) As shown in FIG. 1, in step S190, the microcapsules after the processing in step S180 are subjected to an ice bath, centrifugation, and filtration, and then the lower microcapsules are dried to provide a phase change provided with a heat transfer skeleton layer. Obtain microcapsules.

本発明の相変化材料は有機相変化材料であり、前記有機相変化材料は主に脂肪族高級炭化水素、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸の塩、高級脂肪族アルコール、芳香族炭化水素、芳香族ケトン、芳香族アミド、及びその混合物から構成される群であるが、上述の有機相変化材料に限定されない。   The phase change material of the present invention is an organic phase change material, and the organic phase change material is mainly an aliphatic higher hydrocarbon, a higher fatty acid, a higher fatty acid ester, a salt of a higher fatty acid, a higher aliphatic alcohol, an aromatic hydrocarbon, A group composed of aromatic ketones, aromatic amides, and mixtures thereof, but is not limited to the organic phase change materials described above.

脂肪族高級炭化水素は通常6個以上の炭素原子を含む脂肪炭化水素であり、6〜36個の炭素原子が好ましい。高級脂肪族アルコールは通常6個以上の炭素原子を含む脂肪炭化水素であり、6〜36個の炭素原子が好ましい。   The aliphatic higher hydrocarbons are usually aliphatic hydrocarbons containing 6 or more carbon atoms, preferably 6 to 36 carbon atoms. The higher aliphatic alcohols are usually aliphatic hydrocarbons containing 6 or more carbon atoms, with 6 to 36 carbon atoms being preferred.

上述の製造方法のうち、アクリルモノマーとビニルシランの当量比は、10:1〜10:3が好ましい。   Among the above-described production methods, the equivalent ratio of the acrylic monomer and vinyl silane is preferably 10: 1 to 10: 3.

上述の製造方法のうち、前記相変化マイクロカプセルは芯骨格材料であり、そのうち芯材は有機相変化材料である。   Among the manufacturing methods described above, the phase change microcapsule is a core skeleton material, of which the core material is an organic phase change material.

上述の製造方法のうち、前記相変化マイクロカプセルは芯骨格材料であり、そのうち骨格材はビニルシランとアクリルモノマーの共重合体である。   Among the manufacturing methods described above, the phase change microcapsule is a core skeleton material, and the skeleton material is a copolymer of vinylsilane and an acrylic monomer.

上述の製造方法のうち、撹拌は磁力撹拌機、モーター式撹拌器またはホモジナイザーを採用することが好ましい。   Among the above-mentioned production methods, it is preferable to employ a magnetic stirrer, a motor type stirrer or a homogenizer for stirring.

上述の製造方法のうち、前記相変化材料の添加比率は10wt%〜40wt%である。   Among the manufacturing methods described above, the addition ratio of the phase change material is 10 wt% to 40 wt%.

上述の製造方法のうち、前記高伝熱性ナノ無機粉体(アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素)の添加比率は10wt%〜40wt%である。   Among the manufacturing methods described above, the addition ratio of the highly heat conductive nano inorganic powder (alumina, aluminum nitride, boron nitride, silicon carbide) is 10 wt% to 40 wt%.

上述の製造方法のうち、工程S130中の前記加熱範囲は50℃〜120℃が好ましい。   Among the manufacturing methods described above, the heating range in step S130 is preferably 50 ° C to 120 ° C.

上述の製造方法のうち、工程S160中の前記加熱範囲は40℃〜80℃が好ましい。   Among the manufacturing methods described above, the heating range in step S160 is preferably 40 ° C to 80 ° C.

上述の製造方法のうち、工程S180中の前記加熱範囲は50℃〜120℃が好ましい。   Among the manufacturing methods described above, the heating range in step S180 is preferably 50 ° C to 120 ° C.

本発明の伝熱骨格層を備えた相変化マイクロカプセルの製造方法は、従来のマイクロカプセル膜材の熱伝達係数が非常に低く、熱伝達の速度が低下する問題を効果的に解決することができる。   The manufacturing method of the phase change microcapsule having the heat transfer skeleton layer of the present invention can effectively solve the problem that the heat transfer coefficient of the conventional microcapsule membrane material is very low and the speed of heat transfer is reduced. it can.

本発明の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of this invention. 本発明の伝熱骨格層を備えた相変化マイクロカプセルの構造図である。It is a structural diagram of a phase change microcapsule provided with a heat transfer skeleton layer of the present invention. 本発明の実施例の走査式電子顕微鏡の分析図である。It is an analysis figure of the scanning electron microscope of the Example of this invention. 本発明の実施例の走査式電子顕微鏡の分析図である。It is an analysis figure of the scanning electron microscope of the Example of this invention.

以下、特定の具体的な実施例に基づいて、本発明の実施方法を説明し、当業者が本明細書の開示内容に基づいて本発明のその他の利点と効果を容易に理解できるようにする。   In the following, a method for carrying out the present invention will be described based on specific specific embodiments so that those skilled in the art can easily understand other advantages and effects of the present invention based on the disclosure of the present specification. .

本実施例は、メタクリル酸メチルに過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過プロセスを経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.2000W/mkと測定された。   In this example, benzoyl peroxide is added to methyl methacrylate and polymerized under heating in an oil bath to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration process, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.2000 W / mk.

本実施例はメタクリル酸メチル及びビニルシランのトリメトキシビニルシラン(trimethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルを重量比3:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過を経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.1988W/mkと測定された。かつ、その30℃から80℃までの温度上昇に必要な時間は325秒であり、80℃から30℃までの温度低下に必要な時間は365秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate having a weight ratio of 3: 1 paraffin wax (organic phase change material) is added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of the paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.1988 W / mk. The time required for the temperature increase from 30 ° C. to 80 ° C. was 325 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was measured as 365 seconds.

本実施例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合してプレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過を経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.1996W/mkと測定された。かつ、その30℃から80℃までの温度上昇に必要な時間は303秒であり、80℃から30℃までの温度低下に必要な時間は348秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Benzoyl peroxide is added and polymerized under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.1996 W / mk. The time required for the temperature increase from 30 ° C. to 80 ° C. was 303 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was measured as 348 seconds.

本実施例係はメタクリル酸メチル及びビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合してプレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレート及びアルミナを加え、油浴加熱下で均一に撹拌する。そのうちアルミナの添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.3535W/mkと測定された。かつ、80℃から30℃までの温度低下に必要な時間は267秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Benzoyl peroxide is added and polymerized under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and alumina and stir uniformly under oil bath heating. Among them, the weight ratio of alumina to methyl methacrylate is 1: 2. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.3535 W / mk. And the time required for the temperature fall from 80 degreeC to 30 degreeC was measured with 267 second.

本実施例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートと窒化アルミニウムを加え、油浴加熱下で均一に撹拌する。そのうち、窒化アルミニウムの添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.4317W/mkと測定された。かつ、30℃から80℃までの温度上昇に必要な時間はわずか159秒であり、80℃から30℃までの温度低下に必要な時間はわずか201秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and aluminum nitride and stir uniformly under oil bath heating. Among them, the addition ratio of aluminum nitride is 1: 2 by weight with respect to methyl methacrylate. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.4317 W / mk. And the time required for the temperature increase from 30 ° C. to 80 ° C. was only 159 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was only 201 seconds.

本実施例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートと窒化ホウ素を加え、油浴加熱下で均一に撹拌する。そのうち、酸化ホウ素の添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.4258W/mkと測定された。かつ、30℃から80℃までの温度上昇に必要な時間はわずか175秒であり、80℃から30℃までの温度低下に必要な時間はわずか226秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and boron nitride and stir uniformly under oil bath heating. Among them, the addition ratio of boron oxide is 1: 2 in weight ratio with methyl methacrylate. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.4258 W / mk. In addition, the time required for the temperature increase from 30 ° C. to 80 ° C. was only 175 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was only 226 seconds.

上述の実施例1〜5で得た伝熱骨格層を備えた相変化マイクロカプセルを、図2から図5に示す。そのうち図2は本発明の伝熱骨格層を備えた相変化マイクロカプセルの構造図であり、図3は本発明の実施例の走査式電子顕微鏡分析図であり、図4は実施例の走査式電子顕微鏡分析図である。   The phase change microcapsules provided with the heat transfer skeleton layers obtained in the above Examples 1 to 5 are shown in FIGS. 2 is a structural diagram of a phase change microcapsule having a heat transfer skeleton layer of the present invention, FIG. 3 is a scanning electron microscope analysis diagram of an embodiment of the present invention, and FIG. 4 is a scanning formula of the embodiment. It is an electron microscope analysis figure.

図2に示すように、本発明の伝熱骨格層を備えた相変化マイクロカプセルは相変化材料210と、前記相変化材料210を被覆する伝熱骨格層220を含み、そのうち、前記伝熱骨格層220はビニルシランとアクリルモノマー共重合体230、及び伝熱材240を含む。   As shown in FIG. 2, the phase change microcapsule having the heat transfer skeleton layer of the present invention includes a phase change material 210 and a heat transfer skeleton layer 220 covering the phase change material 210, of which the heat transfer skeleton is included. Layer 220 includes vinyl silane and acrylic monomer copolymer 230 and heat transfer material 240.

S110〜S190 工程
210 相変化材料
220 伝熱骨格層
230 ビニルシランとアクリルモノマー共重合体
240 伝熱材
Steps S110 to S190 Step 210 Phase change material 220 Heat transfer skeleton layer 230 Vinylsilane and acrylic monomer copolymer 240 Heat transfer material

本発明は相変化マイクロカプセルの膜材中にナノ伝熱材料を加える製造方法に関し、特に、相変化マイクロカプセルの膜材中に高伝熱性のナノ伝熱材料を加える製造方法に関する。まずビニルシランとアクリルモノマーを採用した重合で共重合体を生成した後、無機伝熱材料を加え、相変化材料を芯とし、伝熱材料を含む共重合体を骨格とした相変化マイクロカプセルを製造して、これにより伝熱骨格層を備えた相変化マイクロカプセルの製造という目的を達する。   The present invention relates to a manufacturing method of adding a nano heat transfer material into a film material of phase change microcapsules, and more particularly to a manufacturing method of adding a highly heat transfer nano heat transfer material into a film material of phase change microcapsules. First, a copolymer is produced by polymerization using vinyl silane and acrylic monomer, and then an inorganic heat transfer material is added to produce phase change microcapsules with the phase change material as the core and the copolymer containing the heat transfer material as the skeleton. Thus, the objective of producing phase change microcapsules with a heat transfer skeleton layer is achieved.

既知の通り、相変化材料(Phase change materials、PCM)は固相から液相に、または液相から固相に変化可能な物質であり、かつ相変化の発生時に大量の潜熱の吸収または放出を伴い、相変化材料の最大の特徴は、それが大量の潜熱を吸収または放出するとき、システムの温度を変化なく、または小さい変化範囲で維持できることにある。一般に相変化材料を応用するときは、その相変化時により多くの熱を吸収または放出できる潜熱値が比較的大きい相変化材料を選択することで、よりよい効果が得られる。しかし、相変化材料を直接応用すると、相変化の過程で溶融のために材料の漏洩及び損失が発生し、材料の使用寿命が短縮される。マイクロカプセルは微量の物質を骨格層とする方式で別の材料の表面を包み込む技術であり、マイクロカプセル技術を利用することで、相変化材料の溶融時に生じる体積変化と材料漏洩の問題を回避することができる。このほか、マイクロカプセル化後の材料は粒径が小さく、比表面積が大きいため、より大きな伝熱面積を提供する。   As is known, phase change materials (PCM) are substances that can change from the solid phase to the liquid phase, or from the liquid phase to the solid phase, and absorb or release a large amount of latent heat when the phase change occurs. Accordingly, the greatest feature of a phase change material is that when it absorbs or releases a large amount of latent heat, the temperature of the system can be kept unchanged or in a small range of change. In general, when a phase change material is applied, a better effect can be obtained by selecting a phase change material having a relatively large latent heat value that can absorb or release more heat during the phase change. However, if the phase change material is applied directly, leakage and loss of the material occur due to melting in the process of phase change, and the service life of the material is shortened. Microcapsule is a technology that envelops the surface of another material by using a small amount of substance as a skeletal layer. By using microcapsule technology, the problem of volume change and material leakage that occurs when the phase change material melts is avoided. be able to. In addition, since the material after microencapsulation has a small particle size and a large specific surface area, it provides a larger heat transfer area.

しかしながら、マイクロカプセル膜材は多くが有機高分子材料であり、その熱伝達係数が非常に低いため、膜材は相変化材料の漏洩を防止することはできるものの、熱の伝達速度を低下させてしまう。   However, many of the microcapsule membrane materials are organic polymer materials, and their heat transfer coefficient is very low, so the membrane materials can prevent the leakage of phase change materials, but reduce the heat transfer rate. End up.

従来のマイクロカプセル膜材の熱伝達係数が非常に低く、熱の伝達速度が低下する問題を解決するため、本発明の目的は、伝熱骨格層を備えた相変化マイクロカプセルの製造方法を提供することにある。   In order to solve the problem that the heat transfer coefficient of the conventional microcapsule membrane material is very low and the heat transfer rate is lowered, an object of the present invention is to provide a method of manufacturing a phase change microcapsule having a heat transfer skeleton layer There is to do.

上述の目的及びその他の目的を達するため、本発明の伝熱骨格層を備えた相変化マイクロカプセルの製造方法は、膜材中にナノ伝熱材料を加えることでその熱伝達係数を高め、相変化材料の熱の放出または吸収を加速し、効果的な伝熱、放熱、エネルギー貯蔵等の効果を達するとともに、まずビニルシランとアクリルモノマーを重合して共重合体を生成した後、ナノ伝熱材を加えると、ナノ伝熱材表面の極性官能基がビニルシランと縮合して化学結合を形成するため、ナノ伝熱材料と共重合体の相容性が大幅に向上され、同時にマイクロカプセルで相変化複合材料を被覆する二段階プロセス(塊状重合と乳化重合)でナノ伝熱材料を安定的に分散させることができ、伝熱骨格層を備えた相変化マイクロカプセルを製造することができる。   In order to achieve the above-mentioned object and other objects, the method of manufacturing a phase change microcapsule having the heat transfer skeleton layer of the present invention increases the heat transfer coefficient by adding a nano heat transfer material in the film material, Accelerates the release or absorption of heat from the change material, achieves effective heat transfer, heat dissipation, energy storage, etc., and first forms a copolymer by polymerizing vinyl silane and acrylic monomer, then nano heat transfer material Is added, the polar functional group on the surface of the nano heat transfer material is condensed with vinyl silane to form a chemical bond, which greatly improves the compatibility of the nano heat transfer material and the copolymer, and at the same time changes the phase in the microcapsule. The nano heat transfer material can be stably dispersed by a two-step process (bulk polymerization and emulsion polymerization) for coating the composite material, and phase change microcapsules having a heat transfer skeleton layer can be manufactured.

本発明の製造の流れは次の通りである。   The manufacturing flow of the present invention is as follows.

一、アクリルモノマーの改質
ビニルシラン(vinylsilane、VS)とアクリルモノマー(acrylic
monomer、AM)を反応モノマーとし、有機溶剤を使用しない環境下で過酸化物により重合反応を開始させ、共重合体(VS−AM copolymer)を生成した。反応式を式(1)に示す。そのうち、ビニルシランはトリメトキシビニルシラン(trimethoxyvinylsilane)、またはトリエトキシビニルシラン(triethoxyvinyl silane)を採用する。アクリルモノマーはアクリル酸メチル、メタクリル酸メチル、またはメタクリル酸ヒドロキシエチルである。
1. Modification of acrylic monomer Vinylsilane (VS) and acrylic monomer (acrylic)
Monomer, AM) was used as a reaction monomer, and the polymerization reaction was initiated by peroxide in an environment where no organic solvent was used, to produce a copolymer (VS-AM copolymer). The reaction formula is shown in Formula (1). Among them, as the vinyl silane, trimethoxyvinyl silane or triethoxy vinyl silane is adopted. The acrylic monomer is methyl acrylate, methyl methacrylate, or hydroxyethyl methacrylate.

Figure 2016101536
Figure 2016101536

二、ナノ伝熱材を添加して改質アクリルモノマー上に接合させる
有機材料中に、高伝熱性質を持つナノ無機粉体を加える。前記ナノ無機粉体は、アルミナ(Al)、窒化アルミニウム(AlN)、窒化ホウ素(BN)、または炭化ケイ素(SiC)を含み、有機材料の伝熱性を効果的に高め、高伝熱複合材料を製造することができる。本研究で合成した共重合体とナノ伝熱材は化学結合を形成することができ、その反応式を式(2)に示す。高伝熱性質の無機粉体と有機基材の相容性を効果的に増進することができる。
2. Add nano heat transfer material and bond it onto the modified acrylic monomer Add nano inorganic powder with high heat transfer properties to the organic material. The nano-inorganic powder includes alumina (Al 2 O 3 ), aluminum nitride (AlN), boron nitride (BN), or silicon carbide (SiC), and effectively enhances the heat transfer property of the organic material, thereby achieving high heat transfer. Composite materials can be manufactured. The copolymer synthesized in this study and the nano heat transfer material can form chemical bonds, and the reaction formula is shown in Equation (2). It is possible to effectively enhance the compatibility between the inorganic powder having a high heat transfer property and the organic base material.

Figure 2016101536
Figure 2016101536

三、伝熱骨格層を備えた相変化マイクロカプセルの製造
伝熱骨格層を備えた相変化マイクロカプセルは、相変化材料を芯、共重合体を骨格とし、その製造の流れは次の通りである。
(1)図1に示すように、工程S110では、アクリルモノマーとビニルシランを用意する。
(2)図1に示すように、工程S120では、アクリルモノマーとビニルシランを撹拌して混合し、第一溶液を形成する。そのうち、ビニルシランはトリメトキシビニルシラン(trimethoxyvinylsilane)またはトリエトキシビニルシラン(triethoxyvinyl silane)等である。
(3)図1に示すように、工程S130では、工程S120で混合された混合物に、開始剤として微量の過酸化ベンゾイルを加え、油浴加熱下でプレ重合を行う。
(4)図1に示すように、工程S140では、相変化材料を用意する。
(5)図1に示すように、工程S150では、水溶液を加熱してポリビニルアルコールを溶解させ、ポリビニルアルコール水溶液を形成する。
(6)図1に示すように、工程S160では、相変化材料を工程S150で調製を完了したポリビニルアルコール水溶液に加え、温度を上昇させて相変化材料の融点を超過させ、液化動作を行い、その後液化した溶液を均一に撹拌する。
(7)図1に示すように、工程S170では、工程S130の反応を経た後のPMMAプレポリマーと工程S160の反応後の溶液を混合し、エチレングリコールジメタクリレートと伝熱材料(例えば窒化アルミニウム、窒化ホウ素、アルミナまたは炭化ケイ素)を加え、撹拌して分散させ、伝熱骨格層を備えた相変化マイクロカプセル溶液を形成する。
(8)図1に示すように、工程S180では、工程S170で形成された伝熱骨格層を備えた相変化マイクロカプセル溶液に開始剤として過酸化ベンゾイルを加え、油浴加熱でマイクロカプセルの重合被覆を完了する。
(9)図1に示すように、工程S190では、工程S180の処理を経た後のマイクロカプセルを氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、伝熱骨格層を備えた相変化マイクロカプセルを得る。
3. Manufacture of phase change microcapsules with heat transfer skeleton layer Phase change microcapsules with heat transfer skeleton layer have phase change material as core and copolymer as skeleton. is there.
(1) As shown in FIG. 1, in step S110, an acrylic monomer and vinyl silane are prepared.
(2) As shown in FIG. 1, in step S120, the acrylic monomer and vinyl silane are stirred and mixed to form a first solution. Among them, the vinyl silane is trimethoxyvinyl silane or triethoxy vinyl silane.
(3) As shown in FIG. 1, in step S130, a small amount of benzoyl peroxide is added as an initiator to the mixture mixed in step S120, and pre-polymerization is performed under oil bath heating.
(4) As shown in FIG. 1, in step S140, a phase change material is prepared.
(5) As shown in FIG. 1, in step S150, the aqueous solution is heated to dissolve the polyvinyl alcohol to form an aqueous polyvinyl alcohol solution.
(6) As shown in FIG. 1, in step S160, the phase change material is added to the polyvinyl alcohol aqueous solution prepared in step S150, the temperature is raised to exceed the melting point of the phase change material, and a liquefaction operation is performed. Thereafter, the liquefied solution is stirred uniformly.
(7) As shown in FIG. 1, in step S170, the PMMA prepolymer after the reaction in step S130 and the solution after the reaction in step S160 are mixed, and ethylene glycol dimethacrylate and a heat transfer material (for example, aluminum nitride, Boron nitride, alumina or silicon carbide) is added and stirred to disperse to form a phase change microcapsule solution with a heat transfer skeleton layer.
(8) As shown in FIG. 1, in step S180, benzoyl peroxide is added as an initiator to the phase change microcapsule solution provided with the heat transfer skeleton layer formed in step S170, and the microcapsules are polymerized by heating in an oil bath. Complete the coating.
(9) As shown in FIG. 1, in step S190, the microcapsules after the processing in step S180 are subjected to an ice bath, centrifugation, and filtration, and then the lower microcapsules are dried to provide a phase change provided with a heat transfer skeleton layer. Obtain microcapsules.

本発明の相変化材料は有機相変化材料であり、前記有機相変化材料は主に脂肪族高級炭化水素、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸の塩、高級脂肪族アルコール、芳香族炭化水素、芳香族ケトン、芳香族アミド、及びその混合物から構成される群であるが、上述の有機相変化材料に限定されない。   The phase change material of the present invention is an organic phase change material, and the organic phase change material is mainly an aliphatic higher hydrocarbon, a higher fatty acid, a higher fatty acid ester, a salt of a higher fatty acid, a higher aliphatic alcohol, an aromatic hydrocarbon, A group composed of aromatic ketones, aromatic amides, and mixtures thereof, but is not limited to the organic phase change materials described above.

脂肪族高級炭化水素は通常6個以上の炭素原子を含む脂肪炭化水素であり、6〜36個の炭素原子が好ましい。高級脂肪族アルコールは通常6個以上の炭素原子を含む脂肪炭化水素であり、6〜36個の炭素原子が好ましい。   The aliphatic higher hydrocarbons are usually aliphatic hydrocarbons containing 6 or more carbon atoms, preferably 6 to 36 carbon atoms. The higher aliphatic alcohols are usually aliphatic hydrocarbons containing 6 or more carbon atoms, with 6 to 36 carbon atoms being preferred.

上述の製造方法のうち、アクリルモノマーとビニルシランの当量比は、10:1〜10:3が好ましい。   Among the above-described production methods, the equivalent ratio of the acrylic monomer and vinyl silane is preferably 10: 1 to 10: 3.

上述の製造方法のうち、前記相変化マイクロカプセルは芯骨格材料であり、そのうち芯材は有機相変化材料である。   Among the manufacturing methods described above, the phase change microcapsule is a core skeleton material, of which the core material is an organic phase change material.

上述の製造方法のうち、前記相変化マイクロカプセルは芯骨格材料であり、そのうち骨格材はビニルシランとアクリルモノマーの共重合体である。   Among the manufacturing methods described above, the phase change microcapsule is a core skeleton material, and the skeleton material is a copolymer of vinylsilane and an acrylic monomer.

上述の製造方法のうち、撹拌は磁力撹拌機、モーター式撹拌器またはホモジナイザーを採用することが好ましい。   Among the above-mentioned production methods, it is preferable to employ a magnetic stirrer, a motor type stirrer or a homogenizer for stirring.

上述の製造方法のうち、前記相変化材料の添加比率は10wt%〜40wt%である。   Among the manufacturing methods described above, the addition ratio of the phase change material is 10 wt% to 40 wt%.

上述の製造方法のうち、前記高伝熱性ナノ無機粉体(アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素)の添加比率は10wt%〜40wt%である。   Among the manufacturing methods described above, the addition ratio of the highly heat conductive nano inorganic powder (alumina, aluminum nitride, boron nitride, silicon carbide) is 10 wt% to 40 wt%.

上述の製造方法のうち、工程S130中の前記加熱範囲は50℃〜120℃が好ましい。   Among the manufacturing methods described above, the heating range in step S130 is preferably 50 ° C to 120 ° C.

上述の製造方法のうち、工程S160中の前記加熱範囲は40℃〜80℃が好ましい。   Among the manufacturing methods described above, the heating range in step S160 is preferably 40 ° C to 80 ° C.

上述の製造方法のうち、工程S180中の前記加熱範囲は50℃〜120℃が好ましい。   Among the manufacturing methods described above, the heating range in step S180 is preferably 50 ° C to 120 ° C.

本発明の伝熱骨格層を備えた相変化マイクロカプセルの製造方法は、従来のマイクロカプセル膜材の熱伝達係数が非常に低く、熱伝達の速度が低下する問題を効果的に解決することができる。   The manufacturing method of the phase change microcapsule having the heat transfer skeleton layer of the present invention can effectively solve the problem that the heat transfer coefficient of the conventional microcapsule membrane material is very low and the speed of heat transfer is reduced. it can.

本発明の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of this invention. 本発明の伝熱骨格層を備えた相変化マイクロカプセルの構造図である。It is a structural diagram of a phase change microcapsule provided with a heat transfer skeleton layer of the present invention. 本発明の実施例の走査式電子顕微鏡の分析図である。It is an analysis figure of the scanning electron microscope of the Example of this invention. 本発明の実施例の走査式電子顕微鏡の分析図である。It is an analysis figure of the scanning electron microscope of the Example of this invention.

以下、特定の具体的な実施例に基づいて、本発明の実施方法を説明し、当業者が本明細書の開示内容に基づいて本発明のその他の利点と効果を容易に理解できるようにする。   In the following, a method for carrying out the present invention will be described based on specific specific embodiments so that those skilled in the art can easily understand other advantages and effects of the present invention based on the disclosure of the present specification. .

比較例1Comparative Example 1

比較例は、メタクリル酸メチルに過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過プロセスを経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.2000W/mkと測定された。 In this comparative example, benzoyl peroxide is added to methyl methacrylate and polymerized under heating in an oil bath to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration process, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.2000 W / mk.

比較例2Comparative Example 2

比較例はメタクリル酸メチル及びビニルシランのトリメトキシビニルシラン(trimethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルを重量比3:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過を経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.1988W/mkと測定された。かつ、その30℃から80℃までの温度上昇に必要な時間は325秒であり、80℃から30℃までの温度低下に必要な時間は365秒と測定された。 In this comparative example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate having a weight ratio of 3: 1 paraffin wax (organic phase change material) is added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of the paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.1988 W / mk. The time required for the temperature increase from 30 ° C. to 80 ° C. was 325 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was measured as 365 seconds.

比較例3Comparative Example 3

比較例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合してプレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートを加え、油浴加熱下で均一に撹拌する。氷浴、遠心、濾過を経て、上層のマイクロカプセルを乾燥させ、相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.1996W/mkと測定された。かつ、その30℃から80℃までの温度上昇に必要な時間は303秒であり、80℃から30℃までの温度低下に必要な時間は348秒と測定された。 In this comparative example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Benzoyl peroxide is added and polymerized under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and stir uniformly under oil bath heating. Through an ice bath, centrifugation, and filtration, the upper microcapsules are dried to obtain phase change microcapsules. The heat transfer coefficient of this microcapsule was measured to be 0.1996 W / mk. The time required for the temperature increase from 30 ° C. to 80 ° C. was 303 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was measured as 348 seconds.

本実施例係はメタクリル酸メチル及びビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合してプレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレート及びアルミナを加え、油浴加熱下で均一に撹拌する。そのうちアルミナの添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.3535W/mkと測定された。かつ、80℃から30℃までの温度低下に必要な時間は267秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Benzoyl peroxide is added and polymerized under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and alumina and stir uniformly under oil bath heating. Among them, the weight ratio of alumina to methyl methacrylate is 1: 2. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.3535 W / mk. And the time required for the temperature fall from 80 degreeC to 30 degreeC was measured with 267 second.

本実施例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートと窒化アルミニウムを加え、油浴加熱下で均一に撹拌する。そのうち、窒化アルミニウムの添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.4317W/mkと測定された。かつ、30℃から80℃までの温度上昇に必要な時間はわずか159秒であり、80℃から30℃までの温度低下に必要な時間はわずか201秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and aluminum nitride and stir uniformly under oil bath heating. Among them, the addition ratio of aluminum nitride is 1: 2 by weight with respect to methyl methacrylate. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.4317 W / mk. And the time required for the temperature increase from 30 ° C. to 80 ° C. was only 159 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was only 201 seconds.

本実施例はメタクリル酸メチルとビニルシランのトリメトキシビニルシラン(triethoxyvinylsilane)を当量比5:1で60℃の油浴加熱下で混合する。過酸化ベンゾイルを加え、油浴加熱下で重合し、プレポリマー溶液を得る。別にメタクリル酸メチルと重量比1:1の石蝋(有機相変化材料)をポリビニルアルコール水溶液中に加え、石蝋の融点を超過するまで温度を上昇させて均一に撹拌する。プレポリマー溶液を入れ、均一に撹拌する。エチレングリコールジメタクリレートと窒化ホウ素を加え、油浴加熱下で均一に撹拌する。そのうち、酸化ホウ素の添加比率はメタクリル酸メチルとの重量比が1:2である。氷浴、遠心、濾過後、下層のマイクロカプセルを乾燥させ、本発明の伝熱骨格層を備えた相変化マイクロカプセルを得る。このマイクロカプセルの熱伝達係数は0.4258W/mkと測定された。かつ、30℃から80℃までの温度上昇に必要な時間はわずか175秒であり、80℃から30℃までの温度低下に必要な時間はわずか226秒と測定された。   In this example, methyl methacrylate and trimethoxyvinylsilane of vinylsilane are mixed at an equivalent ratio of 5: 1 under heating in an oil bath at 60 ° C. Add benzoyl peroxide and polymerize under oil bath heating to obtain a prepolymer solution. Separately, methyl methacrylate and paraffin wax (organic phase change material) in a weight ratio of 1: 1 are added to an aqueous polyvinyl alcohol solution, and the temperature is raised until the melting point of paraffin wax is exceeded, and the mixture is stirred uniformly. Add the prepolymer solution and stir uniformly. Add ethylene glycol dimethacrylate and boron nitride and stir uniformly under oil bath heating. Among them, the addition ratio of boron oxide is 1: 2 in weight ratio with methyl methacrylate. After the ice bath, centrifugation, and filtration, the lower microcapsules are dried to obtain phase change microcapsules having the heat transfer skeleton layer of the present invention. The heat transfer coefficient of this microcapsule was measured to be 0.4258 W / mk. In addition, the time required for the temperature increase from 30 ° C. to 80 ° C. was only 175 seconds, and the time required for the temperature decrease from 80 ° C. to 30 ° C. was only 226 seconds.

上述の実施例1〜で得た伝熱骨格層を備えた相変化マイクロカプセルを、図2から図に示す。そのうち図2は本発明の伝熱骨格層を備えた相変化マイクロカプセルの構造図であり、図3は本発明の実施例の走査式電子顕微鏡分析図であり、図4は実施例の走査式電子顕微鏡分析図である。 The phase change microcapsules having a heat transfer skeleton layer obtained in Example 1 to 3 described above is shown in FIGS. 2-4. 2 is a structural diagram of a phase change microcapsule having a heat transfer skeleton layer of the present invention, FIG. 3 is a scanning electron microscope analysis diagram of an embodiment of the present invention, and FIG. 4 is a scanning formula of the embodiment. It is an electron microscope analysis figure.

図2に示すように、本発明の伝熱骨格層を備えた相変化マイクロカプセルは相変化材料210と、前記相変化材料210を被覆する伝熱骨格層220を含み、そのうち、前記伝熱骨格層220はビニルシランとアクリルモノマー共重合体230、及び伝熱材240を含む。   As shown in FIG. 2, the phase change microcapsule having the heat transfer skeleton layer of the present invention includes a phase change material 210 and a heat transfer skeleton layer 220 covering the phase change material 210, of which the heat transfer skeleton is included. Layer 220 includes vinyl silane and acrylic monomer copolymer 230 and heat transfer material 240.

S110〜S190 工程
210 相変化材料
220 伝熱骨格層
230 ビニルシランとアクリルモノマー共重合体
240 伝熱材
Steps S110 to S190 Step 210 Phase change material 220 Heat transfer skeleton layer 230 Vinylsilane and acrylic monomer copolymer 240 Heat transfer material

Claims (15)

伝熱骨格層を備えた相変化マイクロカプセルの製造方法であって、前記方法が、
(A)ビニルシランを用意する工程と、
(B)前記ビニルシラン中にアクリルモノマーを加え、開始剤として微量の過酸化ベンゾイルを加え、油浴加熱下で撹拌してプレ重合反応を行い、第一溶液を形成する工程と、
(C)相変化材料をポリビニルアルコール水溶液に加え、相変化材料の融点を超えるまで温度を上昇させて液化を行い、均一に撹拌して第二溶液を形成する工程と、
(D)前記第二溶液を前記第一溶液に加え、均一に撹拌する工程と、
(E)エチレングリコールジメタクリレート及び高伝熱性ナノ無機粉体を加え、さらに開始剤として過酸化ベンゾイルを加え、撹拌して油浴加熱し、マイクロカプセルの重合被覆を完了し、伝熱骨格層を備えた相変化マイクロカプセルを得る工程と、
を含むことを特徴とする、伝熱骨格層を備えた相変化マイクロカプセルの製造方法。
A method for producing a phase change microcapsule having a heat transfer skeleton layer, the method comprising:
(A) preparing vinyl silane;
(B) adding an acrylic monomer to the vinyl silane, adding a small amount of benzoyl peroxide as an initiator, stirring under oil bath heating to perform a prepolymerization reaction, and forming a first solution;
(C) adding a phase change material to an aqueous polyvinyl alcohol solution, increasing the temperature until the melting point of the phase change material is exceeded, liquefying, and stirring uniformly to form a second solution;
(D) adding the second solution to the first solution and stirring uniformly;
(E) Add ethylene glycol dimethacrylate and highly heat-conducting nano-inorganic powder, add benzoyl peroxide as an initiator, stir and heat in an oil bath to complete the microcapsule polymerization coating, Obtaining a phase change microcapsule comprising:
A process for producing phase change microcapsules having a heat transfer skeleton layer, comprising:
前記ビニルシランが、トリメトキシビニルシラン(trimethoxyvinylsilane)またはトリエトキシビニルシラン(triethoxyvinyl silane)であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   2. The method of manufacturing a phase change microcapsule with a heat transfer skeleton layer according to claim 1, wherein the vinyl silane is trimethoxyvinyl silane or triethoxy vinyl silane. 3. 前記アクリルモノマーが、アクリル酸メチル、メタクリル酸メチル、またはメタクリル酸ヒドロキシエチルであることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the acrylic monomer is methyl acrylate, methyl methacrylate, or hydroxyethyl methacrylate. 前記高伝熱性ナノ無機粉体が、アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素のうちのいずれかまたは組み合わせから選択されることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   2. The heat transfer skeleton layer according to claim 1, wherein the high heat transfer nano-inorganic powder is selected from any one or a combination of alumina, aluminum nitride, boron nitride, and silicon carbide. A method for producing phase change microcapsules. 前記アクリルモノマーと前記ビニルシランの当量比が10:1〜10:3であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   2. The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the equivalent ratio of the acrylic monomer to the vinyl silane is 10: 1 to 10: 3. 前記相変化マイクロカプセルが芯骨格材料であり、そのうち、芯材が有機相変化材料であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method of manufacturing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the phase change microcapsule is a core skeleton material, and the core material is an organic phase change material. 前記相変化材料が有機相変化材料であり、前記有機相変化材料が、脂肪族高級炭化水素、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸の塩、高級脂肪族アルコール、芳香族炭化水素、芳香族ケトン、芳香族アミドのいずれかまたはその混合物で構成される群より選択されることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The phase change material is an organic phase change material, and the organic phase change material is an aliphatic higher hydrocarbon, a higher fatty acid, a higher fatty acid ester, a salt of a higher fatty acid, a higher aliphatic alcohol, an aromatic hydrocarbon, an aromatic ketone. The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the method is selected from the group consisting of any one of aromatic amides or a mixture thereof. 前記相変化マイクロカプセルが芯骨格材料であり、そのうち骨格材がビニルシランとアクリルモノマー之共重合体であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the phase change microcapsule is a core skeleton material, and the skeleton material is a copolymer of vinyl silane and an acrylic monomer. Production method. 前記撹拌が磁力撹拌機、モーター式撹拌器またはホモジナイザーで行われることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the stirring is performed with a magnetic stirrer, a motor type stirrer, or a homogenizer. 前記相変化材料の添加比率が10wt%〜40wt%であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method of manufacturing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the addition ratio of the phase change material is 10 wt% to 40 wt%. 前記高伝熱性ナノ無機粉体(アルミナ、窒化アルミニウム、窒化ホウ素、炭化ケイ素)の添加比率が10wt%〜40wt%であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   2. The heat transfer skeleton layer according to claim 1, wherein an addition ratio of the high heat transfer nano-inorganic powder (alumina, aluminum nitride, boron nitride, silicon carbide) is 10 wt% to 40 wt%. A method for producing phase change microcapsules. さらに、(F)前記伝熱骨格層相変化マイクロカプセルの氷浴、遠心、濾過、乾燥を行う工程を含むことを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The phase change micro provided with the heat transfer skeleton layer according to claim 1, further comprising (F) a step of performing ice bath, centrifugation, filtration, and drying of the heat transfer skeleton layer phase change microcapsule. Capsule manufacturing method. 工程(B)において前記加熱範囲が50℃〜120℃であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the heating range is 50 ° C. to 120 ° C. in the step (B). 工程(C)において前記加熱範囲が40℃〜80℃であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the heating range is 40 ° C. to 80 ° C. in the step (C). 工程(E)において前記加熱範囲が50℃〜120℃であることを特徴とする、請求項1に記載の伝熱骨格層を備えた相変化マイクロカプセルの製造方法。   The method for producing a phase change microcapsule having a heat transfer skeleton layer according to claim 1, wherein the heating range is 50 ° C to 120 ° C in the step (E).
JP2014239604A 2014-11-27 2014-11-27 Method for producing phase change microcapsules with heat transfer skeleton layer Active JP5914622B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239604A JP5914622B1 (en) 2014-11-27 2014-11-27 Method for producing phase change microcapsules with heat transfer skeleton layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239604A JP5914622B1 (en) 2014-11-27 2014-11-27 Method for producing phase change microcapsules with heat transfer skeleton layer

Publications (2)

Publication Number Publication Date
JP5914622B1 JP5914622B1 (en) 2016-05-11
JP2016101536A true JP2016101536A (en) 2016-06-02

Family

ID=55951924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239604A Active JP5914622B1 (en) 2014-11-27 2014-11-27 Method for producing phase change microcapsules with heat transfer skeleton layer

Country Status (1)

Country Link
JP (1) JP5914622B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134632A (en) * 2017-02-18 2018-08-30 株式会社Mcラボ Microcapsule and method for producing microcapsule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521186A (en) * 1998-07-27 2002-07-16 フリスビー テクノロジーズ インコーポレーテッド Gel-coated microcapsules
JP3092220U (en) * 2002-08-09 2003-03-07 坤祥 黄 Endothermic microcapsules
JP2003131201A (en) * 2001-10-19 2003-05-08 Pacific Corp Microcapsule of thermotropic liquid crystal polymer, method for manufacturing the same and cosmetic composition containing the microcapsule
JP2004517971A (en) * 2000-08-04 2004-06-17 エイチアールエル ラボラトリーズ,エルエルシー Nanometer-sized phase change materials for highly thermally conductive fluids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521186A (en) * 1998-07-27 2002-07-16 フリスビー テクノロジーズ インコーポレーテッド Gel-coated microcapsules
JP2004517971A (en) * 2000-08-04 2004-06-17 エイチアールエル ラボラトリーズ,エルエルシー Nanometer-sized phase change materials for highly thermally conductive fluids
JP2003131201A (en) * 2001-10-19 2003-05-08 Pacific Corp Microcapsule of thermotropic liquid crystal polymer, method for manufacturing the same and cosmetic composition containing the microcapsule
JP3092220U (en) * 2002-08-09 2003-03-07 坤祥 黄 Endothermic microcapsules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134632A (en) * 2017-02-18 2018-08-30 株式会社Mcラボ Microcapsule and method for producing microcapsule

Also Published As

Publication number Publication date
JP5914622B1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
US9480960B2 (en) Process for preparing phase change microcapsule having thermally conductive shell
CN108047480B (en) High-temperature expanded polymer microsphere and preparation method thereof
CN108084483B (en) Special thermally expandable polymer microsphere for polyvinyl chloride resin foaming and preparation method thereof
Chaiyasat et al. Innovative synthesis of high performance poly (methyl methacrylate) microcapsules with encapsulated heat storage material by microsuspension iodine transfer polymerization (ms ITP)
Chen et al. Fabrication and characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation
WO2014036681A1 (en) Heat-expandable microspheres, preparation method and use thereof
Sun et al. Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage
Shi et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage
CN103408786A (en) Preparation method of porous graphene-polymer composite material
Qiu et al. Synthesis and characterization of paraffin/TiO2‐P (MMA‐co‐BA) phase change material microcapsules for thermal energy storage
WO2014109413A1 (en) Microcapsule heat storage material, production method thereof and use thereof
CN105561900B (en) Phase-change microcapsule and preparation method thereof
JP5374343B2 (en) Core-shell particle and method for producing core-shell particle
Pradhan et al. Encapsulation of paraffin wax by rigid cross-linked poly (styrene divinylbenzene-acrylic acid) and its thermal characterization
JP5914622B1 (en) Method for producing phase change microcapsules with heat transfer skeleton layer
JP2006063314A (en) Microcapsule and its production method
Suzuki et al. Versatile synthesis of high performance, crosslinked polymer microcapsules with encapsulated n-hexadecane as heat storage materials by utilizing microsuspension controlled/living radical polymerization (ms CLRP) of ethylene glycol dimethacrylate with the SaPSeP method
JP5845044B2 (en) Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition
TWI713561B (en) Insulation-coated carbon fiber, method for manufacturing insulation-coated carbon fiber, carbon fiber-containing composition and heat conducting sheet
TWI535486B (en) A method for preparing phase - changed microcapsules with thermal shells
CN114316919B (en) Polymer/graphene oxide composite microcapsule for phase-change energy storage material encapsulation and preparation method thereof
JP2004277646A (en) Heat-storage microcapsule
TWI764098B (en) High thermal conductivity and low resistance phase change material microcapsule and its preparation and application
JP2012102195A (en) Method of manufacturing curing agent and/or curing accelerator-including capsule, curing agent and/or curing accelerator-including capsule, and thermosetting resin composition
JP5358074B2 (en) Microcapsule, resin composition for coating film formation, coating film and method for producing microcapsule

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5914622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250