JP2016101135A - Manufacturing method of small nanoparticle - Google Patents

Manufacturing method of small nanoparticle Download PDF

Info

Publication number
JP2016101135A
JP2016101135A JP2014241930A JP2014241930A JP2016101135A JP 2016101135 A JP2016101135 A JP 2016101135A JP 2014241930 A JP2014241930 A JP 2014241930A JP 2014241930 A JP2014241930 A JP 2014241930A JP 2016101135 A JP2016101135 A JP 2016101135A
Authority
JP
Japan
Prior art keywords
gallate
pure water
animal protein
catechin
containing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014241930A
Other languages
Japanese (ja)
Other versions
JP6638185B2 (en
Inventor
聡 土井
Satoshi Doi
聡 土井
泰治 松川
Taiji Matsukawa
泰治 松川
松居 雄毅
Takeki Matsui
雄毅 松居
泰正 山田
Yasumasa Yamada
泰正 山田
山田 一郎
Ichiro Yamada
一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uha Mikakuto Co Ltd
Original Assignee
Uha Mikakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uha Mikakuto Co Ltd filed Critical Uha Mikakuto Co Ltd
Priority to JP2014241930A priority Critical patent/JP6638185B2/en
Publication of JP2016101135A publication Critical patent/JP2016101135A/en
Application granted granted Critical
Publication of JP6638185B2 publication Critical patent/JP6638185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for safety making small nanoparticle derived from a natural product using a functional raw material such as gallate-type catechin and animal proteins and having average particle diameter of 1 to 50 nm.SOLUTION: A gallate-type catechin-containing liquid is dissolved in a pure water so that the gallate-type catechin is 0.1 wt.% as a solid content, an animal protein-containing liquid is obtained by dissolving at least one kind of animal protein selected from gelatin, collagen and a decomposition product thereof in a pure water so that the animal protein is 0.1 wt.% as a solid content and the gallate-type catechin-containing liquid and the animal protein-containing liquid are mixed with the pure water of 2 to 100 times amount based on the total weight of these liquids to manufacture nanoparticles having average particle diameter of 10 to 50 nm.SELECTED DRAWING: None

Description

本発明は、天然物由来の成分からなり、平均粒子径が10〜50nmという微小なナノ粒子の製造方法に関する。   The present invention relates to a method for producing fine nanoparticles comprising a component derived from a natural product and having an average particle size of 10 to 50 nm.

天然物由来のゼラチンは、豚や牛、魚の軟骨成分より抽出したタンパク質であり、食品のゲル化剤、増粘剤、安定剤等としての利用のほかにカプセルなどの基材としてや止血剤などの医療分野でも利用されている。また、ゼラチンに臭化カリウムと硝酸銀を加えた乳化コロイドは感光物質の保護コロイドとして用いられている。また、ゼラチンが水溶性であるという性質を利用し、有機溶媒に滴下することでマイクロカプセルを作製する技術も知られている。   Gelatin derived from natural products is a protein extracted from cartilage components of pigs, cattle and fish. In addition to its use as a food gelling agent, thickener, stabilizer, etc., it also serves as a base material for capsules, hemostatic agents, etc. It is also used in the medical field. An emulsion colloid obtained by adding potassium bromide and silver nitrate to gelatin is used as a protective colloid for photosensitive materials. In addition, a technique for producing microcapsules by using a property that gelatin is water-soluble and dropping it into an organic solvent is also known.

更に、近年ゼラチンをナノ粒子化することにより、医薬品成分を目的の臓器や組織に提供するためのドラッグデリバリーシステム(DDS)に利用する技術開発が進んでいる。ゼラチンのような食品由来の成分を用いたナノ粒子は安全性の観点から優位性が高いと考えられる。例として、キトサンを用いたナノ粒子の製造方法(特許文献1,2,3)が挙げられる。   Furthermore, in recent years, the development of technology for use in drug delivery systems (DDS) for providing pharmaceutical ingredients to target organs and tissues by making gelatin into nanoparticles has been progressing. Nanoparticles using food-derived ingredients such as gelatin are considered to be highly advantageous from the viewpoint of safety. As an example, a method for producing nanoparticles using chitosan (Patent Documents 1, 2, and 3) can be mentioned.

本発明者らも、製造の簡便性および原料コストでの優位性を見出したゼラチンとガレート型カテキンを組み合わせたナノ粒子の製造方法(特許文献4)を報告してきた。本発明者らの方法はガレート型カテキンをゼラチンに対するコアセルベータとして働かせる方法である。これは生理活性のある物質をナノ粒子形成物質として用いた初めての方法である。即ち、機能性で最も幅広く研究されているエピガロカテキンガレートに代表されるガレート型カテキンは、抗肥満作用や循環器系疾患予防作用、抗癌作用など幅広い生理機能を有していることが知られている。また、ガレート型カテキンには脂肪分解酵素であるリパーゼを阻害する作用を有するため、植物性油脂の効率的な抽出に用いる技術が報告されている(特許文献5)。また、本発明者らはガレート型カテキンとゼラチンの複合体化によりリパーゼ阻害剤を報告しており(特許文献6)、ナノ粒子形成物質としてのガレート型カテキンの用途のみならず、タンパク質の組み合わせによる生理活性の向上という有意性も見出されている。   The present inventors have also reported a method for producing nanoparticles (patent document 4) in which gelatin and gallate-type catechin are combined, which have been found to be advantageous in production and superior in raw material cost. Our method is to make gallate catechins act as a coacervator for gelatin. This is the first method using a physiologically active substance as a nanoparticle forming substance. In other words, gallate-type catechins represented by epigallocatechin gallate, the most widely studied in terms of functionality, have a wide range of physiological functions such as anti-obesity action, cardiovascular disease prevention action, and anti-cancer action. It has been. In addition, since gallate catechin has an action of inhibiting lipase, which is a lipolytic enzyme, a technique used for efficient extraction of vegetable oils and fats has been reported (Patent Document 5). In addition, the present inventors have reported a lipase inhibitor by complexing gallate catechin and gelatin (Patent Document 6), not only by the use of gallate catechin as a nanoparticle-forming substance but also by a combination of proteins. Significance in improving bioactivity has also been found.

ここで、公知のナノ粒子の平均粒子径について、例えば、特許文献1に記載のキトサン微粒子は0.1〜50μmであり、0.1μm未満ではハンドリングが難しいとされている(段落[0017])。また、特許文献2に記載の乳化物中の油滴粒子の体積平均粒子径は1nm〜100nmであるが(請求項2)、製造段階で水溶性有機溶媒を用いて作製されており、純水を用いる技術ではない。   Here, with regard to the average particle diameter of known nanoparticles, for example, chitosan fine particles described in Patent Document 1 are 0.1 to 50 μm, and it is said that handling is difficult if the particle diameter is less than 0.1 μm (paragraph [0017]). . Moreover, although the volume average particle diameter of the oil droplet particles in the emulsion described in Patent Document 2 is 1 nm to 100 nm (Claim 2), it is produced using a water-soluble organic solvent in the production stage, and is pure water. It is not a technology that uses.

以上のことから、平均粒子径が1〜50nmのナノ粒子を、純水を用いて安全に製造する方法は知られていなかった。   From the above, a method for safely producing nanoparticles having an average particle diameter of 1 to 50 nm using pure water has not been known.

特許第05564200号公報Japanese Patent No. 0556200 特開2009−090160号公報JP 2009-090160 A 米国特許第8,642,088号明細書US Pat. No. 8,642,088 特願2014−160745号公報Japanese Patent Application No. 2014-160745 特開2014−062192号公報JP 2014-062192 A 特開2013−082673号公報JP 2013-082673 A

したがって、本発明は、ガレート型カテキンおよび動物性タンパク質という機能性素材を用いた天然物由来のナノ粒子であって、平均粒子径が1〜50nmというナノ粒子の中でも微小なナノ粒子を安全に作製する製造方法を提供することを目的とする。   Therefore, the present invention is a natural product-derived nanoparticle using functional materials such as gallate-type catechin and animal protein, and even a nanoparticle having an average particle diameter of 1 to 50 nm can be produced safely. An object of the present invention is to provide a manufacturing method.

本発明者らは、食品にも利用可能なナノ粒子について鋭意検討した。その中で本発明者らは、ナトリウムやカルシウム、その他イオン性のミネラル成分によりナノ粒子の粒子経が大きくなることを見出した。この知見をもとにさらに鋭意検討した結果、ガレート型カテキンと動物性タンパク質とを純水を用いて混合するという非常に簡便な方法で、ガレート型カテキンと動物性タンパク質とのコアセルベートを形成し、天然物由来の原料を含む平均粒子径1〜50nmのナノ粒子を作製することに成功し、本発明を完成するに至った。   The present inventors diligently investigated nanoparticles that can be used in foods. Among them, the present inventors have found that the particle size of the nanoparticles is increased by sodium, calcium and other ionic mineral components. As a result of further intensive studies based on this knowledge, a coacervate of gallate catechin and animal protein was formed by a very simple method of mixing gallate catechin and animal protein using pure water, The present inventors have succeeded in producing nanoparticles having an average particle diameter of 1 to 50 nm including a natural product-derived raw material, and have completed the present invention.

本発明の要旨は、
〔1〕ガレート型カテキンを固形分として0.1重量%以上となるように純水に溶解させてガレート型カテキン含有液を得る工程(A)と、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を固形分として0.1重量%以上となるように純水に溶解させて動物性タンパク質含有液を得る工程(B)と、
工程(A)で得られたガレート型カテキン含有液および工程(B)で得られた動物性タンパク質含有溶液と、これらの液体の総重量に対して2〜100倍量の純水とを混合する工程(C)
を有する平均粒子径10〜50nmのナノ粒子の製造方法、
〔2〕純水が伝導率として10.0μS/cm以下である前記〔1〕に記載の平均粒子径10〜50nmのナノ粒子の製造方法
に関する。
The gist of the present invention is as follows:
[1] A step (A) of obtaining a gallate-type catechin-containing liquid by dissolving gallate-type catechin in pure water so that the solid content is 0.1% by weight or more;
Step (B) of obtaining an animal protein-containing solution by dissolving at least one animal protein selected from gelatin, collagen, and degradation products thereof in pure water so that the solid content is 0.1% by weight or more. When,
The gallate catechin-containing liquid obtained in step (A) and the animal protein-containing solution obtained in step (B) are mixed with 2 to 100 times the amount of pure water based on the total weight of these liquids. Process (C)
A method for producing nanoparticles having an average particle size of 10 to 50 nm,
[2] The method for producing nanoparticles having an average particle diameter of 10 to 50 nm according to [1], wherein pure water has a conductivity of 10.0 μS / cm or less.

本発明で得られるナノ粒子は、ガレート型カテキンおよび動物性タンパク質という天然物由来の原料からなり、しかもガレート型カテキンおよび動物性タンパク質に由来する優れた健康機能性が期待されるものである。例えば、本発明者らは、前記特許文献6でコラーゲンとガレート型カテキンを用いたリパーゼ阻害組成物を報告しているが、本発明によって得られたナノ粒子もその機能を保持していることが期待される。   Nanoparticles obtained in the present invention are made of raw materials derived from natural products such as gallate catechins and animal proteins, and are expected to have excellent health functions derived from gallate catechins and animal proteins. For example, the present inventors have reported a lipase-inhibiting composition using collagen and gallate-type catechins in Patent Document 6, but the nanoparticles obtained by the present invention also retain their functions. Be expected.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のナノ粒子の製造方法は、平均粒子径が10〜50nmであり、ガレート型カテキンおよび動物性タンパク質という天然物由来成分を基材とするナノ粒子の製造方法であって、
ガレート型カテキンを固形分として0.1重量%以上となるように純水に溶解させてガレート型カテキン含有液を得る工程(A)と、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を固形分として0.1重量%以上となるように純水に溶解させて動物性タンパク質含有液を得る工程(B)と、
工程(A)で得られたガレート型カテキン含有液および工程(B)で得られた動物性タンパク質含有溶液と、これらの液体の総重量に対して2〜100倍量の純水とを混合する工程(C)
を有することを特徴とする。
The method for producing nanoparticles according to the present invention is a method for producing nanoparticles having an average particle diameter of 10 to 50 nm, and based on natural product-derived components such as gallate catechins and animal proteins,
A step (A) of obtaining a gallate-type catechin-containing liquid by dissolving gallate-type catechin in pure water so that the solid content is 0.1% by weight or more;
Step (B) of obtaining an animal protein-containing solution by dissolving at least one animal protein selected from gelatin, collagen, and degradation products thereof in pure water so that the solid content is 0.1% by weight or more. When,
The gallate catechin-containing liquid obtained in step (A) and the animal protein-containing solution obtained in step (B) are mixed with 2 to 100 times the amount of pure water based on the total weight of these liquids. Process (C)
It is characterized by having.

本発明で作製するナノ粒子の平均粒子径は、10〜50nmであり、体内への吸収性および、製造性が良好である観点から、好ましくは10〜30nmであり、より好ましくは10〜20nmである。
前記ナノ粒子の平均粒子径は、後述の実施例に記載のように、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)にて測定することができる。
The average particle size of the nanoparticles prepared in the present invention is 10 to 50 nm, and is preferably 10 to 30 nm, more preferably 10 to 20 nm from the viewpoint of good absorbability into the body and manufacturability. is there.
The average particle diameter of the nanoparticles can be measured with a zeta potential / nanoparticle diameter measurement system (“DelsaMax PRO” manufactured by Beckman Coulter, Inc.) as described in the Examples below.

本発明でいう天然物由来成分とは、原料である、ガレート型カテキン、およびゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質がともに天然物由来であることを示す。なお、前記原料として試薬等を使用する際にも、その試薬が天然物由来であればよい。   The natural product-derived component as used in the present invention means that at least one animal protein selected from gallate catechin, gelatin, collagen, and degradation products thereof, which are raw materials, is derived from a natural product. In addition, when using a reagent etc. as said raw material, the reagent should just be derived from a natural product.

以下、各工程について説明する。   Hereinafter, each step will be described.

(工程(A))
本発明のナノ粒子の製造方法では、前記ガレート型カテキンを、純水に溶解させて、ガレート型カテキン含有液を作製する。
(Process (A))
In the method for producing nanoparticles of the present invention, the gallate catechin is dissolved in pure water to prepare a gallate catechin-containing liquid.

本発明で用いるガレート型カテキンとしては、EGCg、ECg、GCg、Cgが挙げられる。前記ガレート型カテキンは、非重合体でも重合体でもよく、それらを混合しても、単独で使用してもよい。効率的な粒子形成の観点よりEGCgおよび/またはECgを含有することが好ましい。   Examples of the gallate catechin used in the present invention include EGCg, ECg, GCg, and Cg. The gallate catechin may be a non-polymer or a polymer, and they may be mixed or used alone. From the viewpoint of efficient particle formation, it is preferable to contain EGCg and / or ECg.

また、ガレート型カテキンとして、ガレート型カテキンを含む組成物を用いてもよい。ガレート型カテキンを含む組成物としては、例えば、前記ガレート型カテキンを含む茶抽出物やコーヒー抽出物等が挙げられる。また、粒子作製の効率の面から、組成物中のガレート型カテキン量が20重量%以上のものが好ましく、さらに好ましくは、30重量%以上のもの、より好ましくは60重量%以上のものがよい。   Moreover, you may use the composition containing a gallate type catechin as a gallate type catechin. Examples of the composition containing gallate catechin include tea extract and coffee extract containing the gallate catechin. From the viewpoint of particle production efficiency, the gallate catechin content in the composition is preferably 20% by weight or more, more preferably 30% by weight or more, and more preferably 60% by weight or more. .

本発明で溶媒として使用する純水とは、一般的な水道水に含まれる塩類、残留塩素などの不純物が取り除かれた水をいい、例えば、逆浸透膜を通した水、脱イオン水、蒸留水、精製水などが挙げられる。   The pure water used as a solvent in the present invention refers to water from which impurities such as salts and residual chlorine contained in general tap water are removed, for example, water through a reverse osmosis membrane, deionized water, and distillation. Water, purified water, etc. are mentioned.

中でも、純水としては、平均粒子径が1〜50nmのナノ粒子を効率よく得られる観点から、伝導率が10.0μS/cm以下の純水が好ましい。
前記伝導率は、伝導率計によって測定することができる。伝導率計としては例えば、コンパクト電気伝導率計(HORIBA社製)などが挙げられる。また伝導率の逆数となる比電気抵抗(MΩ・cm)で測定することも出来る。
Among these, pure water having a conductivity of 10.0 μS / cm or less is preferable from the viewpoint of efficiently obtaining nanoparticles having an average particle diameter of 1 to 50 nm.
The conductivity can be measured by a conductivity meter. Examples of the conductivity meter include a compact electrical conductivity meter (manufactured by HORIBA). It can also be measured by specific electrical resistance (MΩ · cm) which is the reciprocal of conductivity.

前記純水にガレート型カテキンを溶解させる手段としては、公知の手段であれば特に限定はない。例えば、ガレート型カテキンを、前記純水に添加・混合することで、溶解させることができる。また、前記溶解させる際には、ガレート型カテキンの溶解性の観点から、前記純水の温度を20〜90℃に調整しておくことが好ましいが溶解すれば特に限定はない。なお、ガレート型カテキンは、一部が純水に溶解していればよく、ガレート型カテキン含有液が分散液の状態であってもよい。   The means for dissolving the gallate catechin in the pure water is not particularly limited as long as it is a known means. For example, gallate catechin can be dissolved by adding and mixing with the pure water. Moreover, when making it melt | dissolve, it is preferable to adjust the temperature of the said pure water to 20-90 degreeC from a soluble viewpoint of gallate type catechin, but if it melt | dissolves, there will be no limitation in particular. Note that the gallate catechin may be partially dissolved in pure water, and the gallate catechin-containing liquid may be in a dispersion state.

前記ガレート型カテキン含有液中のガレート型カテキンの固形分値は平均粒子径10〜50nmのナノ粒子を効率的に作製する観点から、0.01〜24重量%であることが好ましい。より好ましくは0.1〜20重量%であることが好ましい。   The solid content value of the gallate catechin in the gallate catechin-containing liquid is preferably 0.01 to 24% by weight from the viewpoint of efficiently producing nanoparticles having an average particle size of 10 to 50 nm. More preferably, it is 0.1 to 20 weight%.

(工程(B))
本工程では、ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を固形分として0.1重量%以上となるように純水に溶解させて動物性タンパク質含有液を作製する。
(Process (B))
In this step, an animal protein-containing solution is prepared by dissolving at least one animal protein selected from gelatin, collagen, and degradation products thereof in pure water to a solid content of 0.1% by weight or more. To do.

本発明で用いる動物性タンパク質は、ガレート型カテキンとコアセルベートを形成可能なゼラチン、コラーゲン、およびこれらの分解物などであればよい。動物性タンパク質の由来は、豚、魚、ニワトリ等、および遺伝子組み換え体のいずれかを用いることができ、これらの天然物由来のタンパク質は、単独で使用しても、2種以上を組み合わせて使用してもよい。好ましくは、動物性タンパク質溶液を作成したときのpHが4.5以下となるものが好ましい。動物性タンパク質溶液のpHが4.5以上となるものであっても酸の添加により4.5以下にして使用することが可能である。この場合の酸には特に限定はない。なお、牛骨または豚骨由来の動物性タンパク質は、50nm以下の粒子が一部形成されるものの、その平均粒子径が50nmを超える大きさになるため、本発明では使用することが難しい。
ただし、牛骨または豚骨由来のタンパク質が含まれている動物性タンパク質であっても、平均粒子径1〜50nmのナノ粒子が作製できれば、特に限定はなく使用することができる。
The animal protein used in the present invention may be gelatin, collagen, or a degradation product thereof, which can form coacervate with gallate catechin. Animal protein can be derived from pigs, fish, chickens, etc., and genetically modified organisms. These natural products can be used alone or in combination of two or more. May be. Preferably, the animal protein solution having a pH of 4.5 or less is preferable. Even if the pH of the animal protein solution is 4.5 or more, it can be used by adding an acid to 4.5 or less. The acid in this case is not particularly limited. In addition, although animal protein derived from bovine bone or pork bone is partially formed with particles of 50 nm or less, its average particle diameter exceeds 50 nm, so it is difficult to use in the present invention.
However, even if it is animal protein containing the protein derived from a cow bone or a pork bone, if a nanoparticle with an average particle diameter of 1-50 nm can be produced, it can use without limitation.

溶媒として使用する前記純水は、前記ガレート型カテキン含有溶液に用いることができる純水と同じものであればよい。   The pure water used as the solvent may be the same as the pure water that can be used for the gallate catechin-containing solution.

前記純水に前記動物性タンパク質を溶解させる手段としては、公知の手段であれば特に限定はない。例えば、前記動物性タンパク質を、前記溶媒に添加・混合することで、溶解させることができる。なお、本発明では、前記動物性タンパク質が純水で溶解されている状態の一つとして膨潤されていてもよい。
なお、膨潤とは、動物性タンパク質に純水を添加してゲル状にすることをいう。
また、前記溶解または膨潤させる際には、効率的に溶解または膨潤させる観点から、前記溶媒の温度を20〜90℃に調整しておくことが好ましい。
The means for dissolving the animal protein in the pure water is not particularly limited as long as it is a known means. For example, the animal protein can be dissolved by adding and mixing with the solvent. In the present invention, the animal protein may be swollen as one of the states dissolved in pure water.
In addition, swelling means adding a pure water to animal protein and making it gelatinous.
Moreover, when making it melt | dissolve or swell, it is preferable to adjust the temperature of the said solvent to 20-90 degreeC from a viewpoint of making it melt | dissolve or swell efficiently.

前記動物性タンパク質含有液中の動物性タンパク質の固形分値は、平均粒子径1〜50nmのナノ粒子を効率的に作製する観点から、0.1〜19重量%であることが好ましく、より好ましくは、0.1〜10重量%である。
なお、ゼラチンを使用する場合、前記固形分値が20重量%以上であれば動物性タンパク質含有液の粘度の上昇により扱いにくくなる。
The solid content value of the animal protein in the animal protein-containing liquid is preferably 0.1 to 19% by weight, more preferably from the viewpoint of efficiently producing nanoparticles having an average particle diameter of 1 to 50 nm. Is 0.1 to 10% by weight.
When gelatin is used, if the solid content is 20% by weight or more, it becomes difficult to handle due to an increase in the viscosity of the animal protein-containing solution.

(工程(C))
本工程では、前記工程(A)で得られたガレート型カテキン含有液および前記工程(B)で得られた動物性タンパク質含有溶液と、これらの液体の総重量に対して2〜100倍量の純水とを混合する。
(Process (C))
In this step, the gallate-type catechin-containing liquid obtained in the step (A) and the animal protein-containing solution obtained in the step (B) and 2 to 100 times the total weight of these liquids Mix with pure water.

例えば、前記ガレート型カテキン含有液と、前記動物性タンパク質含有液とを、これらの2種類の液体の総重量に対して2〜100倍量の純水中で混合する方法が挙げられる。   For example, a method of mixing the gallate-type catechin-containing liquid and the animal protein-containing liquid in 2 to 100 times the amount of pure water with respect to the total weight of these two kinds of liquids can be mentioned.

前記のようにガレート型カテキン含有液と動物性タンパク質含有液とを、多量の純水中で混合することで粒子径がより小さくなりやすいという利点がある。   As described above, there is an advantage that the particle diameter is easily reduced by mixing the gallate-type catechin-containing liquid and the animal protein-containing liquid in a large amount of pure water.

本工程において、前記ガレート型カテキン含有液と、前記動物性タンパク質含有液と、純水との混合方法としては、これらの成分が均一に混合可能であればよく、静置している前記ガレート型カテキン含有液に前記動物性タンパク質含有液および純水を添加する方法、静置している前記動物性タンパク質含有液に記ガレート型カテキン含有液および純水を添加する方法、静置している水に、前記ガレート型カテキン含有液および前記動物性タンパク質含有液を添加する方法、静置するかわりに攪拌しながら添加する方法、ホモジナイズしながら添加する方法等が使用可能であるが、特に限定はない。   In this step, the gallate type catechin-containing liquid, the animal protein-containing liquid, and the pure water may be mixed as long as these components can be mixed uniformly. A method of adding the animal protein-containing solution and pure water to the catechin-containing solution, a method of adding the gallate-type catechin-containing solution and pure water to the standing animal protein-containing solution, and a standing water In addition, a method of adding the gallate-type catechin-containing solution and the animal protein-containing solution, a method of adding while stirring, a method of adding while homogenizing, etc. can be used, but there is no particular limitation. .

本工程において、混合する際の温度などの条件については、成分の大幅な変化などが生じず、均一に混合可能な条件であればよく、使用する成分に適した温度であればよい。例えば、ゼラチンの場合、低温であると溶液の粘度が上昇し、濃度が数%以上などと高い場合、均一に混合することが困難となることから、20℃以上であることが好ましい。さらに、高温の場合、成分の変化が起こりやすくなるため、20〜80℃がより好ましく、さらに好ましくは、50〜60℃がよい。   In this step, the conditions such as the temperature at the time of mixing may be any conditions that do not cause a significant change in the components and can be uniformly mixed, and may be any temperature suitable for the components to be used. For example, in the case of gelatin, when the temperature is low, the viscosity of the solution increases, and when the concentration is as high as several percent or more, it becomes difficult to mix uniformly. Furthermore, in the case of high temperature, since the change of a component becomes easy to occur, 20-80 degreeC is more preferable, More preferably, 50-60 degreeC is good.

また、平均粒子径1〜50nmのナノ粒子を効率よく得る観点から、前記ガレート型カテキン含有液と、前記動物性タンパク質含有液との量として、
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように調整して混合することが好ましい。前記重量比については、上限値が7.0以下であることが好ましい。
In addition, from the viewpoint of efficiently obtaining nanoparticles having an average particle diameter of 1 to 50 nm, as the amount of the gallate catechin-containing liquid and the animal protein-containing liquid,
(A) Solid content of gallate type catechin (b) Weight of animal protein solid content is preferably adjusted and mixed so that 0.07 ≦ (b) / (a) ≦ 8.0. As for the weight ratio, the upper limit value is preferably 7.0 or less.

また、前記ガレート型カテキン含有液と、前記動物性タンパク質含有液と、純水との混合液のpHは、ナノ粒子を溶解、凝集、沈殿させずに効率よく形成できる観点から、1.0〜4.0に調整することが好ましい。前記pHは、1.5〜3.5がより好ましく、1.5〜3.1がさらに好ましい。   In addition, the pH of the mixed solution of the gallate-type catechin-containing liquid, the animal protein-containing liquid, and pure water is 1.0 to from the viewpoint that it can be efficiently formed without dissolving, aggregating, and precipitating the nanoparticles. It is preferable to adjust to 4.0. The pH is more preferably 1.5 to 3.5, and further preferably 1.5 to 3.1.

前記pHの調整には、ナノ粒子の使用用途に応じて、使用可能な酸であれば特に制限はない。例えば、クエン酸、アスコルビン酸、グルコン酸、カルボン酸、酒石酸、コハク酸、酢酸またはフタル酸、トリフルオロ酢酸のような有機酸、塩酸、過塩素酸、炭酸のような無機酸、または緩衝液、などで調整することが挙げられるが、これらに限定されるものではない。得られたナノ粒子を医薬品、化粧品、食品等に利用する場合は、それぞれの使用用途に適した酸を選択することが好ましい。   The pH is not particularly limited as long as it is a usable acid depending on the intended use of the nanoparticles. For example, citric acid, ascorbic acid, gluconic acid, carboxylic acid, tartaric acid, succinic acid, acetic acid or phthalic acid, organic acids such as trifluoroacetic acid, inorganic acids such as hydrochloric acid, perchloric acid, carbonic acid, or buffers, However, it is not limited to these. When the obtained nanoparticles are used for pharmaceuticals, cosmetics, foods, etc., it is preferable to select an acid suitable for each use application.

なお、前記混合液のpHを調整するには、ガレート型カテキン含有液と、動物性タンパク質含有液とのpHを予め調整してもよい。このように予めpHを調整することで、ガレート型カテキン含有液と、動物性タンパク質含有液を混合するだけで、得られる混合液のpHを1.0〜4.0の範囲に調整することができる。   In order to adjust the pH of the mixed solution, the pH of the gallate catechin-containing solution and the animal protein-containing solution may be adjusted in advance. By adjusting the pH in advance in this way, the pH of the resulting mixed solution can be adjusted to a range of 1.0 to 4.0 simply by mixing the gallate-type catechin-containing solution and the animal protein-containing solution. it can.

前記のようにpHを1.0〜4.0の範囲に調整した混合液中において、ガレート型カテキンと動物性タンパク質とがコアセルベートを形成し、このコアセルベート中に平均粒子径10〜50nmのナノ粒子が生じる。   The gallate catechin and the animal protein form a coacervate in the mixed solution whose pH is adjusted to the range of 1.0 to 4.0 as described above, and nanoparticles having an average particle diameter of 10 to 50 nm are formed in the coacervate. Occurs.

前記混合液中においては、効率的にナノ粒子を作製する観点から、ガレート型カテキンまたはガレート型カテキンを含む組成物由来の固形分を0.01重量%以上、ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質由来の固形分を0.01重量%以上含有することが好ましい。また、前記ガレート型カテキン由来の固形分および動物性タンパク質由来の固形分の合計量は、0.02〜0.4重量%が好ましく、0.1〜0.3重量%がより好ましく、0.2〜0.3重量%が最も好ましい。
なお、前記ガレート型カテキン含有液と、前記動物性タンパク質含有液との混合時に所望の濃度となるよう調整してもよく、ナノ粒子を作製した後に濃縮してもよい。
In the mixed solution, from the viewpoint of efficiently producing nanoparticles, the solid content derived from gallate catechin or a composition containing gallate catechin is 0.01% by weight or more, gelatin, collagen, and degradation products thereof. It is preferable to contain 0.01% by weight or more of a solid content derived from at least one animal protein selected from Further, the total amount of the solid content derived from the gallate catechin and the solid content derived from the animal protein is preferably 0.02 to 0.4% by weight, more preferably 0.1 to 0.3% by weight, and 2 to 0.3% by weight is most preferred.
In addition, you may adjust so that it may become a desired density | concentration at the time of mixing the said gallate type catechin containing liquid and the said animal protein containing liquid, and you may concentrate after producing a nanoparticle.

前記のようにして得られるナノ粒子含有液は、限外濾過、透析等を施してもよい。透析をすれば、粒子化していない成分を分離しやすい。限外濾過膜としては例えばペンシル型UF膜(旭化成社製)、透析膜としてはSnakeSkin(ピアス社製)が挙げられる。これ以外にもナノ粒子を失わずに限外ろ過および透析ができれば特に限定はない。   The nanoparticle-containing liquid obtained as described above may be subjected to ultrafiltration, dialysis and the like. If dialysis is performed, it is easy to separate non-particulate components. Examples of the ultrafiltration membrane include a pencil-type UF membrane (manufactured by Asahi Kasei), and examples of the dialysis membrane include SnakeSkin (manufactured by Pierce). There is no particular limitation as long as ultrafiltration and dialysis can be performed without losing nanoparticles.

本発明で得られるナノ粒子は、安定性に優れたものである。ナノ粒子の安定性を示す指標にナノ粒子表面のゼータ電位を測定する方法が知られており、このゼータ電位の絶対値が大きいほど安定性に優れるといえる。例えば、本発明で得られるナノ粒子としては、固形分値0.2〜1.0重量%に調整したナノ粒子含有液を、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)を用い、分析設定を水として得られるゼータ電位の絶対値が10mV以上であるものが好ましい。   The nanoparticles obtained in the present invention are excellent in stability. A method for measuring the zeta potential on the nanoparticle surface is known as an index indicating the stability of the nanoparticle, and it can be said that the larger the absolute value of this zeta potential, the better the stability. For example, as the nanoparticles obtained in the present invention, a nanoparticle-containing liquid adjusted to a solid content value of 0.2 to 1.0% by weight is used as a zeta potential / nanoparticle diameter measurement system (manufactured by Beckman Coulter, Inc. It is preferable that the absolute value of the zeta potential obtained using DelsaMax PRO ") and the analysis setting as water is 10 mV or more.

なお、測定時におけるナノ粒子含有液の溶媒は純水であるが、これに純水以外の水、含水溶媒、有機溶媒を添加してもよいが、測定誤差などが生じにくい観点から、水または含水溶媒であることが好ましい。   Note that the solvent of the nanoparticle-containing liquid at the time of measurement is pure water, but water other than pure water, a hydrous solvent, and an organic solvent may be added thereto. A water-containing solvent is preferred.

前記溶媒として使用する有機溶媒としては水と混和するものであれば特に限定はされないが、例えば、グリセリン、プロピレングリコール、エタノール、メタノール、アセトン、ジメチルスルホキシド等が挙げられる。また、前記溶媒として使用する含水溶媒とは、前記有機溶媒と水との混合溶媒をいう。   The organic solvent used as the solvent is not particularly limited as long as it is miscible with water, and examples thereof include glycerin, propylene glycol, ethanol, methanol, acetone, and dimethyl sulfoxide. The hydrous solvent used as the solvent refers to a mixed solvent of the organic solvent and water.

以上の工程(A)〜(C)を経て得られるナノ粒子は、食品に利用可能な条件で作製した場合は、飲食品に配合してもよい。飲食品としては特に限定されず、例えば、飲料、アルコール飲料、ゼリー、菓子、機能性食品、健康食品、健康志向食品等が挙げられる。保存性、携帯性、摂取の容易さ等を考慮すると、菓子類が好ましく、菓子類の中でも、ハードキャンディ、ソフトキャンディ、グミキャンディ、タブレット、チューイングガム等が好ましい。   When the nanoparticles obtained through the above steps (A) to (C) are produced under conditions that can be used for food, they may be blended in food and drink. It does not specifically limit as food-drinks, For example, a drink, alcoholic beverage, jelly, confectionery, functional food, health food, health-oriented food, etc. are mentioned. In consideration of preservability, portability, ease of ingestion and the like, confectionery is preferable, and among confectionery, hard candy, soft candy, gummy candy, tablet, chewing gum and the like are preferable.

前記ナノ粒子を飲食品に配合する場合、ナノ粒子の飲食品における含有量は、その生理活性効果が期待できる量であればよい。通常1日あたり10〜10000mg、より好ましくは100〜3000mg摂取できるように配合量を決定することが好ましい。例えば、固形状食品の場合には5〜50重量%、飲料等の液状食品の場合には0.01〜10重量%が好ましい。   When the nanoparticles are blended in a food or drink, the content of the nanoparticles in the food or drink may be an amount that can be expected to have a physiological activity effect. Usually, it is preferable to determine the blending amount so that 10 to 10000 mg, more preferably 100 to 3000 mg can be taken per day. For example, 5 to 50% by weight is preferable for solid foods, and 0.01 to 10% by weight for liquid foods such as beverages.

また、本発明で得られるナノ粒子は、安全性に優れたものであると考えられるので、ヒトに対してだけでなく、非ヒト動物、例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジー等の哺乳類、鳥類、両生類、爬虫類等の治療剤または飼料に配合してもよい。飼料としては、例えばヒツジ、ブタ、ウシ、ウマ、ニワトリ等に用いる家畜用飼料、ウサギ、ラット、マウス等に用いる小動物用飼料、ウナギ、タイ、ハマチ、エビ等に用いる魚介類用飼料、イヌ、ネコ、小鳥、リス等に用いるペットフードが挙げられる。   Further, since the nanoparticles obtained in the present invention are considered to be excellent in safety, not only for humans, but also for non-human animals such as rats, mice, guinea pigs, rabbits, sheep, pigs, You may mix | blend with mammals, such as a cow, a horse, a cat, a dog, a monkey, a chimpanzee, birds, amphibians, a reptile, etc., or a feed. As feed, for example, livestock feed used for sheep, pigs, cattle, horses, chickens, etc., feed for small animals used for rabbits, rats, mice, etc., feed for seafood used for eel, Thailand, yellowtail, shrimp, etc., dogs, The pet food used for a cat, a small bird, a squirrel, etc. is mentioned.

次に、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例にのみ限定されるものではない。   EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited only to this Example.

(実施例1:純水を使ったナノ粒子作製)
純水を用いたナノ粒子の検討は以下の手順で行った。
ゼラチン(商品名:G微粉、新田ゼラチン)1gを純水(伝導率:0.1μS/cm)99gに50℃で溶解させ、ゼラチン溶液を作製した。
緑茶抽出物(ガレート型カテキン64%)1.8gを純水98.2gに50℃で溶解させ、ガレート型カテキン溶液を作製した。
純水8gにゼラチン溶液1gを添加して混合したのち、ガレート型カテキン溶液1gを添加して、50℃で混合して、ナノ粒子を形成させた溶液(pH4.3)10gを作製した。
なお、前記伝導率は、コンパクト電気伝導率計(HORIBA社製)によって測定した。
(Example 1: Preparation of nanoparticles using pure water)
The study of nanoparticles using pure water was performed according to the following procedure.
1 g of gelatin (trade name: G fine powder, Nitta gelatin) was dissolved in 99 g of pure water (conductivity: 0.1 μS / cm) at 50 ° C. to prepare a gelatin solution.
1.8 g of green tea extract (gallate type catechin 64%) was dissolved in 98.2 g of pure water at 50 ° C. to prepare a gallate type catechin solution.
After 1 g of gelatin solution was added to 8 g of pure water and mixed, 1 g of gallate catechin solution was added and mixed at 50 ° C. to prepare 10 g of a solution (pH 4.3) in which nanoparticles were formed.
In addition, the said conductivity was measured with the compact electric conductivity meter (made by HORIBA).

(比較例)
比較品として、溶媒として水道水(伝導率120μS/cm)を用いた以外は実施例1と同様にしてナノ粒子の作製を行った。結果を表1に示す。
(Comparative example)
As a comparative product, nanoparticles were prepared in the same manner as in Example 1 except that tap water (conductivity 120 μS / cm) was used as a solvent. The results are shown in Table 1.

Figure 2016101135
Figure 2016101135

表1からわかるように伝導率の低い純水を用いることで、平均粒子径が10〜50nmのナノ粒子が安全に形成される。また、実施例1で得られたナノ粒子はその粒子径は微小であることからガレート型カテキンおよび動物性タンパク質の生体利用性に優れたものであることが予想される。
As can be seen from Table 1, nanoparticles with an average particle size of 10 to 50 nm can be formed safely by using pure water with low conductivity. Further, the nanoparticles obtained in Example 1 are expected to be excellent in bioavailability of gallate catechins and animal proteins since the particle diameter is very small.

Claims (2)

ガレート型カテキンを固形分として0.1重量%以上となるように純水に溶解させてガレート型カテキン含有液を得る工程(A)と、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を固形分として0.1重量%以上となるように純水に溶解させて動物性タンパク質含有液を得る工程(B)と、
工程(A)で得られたガレート型カテキン含有液および工程(B)で得られた動物性タンパク質含有溶液と、これらの液体の総重量に対して2〜100倍量の純水とを混合する工程(C)
を有する平均粒子径10〜50nmのナノ粒子の製造方法。
A step (A) of obtaining a gallate-type catechin-containing liquid by dissolving gallate-type catechin in pure water so that the solid content is 0.1% by weight or more;
Step (B) of obtaining an animal protein-containing solution by dissolving at least one animal protein selected from gelatin, collagen, and degradation products thereof in pure water so that the solid content is 0.1% by weight or more. When,
The gallate catechin-containing liquid obtained in step (A) and the animal protein-containing solution obtained in step (B) are mixed with 2 to 100 times the amount of pure water based on the total weight of these liquids. Process (C)
A method for producing nanoparticles having an average particle diameter of 10 to 50 nm.
純水が伝導率として10.0μS/cm以下である請求項1に記載の平均粒子径10〜50nmのナノ粒子の製造方法。   The method for producing nanoparticles having an average particle diameter of 10 to 50 nm according to claim 1, wherein pure water has a conductivity of 10.0 μS / cm or less.
JP2014241930A 2014-11-28 2014-11-28 Method for producing fine nanoparticles Active JP6638185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241930A JP6638185B2 (en) 2014-11-28 2014-11-28 Method for producing fine nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241930A JP6638185B2 (en) 2014-11-28 2014-11-28 Method for producing fine nanoparticles

Publications (2)

Publication Number Publication Date
JP2016101135A true JP2016101135A (en) 2016-06-02
JP6638185B2 JP6638185B2 (en) 2020-01-29

Family

ID=56087680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241930A Active JP6638185B2 (en) 2014-11-28 2014-11-28 Method for producing fine nanoparticles

Country Status (1)

Country Link
JP (1) JP6638185B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167081A (en) * 2011-01-24 2012-09-06 Fujifilm Corp Oral composition
JP2014082993A (en) * 2012-10-24 2014-05-12 Uha Mikakuto Co Ltd Gallate-type catechin-containing functional drink

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167081A (en) * 2011-01-24 2012-09-06 Fujifilm Corp Oral composition
JP2014082993A (en) * 2012-10-24 2014-05-12 Uha Mikakuto Co Ltd Gallate-type catechin-containing functional drink

Also Published As

Publication number Publication date
JP6638185B2 (en) 2020-01-29

Similar Documents

Publication Publication Date Title
CN107712543B (en) Anti-flocculation curcumin microcapsule, preparation method and application thereof
EP2252635B1 (en) Carrageenan modified by ion-exchange process
JP6394162B2 (en) Method for producing nanoparticles based on natural product-derived components
Shah et al. Fabrication, stability and rheological properties of zein/chitosan particles stabilized Pickering emulsions with antioxidant activities of the encapsulated vit-D3
JP6414443B2 (en) Nanoparticles based on components derived from natural products
JP5106948B2 (en) Oral administration adjuvant composition for pets
JP6369207B2 (en) Method for producing nanoparticles based on natural product-derived components
JP6638185B2 (en) Method for producing fine nanoparticles
AU2018273928B2 (en) Stabilized compositions for the controlled delivery of probiotics and methods of production thereof
JP6476697B2 (en) Nanoparticles containing gelatin
JP2016124804A (en) Production method of nanoparticles containing naturally occurring component as substrate
JP6464745B2 (en) Method for producing nanoparticles having improved loading of bioactive substances
JP6428165B2 (en) Nanoparticles that can maintain the stability of physiologically active substances
JP6287123B2 (en) Ubiquinol-containing liquid composition
JP6160098B2 (en) Method for producing unpleasant taste masking agent using complex of gallate type catechin and protein
JP6700547B2 (en) Nanoparticles using gallic acid
JP2016159206A (en) Method for producing nanoparticle having improved physiologically active substance carrying capacity
JP3131917U (en) Soft capsule
JP2016123348A (en) Production method of nanoparticle
JP2017066095A (en) Ascorbic acid and nanoparticle dispersion with improved permeability of ascorbic acid derivative
JP6443009B2 (en) Method for producing nanoparticles having improved loading of bioactive substances
WO2020241562A1 (en) Nanoparticles and method for producing same
JP2016159207A (en) Method for producing nanoparticle
JP6024371B2 (en) Herbal extract-containing liquid composition
JP4469660B2 (en) Soft capsule formulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250