JP6369207B2 - Method for producing nanoparticles based on natural product-derived components - Google Patents

Method for producing nanoparticles based on natural product-derived components Download PDF

Info

Publication number
JP6369207B2
JP6369207B2 JP2014160745A JP2014160745A JP6369207B2 JP 6369207 B2 JP6369207 B2 JP 6369207B2 JP 2014160745 A JP2014160745 A JP 2014160745A JP 2014160745 A JP2014160745 A JP 2014160745A JP 6369207 B2 JP6369207 B2 JP 6369207B2
Authority
JP
Japan
Prior art keywords
gallate
catechin
animal protein
nanoparticles
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014160745A
Other languages
Japanese (ja)
Other versions
JP2016037460A (en
Inventor
良美 羽座
良美 羽座
聡 土井
聡 土井
康弘 新家
康弘 新家
泰治 松川
泰治 松川
松居 雄毅
雄毅 松居
泰正 山田
泰正 山田
山田 一郎
一郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uha Mikakuto Co Ltd
Original Assignee
Uha Mikakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uha Mikakuto Co Ltd filed Critical Uha Mikakuto Co Ltd
Priority to JP2014160745A priority Critical patent/JP6369207B2/en
Publication of JP2016037460A publication Critical patent/JP2016037460A/en
Application granted granted Critical
Publication of JP6369207B2 publication Critical patent/JP6369207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fodder In General (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、ガレート型カテキンとゼラチン、コラーゲンおよびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質からなるナノ粒子の製造方法であり、更に詳しくは、これらを混合する重量比の最適化およびpHを選択することにより簡便な混合作業で平均粒子径が100nm以下のナノ粒子を製造する方法に関する。   The present invention relates to a method for producing nanoparticles comprising at least one animal protein selected from gallate catechins, gelatin, collagen, and degradation products thereof, and more specifically, optimization of the weight ratio of mixing these and The present invention relates to a method for producing nanoparticles having an average particle size of 100 nm or less by a simple mixing operation by selecting pH.

近年、物質のナノ粒子化の技術が様々な分野で研究され、幅広い利用が期待されている。特に、医薬品、化粧品分野において活発に検討がなされ、多くの報告が出されている。   In recent years, nanoparticulate technology for materials has been studied in various fields and is expected to be widely used. In particular, active investigations have been made in the pharmaceutical and cosmetic fields, and many reports have been issued.

これまで、特に進んで研究されてきたのは医薬品分野であり、ナノ粒子化により、医薬品成分を目的の臓器や組織に提供するためのドラッグデリバリーシステム(DDS)に注目が集まっている。例えば、ガン組織において、血管新生が盛んであることから血管に間隙ができ、その間隙のサイズを利用したDDSなどにナノ粒子の利用が考えられてきた。これにより、医薬品成分を安定に効率的に運搬するだけでなく、副作用の軽減も可能となりうる。医薬品分野のDDSには例えば、リポソーム、ポリエチレングリコールなどの基材が検討されている(非特許文献1)。この抗ガン剤としての利用に適したナノ粒子のサイズは100〜200nmとされ、このサイズでの開発が活発であった。しかし、これらを基材としたナノ粒子作成は合成品などの成分や溶媒が多く利用されてきたことから、その用途が医薬品に限定され、食品等にはほとんど利用されていない。   The drug field that has been especially studied so far has been the focus of attention on drug delivery systems (DDS) for providing pharmaceutical ingredients to target organs and tissues by nanoparticulation. For example, in cancer tissue, since angiogenesis is thriving, gaps are formed in blood vessels, and the use of nanoparticles has been considered for DDS and the like using the size of the gaps. Thereby, not only can the pharmaceutical ingredients be stably and efficiently transported, but also side effects can be reduced. For DDS in the pharmaceutical field, for example, base materials such as liposomes and polyethylene glycol have been studied (Non-patent Document 1). The size of nanoparticles suitable for use as an anticancer agent was 100 to 200 nm, and development at this size was active. However, since the production of nanoparticles based on these materials has used many components and solvents such as synthetic products, its use is limited to pharmaceuticals and is hardly used for foods.

また、食品分野でのナノ化技術に関する報告もある。食品分野のナノ粒子化では、食感や味の向上、フレーバーなどのリリース、溶解性や透明性、吸収性や反応性の向上などを目指して開発がなされている。しかし、実際のところ、食品分野でのナノ化技術はナノサイズに近いマイクロサイズまで含むことが多く、100μmまで含まれることもあった。ところが、実際に体内への吸収が良くなるサイズは、100nm以下という報告がある(非特許文献2)。   There are also reports on nanotechnology in the food sector. In the field of nano-particles in the food field, developments have been made with the aim of improving texture and taste, releasing flavors, improving solubility and transparency, absorbability and reactivity. However, as a matter of fact, nano-technology in the food field often includes micro-sizes close to nano-size, and sometimes included up to 100 μm. However, there is a report that the size at which absorption into the body is actually improved is 100 nm or less (Non-patent Document 2).

これまでに、食品や食品添加物の分野では、例えばキトサンを用いたナノ粒子の製造方法(特許文献1、2、3)が報告されており、また、シリカ、ナノクレイ、リポソーム、白金ナノ粒子なども報告されている(非特許文献3)。特許文献1の場合、キトサンを酸で溶解後に冷却する方法によってナノ粒子が得られているが、その粒子径は800nm〜3100nmと平均粒子径が大きい。また特許文献2の場合、100nm以下の粒子が形成されているが、マイクロ流路を通過させるため、その製造には専門の装置が必要になる。特許文献3はキトサンとタンニンを混合することでナノ粒子が得られているが、その粒子径は100nm以下とはなっていない。さらに、これらはナノ粒子として食品に用いられてきたが、キャリアとしての性質が強く、そのもの自体の機能性についてはほとんど注目されていなかった。   So far, in the field of food and food additives, for example, methods for producing nanoparticles using chitosan (Patent Documents 1, 2, and 3) have been reported, and silica, nanoclay, liposome, platinum nanoparticles, etc. Has also been reported (Non-Patent Document 3). In the case of Patent Document 1, nanoparticles are obtained by a method in which chitosan is dissolved after being dissolved with an acid, and the average particle diameter is 800 nm to 3100 nm. In the case of Patent Document 2, particles of 100 nm or less are formed. However, in order to pass through the microchannel, a specialized apparatus is required for the production. In Patent Document 3, nanoparticles are obtained by mixing chitosan and tannin, but the particle diameter is not 100 nm or less. Furthermore, although these have been used for food as nanoparticles, they have strong properties as carriers and little attention has been paid to their own functionality.

また、ポリフェノールのカプセル化技術に関する報告もある(非特許文献4)。しかし、この報告についてもほとんどがマイクロスケールであり、ナノ粒子とは異なる性質であると考えられる。   There is also a report on polyphenol encapsulation technology (Non-Patent Document 4). However, most of these reports are micro-scale and are considered to have different properties from nanoparticles.

以上のことから、作製されたナノ粒子自体が有効な機能性を有し、且つナノ粒子の材料が天然物由来で安全性が高く、食品にも利用可能であり、100nm以下のサイズであるナノ粒子はほとんど報告されていない。   From the above, the prepared nanoparticles themselves have effective functionality, and the nanoparticle material is derived from natural products, has high safety, can be used for food, and has a size of 100 nm or less. Few particles have been reported.

ところで、主にお茶などの天然物に含まれるガレート型カテキンには、エピガロカテキンガレート(EGCg)、エピカテキンガレート(ECg)、ガロカテキンガレート(GCg)、カテキンガレート(Cg)の4種類が存在し、抗酸化作用、抗肥満作用、抗ガン作用、抗菌作用、抗炎症作用などの優れた機能を有している。   By the way, there are four types of gallate catechins mainly contained in natural products such as tea: epigallocatechin gallate (EGCg), epicatechin gallate (ECg), gallocatechin gallate (GCg), and catechin gallate (Cg). In addition, it has excellent functions such as an antioxidant action, an anti-obesity action, an anti-cancer action, an antibacterial action, and an anti-inflammatory action.

中でもEGCgはその含有量の多さから注目を集め、多くの報告がなされているが、一方、特にECgにはこれまでに様々な有用性が報告されている。例えば、メチシリン耐性黄色ブドウ球菌において、βラクタム系抗生物質との相乗効果で細胞壁を変化させる効果が他のガレート型カテキンよりも優れた効果を有することが報告されている(非特許文献5)。また、これまでに、本発明者らはECgがLOX−1(レクチン様酸化低密度リポ蛋白質受容体)アンタゴニストとして特に有用であることを見出し、報告している(特許文献4)。また、EGCgとECgでは、ECgのほうが脂質二重膜と相互作用しやすいという報告がある(非特許文献6)。また、ヒト試験において、ECgのほうが血中に取り込まれやすいことも報告がある(非特許文献7)。
以上のことから、ガレート型カテキンであるECgが非常に有用な化合物であることが明らかである。
Among them, EGCg has attracted attention because of its large content, and many reports have been made. On the other hand, ECg has been reported to be particularly useful for ECg. For example, in methicillin-resistant Staphylococcus aureus, it has been reported that the effect of changing the cell wall by a synergistic effect with β-lactam antibiotics is superior to other gallate catechins (Non-Patent Document 5). In addition, the present inventors have found and reported that ECg is particularly useful as an antagonist of LOX-1 (lectin-like oxidized low density lipoprotein receptor) (Patent Document 4). Moreover, there is a report that ECg and ECg are more likely to interact with lipid bilayer membranes (Non-patent Document 6). In human tests, it has also been reported that ECg is more easily taken into blood (Non-patent Document 7).
From the above, it is clear that ECg, which is a gallate catechin, is a very useful compound.

しかし、ガレート型カテキン類であるEGCg、ECg、CgおよびGCgは、これらの間での苦味や渋味に大差はないものの、EGCやECなどの非ガレート型カテキン類よりも苦味や渋味が強いことが示されており、中でもEGCg、ECgの苦味・渋味閾値濃度は3倍程度低いとされている(非特許文献8)。
したがって、緑茶飲料やカテキン含有食品を調整するに際し、苦味や渋味の制御は、当業者において大きな課題となっている。
However, gallate type catechins EGCg, ECg, Cg and GCg have a bitter taste and astringency stronger than non-gallate catechins such as EGC and EC, although there is no great difference in bitterness and astringency between them. In particular, the bitterness and astringency threshold concentrations of EGCg and ECg are about three times lower (Non-patent Document 8).
Therefore, when adjusting green tea drinks or catechin-containing foods, the control of bitterness and astringency is a major problem for those skilled in the art.

そこで、本発明者らは、これまでに、ガレート型カテキンの苦味、渋味の改善に関する研究の結果、分子量4000以上の水溶性コラーゲンと水溶性大豆食物繊維によって、ガレート型カテキンの苦渋味や不快味が低減されることを見出し、報告している(特許文献5)。ただし、特許文献2の条件では得られる粒子の粒子径は記載がないが、本発明者らが測定したところ約130nm以上である。   Thus, as a result of studies on the improvement of the bitterness and astringency of gallate catechins, the present inventors have heretofore found that the bitterness and unpleasantness of gallate catechins can be improved by using water-soluble collagen having a molecular weight of 4000 or more and water-soluble soybean dietary fiber. It has been found and reported that the taste is reduced (Patent Document 5). However, although the particle diameter of the obtained particles is not described under the conditions of Patent Document 2, it is about 130 nm or more as measured by the present inventors.

加えて、本発明者らは、これまでに、ガレート型カテキンとコラーゲンの組み合わせにより、リパーゼ阻害作用(特許文献6)、およびカフェインをさらに加えた組成物で高い抗肥満作用(特許文献7)などの効果が得られることを報告している。
これらの報告から、ガレート型カテキンとコラーゲンやゼラチンを組み合わせることは非常に有用であると考えられる。
In addition, the inventors of the present invention have so far made a combination of gallate catechin and collagen with a lipase inhibitory action (Patent Document 6) and a high anti-obesity action with a composition further added with caffeine (Patent Document 7). It has been reported that such effects can be obtained.
From these reports, it is considered to be very useful to combine gallate catechin with collagen and gelatin.

これまでに、EGCgを含むカテキンとゼラチンの混合物について、ナノ粒子を作製した報告もあるが(非特許文献9)最終濃度がカテキン、ゼラチンともに0.1%までという非常に限定的なものであり、平均粒子径が100nm以下となる条件では最終濃度がカテキン0.05%、ゼラチン0.0125%と薄すぎるために、測定結果も信用できないとの記述がある。また、カテキン由来、ゼラチン由来の成分をともに0.1%含む条件では、平均粒子径が152nm以上となっている。機能性成分であるガレート型カテキンとゼラチンを効率的に摂取するためには、より高い濃度でのナノ粒子作製が求められるが、非特許文献9では達成できていない。   So far, there has been a report that nanoparticles were prepared for a mixture of catechin and gelatin containing EGCg (Non-patent Document 9), but the final concentrations of both catechin and gelatin are very limited to 0.1%. There is a description that the measurement result is unreliable because the final concentration is too thin at 0.05% catechin and 0.0125% gelatin under the condition that the average particle diameter is 100 nm or less. In addition, the average particle diameter is 152 nm or more under the condition that the content of both catechin-derived and gelatin-derived components is 0.1%. In order to efficiently take in the functional components gallate catechin and gelatin, preparation of nanoparticles at a higher concentration is required, but this cannot be achieved in Non-Patent Document 9.

また、EGCgとゼラチンをレイヤーバイレイヤーでナノ粒子化する方法も報告されている(非特許文献10)が、製造工程が煩雑であり、使用するMnCO3およびEDTAは食品に使用できず、摂取に関して安全とは言いがたい。また、ゼラチンにポリアニオンとポリカチオンを用いてレイヤーバイレイヤーでコーティングし、EGCgを吸着させて作製するナノ粒子に関する報告がある(非特許文献11)が、やはり製造工程が煩雑である。 In addition, a method of forming nanoparticles of EGCg and gelatin by layer-by-layer has been reported (Non-patent Document 10), but the manufacturing process is complicated, and MnCO 3 and EDTA to be used cannot be used for foods. Hard to say safe. In addition, there is a report on nanoparticles prepared by coating gelatin on a layer-by-layer basis using polyanions and polycations and adsorbing EGCg (Non-Patent Document 11), but the manufacturing process is also complicated.

以上のことから、機能性成分であるガレート型カテキンとタンパク質の組み合わせは有用であり、これらのナノ粒子を作製した例はあるものの、それぞれ限定的な条件下であることや、使用する材料の安全性やナノ粒子作製の効率が十分でないことから、より簡便な方法で、実用性に富み、食品にも利用可能な平均粒子径100nm以下のナノ粒子を作製することが望まれていた。   From the above, the combination of gallate-type catechins and proteins, which are functional components, is useful, and although there are examples of producing these nanoparticles, each is under limited conditions and the safety of the materials used Therefore, it has been desired to produce nanoparticles having an average particle diameter of 100 nm or less that are more practical and can be used in foods by a simpler method.

特許第05564200号公報Japanese Patent No. 0556200 特開2009−090160号公報JP 2009-090160 A 米国特許第8,642,088号明細書US Pat. No. 8,642,088 特開2012−111747号公報JP 2012-111747 A 特開2013−000073号公報JP 2013-000073 A 特開2013−082673号公報JP 2013-082673 A 特願2013−017762号公報Japanese Patent Application No. 2013-017762

Drug Delivery System 26−1,2011Drug Delivery System 26-1, 2011 農林水産省委託研究プロジェクト「食品ナノテクノロジープロジェクト[食品素材のナノスケール加工及び評価技術の開発]」(平成22年8月20日作成)61−63頁Research project commissioned by the Ministry of Agriculture, Forestry and Fisheries “Food Nanotechnology Project [Development of nanoscale processing and evaluation technology for food materials]” (created August 20, 2010) pages 61-63 厚生労働省「ナノマテリアルの安全対策に関する検討会報告書」(平成21年3月31日)5−6頁Ministry of Health, Labor and Welfare “Study Report on Safety Measures for Nanomaterials” (March 31, 2009), pages 5-6 Pharmaceutics 2011,3,793−829Pharmaceutics 2011, 3, 793-829 Microbiology 2007,153,2093−2103Microbiology 2007, 153, 2093-2103 化学と生物 2011,49(4),p243−249Chemistry and Biology 2011, 49 (4), p243-249 Xenobiotica 2001,vol.31,no.12,891−901Xenobiotica 2001, vol. 31, no. 12, 891-901 「食品の変色の化学」、p124−p125(光琳)“Food Discoloration Chemistry”, p124-p125 J.Agric.Food Chem.,2010,58,6728−6734J. et al. Agric. Food Chem. 2010, 58, 6728-6734. Journal of Colloid and Interface Science,2009,330,276−283Journal of Colloid and Interface Science, 2009, 330, 276-283 ACSNANO,2009,vol.3,no.7,1877−1885ACSNANO, 2009, vol. 3, no. 7, 1877-1885

したがって、本発明は、ガレート型カテキンおよび動物性タンパク質という機能性素材を用いた天然物由来のナノ粒子を作製する製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a production method for producing nanoparticles derived from natural products using functional materials such as gallate catechins and animal proteins.

本発明者らは、食品にも利用可能なナノ粒子について鋭意検討した結果、ガレート型カテキンと動物性タンパク質を適切な条件下で混合するという非常に簡便な方法で、ガレート型カテキンと動物性タンパク質とのコアセルベートを形成し、天然物由来の原料からなる平均粒子径100nm以下のナノ粒子を作製することに成功した。また、本発明者らは、ゼラチン、コラーゲンの分子量とナノ粒子の粒子径が逆相間するという驚くべき現象を発見し、本発明を完成するに至った。   As a result of intensive studies on nanoparticles that can be used in foods, the present inventors have found that gallate catechins and animal proteins can be mixed with gallate catechins and animal proteins under a very simple method. And succeeded in producing nanoparticles having an average particle diameter of 100 nm or less made of a raw material derived from a natural product. In addition, the present inventors have discovered a surprising phenomenon in which the molecular weight of gelatin and collagen and the particle diameter of the nanoparticles are in opposite phases, and have completed the present invention.

本発明の要旨は、
〔1〕平均粒子径が10〜100nmである、天然物由来成分を基材とするナノ粒子の製造方法であって、
ガレート型カテキンまたはガレート型カテキンを含む組成物を、水または含水溶媒または有機溶媒に溶解および/または分散させて、ガレート型カテキン含有溶液または分散液を作製する工程、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を、水または含水溶媒または有機溶媒に溶解および/または膨潤させて、動物性タンパク質含有溶液または膨潤液を作製する工程、ならびに
前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液とを
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように混合し、pH1.0〜4.0に調整した混合液中でナノ粒子を形成させてナノ粒子含有液を作製する工程
を有し、
前記混合液が、ガレート型カテキンまたはガレート型カテキンを含む組成物由来の固形分を0.1重量%以上、且つ、ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質由来の固形分を0.1重量%以上含有することを特徴とする、ガレート型カテキンと動物性タンパク質からなるナノ粒子の製造方法
〔2〕前記動物性タンパク質の平均分子量が39000以上である前記〔1記載のナノ粒子の製造方法、
〔3〕前記動物性タンパク質が豚骨由来タンパク質および牛骨由来タンパク質以外の動物性タンパク質である前記〔1〕または〔2〕に記載のナノ粒子の製造方法、
〔4〕固形分値0.2〜1.0重量%に調整したナノ粒子含有液を、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)を用い、分析設定を水として得られるゼータ電位の絶対値が10mV以上である前記〔1〕〜〔3〕のいずれかに記載のナノ粒子の製造方法
に関する。
The gist of the present invention is as follows.
[1] An average particle diameter of 10 to 100 nm, a method for producing nanoparticles based on a natural product-derived component,
A step of dissolving and / or dispersing a gallate-type catechin or a composition containing a gallate-type catechin in water or a water-containing solvent or an organic solvent to produce a gallate-type catechin-containing solution or dispersion;
A step of dissolving and / or swelling at least one animal protein selected from gelatin, collagen, and degradation products thereof in water, a water-containing solvent or an organic solvent to produce an animal protein-containing solution or a swelling solution; And the gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling liquid, wherein (a) the solid content of the gallate-type catechin (b) the weight of the solid content of the animal protein is 0.07 ≦ ( b) / (a) were mixed in a ≦ 8.0, to form a nanoparticle have a step of preparing a nanoparticle-containing solution in a mixed solution was adjusted to PH1.0~4.0,
The mixed liquid has a solid content derived from gallate catechin or a composition containing gallate catechin of 0.1% by weight or more, and derived from at least one animal protein selected from gelatin, collagen, and degradation products thereof. characterized in that it contains a solid content of 0.1 wt% or more, a method of manufacturing a nanoparticle consisting of gallate catechins and animal proteins,
[2] a method of manufacturing the animal the average molecular weight of the protein is 39000 or more [1] The nanoparticles described,
[3] The method for producing nanoparticles according to [1] or [2] , wherein the animal protein is an animal protein other than porcine bone-derived protein and cow bone-derived protein,
[4] Analysis setting of the nanoparticle-containing liquid adjusted to a solid content value of 0.2 to 1.0% by weight using a zeta potential / nanoparticle diameter measurement system (“DelsaMax PRO” manufactured by Beckman Coulter, Inc.) The method according to any one of [1] to [3] above, wherein the absolute value of the zeta potential obtained using water as a water is 10 mV or more.

本発明で得られるナノ粒子は、ガレート型カテキンおよび動物性タンパク質という天然物由来の原料からなり、しかもガレート型カテキンおよび動物性タンパク質に由来する優れた健康機能性が期待されるものである。例えば、本発明者らは、これまでにコラーゲンとガレート型カテキンを用いたリパーゼ阻害組成物を報告しているが、本発明によって得られたナノ粒子もその機能を保持していることが期待される。   Nanoparticles obtained in the present invention are made of raw materials derived from natural products such as gallate catechins and animal proteins, and are expected to have excellent health functions derived from gallate catechins and animal proteins. For example, the present inventors have previously reported a lipase inhibitory composition using collagen and gallate catechin, but the nanoparticles obtained by the present invention are expected to retain their functions. The

図1は、実施例4で算出した動物性タンパク質の平均分子量(x)と、ナノ粒子の平均粒子径(y)の関係を示すグラフである。動物性タンパク質の平均分子量が大きいほど粒子径が小さくなることが分かる。FIG. 1 is a graph showing the relationship between the average molecular weight (x) of animal protein calculated in Example 4 and the average particle diameter (y) of nanoparticles. It can be seen that the larger the average molecular weight of the animal protein, the smaller the particle size.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のナノ粒子の製造方法は、平均粒子径が10〜100nmである、天然物由来成分を基材とするナノ粒子の製造方法であって、
ガレート型カテキンまたはガレート型カテキンを含む組成物を、水または含水溶媒または有機溶媒に溶解または分散させて、ガレート型カテキン含有溶液または分散液を作製する工程、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を、水または含水溶媒または有機溶媒に溶解または膨潤させて、動物性タンパク質含有溶液または膨潤液を作製する工程、ならびに
前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液とを
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように混合し、pH1.0〜4.0に調整した混合液中でナノ粒子を形成させてナノ粒子含有液を作製する工程
を有することを特徴とする
The method for producing nanoparticles of the present invention is a method for producing nanoparticles based on a natural product-derived component having an average particle diameter of 10 to 100 nm,
A step of preparing a gallate catechin-containing solution or dispersion by dissolving or dispersing a gallate catechin or a composition containing a gallate catechin in water, a water-containing solvent or an organic solvent,
A step of dissolving or swelling at least one animal protein selected from gelatin, collagen, and a degradation product thereof in water, a water-containing solvent or an organic solvent to produce an animal protein-containing solution or a swelling solution; and The gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling liquid are divided into (a) solid content of gallate-type catechin (b) solid content of animal protein is 0.07 ≦ (b) / (A) It is mixed so that it may become <= 8.0, and it has the process of forming a nanoparticle in the liquid mixture adjusted to pH1.0-4.0, and producing a nanoparticle containing liquid.

本発明で作製するナノ粒子の平均粒子径は、10〜100nmであり、体内への吸収性および、製造性が良好である観点から、好ましくは10〜90nmであり、より好ましくは20〜80nmであり、特に好ましくは、30〜70nmであり、さらに好ましくは、30〜60nmである。
前記ナノ粒子の平均粒子径は、後述の実施例に記載のように、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)にて測定することができる。
The average particle size of the nanoparticles produced in the present invention is 10 to 100 nm, and preferably 10 to 90 nm, more preferably 20 to 80 nm, from the viewpoint of good absorbability into the body and manufacturability. In particular, the thickness is preferably 30 to 70 nm, and more preferably 30 to 60 nm.
The average particle diameter of the nanoparticles can be measured with a zeta potential / nanoparticle diameter measurement system (“DelsaMax PRO” manufactured by Beckman Coulter, Inc.) as described in the Examples below.

本発明でいう天然物由来成分とは、原料である、ガレート型カテキンまたはガレート型カテキンを含む組成物、および動物性タンパク質がともに天然物由来であることを示す。なお、前記原料として試薬等を使用する際にも、その試薬が天然物由来であればよい。   The natural product-derived component in the present invention indicates that both the gallate catechin or the composition containing gallate catechin and the animal protein, which are raw materials, are derived from natural products. In addition, when using a reagent etc. as said raw material, the reagent should just be derived from a natural product.

(ガレート型カテキン含有溶液または分散液作製工程)
本発明のナノ粒子の製造方法では、前記ガレート型カテキンまたはガレート型カテキンを含む組成物を、水または含水溶媒または有機溶媒に溶解または分散させて、ガレート型カテキン含有溶液または分散液を作製する。
(Galate-type catechin-containing solution or dispersion preparation process)
In the method for producing nanoparticles of the present invention, a gallate catechin-containing solution or dispersion is prepared by dissolving or dispersing the gallate catechin or the composition containing a gallate catechin in water, a hydrous solvent, or an organic solvent.

本発明で用いるガレート型カテキンとしては、EGCg、ECg、GCg、Cgが挙げられる。前記ガレート型カテキンは、非重合体でも重合体でもよく、それらを混合しても、単独で使用してもよい。効率的な粒子形成の観点よりEGCgおよび/またはECgを含有することが好ましい。   Examples of the gallate catechin used in the present invention include EGCg, ECg, GCg, and Cg. The gallate catechin may be a non-polymer or a polymer, and they may be mixed or used alone. From the viewpoint of efficient particle formation, it is preferable to contain EGCg and / or ECg.

また、本発明で用いるガレート型カテキンを含む組成物としては、例えば、前記ガレート型カテキンを含む茶抽出物やコーヒー抽出物等が挙げられる。また、粒子作製の効率の面から、組成物中のガレート型カテキン量が20重量%以上のものが好ましく、さらに好ましくは、30重量%以上のもの、より好ましくは60重量%以上のものがよい。   Moreover, as a composition containing the gallate type catechin used by this invention, the tea extract, coffee extract, etc. which contain the said gallate type catechin are mentioned, for example. From the viewpoint of particle production efficiency, the gallate catechin content in the composition is preferably 20% by weight or more, more preferably 30% by weight or more, and more preferably 60% by weight or more. .

前記溶媒として使用する有機溶媒としては水と混和するものであれば特に限定はされないが、得られたナノ粒子の使用用途に適した溶媒を選択することが好ましく、例えば、食品としてはグリセリン、プロピレングリコール、エタノール等が挙げられ、医薬品としては上記に加えてメタノール、アセトン、ジメチルスルホキシド等が挙げられる。また、前記溶媒として使用する含水溶媒とは、前記有機溶媒と水との混合溶媒をいう。   The organic solvent used as the solvent is not particularly limited as long as it is miscible with water, but it is preferable to select a solvent suitable for the intended use of the obtained nanoparticles, for example, glycerin, propylene as food Examples of the pharmaceutical include methanol, acetone, dimethyl sulfoxide and the like in addition to the above. The hydrous solvent used as the solvent refers to a mixed solvent of the organic solvent and water.

前記溶解または分散させる手段としては、公知の手段であれば特に限定はない。例えば、ガレート型カテキンまたはガレート型カテキンを含む組成物を、前記溶媒に添加・混合することで、溶解または分散させることができる。また、前記溶解または分散させる際には、ガレート型カテキンの溶解性の観点から、前記溶媒の温度を20〜90℃に調整しておくことが好ましいが溶解もしくは分散すれば特に限定はない。   The means for dissolving or dispersing is not particularly limited as long as it is a known means. For example, gallate catechin or a composition containing gallate catechin can be dissolved or dispersed by adding and mixing with the solvent. Further, when dissolving or dispersing, it is preferable to adjust the temperature of the solvent to 20 to 90 ° C. from the viewpoint of solubility of the gallate catechin, but there is no particular limitation as long as it dissolves or disperses.

前記ガレート型カテキン含有溶液または分散液中のガレート型カテキンまたはガレート型カテキンを含む組成物の固形分値は平均粒子径100nm以下のナノ粒子を効率的に作製する観点から、0.1〜24重量%であることが好ましい。より好ましくは0.1〜20重量%であることが好ましいが、所望のナノ粒子が作製できれば、特に限定されることはない。   The solid content value of the composition containing gallate catechin or gallate catechin in the gallate catechin-containing solution or dispersion is 0.1 to 24 weight from the viewpoint of efficiently producing nanoparticles having an average particle size of 100 nm or less. % Is preferred. More preferably, it is preferably 0.1 to 20% by weight, but is not particularly limited as long as desired nanoparticles can be produced.

(動物性タンパク質含有溶液または膨潤液作製工程)
また、本発明のナノ粒子の製造方法では、前記動物性タンパク質を、水または含水溶媒または有機溶媒に溶解または膨潤させて、動物性タンパク質含有溶液または膨潤液を作製する。
(Animal protein-containing solution or swelling liquid preparation process)
In the method for producing nanoparticles of the present invention, the animal protein is dissolved or swollen in water, a water-containing solvent or an organic solvent to prepare an animal protein-containing solution or swelling liquid.

本発明で用いる動物性タンパク質は、ガレート型カテキンとコアセルベートを形成可能なゼラチン、コラーゲンペプチド、およびこれらの分解物などであればよい。動物性タンパク質の由来は、豚、魚、ニワトリ等、および遺伝子組み換え体のいずれかを用いることができ、これらの由来のタンパク質は、単独で使用しても、2種以上を組み合わせて使用してもよい。なお、牛骨または豚骨由来の動物性タンパク質は、100nm以下の粒子が一部形成されるものの、その平均粒子径が100nmを超える大きさになるため、本発明では使用することが難しい。
ただし、牛骨または豚骨由来のタンパク質が含まれている動物性タンパク質であっても、平均粒子径100nm以下のナノ粒子が作製できれば、特に限定はなく使用することができる。
The animal protein used in the present invention may be gelatin, collagen peptide, or a degradation product thereof capable of forming coacervate with gallate catechin. Animal protein can be derived from pigs, fish, chickens, etc., and genetically modified organisms. These derived proteins can be used alone or in combination of two or more. Also good. In addition, although animal protein derived from bovine bone or pork bone is partially formed with particles of 100 nm or less, its average particle diameter exceeds 100 nm, and is difficult to use in the present invention.
However, even an animal protein containing a protein derived from bovine bone or pork bone can be used without particular limitation as long as nanoparticles having an average particle diameter of 100 nm or less can be produced.

本発明に用いられる動物性タンパク質は、例えばゼラチンを用いて作製したときに得られる粒子径のグラフから、得られるナノ粒子の平均粒子径が100nmとなるよう、分子量39000以上が好ましく、より好ましくは50000以上、さらに好ましくは100000以上である。   The animal protein used in the present invention preferably has a molecular weight of 39000 or more, more preferably so that the average particle diameter of the obtained nanoparticles is 100 nm from the particle diameter graph obtained when prepared using gelatin, for example. 50,000 or more, more preferably 100,000 or more.

前記溶媒として使用する前記含水溶媒とは、水と混和する有機溶媒をいう。また、有機溶媒としては水と混和するものであれば特に限定はされないが、得られたナノ粒子の使用用途に適した溶媒を選択することが好ましく、例えば、食品としてはグリセリン、プロピレングリコール、エタノール等が上げられ、医薬品としては上記に加えてメタノール、アセトン、ジメチルスルホキシド等が挙げられる。   The hydrous solvent used as the solvent refers to an organic solvent miscible with water. The organic solvent is not particularly limited as long as it is miscible with water, but it is preferable to select a solvent suitable for the intended use of the obtained nanoparticles, for example, glycerin, propylene glycol, ethanol as food. Examples of pharmaceuticals include methanol, acetone, dimethyl sulfoxide and the like in addition to the above.

前記溶解または膨潤させる手段としては、公知の手段であれば特に限定はない。例えば、前記動物性タンパク質を、前記溶媒に添加・混合することで、溶解または膨潤させることができる。
なお、膨潤とは、動物性タンパク質に水、含水溶媒もしくは有機溶媒を添加してゲル状にすることをいう。
また、前記溶解または膨潤させる際には、効率的に溶解または膨潤させる観点から、前記溶媒の温度を20〜90℃に調整しておくことが好ましい。
The means for dissolving or swelling is not particularly limited as long as it is a known means. For example, the animal protein can be dissolved or swollen by adding and mixing with the solvent.
In addition, swelling means adding water, a hydrous solvent, or an organic solvent to animal protein, and making it gelatinous.
Moreover, when making it melt | dissolve or swell, it is preferable to adjust the temperature of the said solvent to 20-90 degreeC from a viewpoint of making it melt | dissolve or swell efficiently.

前記動物性タンパク質含有溶液または膨潤液中の動物性タンパク質の固形分値は、平均粒子径100nm以下のナノ粒子を効率的に作製する観点から、0.1〜19重量%であることが好ましく、より好ましくは、0.1〜10重量%であるが、所望のナノ粒子が作製できれば、特に限定されることはない。
なお、ゼラチンを使用する場合、前記固形分値が20重量%以上であれば液の粘度の上昇により扱いにくくなる。
The solid content value of the animal protein in the animal protein-containing solution or the swelling solution is preferably 0.1 to 19% by weight from the viewpoint of efficiently producing nanoparticles having an average particle size of 100 nm or less, More preferably, it is 0.1 to 10% by weight, but is not particularly limited as long as desired nanoparticles can be produced.
When gelatin is used, if the solid content value is 20% by weight or more, it becomes difficult to handle due to an increase in the viscosity of the liquid.

(ナノ粒子含有液作製工程)
本発明のナノ粒子の製造方法では、前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液とを
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように混合し、pH1.0〜4.0に調整した混合液中でナノ粒子を形成させてナノ粒子含有液を作製する。
(Nanoparticle-containing liquid preparation process)
In the method for producing nanoparticles of the present invention, the gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling liquid are (a) solid content of gallate-type catechin (b) solid content of animal protein. The nanoparticle-containing liquid is formed by mixing nanoparticles so that the weight of the mixture becomes 0.07 ≦ (b) / (a) ≦ 8.0 and adjusting the pH to 1.0 to 4.0. Is made.

本工程における前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液との混合方法としては、均一に混合可能であればよく、静置している前記ガレート型カテキン含有溶液又は分散液に前記動物性タンパク質含有液または膨潤液を添加する方法、その逆の添加方法、攪拌しながら添加する方法、ホモジナイズしながら添加する方法、予め水をそれぞれの液に混合する方法、等が使用可能であるが、特に限定はない。   The method for mixing the gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling liquid in this step is only required to be uniformly mixed, and the gallate-type catechin-containing solution that is allowed to stand still Or a method of adding the animal protein-containing liquid or swelling liquid to the dispersion, a reverse addition method, a method of adding while stirring, a method of adding while homogenizing, a method of previously mixing water with each liquid, etc. Can be used, but there is no particular limitation.

本工程において、混合する際の温度などの条件については、成分の大幅な変化などが生じず、均一に混合可能な条件であればよく、使用する成分に適した温度であればよい。例えば、ゼラチンの場合、低温であると溶液の粘度が上昇し、濃度が数%以上などと高い場合、均一に混合することが困難となることから、50℃以上であることが好ましい。さらに、高温の場合、成分の変化が起こりやすくなるため、50〜80℃がより好ましく、さらに好ましくは、50〜70℃がよい。   In this step, the conditions such as the temperature at the time of mixing may be any conditions that do not cause a significant change in the components and can be uniformly mixed, and may be any temperature suitable for the components to be used. For example, in the case of gelatin, when the temperature is low, the viscosity of the solution increases, and when the concentration is as high as several percent or more, it becomes difficult to mix uniformly. Furthermore, in the case of high temperature, since a change of a component becomes easy to occur, 50-80 degreeC is more preferable, More preferably, 50-70 degreeC is good.

本工程では、前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液との量として、
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように調整する。
In this step, as the amount of the gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling solution,
(A) Solid content of gallate type catechin (b) Weight of animal protein solid content is adjusted to be 0.07 ≦ (b) / (a) ≦ 8.0.

前記重量比が8.0を超える場合、100nm以下の粒子が一部生成されるが、平均粒子径としては100nmを超える。また、前記重量比が0.07未満であっても同様である。前記重量比については、上限値が7.0以下であることが好ましい。   When the weight ratio exceeds 8.0, some particles of 100 nm or less are generated, but the average particle diameter exceeds 100 nm. The same applies if the weight ratio is less than 0.07. As for the weight ratio, the upper limit value is preferably 7.0 or less.

また、前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液との混合液のpHは、1.0〜4.0であり、1.5〜3.5がより好ましい。さらに好ましくは、1.5〜3.1がよい。pHが1.0より低すぎるとナノ粒子が溶解してしまったり、粒子径が大きくなったりする。このように低いpHでナノ粒子の粒子径を調整した報告はほとんどない。一方、pHが4.0より高いと、一時的に粒子を形成するが、凝集、沈殿が生じやすい。また、pH7以上ではガレート型カテキンの安定性が減少するため効率的なナノ粒子を形成させることができない。   Moreover, the pH of the liquid mixture of the gallate catechin-containing solution or dispersion and the animal protein-containing liquid or swelling liquid is 1.0 to 4.0, and more preferably 1.5 to 3.5. . More preferably, 1.5-3.1 is good. If the pH is too lower than 1.0, the nanoparticles are dissolved or the particle size is increased. There are few reports of adjusting the particle size of the nanoparticles at such a low pH. On the other hand, if the pH is higher than 4.0, particles are temporarily formed, but aggregation and precipitation are likely to occur. On the other hand, when the pH is 7 or higher, the stability of the gallate catechin is decreased, so that efficient nanoparticles cannot be formed.

pHの調整には、ナノ粒子の使用用途に応じて、使用可能な酸であれば特に制限はない。例えば、クエン酸、アスコルビン酸、グルコン酸、カルボン酸、酒石酸、コハク酸、酢酸またはフタル酸、トリフルオロ酢酸のような有機酸、塩酸、過塩素酸、炭酸のような無機酸、又は緩衝液、などで調整することが挙げられるが、これらに限定されるものではない。得られたナノ粒子を医薬品、化粧品、食品等に利用する場合は、それぞれの使用用途に適した酸を選択することが好ましい。   The pH is not particularly limited as long as it is a usable acid depending on the intended use of the nanoparticles. For example, citric acid, ascorbic acid, gluconic acid, carboxylic acid, tartaric acid, succinic acid, acetic acid or phthalic acid, organic acids such as trifluoroacetic acid, inorganic acids such as hydrochloric acid, perchloric acid, carbonic acid, or buffers, However, it is not limited to these. When the obtained nanoparticles are used for pharmaceuticals, cosmetics, foods, etc., it is preferable to select an acid suitable for each use application.

なお、前記混合液のpHを調整するには、ガレート型カテキン含有溶液または分散液と、動物性タンパク質含有溶液または膨潤液のpHを予め調整してもよい。このように予めpHを調整することで、ガレート型カテキン含有溶液または分散液と、動物性タンパク質含有溶液または膨潤液を混合するだけでも、混合液のpHを1.0〜4.0の範囲に調整することができる。   In order to adjust the pH of the mixed solution, the pH of the gallate catechin-containing solution or dispersion and the animal protein-containing solution or swelling solution may be adjusted in advance. By adjusting the pH in advance as described above, the pH of the mixed solution can be adjusted to a range of 1.0 to 4.0 even by mixing the gallate catechin-containing solution or dispersion and the animal protein-containing solution or swelling solution. Can be adjusted.

前記のようにpHを1.0〜4.0の範囲に調整した混合液中において、ガレート型カテキンと動物性タンパク質とがコアセルベートを形成し、このコアセルベート中に平均粒子径10〜100nmのナノ粒子が生じる。   The gallate catechin and the animal protein form a coacervate in the mixed solution whose pH is adjusted to the range of 1.0 to 4.0 as described above, and nanoparticles having an average particle size of 10 to 100 nm are formed in the coacervate. Occurs.

前記混合液中においては、効率的にナノ粒子を作製する観点から、ガレート型カテキンまたはガレート型カテキンを含む組成物由来の固形分を0.1重量%以上、ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質由来の固形分を0.1重量%以上含有することが好ましい。また、前記ガレート型カテキンまたはガレート型カテキンを含む組成物由来の固形分および動物性タンパク質由来の固形分の合計量は、0.28重量%以上がより好ましく、1.0重量%以上がさらに好ましく、1.8重量%以上が最も好ましい。
なお、前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液との混合時に所望の濃度となるよう調整してもよく、ナノ粒子を作製した後に濃縮してもよい。
In the mixed solution, from the viewpoint of efficiently producing nanoparticles, the solid content derived from gallate catechin or a composition containing gallate catechin is 0.1% by weight or more, gelatin, collagen, and degradation products thereof. It is preferable to contain at least 0.1% by weight of a solid content derived from at least one animal protein selected from The total amount of solid content derived from the gallate catechin or the composition containing gallate catechin and solid content derived from animal protein is more preferably 0.28% by weight or more, and further preferably 1.0% by weight or more. 1.8% by weight or more is most preferable.
In addition, you may adjust so that it may become a desired density | concentration at the time of mixing with the said gallate type catechin containing solution or dispersion, and the said animal protein containing liquid or swelling liquid, and you may concentrate after producing a nanoparticle.

前記のようにして得られるナノ粒子含有液は、限外濾過、透析等を施してもよい。透析をすれば、粒子化していない成分を分離しやすい。限外濾過膜としては例えばペンシル型UF膜(旭化成社製)、透析膜としてはSnakeSkin(ピアス社製)が挙げられる。これ以外にもナノ粒子を失わずに限外ろ過および透析ができれば特に限定はない。   The nanoparticle-containing liquid obtained as described above may be subjected to ultrafiltration, dialysis and the like. If dialysis is performed, it is easy to separate non-particulate components. Examples of the ultrafiltration membrane include a pencil-type UF membrane (manufactured by Asahi Kasei), and examples of the dialysis membrane include SnakeSkin (manufactured by Pierce). There is no particular limitation as long as ultrafiltration and dialysis can be performed without losing nanoparticles.

本発明で得られるナノ粒子は、安定性に優れたものである。例えば、ナノ粒子の安定性を示す指標にナノ粒子表面のゼータ電位を測定する方法が知られており、このゼータ電位の絶対値が大きいほど安定性に優れるといえる。例えば、本発明で得られるナノ粒子としては、固形分値0.2〜1.0重量%に調整したナノ粒子含有液を、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)を用い、分析設定を水として得られるゼータ電位の絶対値が10mV以上であるものが好ましい。
なお、測定時におけるナノ粒子含有液の溶媒は、水、含水溶媒、有機溶媒のいずれでもよいが、測定誤差などが生じにくい観点から、水または含水溶媒であることが好ましい。
The nanoparticles obtained in the present invention are excellent in stability. For example, a method of measuring the zeta potential on the nanoparticle surface is known as an index indicating the stability of the nanoparticle, and it can be said that the greater the absolute value of this zeta potential, the better the stability. For example, as the nanoparticles obtained in the present invention, a nanoparticle-containing liquid adjusted to a solid content value of 0.2 to 1.0% by weight is used as a zeta potential / nanoparticle diameter measurement system (manufactured by Beckman Coulter, Inc. It is preferable that the absolute value of the zeta potential obtained using DelsaMax PRO ") and the analysis setting as water is 10 mV or more.
In addition, the solvent of the nanoparticle-containing liquid at the time of measurement may be any of water, a hydrous solvent, and an organic solvent, but is preferably water or a hydrous solvent from the viewpoint of hardly causing measurement errors.

本発明で得られるナノ粒子は、食品に利用可能な条件で作製した場合は、飲食品に配合してもよい。飲食品としては特に限定されず、例えば、飲料、アルコール飲料、ゼリー、菓子、機能性食品、健康食品、健康志向食品等が挙げられる。保存性、携帯性、摂取の容易さ等を考慮すると、菓子類が好ましく、菓子類の中でも、ハードキャンディ、ソフトキャンディ、グミキャンディ、タブレット、チューイングガム等が好ましい。   The nanoparticle obtained by this invention may be mix | blended with food-drinks, when produced on the conditions which can be utilized for a foodstuff. It does not specifically limit as food-drinks, For example, a drink, alcoholic beverage, jelly, confectionery, functional food, health food, health-oriented food, etc. are mentioned. In consideration of preservability, portability, ease of ingestion and the like, confectionery is preferable, and among confectionery, hard candy, soft candy, gummy candy, tablet, chewing gum and the like are preferable.

前記ナノ粒子を飲食品に配合する場合、ナノ粒子の飲食品における含有量は、その生理活性効果が期待できる量であればよい。通常1日あたり10〜10000mg、より好ましくは100〜3000mg摂取できるように配合量を決定することが好ましい。例えば、固形状食品の場合には5〜50重量%、飲料等の液状食品の場合には0.01〜10重量%が好ましい。   When the nanoparticles are blended in a food or drink, the content of the nanoparticles in the food or drink may be an amount that can be expected to have a physiological activity effect. Usually, it is preferable to determine the blending amount so that 10 to 10000 mg, more preferably 100 to 3000 mg can be taken per day. For example, 5 to 50% by weight is preferable for solid foods, and 0.01 to 10% by weight for liquid foods such as beverages.

また、本発明で得られるナノ粒子は、安全性に優れたものであると考えられるので、ヒトに対してだけでなく、非ヒト動物、例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ネコ、イヌ、サル、チンパンジー等の哺乳類、鳥類、両生類、爬虫類等の治療剤又は飼料に配合してもよい。飼料としては、例えばヒツジ、ブタ、ウシ、ウマ、ニワトリ等に用いる家畜用飼料、ウサギ、ラット、マウス等に用いる小動物用飼料、ウナギ、タイ、ハマチ、エビ等に用いる魚介類用飼料、イヌ、ネコ、小鳥、リス等に用いるペットフードが挙げられる。   Further, since the nanoparticles obtained in the present invention are considered to be excellent in safety, not only for humans, but also for non-human animals such as rats, mice, guinea pigs, rabbits, sheep, pigs, You may mix | blend with therapeutic agents or feed, such as a mammal such as a cow, a horse, a cat, a dog, a monkey, a chimpanzee, a bird, an amphibian, a reptile. As feed, for example, livestock feed used for sheep, pigs, cattle, horses, chickens, etc., feed for small animals used for rabbits, rats, mice, etc., feed for seafood used for eel, Thailand, yellowtail, shrimp, etc., dogs, Pet foods used for cats, small birds, squirrels, etc. are listed.

次に、本発明を実施例に基づいて詳細に説明するが、本発明はかかる実施例にのみ限定されるものではない。   EXAMPLES Next, although this invention is demonstrated in detail based on an Example, this invention is not limited only to this Example.

(実施例1)ガレート型カテキンと動物性タンパク質によるナノ粒子作製の検討
G微粉(豚皮由来)、APH−250(豚皮由来)、FGL−250(魚由来)、GBL−250(豚骨由来)、A330(牛骨由来)、#250(牛骨由来)(いずれも新田ゼラチン株式会社製)、ニワトリゼラチン(鶏由来、日本ハム社製)などの平均分子量39000以上の動物性タンパク質0.1gを、50℃の水に溶かした7種類の動物性タンパク質含有水溶液をそれぞれ90gずつ作製した。
一方、緑茶抽出物(ガレート型カテキン(以下Gカテキンと記載)含量67重量%)0.18gを50℃の水に溶かしたガレート型カテキン含有水溶液10gを7つ作製した。
次いで、7種類の前記動物性タンパク質含有水溶液90gに対して、それぞれガレート型カテキン含有水溶液10gを加え、混合したところ、いずれも凝集・沈殿のないコロイド状薄白色液体100g(pH3.2)となった。得られた液体の粒子の平均粒子径とゼータ電位を、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)にて測定した。
また、Gカテキンを含まない緑茶抽出物サンフェノンXLB−100(太陽化学社製)を用いた比較品も作製した。結果を表1に示す。
なお、ゼータ電位および平均粒子径は、分析設定を水として測定した。
(Example 1) Examination of nanoparticle production using gallate catechin and animal protein G fine powder (derived from pork skin), APH-250 (derived from pig skin), FGL-250 (derived from fish), GBL-250 (derived from pork bone) ), A330 (derived from bovine bone), # 250 (derived from bovine bone) (all manufactured by Nitta Gelatin Co., Ltd.), chicken gelatin (derived from chicken, manufactured by Nippon Ham Co., Ltd.) and other animal proteins having an average molecular weight of 39000 or more. 90 g of each of seven animal protein-containing aqueous solutions prepared by dissolving 1 g in 50 ° C. water was prepared.
On the other hand, seven 10 g of gallate catechin-containing aqueous solutions were prepared by dissolving 0.18 g of green tea extract (gallate catechin (hereinafter referred to as G catechin) content 67 wt%) in water at 50 ° C.
Next, 10 g of a gallate-type catechin-containing aqueous solution was added to 90 g of the seven animal protein-containing aqueous solutions and mixed together. It was. The average particle size and zeta potential of the obtained liquid particles were measured with a zeta potential / nanoparticle size measurement system (“DelsaMax PRO” manufactured by Beckman Coulter, Inc.).
Moreover, the comparative product using the green tea extract Sanphenon XLB-100 (made by Taiyo Kagaku Co.) which does not contain G catechin was also produced. The results are shown in Table 1.
The zeta potential and average particle size were measured using water as the analytical setting.

Figure 0006369207
Figure 0006369207

表1の結果より、Gカテキンを含まない緑茶抽出物とG微粉を用いた場合には、ナノ粒子が形成されないのに対して、豚皮、魚、鶏などに由来する動物性タンパク質とGカテキンとを混合することで100nm以下のナノ粒子が作製できることが分かる。また、豚皮、魚、鶏などに由来する動物性タンパク質を用いると、ゼータ電位の絶対値が19〜46mVと大きくなっており、豚骨、牛骨由来の動物性タンパク質よりも安定性に優れることがわかった。
一方、豚骨および牛骨由来の動物性タンパク質を用いた場合には、理由は不明であるが粒子の平均粒子径は100nmを超えるものとなった。
From the results in Table 1, when green tea extract and G fine powder containing no G catechin are used, nanoparticles are not formed, whereas animal protein and G catechin derived from pig skin, fish, chicken, etc. It can be seen that nanoparticles having a size of 100 nm or less can be produced by mixing with. When animal protein derived from pig skin, fish, chicken, etc. is used, the absolute value of zeta potential is 19-46 mV, which is superior to animal protein derived from pork bone and cow bone. I understood it.
On the other hand, when animal proteins derived from pork bone and cow bone were used, the average particle diameter of the particles exceeded 100 nm for unknown reasons.

(実施例2)動物性タンパク質とGカテキン比率の検討
ナノ粒子作製においての動物性タンパク質とGカテキン比率検討のために、混合するゼラチンとGカテキンの比率のみを変更して実施例1に準じた方法で平均粒子径を測定した。ゼラチンとしてはG微粉を用いた。結果は表2に示す。なお、表中の「G微分」、「Gカテキン」の数値の単位はいずれも重量%である。
(Example 2) Examination of the ratio of animal protein to G catechin In order to examine the ratio of animal protein to G catechin in the preparation of nanoparticles, only the ratio of gelatin to G catechin to be mixed was changed, and the same procedure as in Example 1 was followed. The average particle size was measured by the method. G fine powder was used as gelatin. The results are shown in Table 2. The units of the numerical values of “G differential” and “G catechin” in the table are both weight%.

Figure 0006369207
Figure 0006369207

表2の結果より、動物性タンパク質の固形分(b)とGカテキンの固形分(a)との比率((b)/(a))が0.07〜7.0の範囲内において100nm以下のナノ粒子が形成されていることが分かる。   From the results in Table 2, the ratio ((b) / (a)) between the solid content (b) of animal protein and the solid content (a) of G catechin is 100 nm or less within the range of 0.07 to 7.0. It can be seen that the nanoparticles are formed.

(実施例3)pHの検討
ナノ粒子作製においてのpH検討のために、実施例1に準じた方法にてナノ粒子を作製し、その後、クエン酸、炭酸水素ナトリウム、水酸化ナトリウムで混合液のpHを調整して平均粒子径を測定した。ゼラチンとしてはG微粉を用い、動物性タンパク質の固形分とGカテキンの固形分の混合する重量比率は0.83とした。結果を表3に示す。
(Example 3) Examination of pH In order to study the pH in the production of nanoparticles, nanoparticles were produced by the method according to Example 1, and then the mixture was mixed with citric acid, sodium hydrogen carbonate, sodium hydroxide. The average particle size was measured by adjusting the pH. G fine powder was used as gelatin, and the weight ratio of the solid content of animal protein and the solid content of G catechin was 0.83. The results are shown in Table 3.

Figure 0006369207
Figure 0006369207

表3の結果より、混合液のpHを1.9〜4.0に調整することで、平均粒子径が100nm以下のナノ粒子が得られることがわかる。   From the results in Table 3, it can be seen that nanoparticles having an average particle diameter of 100 nm or less can be obtained by adjusting the pH of the mixed solution to 1.9 to 4.0.

(実施例4)分子量の検討
ナノ粒子作製におけるタンパク質の分子量検討のために、動物性タンパク質として3種類のコラーゲンペプチド(1)商品名:HBC―P20、新田ゼラチン株式会社製、分子量20000、(2)商品名:SCP―5200、新田ゼラチン株式会社製、分子量5000、(3)商品名:SCP―2000、新田ゼラチン株式会社製、分子量2000およびG微分(平均分子量100000)を用い、実施例1に準じた方法にて3種類のナノ粒子を作製した。動物性タンパク質の固形分とGカテキンの固形分の混合する重量比率は0.83とした。結果を図1に示す。
(Example 4) Examination of molecular weight In order to study the molecular weight of proteins in nanoparticle production, three types of collagen peptides as animal proteins (1) Trade name: HBC-P20, Nitta Gelatin Co., Ltd., molecular weight 20000, ( 2) Product name: SCP-5200, Nitta Gelatin Co., Ltd., molecular weight 5000, (3) Product name: SCP-2000, Nitta Gelatin Co., Ltd., molecular weight 2000 and G derivative (average molecular weight 100000) Three types of nanoparticles were prepared by a method according to Example 1. The weight ratio of the solid content of animal protein and the solid content of G catechin was 0.83. The results are shown in FIG.

図1に示す結果より、動物性タンパク質の平均分子量と、ナノ粒子の平均粒子径との間には、逆相間(相関係数0.9926)にあることが分かり、以下の公式が見出された。ついで100nm以下の粒子を形成する平均分子量を算出した。
公式:平均粒子径=(447955×平均分子量)-0.7952
そして、前記公式にナノ粒子の平均粒子径100nmを代入したところ、動物性タンパク質の平均分子量が39000と算出されたことから、平均分子量が39000以上のタンパク質を使用することで100nm以下のナノ粒子が形成できることが分かる。
From the results shown in FIG. 1, it can be seen that the average molecular weight of the animal protein and the average particle diameter of the nanoparticles are in the opposite phase (correlation coefficient 0.9926), and the following formula was found. It was. Subsequently, the average molecular weight which forms a particle | grain of 100 nm or less was computed.
Formula: Average particle size = (447955 x average molecular weight) -0.7952
And when the average particle diameter of 100 nm of nanoparticles was substituted into the above formula, the average molecular weight of animal protein was calculated to be 39000. Therefore, nanoparticles having an average molecular weight of 39000 or more were used to obtain nanoparticles having a size of 100 nm or less. It can be seen that it can be formed.

(実施例5)ナノ粒子の吸収性評価
ナノ粒子の吸収性評価のためにラットを用いた吸収性評価試験を行った。
7週齢のラットに実施例1で得られたG微粉を用いた本発明品、ガレート型カテキン単独を投与し、1、2、3、5、7時間に尾部より採血を行って血漿を作成した。得られた血漿をGrucuronodase(Sigma社製)およびSulfatase(Sigma社製)で脱抱合を行い、LC−MSにてカテキン濃度を測定した。測定するカテキンはEGCgとECgとした。その結果、本発明品において吸収性の向上が認められた。
(Example 5) Evaluation of absorbability of nanoparticles An absorbency evaluation test using rats was performed for the evaluation of absorbability of nanoparticles.
A 7-week-old rat is administered with the present invention product using the G fine powder obtained in Example 1 and gallate-type catechin alone, and blood is collected from the tail at 1, 2, 3, 5 and 7 hours to produce plasma. did. The obtained plasma was deconjugated with Grucuronodase (manufactured by Sigma) and Sulfatase (manufactured by Sigma), and the catechin concentration was measured by LC-MS. The catechins to be measured were EGCg and ECg. As a result, an improvement in absorbability was observed in the product of the present invention.

Claims (4)

平均粒子径が10〜100nmである、天然物由来成分を基材とするナノ粒子の製造方法であって、
ガレート型カテキンまたはガレート型カテキンを含む組成物を、水または含水溶媒または有機溶媒に溶解または分散させて、ガレート型カテキン含有溶液または分散液を作製する工程、
ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質を、水または含水溶媒または有機溶媒に溶解または膨潤させて、動物性タンパク質含有溶液または膨潤液を作製する工程、ならびに
前記ガレート型カテキン含有溶液又は分散液と、前記動物性タンパク質含有液または膨潤液とを
(a)ガレート型カテキンの固形分
(b)動物性タンパク質の固形分
の重量が、0.07≦(b)/(a)≦8.0となるように混合し、pH1.0〜4.0に調整した混合液中でナノ粒子を形成させてナノ粒子含有液を作製する工程
を有し、
前記混合液が、ガレート型カテキンまたはガレート型カテキンを含む組成物由来の固形分を0.1重量%以上、且つ、ゼラチン、コラーゲン、およびこれらの分解物から選ばれる少なくとも1種の動物性タンパク質由来の固形分を0.1重量%以上含有することを特徴とする、ガレート型カテキンと動物性タンパク質からなるナノ粒子の製造方法。
An average particle diameter is 10 to 100 nm, a method for producing nanoparticles based on a natural product-derived component,
A step of preparing a gallate catechin-containing solution or dispersion by dissolving or dispersing a gallate catechin or a composition containing a gallate catechin in water, a water-containing solvent or an organic solvent,
A step of dissolving or swelling at least one animal protein selected from gelatin, collagen, and a degradation product thereof in water, a water-containing solvent or an organic solvent to produce an animal protein-containing solution or a swelling solution; and The gallate-type catechin-containing solution or dispersion and the animal protein-containing solution or swelling liquid are divided into (a) solid content of gallate-type catechin (b) solid content of animal protein is 0.07 ≦ (b) were mixed so that /(A)≦8.0, by forming nanoparticles have a step of preparing a nanoparticle-containing solution in a mixed solution was adjusted to PH1.0~4.0,
The mixed liquid has a solid content derived from gallate catechin or a composition containing gallate catechin of 0.1% by weight or more, and derived from at least one animal protein selected from gelatin, collagen, and degradation products thereof. A method for producing nanoparticles comprising gallate-type catechins and animal protein, characterized by containing 0.1 wt% or more of a solid content of .
前記動物性タンパク質の平均分子量が39000以上である請求項1記載のナノ粒子の製造方法。 Method for producing an average molecular weight of nanoparticles of claim 1 Symbol placement is 39000 or more of the animal protein. 前記動物性タンパク質が豚骨由来タンパク質および牛骨由来タンパク質以外の動物性タンパク質である請求項1または2に記載のナノ粒子の製造方法。 The method for producing nanoparticles according to claim 1 or 2 , wherein the animal protein is an animal protein other than porcine bone-derived protein and cow bone-derived protein. 固形分値0.2〜1.0重量%に調整したナノ粒子含有液を、ゼータ電位・ナノ粒子径測定システム(ベックマン・コールター株式会社製、「DelsaMax PRO」)を用い、分析設定を水として得られるゼータ電位の絶対値が10mV以上である請求項1〜のいずれかに記載のナノ粒子の製造方法。
Using a zeta potential / nanoparticle diameter measurement system (manufactured by Beckman Coulter, Inc., “DelsaMax PRO”), the nanoparticle-containing liquid adjusted to a solid content value of 0.2 to 1.0 wt% is used as the analysis setting. The method for producing nanoparticles according to any one of claims 1 to 3 , wherein the absolute value of the obtained zeta potential is 10 mV or more.
JP2014160745A 2014-08-06 2014-08-06 Method for producing nanoparticles based on natural product-derived components Active JP6369207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160745A JP6369207B2 (en) 2014-08-06 2014-08-06 Method for producing nanoparticles based on natural product-derived components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014160745A JP6369207B2 (en) 2014-08-06 2014-08-06 Method for producing nanoparticles based on natural product-derived components

Publications (2)

Publication Number Publication Date
JP2016037460A JP2016037460A (en) 2016-03-22
JP6369207B2 true JP6369207B2 (en) 2018-08-08

Family

ID=55528849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160745A Active JP6369207B2 (en) 2014-08-06 2014-08-06 Method for producing nanoparticles based on natural product-derived components

Country Status (1)

Country Link
JP (1) JP6369207B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020241562A1 (en) * 2019-05-24 2020-12-03 ユーハ味覚糖株式会社 Nanoparticles and method for producing same

Also Published As

Publication number Publication date
JP2016037460A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Yang et al. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols
Shen et al. Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating
Piccinetti et al. Transfer of silica-coated magnetic (Fe3O4) nanoparticles through food: a molecular and morphological study in zebrafish
JP6394162B2 (en) Method for producing nanoparticles based on natural product-derived components
JPWO2010013551A1 (en) Formulation for oral administration containing chondroitin sulfate-containing cartilage aqueous solvent extract and quercetin glycoside
JP6414443B2 (en) Nanoparticles based on components derived from natural products
Pecorini et al. Polymeric systems for the controlled release of flavonoids
Ahmed et al. Nanoencapsulated aquafeeds and current uses in fisheries/shrimps: a review
Yuan et al. Efficient utilization of tea resources through encapsulation: Dual perspectives from core material to wall material
JP6369207B2 (en) Method for producing nanoparticles based on natural product-derived components
JP6127545B2 (en) Method for producing anti-obesity composition comprising complex of gallate catechin and protein and caffeine
Zhou et al. Research progress on natural bio-based encapsulation system of curcumin and its stabilization mechanism
JP6287123B2 (en) Ubiquinol-containing liquid composition
JP2016159206A (en) Method for producing nanoparticle having improved physiologically active substance carrying capacity
JP6464745B2 (en) Method for producing nanoparticles having improved loading of bioactive substances
JP6428165B2 (en) Nanoparticles that can maintain the stability of physiologically active substances
JP2017042084A (en) Composition containing collagen peptide and ceramide and method for producing the same
JP6476697B2 (en) Nanoparticles containing gelatin
JP2016124804A (en) Production method of nanoparticles containing naturally occurring component as substrate
JP2010215520A (en) Preparation for oral administration containing chondroitin extracted with water and milk flavor
JP6160098B2 (en) Method for producing unpleasant taste masking agent using complex of gallate type catechin and protein
JP6700547B2 (en) Nanoparticles using gallic acid
JP6638185B2 (en) Method for producing fine nanoparticles
JP2017066095A (en) Ascorbic acid and nanoparticle dispersion with improved permeability of ascorbic acid derivative
JP2005145933A (en) Flavonoid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R150 Certificate of patent or registration of utility model

Ref document number: 6369207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250