JP2016100815A - Wavelength multiplex optical transmission system - Google Patents

Wavelength multiplex optical transmission system Download PDF

Info

Publication number
JP2016100815A
JP2016100815A JP2014237649A JP2014237649A JP2016100815A JP 2016100815 A JP2016100815 A JP 2016100815A JP 2014237649 A JP2014237649 A JP 2014237649A JP 2014237649 A JP2014237649 A JP 2014237649A JP 2016100815 A JP2016100815 A JP 2016100815A
Authority
JP
Japan
Prior art keywords
optical
signal
compensation circuit
channel
propagation delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014237649A
Other languages
Japanese (ja)
Other versions
JP6270697B2 (en
Inventor
秀人 山本
Hideto Yamamoto
秀人 山本
航平 齋藤
Kohei Saito
航平 齋藤
明 那賀
Akira Naga
明 那賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014237649A priority Critical patent/JP6270697B2/en
Publication of JP2016100815A publication Critical patent/JP2016100815A/en
Application granted granted Critical
Publication of JP6270697B2 publication Critical patent/JP6270697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve crosstalk compensation, which is applicable to long-haul transmission, by estimating a propagation delay difference from a wavelength dispersion in a transmission line to compensate the propagation delay difference by digital signal processing.SOLUTION: A dispersion compensation amount compensated by a dispersion compensation circuit is a wavelength dispersion amount in a carrier optical frequency of a channel to be demodulated (an attention channel), and is configured to be applied to also a signal in an adjacent channel to be used to compensate a crosstalk component. By compensating a propagation delay difference in an optical signal of another channel at the same timing as a crosstalk component from the other channel superposed on the optical signal of the attention channel and removing a crosstalk component, crosstalk compensation by MIMO processing is also applicable to a wavelength multiplex optical signal which is transmitted through an optical fiber transmission line having a wavelength dispersion.SELECTED DRAWING: Figure 1

Description

本発明は、波長多重光信号を複数の受信器を用いてコヒーレント検波し、デジタル信号処理により復調する波長多重光伝送システムに関する。   The present invention relates to a wavelength division multiplexing optical transmission system for coherently detecting a wavelength division multiplexed optical signal using a plurality of receivers and demodulating it by digital signal processing.

データ通信需要の増大に伴い、大容量トラヒックの伝送を可能とする光信号変調技術や光信号多重技術を用いた光伝送ネットワークが普及しつつある。特に、1波当たりの伝送速度が 100Gbit/s 以上の超高速伝送システムにおいて、コヒーレント検波とデジタル信号処理技術を組み合わせたデジタルコヒーレント技術が広く用いられるようになってきた。   As the demand for data communication increases, optical transmission networks using optical signal modulation technology and optical signal multiplexing technology that enable transmission of large-capacity traffic are becoming widespread. In particular, digital coherent technology combining coherent detection and digital signal processing technology has been widely used in ultra-high-speed transmission systems with a transmission rate per wave of 100 Gbit / s or higher.

100 Gbit/s 級長距離光伝送システムにおける変復調方式として広く用いられているDP−QPSK(Dual Polarization Quadrature Phase Shift Keying) 方式では、4値の位相変調を用いることで64Gbit/s の光信号を生成し、さらに2つの偏波を多重することで 128Gbit/s の光信号を生成する。受信側では、信号光と同じ波長の局発光を用いてコヒーレント検波した信号を、アナログ−デジタル変換器(A/D変換器)を用いてデジタル化し、デジタル信号処理を施すことにより、伝送路の波長分散補償、偏波分散補償、偏波分離、位相推定等を行うことで、優れた伝送特性が実現されている。これらのDP−QPSK光信号を波長多重することにより、ファイバ当たり数Tbit/s の伝送容量を持つ光伝送システムを実現することが可能となる。   The DP-QPSK (Dual Polarization Quadrature Phase Shift Keying) method, which is widely used as a modulation / demodulation method in 100 Gbit / s class long-distance optical transmission systems, generates 64 Gbit / s optical signals by using quaternary phase modulation. Furthermore, a 128 Gbit / s optical signal is generated by multiplexing two polarizations. On the receiving side, the signal coherently detected using local light having the same wavelength as that of the signal light is digitized using an analog-digital converter (A / D converter) and subjected to digital signal processing, so that the transmission path Excellent transmission characteristics are realized by performing chromatic dispersion compensation, polarization dispersion compensation, polarization separation, phase estimation, and the like. By wavelength multiplexing these DP-QPSK optical signals, an optical transmission system having a transmission capacity of several Tbit / s per fiber can be realized.

さらなる大容量化のアプローチとして、波長多重光信号間のクロストーク成分、すなわちチャネル間のクロストーク成分をMIMO (Multi-input multi-output) 処理を用いたデジタル信号処理によって推定し、補償することによって、より高密度な波長多重を可能とし、大容量波長多重光伝送システムを提供するMIMO処理クロストーク補償技術が提案されている(非特許文献1)。   As an approach to further increase capacity, crosstalk components between wavelength multiplexed optical signals, that is, crosstalk components between channels, are estimated and compensated by digital signal processing using MIMO (Multi-input multi-output) processing. Therefore, a MIMO processing crosstalk compensation technique that enables higher-density wavelength multiplexing and provides a large-capacity wavelength multiplexing optical transmission system has been proposed (Non-Patent Document 1).

F. Hamaoka, et.al., ‘Super High Density Multi-carrier Transmission Systems by MIMO Processing, ’ECOC 2014, Mo.3.5.4F. Hamaoka, et.al., ‘Super High Density Multi-carrier Transmission Systems by MIMO Processing,‘ ECOC 2014, Mo.3.5.4

従来のMIMO処理クロストーク補償技術では、光ファイバ伝送路が持つ波長分散に起因して発生する波長多重光信号間の伝搬遅延差が考慮されていないため、波長分散が大きい値となりうる長距離伝送に対して適用できないという課題がある。   The conventional MIMO processing crosstalk compensation technology does not take into account the propagation delay difference between the wavelength multiplexed optical signals generated due to the chromatic dispersion of the optical fiber transmission line. There is a problem that it cannot be applied to.

本発明は、伝送路の波長分散から伝搬遅延差を推定し、デジタル信号処理により伝搬遅延差を補償することで、長距離伝送にも適用可能なクロストーク補償を実現する波長多重光伝送システムを提供することを目的とする。   The present invention provides a wavelength division multiplexing optical transmission system that realizes crosstalk compensation applicable to long-distance transmission by estimating the propagation delay difference from the chromatic dispersion of the transmission line and compensating the propagation delay difference by digital signal processing. The purpose is to provide.

本発明は、光ファイバ伝送路を介して接続される送信部と受信部の間で、搬送波周波数f1, f2, …, fN(f1<f2<…<fN)の複数Nチャネルの光信号を波長多重した波長多重光信号を伝送する波長多重光伝送システムにおいて、送信部は、各チャネルの周波数間隔が各光信号の変調周波数より小さく、隣接するチャネルの光信号が周波数上で重なる波長多重光信号を光ファイバ伝送路に送出する構成であり、受信部は、光カプラによりN分岐された波長多重光信号をそれぞれ異なる光周波数f1, f2, …, fNの局発光によってコヒーレント検波するコヒーレント受信器と、コヒーレント受信器から出力される電気信号に対してデジタル信号処理を実行することで送信信号における光スペクトル重なりに起因した隣接チャネル間のクロストークを補償するデジタル信号処理部とを備え、デジタル信号処理部は、コヒーレント受信器から出力される電気信号をデジタル信号に変換するA/D変換器と、光ファイバ伝送路で発生した波長分散を起因とした光波形劣化を補償する分散補償回路と、局発光の光周波数の違いによって生じる回転成分を補償する位相回転補償回路と、位相回転補償回路の出力を入力するフィルタのタップ係数を適応的に変化させる複数の適応フィルタを用いてクロストークの補償を行う波形等化回路と、光信号の搬送波位相を推定する位相推定回路と、光信号に重畳された送信信号の識別を行う識別回路とを備え、分散補償回路が補償する分散補償量は、復調しようとするチャネルの搬送波光周波数における波長分散量であり、クロストーク成分を補償するために用いる隣接チャネルの信号に対しても適用する構成であり、位相回転補償回路における位相回転補償量は隣接チャネルとの光周波数間隔Δfk (k=1, 2, …, N)である。 The present invention provides a plurality N of carrier frequencies f 1 , f 2 ,..., F N (f 1 <f 2 <... <f N ) between a transmitter and a receiver connected via an optical fiber transmission line. In a wavelength division multiplexing optical transmission system that transmits wavelength-multiplexed optical signals obtained by wavelength-multiplexing optical signals of channels, the transmitter has a frequency interval of each channel smaller than the modulation frequency of each optical signal, and the optical signal of an adjacent channel is higher in frequency. a configuration for transmitting the optical fiber transmission line wavelength-division-multiplexed optical signals that overlap, the receiving unit, an optical frequency f 1 different by the optical coupler N branched WDM optical signals, respectively, f 2, ..., stations f N Crosstalk between adjacent channels due to optical spectrum overlap in the transmitted signal by executing digital signal processing on the coherent receiver that performs coherent detection by light emission and the electrical signal output from the coherent receiver A digital signal processing unit that compensates for the A / D converter that converts the electrical signal output from the coherent receiver into a digital signal, and the chromatic dispersion generated in the optical fiber transmission line. Adaptively changes the tap coefficient of the dispersion compensation circuit that compensates for the degraded optical waveform, the phase rotation compensation circuit that compensates for the rotation component caused by the difference in the optical frequency of the local light, and the filter that inputs the output of the phase rotation compensation circuit A waveform equalization circuit that compensates for crosstalk using a plurality of adaptive filters, a phase estimation circuit that estimates a carrier phase of an optical signal, and an identification circuit that identifies a transmission signal superimposed on the optical signal The dispersion compensation amount compensated by the dispersion compensation circuit is the chromatic dispersion amount at the carrier optical frequency of the channel to be demodulated, and is used to compensate for the crosstalk component. The phase rotation compensation amount in the phase rotation compensation circuit is the optical frequency interval Δf k (k = 1, 2,..., N) with the adjacent channel.

本発明は、復調しようとするチャネル(注目チャネル)の光信号に重畳されている他チャネルからのクロストーク成分と同一のタイミングにおける他チャネルの光信号について伝搬遅延差を補償し、注目チャネルの光信号からクロストーク成分を除去する構成により、波長分散を有する光ファイバ伝送路を伝送する波長多重光信号に対しても、MIMO処理によるクロストーク補償を適用することが可能となる。   The present invention compensates for the propagation delay difference of the optical signal of the other channel at the same timing as the crosstalk component from the other channel superimposed on the optical signal of the channel (target channel) to be demodulated, and With the configuration in which the crosstalk component is removed from the signal, crosstalk compensation by MIMO processing can be applied to a wavelength multiplexed optical signal transmitted through an optical fiber transmission line having chromatic dispersion.

本発明の波長多重光伝送システムの実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the wavelength division multiplexing optical transmission system of this invention. 実施例1におけるデジタル信号処理部24の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of a digital signal processing unit 24 in the first embodiment. 実施例1における分散補償回路の動作例を示す図である。FIG. 6 is a diagram illustrating an operation example of the dispersion compensation circuit according to the first embodiment. 従来構成および本発明の実施例1の構成による復調信号例を示す図である。It is a figure which shows the example of a demodulated signal by the structure of the conventional structure and Example 1 of this invention. 実施例2におけるデジタル信号処理部24の構成例を示す図である。6 is a diagram illustrating a configuration example of a digital signal processing unit 24 in Embodiment 2. FIG. 実施例2における位相回転補償前後の電気スペクトルを示す図である。It is a figure which shows the electrical spectrum before and behind phase rotation compensation in Example 2. FIG. 分散補償前に位相回転補償を実施する場合の伝搬遅延差のイメージを示す図である。It is a figure which shows the image of the propagation delay difference in the case of implementing phase rotation compensation before dispersion compensation. 従来構成および本発明の実施例2の構成による復調信号例を示す図である。It is a figure which shows the example of a demodulation signal by the structure of the conventional structure and Example 2 of this invention. 実施例3におけるデジタル信号処理部24の構成例を示す図である。10 is a diagram illustrating a configuration example of a digital signal processing unit 24 in Embodiment 3. FIG. 実施例3における位相回転補償前後の電気スペクトルを示す図である。It is a figure which shows the electrical spectrum before and behind phase rotation compensation in Example 3. FIG. 実施例3における位相回転補償後の分散補償例を示す図である。FIG. 10 is a diagram illustrating an example of dispersion compensation after phase rotation compensation in the third embodiment.

図1は、本発明の波長多重光伝送システムの実施例1の構成を示す。
図1において、実施例1の波長多重光伝送システムは、送信部10と受信部20が光ファイバ伝送路50を介して接続される。送信部10は、信号光源11−1〜11−3と、偏波多重ベクトル変調器12−1〜12−3と、光カプラ13とにより構成される。
FIG. 1 shows the configuration of Embodiment 1 of the wavelength division multiplexing optical transmission system of the present invention.
In FIG. 1, in the wavelength division multiplexing optical transmission system according to the first embodiment, a transmission unit 10 and a reception unit 20 are connected via an optical fiber transmission line 50. The transmitter 10 includes signal light sources 11-1 to 11-3, polarization multiplexed vector modulators 12-1 to 12-3, and an optical coupler 13.

信号光源11−1〜11−3は、それぞれ光周波数f1〜f3の光搬送波を出力する。ここで、f1<f2<f3とする。偏波多重ベクトル変調器12−1は、信号光源11−1から出力される光周波数f1の光搬送波を送信信号Data1x,Data1yで偏波多重変調したチャネル1の光信号を生成する。偏波多重ベクトル変調器12−2は、信号光源11−2から出力される光周波数f2の光搬送波を送信信号Data2x,Data2yで偏波多重変調したチャネル2の光信号を生成する。偏波多重ベクトル変調器12−3は、信号光源11−3から出力される光周波数f3の光搬送波を送信信号Data3x,Data3yで偏波多重変調したチャネル3の光信号を生成する。光カプラ13は、偏波多重ベクトル変調器12−1〜12−3から出力されるチャネル1〜3の光信号を合波した波長多重光信号を光ファイバ伝送路50に出力する。 Signal source 11-1 to 11-3, respectively and outputs the optical carrier of the optical frequency f 1 ~f 3. Here, it is assumed that f 1 <f 2 <f 3 . Polarization multiplexing vector modulator 12-1, transmits the optical carrier of the optical frequency f 1 output from the signal source 11-1 signals Data1x, generates an optical signal of the channel 1 with polarization multiplexing modulation in Data1y. Polarization multiplexing vector modulator 12-2 transmits the optical carrier of the optical frequency f 2 output from the signal source 11-2 signals Data2x, generates an optical signal of the channel 2 which is polarization multiplexing modulation in Data2y. Polarization multiplexing vector modulator 12-3, transmission signal optical carrier of the optical frequency f 3 output from the signal source 11-3 Data3x, generates an optical signal of the channel 3 with polarization multiplexing modulation in Data3y. The optical coupler 13 outputs a wavelength multiplexed optical signal obtained by combining the optical signals of channels 1 to 3 output from the polarization multiplexed vector modulators 12-1 to 12-3 to the optical fiber transmission line 50.

このとき、各チャネルの光信号間の周波数間隔は、変調周波数より小さくてもよい。一般に、周波数間隔が変調周波数より小さい場合、各光信号の光スペクトルは、周波数軸上で隣接する光信号の光スペクトルと重なる。すなわち、隣接する光信号間でクロストークが発生する。また、波長多重光信号は、光ファイバ伝送路50の波長分散により、各チャネルに光信号に波形広がりが発生するとともに、各光信号間で伝搬遅延差が生じる。   At this time, the frequency interval between the optical signals of each channel may be smaller than the modulation frequency. In general, when the frequency interval is smaller than the modulation frequency, the optical spectrum of each optical signal overlaps the optical spectrum of an optical signal adjacent on the frequency axis. That is, crosstalk occurs between adjacent optical signals. In addition, in the wavelength multiplexed optical signal, due to the chromatic dispersion of the optical fiber transmission line 50, a waveform spread occurs in each channel and a propagation delay difference occurs between each optical signal.

受信部20は、光カプラ21と、コヒーレント受信器22−1〜22−3と、局発光源23−1〜23−3と、デジタル信号処理部24とにより構成される。   The receiving unit 20 includes an optical coupler 21, coherent receivers 22-1 to 22-3, local light sources 23-1 to 23-3, and a digital signal processing unit 24.

光ファイバ伝送路50を伝送した波長多重光信号は光カプラ21で3分岐され、同一タイミングでそれぞれコヒーレント受信器22−1〜22−3に入力する。局発光源23−1〜23−3は、波長多重光信号の各搬送波周波数f1〜f3と等しい局発光を出力する。コヒーレント受信器22−1〜22−3は、波長多重光信号と光周波数f1〜f3の局発光を入力してそれぞれコヒーレント検波し、局発光の光周波数を基準としたベースバンド信号を出力する。デジタル信号処理部24は、コヒーレント受信器22−1〜22−3から入力する電気信号をデジタル信号処理し、送信信号Data1x,Data1y、送信信号Data2x,Data2y、送信信号Data3x,Data3yを復調する。 The wavelength-multiplexed optical signal transmitted through the optical fiber transmission line 50 is branched into three by the optical coupler 21 and input to the coherent receivers 22-1 to 22-3 at the same timing. Local light source 23-1~23-3 outputs equal the local light with each carrier frequency f 1 ~f 3 wavelength-multiplexed optical signal. The coherent receivers 22-1 to 22-3 receive the wavelength multiplexed optical signal and the local light of the optical frequencies f 1 to f 3 , respectively perform coherent detection, and output a baseband signal based on the optical frequency of the local light To do. The digital signal processing unit 24 performs digital signal processing on the electrical signals input from the coherent receivers 22-1 to 22-3, and demodulates the transmission signals Data1x and Data1y, the transmission signals Data2x and Data2y, and the transmission signals Data3x and Data3y.

ここで、コヒーレント受信器22−1〜22−3に受信する波長多重光信号は、図1に示すように各チャネルの光信号間に光搬送波周波数に応じた伝搬遅延差T1 ,T2 が生じている。各光信号の光搬送波周波数をf1,f2,…,fN(単位はHz)、周波数上で隣接する光信号間の周波数間隔をΔf1,Δf2,…,ΔfN-1(単位はHz)、光ファイバ伝送路50の波長分散をD(単位はps/nm)とすると、周波数上で隣接する光信号間の伝送後における伝搬遅延差Tk (単位はps) は、通信波長帯(おおよそ1550nm〜1610nm)において以下の式で表すことができる。cは光速(単位はm/s )である。

Figure 2016100815
Here, the wavelength multiplexed optical signals received by the coherent receivers 22-1 to 22-3 have propagation delay differences T 1 and T 2 corresponding to the optical carrier frequency between the optical signals of the respective channels as shown in FIG. Has occurred. F 1, f 2 the optical carrier frequency of each optical signal, ..., f N (unit Hz), Δf 1, Δf 2 the frequency spacing between optical signals which are adjacent in the frequency domain, ..., Δf N-1 (unit (Hz), and the chromatic dispersion of the optical fiber transmission line 50 is D (unit: ps / nm), the propagation delay difference T k (unit: ps) after transmission between optical signals adjacent in frequency is the communication wavelength. In the band (approximately 1550 nm to 1610 nm), it can be expressed by the following formula. c is the speed of light (unit: m / s).
Figure 2016100815

本発明におけるデジタル信号処理部24のMIMO処理クロストーク補償技術では、注目するチャネルの光信号に重畳されている他チャネルからのクロストーク成分を除去するために、重畳されているクロストーク成分と同一のタイミングにおける他チャネルの光信号に関する情報が必要となる。そのためには、波長分散に起因して発生した各チャネルの光信号間の伝搬遅延差を補償する必要がある。これにより、波長分散を有する光ファイバ伝送路50を伝送する波長多重光信号に対しても、MIMO処理によるクロストーク補償を適用することが可能となる。   In the MIMO processing crosstalk compensation technique of the digital signal processing unit 24 in the present invention, in order to remove the crosstalk component from the other channel superimposed on the optical signal of the channel of interest, the same as the superimposed crosstalk component. Information on the optical signal of the other channel at the timing is required. For this purpose, it is necessary to compensate for the propagation delay difference between the optical signals of the respective channels caused by chromatic dispersion. As a result, crosstalk compensation by MIMO processing can be applied to a wavelength multiplexed optical signal transmitted through the optical fiber transmission line 50 having chromatic dispersion.

図2は、実施例1におけるデジタル信号処理部24の構成例を示す。
図2において、デジタル信号処理部24は、A/D変換器1−1〜1−3、分散補償回路2−1A〜2−1C,2−2A〜2−2C,2−3A〜2−3C、伝搬遅延差補償回路3−1B,3−1C,3−2A,3−2C,3−3A,3−3B、位相回転補償回路4−1B,4−1C,4−2A,4−2C,4−3A,4−3B、波形等化回路5−1〜5−3、位相推定回路6−1〜6−3、識別回路7−1〜7−3から構成されている。
FIG. 2 shows a configuration example of the digital signal processing unit 24 in the first embodiment.
In FIG. 2, the digital signal processing unit 24 includes A / D converters 1-1 to 1-3, dispersion compensation circuits 2-1A to 2-1C, 2-2A to 2-2C, and 2-3A to 2-3C. , Propagation delay difference compensation circuits 3-1B, 3-1C, 3-2A, 3-2C, 3-3A, 3-3B, phase rotation compensation circuits 4-1B, 4-1C, 4-2A, 4-2C, 4-3A, 4-3B, waveform equalization circuits 5-1 to 5-3, phase estimation circuits 6-1 to 6-3, and identification circuits 7-1 to 7-3.

コヒーレント受信器22−1〜22−3から出力される信号は、直交する偏波状態に相当する複素信号から構成されており、それぞれA/D変換器1−1〜1−3によってサンプリング周波数fsでデジタル信号に変換される。ここで、サンプリング定理に基づき、サンプリング周波数fsは各チャネルの変調周波数の2倍よりも大きいものとする。   The signals output from the coherent receivers 22-1 to 22-3 are composed of complex signals corresponding to orthogonal polarization states, and sampling frequencies fs are respectively obtained by the A / D converters 1-1 to 1-3. Is converted into a digital signal. Here, based on the sampling theorem, the sampling frequency fs is assumed to be larger than twice the modulation frequency of each channel.

A/D変換器1−1の出力は分散補償回路2−1A,2−2A,2−3Aに入力し、A/D変換器1−2の出力は分散補償回路2−1B,2−2B,2−3Bに入力し、A/D変換器1−3の出力は分散補償回路2−1C,2−2C,2−3Cに入力する。
分散補償回路2−1A,2−1B,2−1Cは、コヒーレント検波に用いた局発光の光周波数f1,f2,f3を中心にそれぞれ分散補償を行うが、その分散補償量は注目するチャネル1の光周波数f1における総波長分散量とする。チャネル1の分散補償回路2−1Aの出力に対して、分散補償回路2−1B,2−1Cの出力は、図3(1) に示すように伝搬遅延差T1 とT1+T2が生じ、後段の伝搬遅延差補償回路3−1B,3−1Cでその伝搬遅延差を補償する。
The output of the A / D converter 1-1 is input to the dispersion compensation circuits 2-1A, 2-2A, 2-3A, and the output of the A / D converter 1-2 is the dispersion compensation circuits 2-1B, 2-2B. , 2-3B, and the output of the A / D converter 1-3 is input to the dispersion compensation circuits 2-1C, 2-2C, 2-3C.
The dispersion compensation circuits 2-1A, 2-1B, and 2-1C perform dispersion compensation around the optical frequencies f1, f2, and f3 of the local light used for coherent detection. The amount of dispersion compensation is the channel 1 of interest. The total chromatic dispersion amount at the optical frequency f1. In contrast to the output of the dispersion compensation circuit 2-1A of channel 1, the outputs of the dispersion compensation circuits 2-1B and 2-1C cause propagation delay differences T 1 and T 1 + T 2 as shown in FIG. The propagation delay difference compensation circuits 3-1B and 3-1C in the subsequent stage compensate for the propagation delay difference.

分散補償回路2−2A,2−2B,2−2Cは、コヒーレント検波に用いた局発光の光周波数f1,f2,f3を中心にそれぞれ分散補償を行うが、その分散補償量は注目するチャネル2の光周波数f2における総波長分散量とする。チャネル2の分散補償回路2−2Bの出力に対して、分散補償回路2−2A,2−2Cの出力は、図3(2) に示すように伝搬遅延差−T1 とT2 が生じ、後段の伝搬遅延差補償回路3−2A,3−2Cでその伝搬遅延差を補償する。 The dispersion compensation circuits 2-2A, 2-2B, and 2-2C perform dispersion compensation around the optical frequencies f1, f2, and f3 of local light used for coherent detection. The amount of dispersion compensation is the channel 2 of interest. The total chromatic dispersion amount at the optical frequency f2. With respect to the output of the dispersion compensation circuit 2-2B of the channel 2, the outputs of the dispersion compensation circuits 2-2A and 2-2C have propagation delay differences −T 1 and T 2 as shown in FIG. The propagation delay difference compensation circuits 3-2A and 3-2C in the subsequent stage compensate for the propagation delay difference.

分散補償回路2−1A,2−1B,2−1Cは、コヒーレント検波に用いた局発光の光周波数f1,f2,f3を中心にそれぞれ分散補償を行うが、その分散補償量は注目するチャネル3の光周波数f3における総波長分散量とする。チャネル3の分散補償回路2−3Cの出力に対して、分散補償回路2−3A,2−3Bの出力は、図3(3) に示すように伝搬遅延差−T1−T2と−T2 が生じ、後段の伝搬遅延差補償回路3−3A,3−3Bでその伝搬遅延差を補償する。 The dispersion compensation circuits 2-1A, 2-1B, and 2-1C perform dispersion compensation around the optical frequencies f1, f2, and f3 of local light used for coherent detection. The amount of dispersion compensation is the channel 3 of interest. The total chromatic dispersion amount at the optical frequency f3. In contrast to the output of the dispersion compensation circuit 2-3C of the channel 3, the outputs of the dispersion compensation circuits 2-3A and 2-3B have propagation delay differences -T 1 -T 2 and -T as shown in FIG. 2 occurs, and the propagation delay difference compensation circuits 3-3A and 3-3B in the subsequent stage compensate the propagation delay difference.

ここで、分散補償回路2−2Aから出力される複素信号をE1x,E1y,分散補償回路2−2Bから出力される複素信号E2x,E2yを,分散補償回路2−2Cから出力される複素信号E3x,E3yとする。各複素信号にはそれぞれ隣接チャネルからのクロストーク成分が重畳されているため、各チャネルの送信信号をS1x,S1y, S2x, S2y, S3x, S3yとすると、例えばチャネル2の複素信号E2x,E2yは以下の式で表される。

Figure 2016100815
Here, a complex signal E 1x output from the dispersion compensator 2-2A, E 1y, complex signal E 2x outputted from the dispersion compensation circuit 2-2B, the E 2y, is output from the dispersion compensator 2-2C Complex signals E 3x and E 3y . Since crosstalk components from adjacent channels are superimposed on each complex signal, if the transmission signals of each channel are S 1x , S 1y , S 2x , S 2y , S 3x , S 3y , for example, channel 2 The complex signals E 2x and E 2y are expressed by the following equations.
Figure 2016100815

i (i=1, 2, 3)は各チャネルの伝達関数行列、rij (i, j=1, 2, 3)はコヒーレント受信器の周波数特性で決まる減衰量である。右辺第1項と第3項が隣接チャネルからのクロストーク成分を示しており、後段の波形等化回路5−2がこのクロストーク成分を補償する。 R i (i = 1, 2, 3) is a transfer function matrix of each channel, and r ij (i, j = 1, 2, 3) is an attenuation determined by the frequency characteristic of the coherent receiver. The first and third terms on the right side indicate crosstalk components from adjacent channels, and the waveform equalization circuit 5-2 at the subsequent stage compensates for the crosstalk components.

伝搬遅延差補償回路3−1B,3−1C,3−2A,3−2C,3−3A,3−3Bでは、デジタルデータに対するバッファリング処理により、式(1) によって与えられる遅延差を打ち消す方向にデータのタイミングをシフトすることで、各複素信号に対する伝搬遅延差補償を実現する。例えば、チャネル2の信号に対するクロストーク補償を実現するために用いる複素信号E1x(t) ,E1y(t) および複素信号E3x(t) ,E3y(t) に対しては、図3(2) に示すように、それぞれT1 ,T1 ,−T2 ,−T2 のタイミングシフトが付与されるため、伝搬遅延補償回路3−2A,3−2Cからの出力信号はE1x(t+T1),E1y(t+T1),E3x(t−T2),E3y(t−T3)となる。 Propagation delay difference compensation circuits 3-1B, 3-1C, 3-2A, 3-2C, 3-3A, and 3-3B cancel the delay difference given by equation (1) by buffering the digital data. By shifting the data timing, the propagation delay difference compensation for each complex signal is realized. For example, for complex signals E 1x (t) and E 1y (t) and complex signals E 3x (t) and E 3y (t) used to realize crosstalk compensation for the channel 2 signal, FIG. As shown in (2), since timing shifts of T 1 , T 1 , -T 2 , and -T 2 are given, the output signals from the propagation delay compensation circuits 3-2A and 3-2C are E 1x ( t + T 1 ), E 1y (t + T 1 ), E 3x (t−T 2 ), E 3y (t−T 3 ).

位相回転補償回路4−1B,4−1C,4−2A,4−2C,4−3A,4−3Bでは、各チャネル間の搬送波周波数の差による位相回転を補償する。例えば、位相回転補償回路4−2A,4−2Cでは、各複素信号E1x(t+T1),E1y(t+T1),E3x(t−T2),E3y(t−T3)に対して、それぞれ−Δf1, −Δf1, Δf2, Δf2の位相回転が付与されるため、各位相回転補償回路からの出力信号はexp[-j2πΔf1t]E1x(t+T1), exp[-j2πΔf1t]E1y(t+T1), exp[j2πΔf2t]E3x(t−T2), exp[j2πΔf2t]E3y(t−T2)となる。 In the phase rotation compensation circuits 4-1 B, 4-1 C, 4-2 A, 4-2 C, 4-3 A, and 4-3 B, phase rotation due to the difference in the carrier frequency between each channel is compensated. For example, in the phase rotation compensation circuits 4-2A and 4-2C, the complex signals E 1x (t + T 1 ), E 1y (t + T 1 ), E 3x (t−T 2 ), E 3y (t−T 3 ) On the other hand, since phase rotations of −Δf 1 , −Δf 1 , Δf 2 , and Δf 2 are given, the output signal from each phase rotation compensation circuit is exp [−j2πΔf 1 t] E 1x (t + T 1 ), exp [-j2πΔf 1 t] E 1y (t + T 1 ), exp [j2πΔf 2 t] E 3x (t−T 2 ), exp [j2πΔf 2 t] E 3y (t−T 2 ).

波形等化回路5−1〜5−3は、FIRフィルタから構成されており、偏波成分ごとの最尤推定によりFIRフィルタの適応信号処理を行うことで、クロストークの補償、偏波分離、残留分散補償、偏波分散補償を実現する。例えば、波形等化回路5−2において、入力信号として分散補償回路2−2Bの出力E2x,E2yと、位相回転補償回路4−2Aの出力exp[-j2πΔf1t]E1x(t+T1), exp[-j2πΔf1t]E1y(t+T1)と、位相回転補償回路4−2Cの出力exp[j2πΔf2t]E3x(t−T2), exp[j2πΔf2t]E3y(t−T2)を用いると、上記各補償が施されたチャネル2の光信号E'2x(t),E'2y(t) が得られる。 The waveform equalization circuits 5-1 to 5-3 are configured by FIR filters. By performing adaptive signal processing of the FIR filters by maximum likelihood estimation for each polarization component, crosstalk compensation, polarization separation, Realizes residual dispersion compensation and polarization dispersion compensation. For example, in the waveform equalization circuit 5-2, the outputs E 2x and E 2y of the dispersion compensation circuit 2-2B and the output exp [−j2πΔf 1 t] E 1x (t + T 1 ) of the phase rotation compensation circuit 4-2A are input signals. ), exp [-j2πΔf 1 t] E 1y (t + T 1 ) and the output exp [j2πΔf 2 t] E 3x (t−T 2 ), exp [j2πΔf 2 t] E 3y ( When t−T 2 ) is used, optical signals E ′ 2x (t) and E ′ 2y (t) of the channel 2 subjected to the above-described compensation are obtained.

ここで、適応信号処理に伴うFIRフィルタのタップ更新アルゴリズムとしては、よく知られたCMA(Constant Modulus Algorithm)を用いることが可能である。各FIRフィルタのタップ係数をhij(i, j =1, 2, 3)とすると、E'2x(t),E'2y(t) は以下の式で表される。CMAに基づくタップ更新によりhijが最適化されることで、偏波分離や残留分散補償、偏波分散補償が行われるとともに、式(2) におけるクロストーク成分が補償される。E'2x(t),E'2y(t) は以下の式に示す通りとなる。

Figure 2016100815
Here, a well-known CMA (Constant Modulus Algorithm) can be used as the tap update algorithm of the FIR filter accompanying the adaptive signal processing. Assuming that the tap coefficient of each FIR filter is h ij (i, j = 1, 2, 3), E ′ 2x (t) and E ′ 2y (t) are expressed by the following equations. By optimizing h ij by tap update based on CMA, polarization separation, residual dispersion compensation, and polarization dispersion compensation are performed, and the crosstalk component in Equation (2) is compensated. E ′ 2x (t) and E ′ 2y (t) are as shown in the following equations.
Figure 2016100815

波形等化回路5−1〜5−3の出力は、位相推定回路6−1〜6−3、識別回路7−1〜7−3で処理されることにより、各チャネルの送信信号を復元する。例えば、チャネル2のE'2x(t), E'2y(t)からチャネル2の送信信号S2x(t),S2y(t) が得られる。 Outputs of the waveform equalization circuits 5-1 to 5-3 are processed by the phase estimation circuits 6-1 to 6-3 and the identification circuits 7-1 to 7-3, thereby restoring the transmission signals of the respective channels. . For example, transmission signals S 2x (t) and S 2y (t) of channel 2 are obtained from E ′ 2x (t) and E ′ 2y (t) of channel 2.

実施例1は、3チャネルの送信信号を3波の光信号で波長多重伝送する構成であるが、一般的にNチャネルの送信信号をN波の光信号で波長多重伝送する構成にも同様に適用することができる。   The first embodiment has a configuration in which a three-channel transmission signal is wavelength-multiplexed with a three-wave optical signal. In general, an N-channel transmission signal is wavelength-division-multiplexed with an N-wave optical signal. Can be applied.

図4は、従来構成および本発明の実施例1の構成による復調信号例を示す。
ここでは、N=2、すなわち波長多重光信号を構成しているチャネル数は2とし、各チャネルは 128Gbit/s の偏波多重QPSK信号で構成されており、搬送波周波数間隔は25GHzとしている。信号品質を表すQ値は、光ファイバ伝送路を 480km伝送させた後の値としており、光ファイバ伝送路の波長分散は 9329 ps/nm である。本発明を適用することで、波長分散環境下においてもクロストーク補償が正常に動作しており、Q値が8.5dB から11.2dBに改善していることが確認できる。伝搬遅延差補償で用いている遅延差補償量T1 の値は、式(1) に基づき、1865.8psとしている。
FIG. 4 shows an example of a demodulated signal according to the conventional configuration and the configuration of the first embodiment of the present invention.
Here, N = 2, that is, the number of channels constituting the wavelength multiplexed optical signal is 2, each channel is configured by a 128 Gbit / s polarization multiplexed QPSK signal, and the carrier frequency interval is 25 GHz. The Q value representing the signal quality is the value after 480 km transmission of the optical fiber transmission line, and the chromatic dispersion of the optical fiber transmission line is 9329 ps / nm. By applying the present invention, it can be confirmed that the crosstalk compensation operates normally even in a chromatic dispersion environment, and the Q value is improved from 8.5 dB to 11.2 dB. The value of the delay difference compensation amount T 1 used for propagation delay difference compensation is 1865.8 ps based on the equation (1).

また、本実施例における伝搬遅延差補償回路は、必ずしも分散補償回路と位相回転補償回路の間に配置しなくてもよく、A/D変換器と波形等化回路の間であればどこに配置しても、同様の効果が得られる。従って、例えば分散補償回路の前段に配置したり、位相回転補償回路の後段に配置してもよい。   In addition, the propagation delay difference compensation circuit in this embodiment is not necessarily arranged between the dispersion compensation circuit and the phase rotation compensation circuit, and is placed anywhere between the A / D converter and the waveform equalization circuit. However, the same effect can be obtained. Therefore, for example, it may be arranged before the dispersion compensation circuit or after the phase rotation compensation circuit.

図5は、実施例2におけるデジタル信号処理部24の構成例を示す。
実施例2における送信部および受信部の構成は、図1に示されている実施例1の構成と同様である。実施例2の特徴は、受信部のデジタル信号処理部24において、位相回転補償回路4−1B,4−1C,4−2A,4−2C,4−3A,4−3Bが、分散補償回路2−1A〜2−1C,2−2A〜2−2C,2−3A〜2−3Cよりも前段に配置されているところにある。従来方式と異なる本発明特有の機能部である位相回転補償回路と伝搬遅延差補償回路を、従来方式でも使用される機能部である分散補償回路、波形等化回路、位相推定回路、識別回路と分離することが可能な構成となっている。
FIG. 5 shows a configuration example of the digital signal processing unit 24 in the second embodiment.
The configuration of the transmission unit and the reception unit in the second embodiment is the same as that of the first embodiment shown in FIG. The characteristic of the second embodiment is that in the digital signal processing unit 24 of the receiving unit, the phase rotation compensation circuits 4-1 B, 4-1 C, 4-2 A, 4-2 C, 4-3 A, 4-3 B are replaced by the dispersion compensation circuit 2. -1A to 2-1C, 2-2A to 2-2C, and 2-3A to 2-3C. The phase rotation compensation circuit and the propagation delay difference compensation circuit, which are functional parts unique to the present invention, which are different from the conventional system, and the dispersion compensation circuit, waveform equalization circuit, phase estimation circuit, identification circuit, which are functional parts used in the conventional system, It can be separated.

実施例2では、位相回転補償が施された上で分散補償回路により分散補償が実行されるため、分散補償後のチャネル間の伝搬遅延差は実施例1における伝搬遅延差と異なるものとなる。   In the second embodiment, after the phase rotation compensation is performed, the dispersion compensation circuit executes the dispersion compensation. Therefore, the propagation delay difference between the channels after the dispersion compensation is different from the propagation delay difference in the first embodiment.

図6に、実施例2におけるチャネル数が2(N=2)の場合における、コヒーレント受信器22−1,22−2で受信した信号の位相回転補償前後の電気スペクトルを示す。ここで、fsはサンプリング周波数とする。電気スペクトルは、A/D変換器のサンプリング周波数で帯域制限されている。位相回転補償後の信号はΔf1の周波数シフトが施されているため、例えばコヒーレント受信器22−1で受信した信号を処理する位相回転補償回路4−2Aでは、−Δf1の位相回転補償によりチャネル1の信号の低周波成分が高周波側に出現する。コヒーレント受信器22−2で受信した信号を処理する位相回転補償回路4−1Bでは、Δf1の位相回転補償によりチャネル2の信号の高周波成分が低周波側に出現するという事象が発生する。 FIG. 6 shows electrical spectra before and after phase rotation compensation of signals received by the coherent receivers 22-1 and 22-2 when the number of channels in the second embodiment is 2 (N = 2). Here, fs is a sampling frequency. The electrical spectrum is band limited at the sampling frequency of the A / D converter. Since the signal after phase rotation compensation is subjected to a frequency shift of Δf 1 , for example, in the phase rotation compensation circuit 4-2A that processes the signal received by the coherent receiver 22-1, the phase rotation compensation of −Δf 1 is performed. The low frequency component of the channel 1 signal appears on the high frequency side. In the phase rotation compensation circuit 4-1B that processes the signal received by the coherent receiver 22-2, an event occurs in which the high frequency component of the channel 2 signal appears on the low frequency side due to the phase rotation compensation of Δf 1 .

分散補償回路では、この電気スペクトルの情報に基づいて分散補償を実現するため、分散補償前に位相回転補償を実施するのか、分散補償後に位相回転補償を実施するのかにより、分散補償後のチャネル間の伝搬遅延差が異なったものとなる。分散補償後に位相回転補償を実施する場合の伝搬遅延差は式(1) に示した通りである。   In the dispersion compensation circuit, in order to realize dispersion compensation based on the electrical spectrum information, the channel between channels after dispersion compensation depends on whether phase rotation compensation is performed before dispersion compensation or phase rotation compensation is performed after dispersion compensation. The difference in the propagation delay of is different. The propagation delay difference when phase rotation compensation is performed after dispersion compensation is as shown in Equation (1).

図7に、分散補償前に位相回転補償を実施する場合の伝搬遅延差のイメージを示す。例えば、コヒーレント受信器22−2で受信した信号に対して補償量Δf1で位相回転補償を実施した上で分散補償を実施すると、受信信号のチャネル1の成分と、チャネル2の低周波成分はコヒーレント受信器22−1で受信した信号と同じタイミングに揃うが、チャネル2の高周波成分はタイミングがずれた状態となる。チャネル1の信号に対するクロストーク補償ではチャネル2の情報が必要であり、チャネル2の高周波成分の情報が必要となる。チャネル2の低周波成分についてもクロストーク補償に用いることは可能であるが、この低周波成分にはチャネル1の情報が重畳されているため、クロストーク補償において重要な役割をもつのはチャネル2の高周波成分となる。 FIG. 7 shows an image of a propagation delay difference when phase rotation compensation is performed before dispersion compensation. For example, when the phase rotation compensation is performed on the signal received by the coherent receiver 22-2 with the compensation amount Δf 1 and the dispersion compensation is performed, the channel 1 component and the low frequency component of the channel 2 of the received signal are obtained. Although the timing is the same as the signal received by the coherent receiver 22-1, the high frequency component of the channel 2 is shifted in timing. In the crosstalk compensation for the channel 1 signal, the channel 2 information is required, and the channel 2 high frequency component information is required. The low frequency component of channel 2 can also be used for crosstalk compensation, but since the information of channel 1 is superimposed on this low frequency component, channel 2 has an important role in crosstalk compensation. Of high frequency components.

この伝搬遅延差T1 は、図6に示された電気スペクトルに分散補償が施された結果生じるものであるので、例えば、コヒーレント受信器22−2で受信した信号に補償量Δf1で位相回転補償した場合に注目すると、このとき考慮するべきはチャネル2の信号の高周波成分の振る舞いとなる。チャネル2の高周波成分は、本来であれば電気周波数fsの成分に対して与えられる補償量で分散補償が実施されるはずであったが、位相回転補償により、電気周波数Δf1−fs/2の成分となってしまったため、結果として電気周波数−fs程度の成分に対して与えられる補償量で分散補償が実施されてしまう。以上の考察より、実施例2における伝搬遅延差T1 は、以下の式で示される。

Figure 2016100815
This propagation delay difference T 1 is generated as a result of dispersion compensation being performed on the electrical spectrum shown in FIG. 6, and for example, the signal received by the coherent receiver 22-2 is phase rotated by a compensation amount Δf 1. If attention is paid to the case of compensation, the behavior of the high-frequency component of the channel 2 signal should be taken into consideration at this time. Originally, dispersion compensation should have been performed for the high frequency component of channel 2 with the compensation amount given to the component of electrical frequency fs. However, due to phase rotation compensation, the electrical frequency Δf 1 -fs / 2 As a result, dispersion compensation is performed with a compensation amount given to a component having an electrical frequency of −fs. From the above consideration, the propagation delay difference T 1 in the second embodiment is expressed by the following equation.
Figure 2016100815

図8は、従来構成および本発明の実施例2の構成による復調信号例を示す。
ここでは、N=2、すなわち波長多重光信号を構成しているチャネル数は2とし、各チャネルは 128Gbit/s の偏波多重QPSK信号で構成されており、搬送波周波数間隔は25GHzとしている。信号品質を表すQ値は、光ファイバ伝送路を 480km伝送させた後の値としており、光ファイバ伝送路の波長分散は 9329 ps/nm である。本発明を適用することで、波長分散環境下においてもクロストーク補償が正常に動作しており、Q値が8.5dB から11.0 dB に改善していることが確認できる。伝搬遅延差補償で用いている遅延差補償量T1 の値は、式(4) に基づき、4776.4psとしている。
FIG. 8 shows an example of a demodulated signal according to the conventional configuration and the configuration of the second embodiment of the present invention.
Here, N = 2, that is, the number of channels constituting the wavelength multiplexed optical signal is 2, each channel is configured by a 128 Gbit / s polarization multiplexed QPSK signal, and the carrier frequency interval is 25 GHz. The Q value representing the signal quality is the value after 480 km transmission of the optical fiber transmission line, and the chromatic dispersion of the optical fiber transmission line is 9329 ps / nm. By applying the present invention, it can be confirmed that crosstalk compensation is operating normally even in a chromatic dispersion environment, and the Q value is improved from 8.5 dB to 11.0 dB. The value of the delay difference compensation amount T 1 used in the propagation delay difference compensation is 4776.4 ps based on the equation (4).

また、本実施例における伝搬遅延差補償回路は、必ずしも位相回転補償回路と分散補償回路の間に配置しなくてもよく、A/D変換器と波形等化回路の間であればどこに配置しても、同様の効果が得られる。従って、例えば分散補償回路の後段に配置したり、位相回転補償回路の前段に配置してもよい。   In addition, the propagation delay difference compensation circuit in this embodiment is not necessarily arranged between the phase rotation compensation circuit and the dispersion compensation circuit, and is placed anywhere between the A / D converter and the waveform equalization circuit. However, the same effect can be obtained. Therefore, for example, it may be arranged after the dispersion compensation circuit or before the phase rotation compensation circuit.

図9は、実施例3におけるデジタル信号処理部24の構成例を示す。
実施例3における送信部および受信部の構成は、図1に示されている実施例1の構成と同様である。実施例3の特徴は、A/D変換器1−1〜1−3におけるサンプリング周波数fsを、隣接チャネルも含めた信号帯域よりも大きくすることで、図5に示す実施例2のデジタル信号処理部24から伝搬遅延差補償回路3−1B,3−1C,3−2A,3−2C,3−3A,3−3Bを除去したところにある。より正確には、チャネルkの変調周波数をfmk(k=1, 2, …, N)とした場合、サンプリング周波数fsが以下の関係を満足することを特徴とする。

Figure 2016100815
FIG. 9 shows a configuration example of the digital signal processing unit 24 in the third embodiment.
The configuration of the transmission unit and the reception unit in the third embodiment is the same as that of the first embodiment shown in FIG. The feature of the third embodiment is that the sampling frequency fs in the A / D converters 1-1 to 1-3 is made larger than the signal band including the adjacent channels, so that the digital signal processing of the second embodiment shown in FIG. The propagation delay difference compensation circuits 3-1B, 3-1C, 3-2A, 3-2C, 3-3A, and 3-3B are removed from the unit 24. More precisely, when the modulation frequency of the channel k is f mk (k = 1, 2,..., N), the sampling frequency fs satisfies the following relationship.
Figure 2016100815

サンプリング周波数fsが隣接チャネルも含めた信号帯域よりも大きい場合、各コヒーレント受信器で受信した信号の電気スペクトルは図10のようになる。ここでは簡単のために、左からチャネル1、チャネル2、チャネル3の3チャネル分のスペクトルを表記している。また、コヒーレント受信器22−1、コヒーレント受信器22−2、コヒーレント受信器22−3に入力される局発光の光周波数は、それぞれf1,f2,f3とする。 When the sampling frequency fs is larger than the signal band including the adjacent channel, the electrical spectrum of the signal received by each coherent receiver is as shown in FIG. Here, for the sake of simplicity, the spectrum of three channels, channel 1, channel 2, and channel 3, is shown from the left. Further, coherent receivers 22-1, coherent receiver 22-2, the optical frequency of the local light to be input to the coherent receiver 22-3, and f 1, f 2, f 3, respectively.

ここで、例えばチャネル2の信号に重畳されたクロストーク成分を補償する場合を考えると、コヒーレント受信器22−1、コヒーレント受信器22−3で受信した信号に対して、位相回転補償回路にて、それぞれ補償量−Δf1, Δf2の位相回転補償を行う必要がある。位相回転補償後の信号スペクトルは図10に示す通りであり、サンプリング周波数が隣接チャネルも含めた信号帯域よりも大きい場合、すなわち式(5) を満足する場合、位相回転補償後の信号スペクトルはどれもコヒーレント受信器22−2で受信した信号の電気スペクトルと同様となる。従って、コヒーレント受信器22−1、コヒーレント受信器22−2、コヒーレント受信器22−3で受信した位相回転補償した後の信号に対しては、完全に同じ分散補償が施されることになるため、図11に示すように、分散補償後においても伝搬遅延差の発生を抑えることができる。これにより、デジタル信号処理部24において伝搬遅延差補償回路を組み込む必要がなくなる。このとき、チャネルkにおける波形等化回路からの出力は、以下の式の通りとなる。

Figure 2016100815
Here, for example, considering the case where the crosstalk component superimposed on the channel 2 signal is compensated, the signal received by the coherent receiver 22-1 and the coherent receiver 22-3 is processed by the phase rotation compensation circuit. Therefore, it is necessary to perform phase rotation compensation of compensation amounts −Δf 1 and Δf 2 , respectively. The signal spectrum after the phase rotation compensation is as shown in FIG. 10. When the sampling frequency is larger than the signal band including the adjacent channel, that is, when Expression (5) is satisfied, Is the same as the electrical spectrum of the signal received by the coherent receiver 22-2. Therefore, the same dispersion compensation is applied to the signal after phase rotation compensation received by the coherent receiver 22-1, the coherent receiver 22-2, and the coherent receiver 22-3. As shown in FIG. 11, the occurrence of a propagation delay difference can be suppressed even after dispersion compensation. This eliminates the need to incorporate a propagation delay difference compensation circuit in the digital signal processing unit 24. At this time, the output from the waveform equalization circuit in the channel k is as follows.
Figure 2016100815

1 A/D変換器
2 分散補償回路
3 伝搬遅延差補償回路
4 位相回転補償回路
5 波形等化回路
6 位相推定回路
7 識別回路
11 信号光源
12 偏波多重ベクトル変調器
13 光カプラ
21 光カプラ
22 コヒーレント受信器
23 局発光源
24 デジタル信号処理部
DESCRIPTION OF SYMBOLS 1 A / D converter 2 Dispersion compensation circuit 3 Propagation delay difference compensation circuit 4 Phase rotation compensation circuit 5 Waveform equalization circuit 6 Phase estimation circuit 7 Identification circuit 11 Signal light source 12 Polarization multiplexing vector modulator 13 Optical coupler 21 Optical coupler 22 Coherent receiver 23 Local light source 24 Digital signal processor

Claims (5)

光ファイバ伝送路を介して接続される送信部と受信部の間で、搬送波周波数f1, f2, …, fN(f1<f2<…<fN)の複数Nチャネルの光信号を波長多重した波長多重光信号を伝送する波長多重光伝送システムにおいて、
前記送信部は、前記各チャネルの周波数間隔が各光信号の変調周波数より小さく、隣接するチャネルの光信号が周波数上で重なる波長多重光信号を前記光ファイバ伝送路に送出する構成であり、
前記受信部は、
光カプラによりN分岐された前記波長多重光信号をそれぞれ異なる光周波数f1, f2, …, fNの局発光によってコヒーレント検波するコヒーレント受信器と、
前記コヒーレント受信器から出力される電気信号に対してデジタル信号処理を実行することで送信信号における光スペクトル重なりに起因した隣接チャネル間のクロストークを補償するデジタル信号処理部とを備え、
前記デジタル信号処理部は、
前記コヒーレント受信器から出力される電気信号をデジタル信号に変換するA/D変換器と、
前記光ファイバ伝送路で発生した波長分散を起因とした光波形劣化を補償する分散補償回路と、
前記局発光の光周波数の違いによって生じる回転成分を補償する位相回転補償回路と、 前記位相回転補償回路の出力を入力するフィルタのタップ係数を適応的に変化させる複数の適応フィルタを用いて前記クロストークの補償を行う波形等化回路と、
前記光信号の搬送波位相を推定する位相推定回路と、
前記光信号に重畳された送信信号の識別を行う識別回路と
を備え、
前記分散補償回路が補償する分散補償量は、復調しようとするチャネルの搬送波光周波数における波長分散量であり、クロストーク成分を補償するために用いる隣接チャネルの信号に対しても適用する構成であり、
前記位相回転補償回路における位相回転補償量は隣接チャネルとの光周波数間隔Δfk (k=1, 2, …, N)である
ことを特徴とする波長多重光伝送システム。
A plurality of N-channel optical signals having carrier frequencies f 1 , f 2 ,..., F N (f 1 <f 2 <... <f N ) between a transmitter and a receiver connected via an optical fiber transmission line In a wavelength division multiplexing optical transmission system that transmits a wavelength division multiplexed optical signal,
The transmission unit is configured to send a wavelength-multiplexed optical signal in which the frequency interval of each channel is smaller than the modulation frequency of each optical signal and the optical signals of adjacent channels overlap in frequency to the optical fiber transmission line,
The receiver is
Optical frequency f 1 different said wavelength division multiplexed optical signal N branched by the optical coupler, respectively, f 2, ..., a coherent receiver for coherent detection by local light f N,
A digital signal processing unit that compensates for crosstalk between adjacent channels caused by optical spectrum overlap in the transmission signal by performing digital signal processing on the electrical signal output from the coherent receiver;
The digital signal processor is
An A / D converter that converts an electrical signal output from the coherent receiver into a digital signal;
A dispersion compensation circuit for compensating for optical waveform degradation caused by chromatic dispersion generated in the optical fiber transmission line;
The cross rotation using a phase rotation compensation circuit that compensates for a rotation component caused by a difference in optical frequency of the local light, and a plurality of adaptive filters that adaptively change a tap coefficient of a filter that inputs an output of the phase rotation compensation circuit. A waveform equalization circuit that compensates for talk;
A phase estimation circuit for estimating a carrier phase of the optical signal;
An identification circuit for identifying a transmission signal superimposed on the optical signal,
The dispersion compensation amount compensated by the dispersion compensation circuit is the chromatic dispersion amount at the carrier optical frequency of the channel to be demodulated, and is also applied to the signal of the adjacent channel used for compensating the crosstalk component. ,
The phase rotation compensation amount in the phase rotation compensation circuit is an optical frequency interval Δf k (k = 1, 2,..., N) between adjacent channels.
請求項1に記載の波長多重光伝送システムにおいて、
前記デジタル信号処理部は、前記分散補償回路が前記位相回転補償回路よりも前段に配置され、さらに前記光ファイバ伝送路を伝送することにより生じるチャネル間の伝搬遅延差を補償する伝搬遅延差補償回路を前記波形等化回路よりも前段に備え、
前記伝搬遅延差補償回路で前記デジタル信号に与える伝搬遅延差補償量Tk (単位はps)は、前記光ファイバ伝送路の波長分散をD(単位はps/nm )、光速をc(単位はm/s )としたときに、以下の式で表される
Figure 2016100815
ことを特徴とする波長多重光伝送システム。
The wavelength division multiplexing optical transmission system according to claim 1,
The digital signal processing unit includes a propagation delay difference compensation circuit that compensates for a propagation delay difference between channels that is generated when the dispersion compensation circuit is disposed before the phase rotation compensation circuit and further transmits the optical fiber transmission line. Is provided before the waveform equalization circuit,
The propagation delay difference compensation amount T k (unit: ps) given to the digital signal by the propagation delay difference compensation circuit is D (unit: ps / nm) of wavelength dispersion of the optical fiber transmission line, and c (unit: light speed). m / s), expressed as
Figure 2016100815
A wavelength division multiplexing optical transmission system.
請求項1に記載の波長多重光伝送システムにおいて、
前記デジタル信号処理部は、前記位相回転補償回路が前記分散補償回路よりも前段に配置され、さらに前記光ファイバ伝送路を伝送することにより生じるチャネル間の伝搬遅延差を補償する伝搬遅延差補償回路を前記波形等化回路よりも前段に配置され、前記A/D変換器のサンプリング周波数fsを前記変調周波数の2倍より大きい値とし、
前記伝搬遅延差補償回路で前記デジタル信号に与える伝搬遅延差補償量Tk (単位はps)は、前記光ファイバ伝送路の波長分散をD(単位はps/nm )、光速をc(単位はm/s )としたときに、以下の式で表される
Figure 2016100815
ことを特徴とする波長多重光伝送システム。
The wavelength division multiplexing optical transmission system according to claim 1,
The digital signal processing unit includes a propagation delay difference compensation circuit that compensates for a propagation delay difference between channels that is generated when the phase rotation compensation circuit is disposed in front of the dispersion compensation circuit and is further transmitted through the optical fiber transmission line. Is arranged before the waveform equalization circuit, and the sampling frequency fs of the A / D converter is set to a value larger than twice the modulation frequency,
The propagation delay difference compensation amount T k (unit: ps) given to the digital signal by the propagation delay difference compensation circuit is D (unit: ps / nm) of wavelength dispersion of the optical fiber transmission line, and c (unit: light speed). m / s), expressed as
Figure 2016100815
A wavelength division multiplexing optical transmission system.
請求項1に記載の波長多重光伝送システムにおいて、
前記デジタル信号処理部は、前記位相回転補償回路が前記分散補償回路よりも前段に配置され、前記A/D変換器におけるサンプリング周波数fsが隣接チャネルも含めた信号帯域よりも大きい値であり、チャネルkの光信号の変調周波数をfmk(k=1, 2, …, N)としたときに、以下の関係を満足する
Figure 2016100815
ことを特徴とする波長多重光伝送システム。
The wavelength division multiplexing optical transmission system according to claim 1,
In the digital signal processing unit, the phase rotation compensation circuit is disposed in a stage before the dispersion compensation circuit, and the sampling frequency fs in the A / D converter is larger than a signal band including an adjacent channel, When the modulation frequency of the optical signal of k is f mk (k = 1, 2,…, N), the following relationship is satisfied.
Figure 2016100815
A wavelength division multiplexing optical transmission system.
請求項1〜請求項4のいずれかに記載の波長多重光伝送システムにおいて、
前記波形等化回路のタップ更新アルゴリズムとしてCMA(Constant Modulus Algorithm)を用いる
ことを特徴とする波長多重光伝送システム。
In the wavelength division multiplexing optical transmission system according to any one of claims 1 to 4,
A wavelength division multiplexing optical transmission system using a CMA (Constant Modulus Algorithm) as a tap update algorithm of the waveform equalization circuit.
JP2014237649A 2014-11-25 2014-11-25 WDM optical transmission system Active JP6270697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014237649A JP6270697B2 (en) 2014-11-25 2014-11-25 WDM optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014237649A JP6270697B2 (en) 2014-11-25 2014-11-25 WDM optical transmission system

Publications (2)

Publication Number Publication Date
JP2016100815A true JP2016100815A (en) 2016-05-30
JP6270697B2 JP6270697B2 (en) 2018-01-31

Family

ID=56078173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014237649A Active JP6270697B2 (en) 2014-11-25 2014-11-25 WDM optical transmission system

Country Status (1)

Country Link
JP (1) JP6270697B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129618A (en) * 2017-02-07 2018-08-16 富士通株式会社 Receiving device and receiving method
WO2020195187A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Wavelength multiplexed optical transmission system, wavelength multiplexed optical transmission method, and non-transitory computer-readable medium
CN114258648A (en) * 2019-08-19 2022-03-29 日本电信电话株式会社 Optical communication system and optical communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044626A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Digital coherent light receiver
JP2013198032A (en) * 2012-03-22 2013-09-30 Nec Corp Coherent optical receiver and optical receiving method
JP2013223128A (en) * 2012-04-17 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Digital coherent receiver and digital coherent receiving method
US20140199076A1 (en) * 2013-01-15 2014-07-17 Zte (Usa) Inc. Digital non-linear compensation in optical communication systems
WO2014114332A1 (en) * 2013-01-23 2014-07-31 Huawei Technologies Co., Ltd. Coherent optical transmitter and coherent optical receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044626A (en) * 2010-08-23 2012-03-01 Nippon Telegr & Teleph Corp <Ntt> Digital coherent light receiver
JP2013198032A (en) * 2012-03-22 2013-09-30 Nec Corp Coherent optical receiver and optical receiving method
JP2013223128A (en) * 2012-04-17 2013-10-28 Nippon Telegr & Teleph Corp <Ntt> Digital coherent receiver and digital coherent receiving method
US20140199076A1 (en) * 2013-01-15 2014-07-17 Zte (Usa) Inc. Digital non-linear compensation in optical communication systems
WO2014114332A1 (en) * 2013-01-23 2014-07-31 Huawei Technologies Co., Ltd. Coherent optical transmitter and coherent optical receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAMAOKA FUKUTARO ET AL.: "Super high density multi-carrier transmission system by MIMO processing [online]", OPTICAL COMMUNICATION (ECOC), 2014 EUROPEAN CONFERENCE ON, JPN6017049436, 24 November 2014 (2014-11-24), ISSN: 0003708425 *
濱岡 福太郎 ET AL.: "超高密度マルチキャリア偏波多重QPSK信号におけるMIMO処理を用いた信号間クロストーク補償の実験評", 電子情報通信学会2014年通信ソサイエティ大会講演論文集2, JPN6017049434, September 2014 (2014-09-01), ISSN: 0003708424 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129618A (en) * 2017-02-07 2018-08-16 富士通株式会社 Receiving device and receiving method
US10348407B2 (en) 2017-02-07 2019-07-09 Fujitsu Limited Receiving device and receiving method
WO2020195187A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Wavelength multiplexed optical transmission system, wavelength multiplexed optical transmission method, and non-transitory computer-readable medium
JPWO2020195187A1 (en) * 2019-03-26 2020-10-01
US20220166534A1 (en) * 2019-03-26 2022-05-26 Nec Corporation Wavelength-division multiplexing optical transmission system, wavelength-division multiplexing optical transmission method, and non-transitory computer readable medium
JP7196995B2 (en) 2019-03-26 2022-12-27 日本電気株式会社 Wavelength multiplexing optical transmission system, wavelength multiplexing optical transmission method and program
US11632184B2 (en) 2019-03-26 2023-04-18 Nec Corporation Wavelength-division multiplexing optical transmission system, wavelength-division multiplexing optical transmission method, and non-transitory computer readable medium
CN114258648A (en) * 2019-08-19 2022-03-29 日本电信电话株式会社 Optical communication system and optical communication method
CN114258648B (en) * 2019-08-19 2024-03-08 日本电信电话株式会社 Optical communication system and optical communication method

Also Published As

Publication number Publication date
JP6270697B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5873575B2 (en) Coherent communication system, communication method, and transmission method
JP6458733B2 (en) Optical receiver, optical transmission system and optical receiving method
JP5938516B2 (en) Method and associated apparatus for compensating chromatic dispersion
EP2858272B1 (en) Non-linear distortion compensator, method of compensating non-linear distortion, and optical receiver
US9160459B2 (en) Equalization signal processor, optical receiver including the same, and method for equalization signal processing
US9369228B2 (en) Method and apparatus for heterodyne coherent detection
Hauske et al. Precise, robust and least complexity CD estimation
JP2015512189A (en) System and method for polarization demultiplexing in a coherent optical receiver
US10715256B1 (en) Recovery of phase-modulated data from an optical signal via intensity measurements
JP6270697B2 (en) WDM optical transmission system
Chen et al. Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval
US8989324B2 (en) Receiver and receiving method
Rios-Müller et al. Blind receiver skew compensation for long-haul non-dispersion managed systems
Liu et al. Joint digital signal processing for superchannel coherent optical systems: Joint CD compensation for joint ICI cancellation
Portela et al. Analysis of signal processing techniques for optical 112 Gb/s DP-QPSK receivers with experimental data
Hamaoka et al. Super high density multi-carrier transmission system by MIMO processing
JP2018129618A (en) Receiving device and receiving method
JP6052938B2 (en) Optical transmission system
JP5795669B1 (en) Spatial multiplexing optical transmission system
Lobato et al. The impact of differential mode delay on mode-division multiplexed coherent optical OFDM transmission
JP6400444B2 (en) Multi-carrier optical transmission system
JP6320953B2 (en) Optical transmission system and optical transmission method
Jain et al. Analysis of bandwidth narrowing in wavelength selective switch enabled DP-64QAM systems with transceiver noise
EP4020849B1 (en) Optical communication system and optical communication method
Ranzini et al. Accurate blind chromatic dispersion estimation in long-haul 112Gbit/s PM-QPSK WDM Coherent Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170203

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171226

R150 Certificate of patent or registration of utility model

Ref document number: 6270697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150