JP2016100536A - Drive method of semiconductor laser and display system - Google Patents

Drive method of semiconductor laser and display system Download PDF

Info

Publication number
JP2016100536A
JP2016100536A JP2014238182A JP2014238182A JP2016100536A JP 2016100536 A JP2016100536 A JP 2016100536A JP 2014238182 A JP2014238182 A JP 2014238182A JP 2014238182 A JP2014238182 A JP 2014238182A JP 2016100536 A JP2016100536 A JP 2016100536A
Authority
JP
Japan
Prior art keywords
semiconductor laser
drive current
pulse width
temperature
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014238182A
Other languages
Japanese (ja)
Inventor
龍太 若松
Ryuta Wakamatsu
龍太 若松
武弘 西田
Takehiro Nishida
武弘 西田
八木 哲哉
Tetsuya Yagi
哲哉 八木
恭介 蔵本
Kyosuke Kuramoto
恭介 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014238182A priority Critical patent/JP2016100536A/en
Publication of JP2016100536A publication Critical patent/JP2016100536A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a drive method of semiconductor laser and a display system capable of reducing speckle noises without increasing the cost.SOLUTION: A semiconductor laser is driven a drive current of a rectangular wave with a pulse width of 0.4-2 ms. Since the pulse width is narrow, the temperature of an active layer in a semiconductor laser does not reach steady temperature during supplying the pulse of drive current. Therefore, the temperature of the active layer and the oscillation wavelength continuously increase during driving the semiconductor laser. As a result, since the half width of the spectrum gets wider, speckle noises can be reduced without increasing the cost.SELECTED DRAWING: Figure 3

Description

本発明は、シネマやプロジェクタの光源として用いられる半導体レーザの駆動方法及びディスプレイシステムに関する。   The present invention relates to a driving method and a display system for a semiconductor laser used as a light source for a cinema or a projector.

半導体レーザは、他の光源と比較して、小型、色再現性が良い、低消費電力、高輝度といったメリットを持っており、プロジェクタやシネマなどの投射型ディスプレイ用の光源として期待されている。しかし、レーザ光を被照射面に照射すると、スペックルノイズと呼ばれる斑点模様が現れ、画像がちらついて見える(例えば、特許文献1,2参照)。これは、レーザ光の波長が単一であり、コヒーレンスが高いことにより起こる干渉が原因となっている。スペックルノイズは、映像鑑賞者に不快感や、目の疲労を強いる原因となっており、軽減が望まれている。   A semiconductor laser has advantages such as small size, good color reproducibility, low power consumption, and high brightness as compared with other light sources, and is expected as a light source for projection displays such as projectors and cinemas. However, when the surface to be irradiated is irradiated with laser light, a speckle pattern called speckle noise appears and the image appears to flicker (for example, see Patent Documents 1 and 2). This is caused by interference caused by a single laser beam having a high coherence. Speckle noise causes discomfort and eye fatigue for video viewers, and reduction is desired.

国際公開第2009/069282号International Publication No. 2009/069282 国際公開第2011/016170号International Publication No. 2011/016170

スペックルノイズを軽減するために、被照射面を振動させる手法や、半導体レーザと被照射面の間の光路上に拡散板を設ける手法がある。しかし、ディスプレイシステムの構成が複雑になり、コストが増大するという問題があった。   In order to reduce speckle noise, there are a method of vibrating the irradiated surface and a method of providing a diffusion plate on the optical path between the semiconductor laser and the irradiated surface. However, there is a problem that the configuration of the display system becomes complicated and the cost increases.

本発明は、上述のような課題を解決するためになされたもので、その目的はコストを増大させずにスペックルノイズを軽減することができる半導体レーザの駆動方法及びディスプレイシステムを得るものである。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a semiconductor laser driving method and a display system that can reduce speckle noise without increasing cost. .

本発明に係る半導体レーザの駆動方法は、パルス幅が0.4ms〜2msの矩形波の駆動電流により半導体レーザを駆動させ、前記駆動電流のパルスを供給している間に前記半導体レーザの活性層の温度が定常温度にならないことを特徴とする。   In the semiconductor laser driving method according to the present invention, the semiconductor laser is driven by a rectangular-wave drive current having a pulse width of 0.4 ms to 2 ms, and the active layer of the semiconductor laser is supplied while the drive current pulse is supplied. The temperature is not a steady temperature.

本発明では駆動電流のパルス幅が狭いため、駆動電流のパルスを供給している間に半導体レーザの活性層の温度が定常温度にならない。従って、活性層の温度は駆動中増加し続け、発振波長は長波長化し続ける。この結果、スペクトルの半値幅が広くなるため、コストを増大させずにスペックルノイズを軽減することができる。   In the present invention, since the pulse width of the drive current is narrow, the temperature of the active layer of the semiconductor laser does not reach a steady temperature while supplying the drive current pulse. Therefore, the temperature of the active layer continues to increase during driving, and the oscillation wavelength continues to increase. As a result, the full width at half maximum of the spectrum is widened, so that speckle noise can be reduced without increasing the cost.

本発明の実施の形態に係るディスプレイシステムを示す図である。It is a figure which shows the display system which concerns on embodiment of this invention. 比較例における駆動電流のパルス幅と活性層の温度の関係を示す図である。It is a figure which shows the relationship between the pulse width of the drive current in the comparative example, and the temperature of an active layer. 本発明の実施の形態における駆動電流のパルス幅と活性層の温度の関係を示す図である。It is a figure which shows the relationship between the pulse width of the drive current in embodiment of this invention, and the temperature of an active layer. 642nmで発振する赤色半導体レーザを35℃、光出力1.5Wとなるように矩形波パルスで駆動させた場合の発振スペクトルの半値幅と駆動電流のパルス幅の関係を示す図である。It is a figure which shows the relationship between the half value width of an oscillation spectrum at the time of driving a red semiconductor laser oscillating at 642 nm by a rectangular wave pulse so that it may become 35 degreeC and optical output 1.5W, and the pulse width of a drive current. 駆動電流のパルス幅が1.0msの場合の発振スペクトルを示す図である。It is a figure which shows an oscillation spectrum in case the pulse width of a drive current is 1.0 ms. 駆動電流のパルス幅が5.0msの場合の発振スペクトルを示す図である。It is a figure which shows an oscillation spectrum in case the pulse width of a drive current is 5.0 ms.

図1は、本発明の実施の形態に係るディスプレイシステムを示す図である。このシステムは、赤色、緑色及び青色の半導体レーザ1a,1b,1cをそれぞれ駆動回路2a,2b,2cで駆動し、それらのレーザ光をレンズ3で集光してダイクロイックミラー4と空間光変調器5で反射させるレーザプロジェクションシステムである。駆動回路2a,2b,2cは、パルス幅が0.4ms〜2msの矩形波の駆動電流により半導体レーザ1a,1b,1cを駆動させる。   FIG. 1 is a diagram showing a display system according to an embodiment of the present invention. In this system, red, green, and blue semiconductor lasers 1a, 1b, and 1c are driven by driving circuits 2a, 2b, and 2c, respectively, and these laser beams are condensed by a lens 3 to be dichroic mirror 4 and a spatial light modulator. 5 is a laser projection system that reflects the light at 5. The drive circuits 2a, 2b, and 2c drive the semiconductor lasers 1a, 1b, and 1c with a rectangular-wave drive current having a pulse width of 0.4 ms to 2 ms.

各半導体レーザ1a,1b,1cは半導体レーザチップ、サブマウント、及びφ5.6mmのステムを有する。例えば、赤色の半導体レーザ1aは、AlGaInPを活性層とする半導体レーザチップを焼結窒化アルミニウム(AlN)のサブマウントにダイボンドし、ステム内の銅ブロックにマウントしたものである。空間光変調器5はDMD(Digital mirror device)などである。   Each semiconductor laser 1a, 1b, 1c has a semiconductor laser chip, a submount, and a stem of φ5.6 mm. For example, the red semiconductor laser 1a is obtained by die-bonding a semiconductor laser chip having AlGaInP as an active layer to a sintered aluminum nitride (AlN) submount and mounting it on a copper block in the stem. The spatial light modulator 5 is a DMD (Digital mirror device) or the like.

続いて、本実施の形態の効果を比較例と比較して説明する。ここで、スペックルノイズの大きさCsと、レーザ光の発振スペクトルの半値幅Δλの間にはCs∝1/√Δλなる関係がある。従って、スペックルノイズを軽減するために、発振スペクトルの半値幅を広げることが有効である。   Subsequently, the effect of the present embodiment will be described in comparison with a comparative example. Here, there is a relationship of Cs∝1 / √Δλ between the magnitude Cs of speckle noise and the half-value width Δλ of the oscillation spectrum of the laser beam. Therefore, in order to reduce speckle noise, it is effective to widen the half width of the oscillation spectrum.

パルス駆動させた半導体レーザをプロジェクタ光源に用いる際、赤色、緑色及び青色の半導体レーザを順次点灯させて1フレームを形成する。フレームレートが120Hzの場合、各色の半導体レーザの発振時間は1/120Hzの1/3である2.7ms程度である。比較例では駆動電流のパルス幅wを2.7msとする。   When a pulse-driven semiconductor laser is used as a projector light source, one frame is formed by sequentially lighting red, green, and blue semiconductor lasers. When the frame rate is 120 Hz, the oscillation time of each color semiconductor laser is about 2.7 ms, which is 1/3 of 1/120 Hz. In the comparative example, the pulse width w of the drive current is 2.7 ms.

図2は、比較例における駆動電流のパルス幅と活性層の温度の関係を示す図である。比較例のパルス幅は半導体レーザの活性層近傍の熱時定数よりも長いため、パルスの入力とともに活性層の温度が増加し、飽和に至る。これは半導体レーザの活性層の発熱と、素子全体への熱伝導に分けて解釈できる。立ち上がりの初期では、半導体レーザチップの活性層近傍の熱抵抗及び熱容量で決定される熱時定数で温度が増加する。定常状態での温度は素子全体の熱抵抗により決定される熱時定数に依存する。ここで、半導体レーザの発振波長が、温度の増加とともに長波長化することを考慮すると、パルス駆動させた半導体レーザの発振波長は時間の経過とともに長波長化することになる。よって、パルス駆動させた半導体レーザから得られる発振スペクトルは、経時変化するスペクトルの時間平均となる。従って、十分に長い駆動電流のパルス幅で駆動させると、活性層の温度が一定である時間が、駆動電流のパルス幅の大部分を占めることになる。それにより、発振スペクトルの半値幅は狭くなり、スペックルノイズを生じやすい。   FIG. 2 is a diagram showing the relationship between the pulse width of the drive current and the temperature of the active layer in the comparative example. Since the pulse width of the comparative example is longer than the thermal time constant in the vicinity of the active layer of the semiconductor laser, the temperature of the active layer increases with the input of the pulse, leading to saturation. This can be interpreted by dividing into heat generation of the active layer of the semiconductor laser and heat conduction to the entire device. At the beginning of the rise, the temperature increases with a thermal time constant determined by the thermal resistance and thermal capacity near the active layer of the semiconductor laser chip. The temperature in the steady state depends on the thermal time constant determined by the thermal resistance of the entire device. Here, considering that the oscillation wavelength of the semiconductor laser becomes longer as the temperature increases, the oscillation wavelength of the pulse-driven semiconductor laser becomes longer with time. Therefore, the oscillation spectrum obtained from the pulse-driven semiconductor laser is the time average of the spectrum that changes with time. Accordingly, when driving with a sufficiently long driving current pulse width, the time during which the temperature of the active layer is constant occupies most of the driving current pulse width. As a result, the half width of the oscillation spectrum is narrowed, and speckle noise is likely to occur.

図3は、本発明の実施の形態における駆動電流のパルス幅と活性層の温度の関係を示す図である。本実施の形態では駆動電流のパルス幅wが2.0msと狭いため、駆動電流のパルスを供給している間に半導体レーザの活性層の温度が定常温度にならない。従って、活性層の温度は駆動中増加し続け、発振波長は長波長化し続ける。この結果、スペクトルの半値幅が広くなるため、コストを増大させずにスペックルノイズを軽減することができる。   FIG. 3 is a diagram showing the relationship between the pulse width of the drive current and the temperature of the active layer in the embodiment of the present invention. In this embodiment, the pulse width w of the drive current is as narrow as 2.0 ms. Therefore, the temperature of the active layer of the semiconductor laser does not reach a steady temperature while the drive current pulse is supplied. Therefore, the temperature of the active layer continues to increase during driving, and the oscillation wavelength continues to increase. As a result, the full width at half maximum of the spectrum is widened, so that speckle noise can be reduced without increasing the cost.

図4は、642nmで発振する赤色半導体レーザを35℃、光出力1.5Wとなるように矩形波パルスで駆動させた場合の発振スペクトルの半値幅と駆動電流のパルス幅の関係を示す図である。駆動電流のパルス幅を5msから減少させていくと、2.0ms以下から半値幅の増加が始まり、駆動電流のパルス幅1msにて極大値を持つ。さらに駆動電流のパルス幅を減少させると、半値幅は減少に転じる。   FIG. 4 is a diagram showing the relationship between the half-value width of the oscillation spectrum and the pulse width of the drive current when a red semiconductor laser oscillating at 642 nm is driven with a rectangular wave pulse so as to have an optical output of 1.5 W at 35 ° C. is there. When the pulse width of the drive current is decreased from 5 ms, the half-value width starts increasing from 2.0 ms or less, and has a maximum value at the drive current pulse width of 1 ms. When the pulse width of the drive current is further decreased, the half width starts to decrease.

図5は、駆動電流のパルス幅が1.0msの場合の発振スペクトルを示す図である。半値幅は3.9nmである。図6は、駆動電流のパルス幅が5.0msの場合の発振スペクトルを示す図である。半値幅は1.7nmである。駆動電流のパルス幅が1.0msの場合に比べて5.0msの場合だと発振スペクトルの半値幅が減少する。   FIG. 5 is a diagram showing an oscillation spectrum when the pulse width of the drive current is 1.0 ms. The half width is 3.9 nm. FIG. 6 is a diagram showing an oscillation spectrum when the pulse width of the drive current is 5.0 ms. The half width is 1.7 nm. When the pulse width of the drive current is 5.0 ms compared to 1.0 ms, the half width of the oscillation spectrum decreases.

駆動電流のパルス幅が長い場合は、パルス内で温度が一定になる時間が長くなるために、この温度での波長成分が多くなり波長幅が小さくなる。一方、駆動電流のパルス幅が短い場合は、駆動中の活性層の温度の変化量が小さくなる。これらのことから、矩形波の駆動電流のパルス幅は0.4ms〜2msが望ましい。また、半導体レーザ活性層の温度上昇の時定数は半導体レーザチップ、サブマウント、ステムの材料や形状に大きく依存しないため、どのような形態であっても駆動電流のパルス幅を0.4ms〜2msにすることで本発明の効果を得ることができる。   When the pulse width of the drive current is long, the time during which the temperature becomes constant in the pulse becomes long, so that the wavelength component at this temperature increases and the wavelength width becomes small. On the other hand, when the pulse width of the driving current is short, the amount of change in the temperature of the active layer during driving is small. For these reasons, the pulse width of the rectangular wave drive current is preferably 0.4 ms to 2 ms. In addition, since the time constant of the temperature rise of the semiconductor laser active layer does not greatly depend on the material and shape of the semiconductor laser chip, submount, and stem, the pulse width of the drive current is set to 0.4 ms to 2 ms in any form. Thus, the effects of the present invention can be obtained.

1a,1b,1c 半導体レーザ、2a,2b,2c 駆動回路、3 レンズ、4 ダイクロイックミラー、5 空間光変調器 1a, 1b, 1c Semiconductor laser, 2a, 2b, 2c drive circuit, 3 lens, 4 dichroic mirror, 5 spatial light modulator

Claims (3)

パルス幅が0.4ms〜2msの矩形波の駆動電流により半導体レーザを駆動させ、前記駆動電流のパルスを供給している間に前記半導体レーザの活性層の温度が定常温度にならないことを特徴とする半導体レーザの駆動方法。   The semiconductor laser is driven by a rectangular wave drive current having a pulse width of 0.4 ms to 2 ms, and the temperature of the active layer of the semiconductor laser does not become a steady temperature while the pulse of the drive current is supplied. Semiconductor laser driving method. 前記半導体レーザは赤色半導体レーザであることを特徴とする請求項1記載の半導体レーザの駆動方法。   2. The semiconductor laser driving method according to claim 1, wherein the semiconductor laser is a red semiconductor laser. 請求項1又は2の駆動方法を用いたことを特徴とするディスプレイシステム。   A display system using the driving method according to claim 1.
JP2014238182A 2014-11-25 2014-11-25 Drive method of semiconductor laser and display system Pending JP2016100536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238182A JP2016100536A (en) 2014-11-25 2014-11-25 Drive method of semiconductor laser and display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238182A JP2016100536A (en) 2014-11-25 2014-11-25 Drive method of semiconductor laser and display system

Publications (1)

Publication Number Publication Date
JP2016100536A true JP2016100536A (en) 2016-05-30

Family

ID=56078042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238182A Pending JP2016100536A (en) 2014-11-25 2014-11-25 Drive method of semiconductor laser and display system

Country Status (1)

Country Link
JP (1) JP2016100536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056283A (en) * 2016-09-28 2018-04-05 スタンレー電気株式会社 Vertical resonator type light-emitting element module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102681A (en) * 1999-09-29 2001-04-13 Toshiba Corp Laser light source device
JP2001189520A (en) * 1999-12-28 2001-07-10 Sony Corp Light source device and projection type display using the same
WO2007099847A1 (en) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. Illumination light source device and laser projection device
WO2007119723A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102681A (en) * 1999-09-29 2001-04-13 Toshiba Corp Laser light source device
JP2001189520A (en) * 1999-12-28 2001-07-10 Sony Corp Light source device and projection type display using the same
WO2007099847A1 (en) * 2006-03-03 2007-09-07 Matsushita Electric Industrial Co., Ltd. Illumination light source device and laser projection device
WO2007119723A1 (en) * 2006-04-12 2007-10-25 Panasonic Corporation Image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018056283A (en) * 2016-09-28 2018-04-05 スタンレー電気株式会社 Vertical resonator type light-emitting element module
JP7027032B2 (en) 2016-09-28 2022-03-01 スタンレー電気株式会社 Vertical resonator type light emitting element module for lighting

Similar Documents

Publication Publication Date Title
JP5951744B2 (en) Projector and its illumination device
JP5799756B2 (en) projector
KR101228006B1 (en) Light source system and projector
WO2015056381A1 (en) Light-source device and image display device
US20190235369A1 (en) Projection system and method for improved color performance
JP2010530983A (en) Method and apparatus for driving a light emitting element for projection of an image
JP6536874B2 (en) Projection device
JP2007047638A (en) Image display device and light source device
JP2012048209A (en) Projection type video display device
JP2008064809A (en) Illuminating apparatus and image display device
JP7136792B2 (en) RGB projector with multiple laser broadband light sources and system for dynamically controlling image contrast ratio
US9229305B2 (en) Image projection apparatus, control method, and computer-readable storage medium
JP2007149469A (en) Light source device, direct-viewing picture display device, and projecting display device
US10785460B2 (en) Projection display apparatus and method of controlling projection display apparatus
JP2016031402A (en) Lighting device and projection type video display device
JP2016100536A (en) Drive method of semiconductor laser and display system
Hu et al. 82‐2: Invited Paper: Latest Progress of Laser Phosphor Projection Display
JP2014228558A (en) Light source device and projector
JP7098483B2 (en) Light source device and image projection device
JP7204379B2 (en) Light source device and image projection device
JP6988494B2 (en) Image forming unit, image projection device, and image forming method
US9591279B2 (en) Light source unit, control method thereof, and projection-type display apparatus
JP2016177060A (en) Color filter device and image projection device
WO2022034793A1 (en) Lighting device, method for controlling lighting device, and projection type display device
JP6070793B2 (en) Projector control method and projector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227