JP2016100374A - Power generating element - Google Patents

Power generating element Download PDF

Info

Publication number
JP2016100374A
JP2016100374A JP2014234066A JP2014234066A JP2016100374A JP 2016100374 A JP2016100374 A JP 2016100374A JP 2014234066 A JP2014234066 A JP 2014234066A JP 2014234066 A JP2014234066 A JP 2014234066A JP 2016100374 A JP2016100374 A JP 2016100374A
Authority
JP
Japan
Prior art keywords
type semiconductor
poly
semiconductor layer
power generating
generating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014234066A
Other languages
Japanese (ja)
Inventor
伸 宮澤
Shin Miyazawa
伸 宮澤
浩紀 西村
Hironori Nishimura
浩紀 西村
泰 村上
Yasushi Murakami
泰 村上
隆氏 山崎
Takashi Yamazaki
隆氏 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTS KK
Shinshu University NUC
Original Assignee
NTS KK
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTS KK, Shinshu University NUC filed Critical NTS KK
Priority to JP2014234066A priority Critical patent/JP2016100374A/en
Publication of JP2016100374A publication Critical patent/JP2016100374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel power generating element different from a conventional power generating element.SOLUTION: A power generating element 10 has a structural form in which a positive electrode 1, a p-type semiconductor layer 2, a ferroelectric layer 3, an n-type semiconductor layer 4 and a negative electrode 5 are arranged in this order. Alternatively, in order to increase a contact interface, a heterojunction structure in which the p-type semiconductor layer 2, the ferroelectric layer 3 and the n-type semiconductor layer 4 are not sequentially arranged but arranged in a mixed manner may be employed.SELECTED DRAWING: Figure 1

Description

本発明は、新しい発電素子に関する。   The present invention relates to a new power generation element.

発電素子の代表的なものとして、熱電発電素子、太陽光発電素子、温度差発電素子等が知られている。熱電発電素子は、熱と電力を変換する熱電素子の一種であり、2種類の異なる金属又は半導体を接合して、両端に温度差を生じさせると起電力が生じるゼーベック効果を利用するものである。この熱電発電素子は、温度差によって大きな電位差を得るためにp型半導体、n型半導体を組み合わせて使用される。また、太陽光発電素子は、光起電力効果を利用し、光エネルギーを直接電力に変換するものであり、光電池とも呼ばれる。この太陽光発電素子は、一般的な一次電池や二次電池のように電力を蓄える蓄電池ではなく、光起電力効果によって光を電力に変換して出力する発電機であり、シリコン太陽電池、化合物半導体型太陽電池、色素増感型太陽電池等が知られている。また、温度差発電素子は、2種類の異なった半導体を用いた熱電変換素子(ペルチェ素子)を使用して、熱起電力を発生させるものである。   As typical power generation elements, thermoelectric power generation elements, solar power generation elements, temperature difference power generation elements, and the like are known. A thermoelectric power generation element is a kind of thermoelectric element that converts heat and electric power, and utilizes the Seebeck effect in which an electromotive force is generated when two different metals or semiconductors are joined to generate a temperature difference at both ends. . This thermoelectric power generation element is used in combination with a p-type semiconductor and an n-type semiconductor in order to obtain a large potential difference due to a temperature difference. Moreover, a photovoltaic power generation element uses a photovoltaic effect and converts light energy directly into electric power, and is also called a photovoltaic cell. This solar power generation element is not a storage battery that stores electric power like a general primary battery or secondary battery, but a generator that converts light into electric power by the photovoltaic effect and outputs it. Semiconductor type solar cells, dye-sensitized type solar cells and the like are known. The temperature difference power generation element generates thermoelectromotive force using a thermoelectric conversion element (Peltier element) using two different types of semiconductors.

なお、上記の各発電素子についての先行技術文献は枚挙にいとまがないが、後述する本発明に近い先行技術文献は存在しなかった。   In addition, although the prior art literature about each said electric power generation element is enumerated, the prior art literature close | similar to this invention mentioned later did not exist.

本発明は、上記した従来の発電素子とは異なる新しい発電素子を提供することを目的とする。   An object of the present invention is to provide a new power generation element different from the conventional power generation element described above.

本発明に係る発電素子は、正極と、p型半導体層と、強誘電体層と、n型半導体層と、負極とがその順で配置された構造形態を有することを特徴とする。   The power generating element according to the present invention has a structure in which a positive electrode, a p-type semiconductor layer, a ferroelectric layer, an n-type semiconductor layer, and a negative electrode are arranged in this order.

本発明に係る発電素子において、前記p型半導体層が、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(ビニルスルホン酸)、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p−フェニレン)ポリ(p−フェニレン)ポリ(p−フェニレン)、ポリフルオレン、ポリ(p−ポリ(p−フェニレンビニレン)、ポリチエニレンビニレン、グラフェン、CuAlO、CuGaO、LiNiOから選ばれるp型半導性高分子であることが好ましいが、ホール伝導が観測されれば、列記したp型半導体材料に限定されない。 In the power generation element according to the present invention, the p-type semiconductor layer may be poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), poly (3,4-ethylenedioxythiophene) -poly (vinylsulfone). Acid), polyaniline, polypyrrole, polythiophene, poly (p-phenylene) poly (p-phenylene) poly (p-phenylene), polyfluorene, poly (p-poly (p-phenylene vinylene), polythienylene vinylene, graphene, A p-type semiconducting polymer selected from CuAlO 2 , CuGaO 2 , and LiNiO 2 is preferable. However, as long as hole conduction is observed, the materials are not limited to the listed p-type semiconductor materials.

本発明に係る発電素子において、前記強誘電体層が、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸鉛、ジルコン酸鉛、チタン酸ビスマスランタン、チタン酸カドミウム、ニオブ酸リチウム、タンタル酸リチウム、ビスマスフェライト、及びリチウムドープ酸化亜鉛から選ばれるいずれかの粒子を含むことが好ましいが、強誘電性が観測されれば、列記した強誘電性材料に限定されない。   In the power generating element according to the present invention, the ferroelectric layer is composed of barium titanate, lead zirconate titanate, lead titanate, lead zirconate, bismuth lanthanum titanate, cadmium titanate, lithium niobate, lithium tantalate, It is preferable to include any particle selected from bismuth ferrite and lithium-doped zinc oxide. However, if ferroelectricity is observed, the material is not limited to the listed ferroelectric materials.

本発明に係る発電素子において、前記n型半導体層が、酸化スズ、アンチモンドープ酸化スズ、フッ素ドープ酸化スズ、ガリウムドープ酸化亜鉛、アルミドープ酸化亜鉛、ニオブドープチタン酸ストロンチウム、及び酸化カルシウムドープ酸化ジルコニウムから選ばれるいずれかの粒子を含むことが好ましいが、電子伝導が観測されれば、列記したn型半導体材料に限定されない。   In the power generating element according to the present invention, the n-type semiconductor layer includes tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, niobium-doped strontium titanate, and calcium oxide-doped zirconium oxide. However, it is not limited to the listed n-type semiconductor materials as long as electron conduction is observed.

本発明に係る発電素子において、前記正極と前記負極とが異種材料であるように構成できる。   In the power generating element according to the present invention, the positive electrode and the negative electrode can be made of different materials.

本発明に係る発電素子によれば、従来の発電素子とは異なる新しい発電素子を提供することができる。この発電素子は、高い電流を発生する発電現象を起こすことができ、特に恒温槽中で常温(例えば25℃)から昇温することにより実現できる。   According to the power generation element according to the present invention, a new power generation element different from the conventional power generation element can be provided. This power generation element can cause a power generation phenomenon that generates a high current, and can be realized particularly by raising the temperature from room temperature (for example, 25 ° C.) in a thermostatic bath.

本発明に係る発電素子の一例を示す模式的な構成図である。It is a typical block diagram which shows an example of the electric power generating element which concerns on this invention. 本発明に係る発電素子の他の一例を示す模式的な構成図である。It is a typical block diagram which shows another example of the electric power generating element which concerns on this invention.

本発明に係る発電素子について、図面を参照しつつ説明する。以下に説明する発電素子は、本発明の実施例であり、本発明の要旨の範囲である限り以下の実施例に限定されない。   The power generation element according to the present invention will be described with reference to the drawings. The power generation element described below is an example of the present invention and is not limited to the following example as long as it is within the scope of the present invention.

[発電素子]
本発明に係る発電素子10は、図1に示すように、正極1と、p型半導体層2と、強誘電体層3と、n型半導体層4と、負極5とがその順で配置された構造形態を有している。また、図2に示すように、p型半導体層2と、強誘電体層3と、n型半導体層4とは、接触界面を増やすために、順に並ばす、混合したヘテロジャンクション構造をとっていてもよい。こうした発電素子10は、従来の発電素子とは異なる新しい発電素子であり、下記の実施例で示すように、高い電流を発生する発電現象を起こす。特に恒温槽中で常温(例えば25℃)から昇温することにより実現できる。
[Power generation element]
As shown in FIG. 1, a power generating element 10 according to the present invention includes a positive electrode 1, a p-type semiconductor layer 2, a ferroelectric layer 3, an n-type semiconductor layer 4, and a negative electrode 5 arranged in that order. It has a different structural form. Also, as shown in FIG. 2, the p-type semiconductor layer 2, the ferroelectric layer 3, and the n-type semiconductor layer 4 have a mixed heterojunction structure that is arranged in order to increase the contact interface. May be. Such a power generation element 10 is a new power generation element different from the conventional power generation element, and causes a power generation phenomenon that generates a high current, as shown in the following embodiments. In particular, it can be realized by raising the temperature from room temperature (for example, 25 ° C.) in a thermostatic bath.

以下、本発明に係る発電素子10の構成について説明する。   Hereinafter, the configuration of the power generation element 10 according to the present invention will be described.

(正極、負極)
正極1及び負極5は、導電性材料であり、正極1の仕事関数が負極5の仕事関数と同じか高い材料を用いる。正極1の仕事関数が負極5の仕事関数より高い方が望ましい。正極1としては、銅、銅合金、SUS430等のステンレス鋼、錫めっき銅、銀、白金、金等を一例として挙げることができるが、これらの材料は、仕事関数を考慮して決定することができ、列記した前記正極材料に限定されない。負極5は、正極1とは異なる材料であればよく、例えば、アルミニウム又はアルミニウム合金、Mg−Al等のマグネシウム合金等の金属材料や、インジウム錫酸化物(ITO)等の導電性酸化物材料等を挙げることができるが、これらの材料は、仕事関数を考慮して決定することができ、列記した前記負極材料に限定されない。
(Positive electrode, negative electrode)
The positive electrode 1 and the negative electrode 5 are conductive materials, and a material whose work function of the positive electrode 1 is the same as or higher than that of the negative electrode 5 is used. It is desirable that the work function of the positive electrode 1 is higher than that of the negative electrode 5. Examples of the positive electrode 1 include copper, copper alloy, stainless steel such as SUS430, tin-plated copper, silver, platinum, and gold. Examples of these materials may be determined in consideration of a work function. The positive electrode materials are not limited to the listed positive electrode materials. The negative electrode 5 may be a material different from that of the positive electrode 1. For example, a metal material such as aluminum or an aluminum alloy, a magnesium alloy such as Mg-Al, a conductive oxide material such as indium tin oxide (ITO), or the like. These materials can be determined in consideration of the work function, and are not limited to the negative electrode materials listed.

正極1及び負極5の形状も特に限定されず、発電素子10の形状に応じた形状に加工することができる。例えば、発電素子10が、平面配置型用の発電素子10である場合には、正極1と負極5とを、p型半導体層2、強誘電体層3及びn型半導体層4を挟んで対向配置して構成できる。なお、この平面配置型の発電素子10は、正極1と負極5とを順次直列接続して直列配置型の発電素子複合体にしたり、正極1と負極5とを順次並列接続して並列配置型の発電素子複合体にしたりすることができる。また、発電素子10を、乾電池型用の発電素子としてもよく、その場合は、中心を負極棒とし、周りを正極管として構成できる。   The shapes of the positive electrode 1 and the negative electrode 5 are not particularly limited, and can be processed into a shape corresponding to the shape of the power generation element 10. For example, when the power generation element 10 is a planar arrangement type power generation element 10, the positive electrode 1 and the negative electrode 5 are opposed to each other with the p-type semiconductor layer 2, the ferroelectric layer 3, and the n-type semiconductor layer 4 interposed therebetween. Can be arranged and configured. In addition, the planar arrangement type power generation element 10 includes a positive electrode 1 and a negative electrode 5 sequentially connected in series to form a series arrangement type power generation element composite, or a positive electrode 1 and a negative electrode 5 sequentially connected in parallel. Or a power generating element composite. The power generation element 10 may be a dry battery type power generation element, in which case the center may be a negative electrode rod and the periphery may be a positive electrode tube.

(p型半導体層)
p型半導体層2は、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(ビニルスルホン酸)、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p−フェニレン)ポリ(p−フェニレン)ポリ(p−フェニレン)、ポリフルオレン、ポリ(p−ポリ(p−フェニレンビニレン)、ポリチエニレンビニレン、グラフェン、CuAlO、CuGaO、LiNiOから選ばれるp型半導性高分子であることが好ましい。なお、ホール伝導が観測されれば、列記したp型半導体材料に限定されない。
(P-type semiconductor layer)
The p-type semiconductor layer 2 is composed of poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), poly (3,4-ethylenedioxythiophene) -poly (vinylsulfonic acid), polyaniline, polypyrrole, polythiophene. , Poly (p-phenylene) poly (p-phenylene) poly (p-phenylene), polyfluorene, poly (p-poly (p-phenylene vinylene), polythienylene vinylene, graphene, CuAlO 2 , CuGaO 2 , LiNiO 2 The p-type semiconducting polymer is preferably selected from the following: If hole conduction is observed, it is not limited to the listed p-type semiconductor materials.

p型半導体層2の厚さは、発電素子10の作製方法によって異なり、特に限定されないが、例えば10μm以上、1000μm以下の範囲内であることが好ましい。なお、発電素子10中でのp型半導体層2の境界は、そのp型半導体特性を奏する限り、図1に示すようにはっきり区分けされていてもよいし、図2に示すように、p型半導体層2が強誘電体層3とn型半導体層4ともに、接触界面を増やすために、順に並ばす、混合したヘテロジャンクション構造をとっていてもよい。したがって、上記の厚さ範囲も、p型半導体層2の作用を奏する範囲での厚さとして表すことができる。   The thickness of the p-type semiconductor layer 2 varies depending on the method of manufacturing the power generation element 10 and is not particularly limited, but is preferably in the range of 10 μm or more and 1000 μm or less, for example. Note that the boundary of the p-type semiconductor layer 2 in the power generation element 10 may be clearly divided as shown in FIG. 1 as long as the p-type semiconductor characteristics are exhibited, or as shown in FIG. The semiconductor layer 2 may have a mixed heterojunction structure in which both the ferroelectric layer 3 and the n-type semiconductor layer 4 are arranged in order to increase the contact interface. Therefore, the above thickness range can also be expressed as a thickness within a range where the p-type semiconductor layer 2 functions.

(強誘電体層)
強誘電体層3は、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸鉛、ジルコン酸鉛、チタン酸ビスマスランタン、チタン酸カドミウム、ニオブ酸リチウム、タンタル酸リチウム、ビスマスフェライト、及びリチウムドープ酸化亜鉛から選ばれるいずれかの粒子を含むことが好ましい。なお、強誘電性が観測されれば、列記した強誘電性材料に限定されない。強誘電体層3は、前記材料の1種を単独で用いてもよいし、2種以上を用いてもよい。この強誘電体層3は、強誘電性を有する層であり、強誘電性を有するので発電をし、また、その強誘電体層3がさらにn型半導性を有する場合には電子(キャリア)の移動も容易であり、発電素子の構成要素として極めて望ましい。
(Ferroelectric layer)
Ferroelectric layer 3 is composed of barium titanate, lead zirconate titanate, lead titanate, lead zirconate, bismuth lanthanum titanate, cadmium titanate, lithium niobate, lithium tantalate, bismuth ferrite, and lithium-doped zinc oxide. It is preferable that any particle | grains chosen from these are included. If ferroelectricity is observed, the ferroelectric material is not limited to the listed ferroelectric materials. As the ferroelectric layer 3, one of the above materials may be used alone, or two or more thereof may be used. This ferroelectric layer 3 is a layer having ferroelectricity, and generates electric power because it has ferroelectricity. When the ferroelectric layer 3 further has n-type semiconductivity, electrons (carriers) are used. ) Is easy to move, and is extremely desirable as a component of the power generation element.

強誘電体粒子の形状や粒径は特に限定されないが、全体的な形状が球形状又は略球形状、楕円形状又は略楕円形状であればよく、その表面がなめらかでも凹凸であってもよい。強誘電体粒子の平均粒径は、入手の容易さや素子作製上の問題がない範囲で各種の大きさのものを選択することができるが、平均粒径の大きいものほど誘電率も高いので好ましく用いることができる。また、強誘電体粒子の平均粒径を所望の値に設定することにより、表面積をコントロールできるという利点がある。強誘電体粒子の平均粒径は、原料の段階では走査型電子顕微鏡(SEM)によって測定することができ、強誘電体層3を構成した後も走査型電子顕微鏡(SEM)によって測定することができる。   The shape and particle size of the ferroelectric particles are not particularly limited, but the overall shape may be a spherical shape, a substantially spherical shape, an elliptical shape, or a substantially elliptical shape, and the surface may be smooth or uneven. The average particle size of the ferroelectric particles can be selected from various sizes within a range where there is no problem in terms of availability and device fabrication, but the larger the average particle size, the higher the dielectric constant. Can be used. Further, there is an advantage that the surface area can be controlled by setting the average particle size of the ferroelectric particles to a desired value. The average particle diameter of the ferroelectric particles can be measured by a scanning electron microscope (SEM) at the raw material stage, and can be measured by a scanning electron microscope (SEM) even after the ferroelectric layer 3 is formed. it can.

強誘電体層3は、強誘電体粒子で構成されているが、本発明の効果を阻害しない範囲で、強誘電性を有する他の無機物を含んでいてもよい。また、本発明の効果を阻害しない範囲で、導電性やn型半導性を有する他の無機物を含んでいてもよい。   The ferroelectric layer 3 is composed of ferroelectric particles, but may contain other inorganic substances having ferroelectricity as long as the effects of the present invention are not impaired. In addition, other inorganic substances having conductivity and n-type semiconductivity may be included as long as the effects of the present invention are not impaired.

(n型半導体層)
n型半導体層4は、酸化スズ、アンチモンドープ酸化スズ、フッ素ドープ酸化スズ、ガリウムドープ酸化亜鉛、アルミドープ酸化亜鉛、ニオブドープチタン酸ストロンチウム、及び酸化カルシウムドープ酸化ジルコニウムから選ばれるいずれかの粒子を含むことが好ましい。なお、電子伝導が観測されれば、列記したn型半導体材料に限定されない。この粒子は、n型半導体粒子であり、1種を単独で用いてもよいし、2種以上を用いてもよい。
(N-type semiconductor layer)
The n-type semiconductor layer 4 is made of any particle selected from tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, niobium-doped strontium titanate, and calcium oxide-doped zirconium oxide. It is preferable to include. In addition, if electronic conduction is observed, it is not limited to the n-type semiconductor material listed. These particles are n-type semiconductor particles, and one kind may be used alone, or two or more kinds may be used.

n型半導体粒子の粒子形状や粒径は特に限定されないが、全体的な形状が球形状又は略球形状、楕円形状又は略楕円形状であればよく、その表面がなめらかでも凹凸であってもよい。n型半導体粒子の平均粒径は、入手の容易さや素子作製上の問題がない範囲で各種の大きさのものを選択することができるが、平均粒径の大きいものほど導電率が高いので好ましく用いることができる。また、n型半導体粒子の平均粒径を所望の値に設定することにより、表面積をコントロールできるという利点がある。n型半導体粒子の平均粒径は、原料の段階では走査型電子顕微鏡(SEM)によって測定することができ、n型半導体層4を構成した後も走査型電子顕微鏡(SEM)によって測定することができる。   The particle shape and particle size of the n-type semiconductor particles are not particularly limited, but the overall shape may be a spherical shape, a substantially spherical shape, an elliptical shape, or a substantially elliptical shape, and the surface may be smooth or uneven. . The average particle size of the n-type semiconductor particles can be selected from various sizes within a range where there is no problem in terms of availability and device fabrication, but the larger the average particle size, the higher the conductivity, which is preferable. Can be used. Moreover, there is an advantage that the surface area can be controlled by setting the average particle size of the n-type semiconductor particles to a desired value. The average particle size of the n-type semiconductor particles can be measured by a scanning electron microscope (SEM) at the raw material stage, and can be measured by a scanning electron microscope (SEM) even after the n-type semiconductor layer 4 is formed. it can.

n型半導体層4は、n型半導体粒子で構成されているが、本発明の効果を阻害しない範囲で、n型になり得る他の無機物を含んでいてもよい。   The n-type semiconductor layer 4 is composed of n-type semiconductor particles, but may contain other inorganic substances that can be n-type as long as the effects of the present invention are not impaired.

n型半導体層4の抵抗は特に限定されないが、例えば2Ω以上、7Ω以下程度の範囲内が好ましい。n型半導体層4をこうした範囲の抵抗にすることによって、内部インピーダンスを下げて電流を取り出しやすくするという利点がある。n型半導体層4の抵抗は、LCRハイテスタによって測定することができる。n型半導体層4の抵抗が2kΩ未満の場合、より具体的には例えば1kΩ未満や100kΩ未満の場合は、そのn型半導体層4上に設けられる導電性のp型半導体層2がn型半導体層4中に浸入してショート状態になってしまい、発電素子として作動しないことがある。   The resistance of the n-type semiconductor layer 4 is not particularly limited, but is preferably in the range of, for example, about 2Ω or more and 7Ω or less. By making the resistance of the n-type semiconductor layer 4 in such a range, there is an advantage that the internal impedance is lowered and the current can be easily taken out. The resistance of the n-type semiconductor layer 4 can be measured by an LCR high tester. When the resistance of the n-type semiconductor layer 4 is less than 2 kΩ, more specifically, for example, when the resistance is less than 1 kΩ or less than 100 kΩ, the conductive p-type semiconductor layer 2 provided on the n-type semiconductor layer 4 is an n-type semiconductor. It may enter the layer 4 and become short-circuited, and may not operate as a power generation element.

(発電素子の作製方法)
発電素子10は、上記構成を備えるものであれば、各種の方法で作製することができる。図1に示す発電素子10は、正極1と、p型半導体層2と、強誘電体層3と、n型半導体層4と、負極5とがその順で配置された構造形態であり、図2に示す発電素子10は、正極1と負極5とが、p型半導体層2と強誘電体層3とn型半導体層4とが混合したヘテロジャンクション構造である。
(Method for producing power generation element)
The power generation element 10 can be manufactured by various methods as long as it has the above-described configuration. A power generation element 10 shown in FIG. 1 has a structure in which a positive electrode 1, a p-type semiconductor layer 2, a ferroelectric layer 3, an n-type semiconductor layer 4, and a negative electrode 5 are arranged in that order. The power generating element 10 shown in FIG. 2 has a heterojunction structure in which a positive electrode 1 and a negative electrode 5 are mixed with a p-type semiconductor layer 2, a ferroelectric layer 3, and an n-type semiconductor layer 4.

この発電素子10の作製は特に限定されないが、正極1上に、n型半導体層4、強誘電体層3、p型半導体層2を順に形成する。p型半導体層2は、p型半導性高分子を例えば滴下又は塗布して形成することができる。強誘電体層3とn型半導体層4は、それぞれの粒子を例えば加圧成形して形成することができる。   Although the production of the power generation element 10 is not particularly limited, the n-type semiconductor layer 4, the ferroelectric layer 3, and the p-type semiconductor layer 2 are sequentially formed on the positive electrode 1. The p-type semiconductor layer 2 can be formed by dropping or coating a p-type semiconducting polymer, for example. The ferroelectric layer 3 and the n-type semiconductor layer 4 can be formed by, for example, pressure molding each particle.

こうして作製された発電素子部材は、平面的な直列構造又は並列構造になるように接続することができる。発電素子部材を直列接続して発電素子複合体を構成する場合、隣り合う発電素子部材の正極1と負極5とを、カシメ、圧接、ロウ付け等で接続して直列構造にすることができる。また、発電素子部材を並列接続して発電素子複合体を構成する場合、長く延びる電極に、発電素子部材の正極1と負極5をそれぞれ、カシメ、圧接、ロウ付け等で接続して並列構造にすることができる。   The power generating element members thus manufactured can be connected so as to have a planar series structure or a parallel structure. When a power generation element complex is configured by connecting power generation element members in series, the positive electrode 1 and the negative electrode 5 of adjacent power generation element members can be connected by caulking, pressure welding, brazing, or the like to form a series structure. Further, when a power generating element composite is configured by connecting power generating element members in parallel, the positive electrode 1 and the negative electrode 5 of the power generating element member are connected to the long extending electrode by caulking, pressure welding, brazing, etc., respectively, to form a parallel structure. can do.

このような発電素子複合体は、複数の発電素子部材を接続して1次元的(直列配置)又は二次元的(並列配置)に作製することができるが、厚さ方向に積層して三次元的な立体構造にすることもできる。   Such a power generation element composite can be produced in a one-dimensional (series arrangement) or two-dimensional (parallel arrangement) by connecting a plurality of power generation element members, but is laminated in the thickness direction and is three-dimensional. A three-dimensional structure can also be obtained.

なお、乾電池型用の発電素子としてもよく、その場合、底のある正極管の中に、n型半導体粒子や強誘電体粒子の投入と、p型半導性高分子材料の滴下又は塗布とを繰り返し、それらを層状に形成することができる。なお、負極棒は、n型半導体層4と強誘電体層3とp型半導体層2との層状構造の形成前又は形成後に、正極管の中央に、その正極管に接触しないようにして挿入すればよい。   In addition, a power generation element for a dry cell type may be used, in which case, n-type semiconductor particles or ferroelectric particles are put into a bottomed cathode tube, and p-type semiconducting polymer material is dropped or applied. Can be repeated to form them in layers. The negative electrode rod is inserted into the center of the positive electrode tube before or after the formation of the layered structure of the n-type semiconductor layer 4, the ferroelectric layer 3, and the p-type semiconductor layer 2 so as not to contact the positive electrode tube. do it.

発電素子部材や発電素子複合体において、発電素子10に水分が侵入するのを避けることが好ましい。水分の侵入防止手段としては、周囲を封止材で充填したり、全体を封止材で覆ったりすることが好ましい。こうした水分の侵入防止手段により、発電素子10の発電電流値の低下を抑制することができる。   In the power generation element member or the power generation element complex, it is preferable to prevent moisture from entering the power generation element 10. As a means for preventing moisture from entering, it is preferable to fill the periphery with a sealing material or cover the whole with a sealing material. By such moisture intrusion prevention means, it is possible to suppress a decrease in the generated current value of the power generating element 10.

以上、本発明に係る発電素子によれば、従来の発電素子とは異なる新しい発電素子を提供することができた。この発電素子は、高い電流を発生する発電現象を起こすことができ、特に恒温槽中で常温(例えば25℃)から昇温することにより実現できる。   As described above, according to the power generating element of the present invention, a new power generating element different from the conventional power generating element can be provided. This power generation element can cause a power generation phenomenon that generates a high current, and can be realized particularly by raising the temperature from room temperature (for example, 25 ° C.) in a thermostatic bath.

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実施例1]
図1に示す発電素子10を作製した。先ず、厚さ0.2mm、縦10mm、横10mmの平板状の銅部材を正極1として準備した。また、厚さ0.2mm、縦10mm、横10mmの平板状のアルミニウム部材を負極5として準備した。次に、負極5上にニオブ酸リチウム粒子からなる厚さ2mmのn型半導体層4を形成した。なお、このn型半導体層4は強誘電性も有している。次いで、その強誘電性を有するn型半導体層4の上から、液状のp型半導性高分子であるポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホナート))を滴下し、n型半導体層4上にp型半導体層2を設けた。最後に、その上から負極5を載せて発電素子10を作製した。得られた発電素子10の電極間抵抗は25kΩであった。
[Example 1]
A power generation element 10 shown in FIG. 1 was produced. First, a flat copper member having a thickness of 0.2 mm, a length of 10 mm, and a width of 10 mm was prepared as the positive electrode 1. A flat aluminum member having a thickness of 0.2 mm, a length of 10 mm, and a width of 10 mm was prepared as the negative electrode 5. Next, a 2 mm thick n-type semiconductor layer 4 made of lithium niobate particles was formed on the negative electrode 5. This n-type semiconductor layer 4 also has ferroelectricity. Next, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)), which is a liquid p-type semiconducting polymer, is dropped from above the n-type semiconductor layer 4 having ferroelectricity. The p-type semiconductor layer 2 is provided on the n-type semiconductor layer 4. Finally, the negative electrode 5 was placed thereon to produce the power generation element 10. The inter-electrode resistance of the obtained power generation element 10 was 25 kΩ.

(評価)
得られた発電素子を恒温糟に入れ、負荷抵抗10Ωを接続し、Z、Cp、L、tanδは 日置電機株式会社製のLCRハイテスタ3532−50を用いて測定し、電流と電圧は、FLUKE社製のデジタルマルチメーター 8808Aを用いて測定した。測定は、恒温層中の温度を変化させて行った。得られた結果を表1及び表2に示した。
(Evaluation)
The obtained power generation element was put in a thermostatic oven, a load resistance of 10Ω was connected, Z, Cp, L, and tan δ were measured using an LCR high tester 3532-50 manufactured by Hioki Electric Co., Ltd. It measured using the digital multimeter 8808A made from. The measurement was performed by changing the temperature in the constant temperature layer. The obtained results are shown in Tables 1 and 2.

Figure 2016100374
Figure 2016100374

Figure 2016100374
Figure 2016100374

1 正極(正極板)
2 p型半導体層
3 強誘電体層
4 n型半導体層
5 負極(負極板)
10 発電素子
1 Positive electrode (positive electrode plate)
2 p-type semiconductor layer 3 ferroelectric layer 4 n-type semiconductor layer 5 negative electrode (negative electrode plate)
10 Power generation element

Claims (5)

正極と、p型半導体層と、強誘電体層と、n型半導体層と、負極とがその順で配置された構造形態を有することを特徴とする発電素子。   A power generating element having a structure in which a positive electrode, a p-type semiconductor layer, a ferroelectric layer, an n-type semiconductor layer, and a negative electrode are arranged in this order. 前記p型半導体層が、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)、ポリ(3,4−エチレンジオキシチオフェン)−ポリ(ビニルスルホン酸)、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p−フェニレン)ポリ(p−フェニレン)ポリ(p−フェニレン)、ポリフルオレン、ポリ(p−ポリ(p−フェニレンビニレン)、ポリチエニレンビニレン、グラフェン、CuAlO、CuGaO、及びLiNiOから選ばれるp型半導性高分子である、請求項1に記載の発電素子。 The p-type semiconductor layer is composed of poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid), poly (3,4-ethylenedioxythiophene) -poly (vinylsulfonic acid), polyaniline, polypyrrole, polythiophene. , poly (p- phenylene) poly (p- phenylene) poly (p- phenylene), polyfluorene, poly (p- poly (p- phenylenevinylene), polythienylenevinylene, graphene, CuAlO 2, CuGaO 2, and LiNiO The power generating element according to claim 1, wherein the power generating element is a p-type semiconducting polymer selected from 2 . 前記強誘電体層が、チタン酸バリウム、チタン酸ジルコン酸鉛、チタン酸鉛、ジルコン酸鉛、チタン酸ビスマスランタン、チタン酸カドミウム、ニオブ酸リチウム、タンタル酸リチウム、ビスマスフェライト、及びリチウムドープ酸化亜鉛から選ばれるいずれかの粒子を含む、請求項1又は2に記載の発電素子。   The ferroelectric layer is composed of barium titanate, lead zirconate titanate, lead titanate, lead zirconate, bismuth lanthanum titanate, cadmium titanate, lithium niobate, lithium tantalate, bismuth ferrite, and lithium-doped zinc oxide. The power generating element according to claim 1, comprising any particle selected from the group consisting of: 前記n型半導体層が、酸化スズ、アンチモンドープ酸化スズ、フッ素ドープ酸化スズ、ガリウムドープ酸化亜鉛、アルミドープ酸化亜鉛、ニオブドープチタン酸ストロンチウム、及び酸化カルシウムドープ酸化ジルコニウムから選ばれるいずれかの粒子を含む、請求項1〜3のいずれか1項に記載の発電素子。   The n-type semiconductor layer may be any particle selected from tin oxide, antimony-doped tin oxide, fluorine-doped tin oxide, gallium-doped zinc oxide, aluminum-doped zinc oxide, niobium-doped strontium titanate, and calcium oxide-doped zirconium oxide. The power generating element according to any one of claims 1 to 3. 前記正極と前記負極とが異種材料である、請求項1〜4のいずれか1項に記載の発電素子。   The power generating element according to claim 1, wherein the positive electrode and the negative electrode are different materials.
JP2014234066A 2014-11-19 2014-11-19 Power generating element Pending JP2016100374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014234066A JP2016100374A (en) 2014-11-19 2014-11-19 Power generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014234066A JP2016100374A (en) 2014-11-19 2014-11-19 Power generating element

Publications (1)

Publication Number Publication Date
JP2016100374A true JP2016100374A (en) 2016-05-30

Family

ID=56078015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014234066A Pending JP2016100374A (en) 2014-11-19 2014-11-19 Power generating element

Country Status (1)

Country Link
JP (1) JP2016100374A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550650A (en) * 2018-04-09 2018-09-18 上海集成电路研发中心有限公司 A kind of graphene infrared sensor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550650A (en) * 2018-04-09 2018-09-18 上海集成电路研发中心有限公司 A kind of graphene infrared sensor structure

Similar Documents

Publication Publication Date Title
Sun et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells
Lee et al. All-in-one energy harvesting and storage devices
TWI739759B (en) Thermoelectric element and thermoelectric module comprising the same, and method of thermoelectric generation using the same
Salah et al. A comprehensive simulation study of hybrid halide perovskite solar cell with copper oxide as HTM
Poorkazem et al. Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell
US10541358B2 (en) Hybrid generator using thermoelectric generation and piezoelectric generation
JP6841533B2 (en) Viscous thermoelectric material, thermoelectric conversion module using it, its manufacturing method, and Peltier element
Na et al. Preparation of bismuth telluride films with high thermoelectric power factor
Park et al. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly (3-hexylthiophene) nanofibrils
Paul et al. Multilevel programming and light-assisted resistive switching in a halide-tunable all-inorganic perovskite cube for flexible memory devices
JP2012186471A (en) Electrical energy generator
US20180013051A1 (en) Method for forming tellurium/telluride nanowire arrays and tellurium/telluride nanowire thermoelectric devices
KR101781985B1 (en) Semiconductor module using electrochemical deposition and manufacturing method thereof
Liao et al. Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr 3 perovskite solar cells
Kim et al. All-aerosol-sprayed high-performance transparent triboelectric nanogenerator with embedded charge-storage layer for self-powered invisible security IoT system and raindrop-solar hybrid energy harvester
Zhang et al. Coupling enhancement of photo-thermoelectric conversion in a lateral ZnO nanowire array
JP2024014924A (en) Thermal power generation battery, manufacturing method of thermal power generation battery and manufacturing method of thermal power generator
Lee et al. A micromachined photo-supercapacitor integrated with CdS-sensitized solar cells and buckypaper
Singh et al. A highly stable solid-state supercapacitor device based on robust layer-by-layer electrodeposited poly-(3, 4-ethylenedioxythiophene)-reduced graphene oxide–molybdenum disulfide nanocomposite electrode
Kang et al. Reduction of series resistance in organic photovoltaic using low sheet resistance of ITO electrode
Paul et al. Defect passivation and layered-phase formation in an antimony-based hybrid iodide perovskite derivative through chlorine incorporation
KR101583701B1 (en) A TRANSPARENT ELECTRODE COMPRISING CO-AXIAL RuO2-ITO NANOPILLARS FOR SUPERCAPACITOR, PREPARATION METHOD THEREOF AND A SUPERCAPACITOR COMPRISING SAID TRANSPARENT ELECTRODE
JP2016100374A (en) Power generating element
KR20180016717A (en) Manufacturing method of thermoelectric device
KR101517784B1 (en) Thermoelectric materials having high figure of merit and manufacturing method thereof