JP2016099220A - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP2016099220A
JP2016099220A JP2014236215A JP2014236215A JP2016099220A JP 2016099220 A JP2016099220 A JP 2016099220A JP 2014236215 A JP2014236215 A JP 2014236215A JP 2014236215 A JP2014236215 A JP 2014236215A JP 2016099220 A JP2016099220 A JP 2016099220A
Authority
JP
Japan
Prior art keywords
probe
force
sample
tip
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014236215A
Other languages
Japanese (ja)
Other versions
JP6287775B2 (en
Inventor
大田 昌弘
Masahiro Ota
昌弘 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014236215A priority Critical patent/JP6287775B2/en
Publication of JP2016099220A publication Critical patent/JP2016099220A/en
Application granted granted Critical
Publication of JP6287775B2 publication Critical patent/JP6287775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a scanning probe microscope that can acquire a magnetic property and an electrical property by a single measurement at once in addition to a surface shape.SOLUTION: A scanning probe microscope includes: a three-dimensional movement mechanism 1 that varies a relative position of a sample 3 surface and a probe 6 tip in a Z direction connecting both of them and within an XY plane perpendicular thereto; force measurement means (data processing unit 31) that, while resonantly oscillating the probe 6 tip, measures an interatomic force which acts between the sample 3 surface and the probe 6 tip, and at least one force out of a magnetic force and an electrostatic force which act therebetween; and volume data acquisition means (data processing unit 31) that acquires volume data being three-dimensional data of the at least two forces, by repeating such an operation that measurements are conducted by the force measurement means while varying a distance between the sample 3 surface and the probe 6 tip within a prescribed range in the Z direction by the three-dimensional movement mechanism, and thereafter the same measurements are conducted after varying a position of both of them within the XY plane.SELECTED DRAWING: Figure 2

Description

本発明は走査型プローブ顕微鏡に関し、さらに詳しくは、試料の様々な特性を多元的に捉えることのできる新規な走査型プローブ顕微鏡に関する。   The present invention relates to a scanning probe microscope, and more particularly to a novel scanning probe microscope that can grasp various characteristics of a sample in a multi-dimensional manner.

走査型プローブ顕微鏡(SPM)では、図1のように、試料表面に水平な方向に探針Pまたは試料Sを移動しつつ、探針先端と試料表面との相互作用を検出し、その情報を元に試料表面の形状を高分解能に観察する。この際、探針先端と試料表面の間の距離は、検出された相互作用(力)が一定になるように探針Pまたは試料Sを試料表面に垂直な方向に移動させることで制御される。つまり、通常のSPMでは、探針先端と試料表面との距離がある値で一定になるように制御され、その状態で探針先端が試料表面をなぞるように水平方向に移動する。この探針先端と試料表面との相互作用としては、通常、原子間力が用いられる。原子間力を用いて試料の表面の形状を観察するのが原子間力顕微鏡(Atomic Force Microscope:AFM)である。   The scanning probe microscope (SPM) detects the interaction between the probe tip and the sample surface while moving the probe P or sample S in a direction horizontal to the sample surface as shown in FIG. Originally, the shape of the sample surface is observed with high resolution. At this time, the distance between the tip of the probe and the sample surface is controlled by moving the probe P or sample S in a direction perpendicular to the sample surface so that the detected interaction (force) is constant. . That is, in normal SPM, the distance between the tip of the probe and the sample surface is controlled to be constant at a certain value, and in this state, the tip of the probe moves in the horizontal direction so as to trace the sample surface. As an interaction between the probe tip and the sample surface, atomic force is usually used. An atomic force microscope (AFM) observes the shape of the surface of a sample using atomic force.

SPMにはその他に、磁気力顕微鏡(Magnetic Force Microscope : MFM)や静電気力顕微鏡(Electric Force Microscope : EFM)がある。一般に磁気力や静電気力は原子間力に比べて遠距離力であり、これらの顕微鏡では、試料表面と探針先端を、原子間力が支配的な近距離において試料表面の形状を観察した後、探針先端と試料表面を一定距離だけ離して、磁気力や静電気力の情報を画像化するという方式が用いられる。   Other SPMs include Magnetic Force Microscope (MFM) and Electrostatic Force Microscope (EFM). In general, magnetic force and electrostatic force are far-distance forces compared to atomic forces. In these microscopes, the sample surface and the tip of the probe are observed after observing the shape of the sample surface at a short distance where the atomic force is dominant. A method is used in which information on magnetic force and electrostatic force is imaged by separating the tip of the probe and the sample surface by a certain distance.

これらMFMやEFMでは、ダイナミックモードと呼ばれる方法が用いられる。ダイナミックモードでは、カンチレバーをその機械的共振周波数近傍で励振し、その共振状態の変化より試料表面の物性情報を得るものである(特許文献1、2等)。   In these MFM and EFM, a method called dynamic mode is used. In the dynamic mode, the cantilever is excited in the vicinity of its mechanical resonance frequency, and physical property information on the sample surface is obtained from the change in the resonance state (Patent Documents 1, 2, etc.).

特表2001-522045号公報Special table 2001-522045 gazette 特開平05-026662号公報Japanese Patent Laid-Open No. 05-026662

様々な物質や試料についての研究が進んでいる現在、一つの試料に対して、表面形状の他、磁気的性質や電気的性質を一挙に取得し、かつ、それらの相互の関係を知りたいという要望が強くなっている。しかし、従来のSPMでこのような要求に応えるためには、複雑な操作を行う必要があった。   Currently, research on various substances and samples is progressing, and we want to acquire the magnetic properties and electrical properties of one sample at a time, as well as the surface shape, and know the relationship between them. The demand is getting stronger. However, in order to meet such a demand with the conventional SPM, it was necessary to perform a complicated operation.

例えば、前記のとおりMFMやEFMではダイナミックモードで試料の測定が行われるが、試料によって磁気力や静電気力が及ぶ距離が異なるため、磁気力や静電気力の情報を有効に画像化できる距離に設定するためには、最初にAFMで表面形状を測定した後、その位置から、原子間力がもはや及ばす、磁気力や静電気力が及ぶであろうと考えられる距離だけ探針を引き上げ、磁気力や静電気力を測定する。しかし、試料の種類や状態によっては、その探針位置では磁気力や静電気力を正しく測定することができない場合があり、そのときは再度探針の位置を変える必要がある。従来の方法ではこのように試行錯誤を繰り返す必要があった。   For example, as described above, the sample is measured in the dynamic mode in MFM and EFM, but the distance over which the magnetic force and electrostatic force are applied varies depending on the sample. Therefore, the magnetic force and electrostatic force information can be effectively imaged. In order to do this, after measuring the surface shape with AFM first, the probe is lifted by a distance from which the atomic force or the magnetic force or electrostatic force is expected to reach. Measure the electrostatic force. However, depending on the type and state of the sample, the magnetic force or electrostatic force may not be correctly measured at the probe position, and in that case, the probe position needs to be changed again. In the conventional method, it was necessary to repeat trial and error in this way.

本発明が解決しようとする課題は、1回の測定で表面形状の他、磁気的性質や電気的性質を一挙に取得することのできる走査型プローブ顕微鏡を提供することである。   The problem to be solved by the present invention is to provide a scanning probe microscope that can acquire not only the surface shape but also magnetic properties and electrical properties at a time in one measurement.

上記課題を解決するために成された本発明に係る走査型プローブ顕微鏡は、
a) 試料表面と探針先端の相対的位置を、両者を結ぶZ方向と、それに垂直なXY面内で変化させる3次元移動機構と、
b) 探針先端を共振振動させつつ、試料表面と探針先端の間に働く、原子間力と、磁気力及び静電気力のうちの少なくとも1つの力とを測定する力測定手段と、
c) 試料表面と探針先端の間の距離を前記3次元移動機構によりZ方向に所定範囲内で変化させつつ前記力測定手段により測定を行い、その後、両者の位置をXY面内で変化させて同様の測定を行う、という操作を繰り返すことにより、前記少なくとも2つの力の3次元データであるボリュームデータを取得するボリュームデータ取得手段と
を備えることを特徴とする。
A scanning probe microscope according to the present invention made to solve the above problems is as follows.
a) a three-dimensional movement mechanism that changes the relative position of the sample surface and the tip of the probe in the Z direction connecting them and the XY plane perpendicular to the Z direction;
b) a force measuring means for measuring an atomic force and at least one of a magnetic force and an electrostatic force acting between the sample surface and the probe tip while causing the probe tip to resonate and vibrate;
c) The distance between the sample surface and the tip of the probe is measured by the force measuring means while changing the distance in the predetermined direction in the Z direction by the three-dimensional moving mechanism, and then the position of both is changed in the XY plane. And volume data acquisition means for acquiring volume data that is three-dimensional data of the at least two forces by repeating the same measurement operation.

本発明に係る走査型プローブ顕微鏡では、まずは3次元移動機構が試料表面と探針先端を結ぶZ方向において距離を所定範囲内で変化させつつ、その間の各点で力測定手段が原子間力と磁気力及び静電気力のうちの少なくとも1つの力とを測定する。これにより、これら少なくとも2つの力のZ方向の変化を表すカーブ(これを「フォースカーブ」と呼ぶ。)が得られる。   In the scanning probe microscope according to the present invention, first, the three-dimensional moving mechanism changes the distance within the predetermined range in the Z direction connecting the sample surface and the tip of the probe, and the force measuring means at each point between them is the atomic force. Measure at least one of magnetic and electrostatic forces. As a result, a curve representing this change in the Z direction of these at least two forces (this is called a “force curve”) is obtained.

試料表面の或る1点においてZ方向のフォースカーブのデータを得た後、3次元移動機構は試料表面と探針先端をXY面内で相対的に移動させ、別の1点において同様に測定を行って、その点でのフォースカーブのデータを採取する。   After obtaining the force curve data in the Z direction at one point on the sample surface, the 3D moving mechanism moves the sample surface and the tip of the probe relative to each other in the XY plane, and measures the same at another point. To collect force curve data at that point.

こうして試料表面の各点においてZ方向のフォースカーブのデータを採取すると、最終的に3次元のボリュームデータが得られる。このボリュームデータは、原子間力と、それに対応する磁気力及び静電気力のうちの少なくとも1つの力との直接的な関係を表すものであるため、このボリュームデータにより試料の表面形状と表面物性との関係を一挙に得ることができる。   If the force curve data in the Z direction is collected at each point on the sample surface in this way, finally three-dimensional volume data is obtained. Since this volume data represents the direct relationship between the interatomic force and at least one of the corresponding magnetic force and electrostatic force, the volume data shows the surface shape and physical properties of the sample. Can be obtained at once.

なお、本発明に係る走査型プローブ顕微鏡では、各点において、探針先端を共振振動させつつ力を測定する。このため原子間力だけではなく、探針を保持するカンチレバーの励振状態(例えば、振動数、位相)の情報より、それ以外の物性情報を得ることができる。   In the scanning probe microscope according to the present invention, the force is measured at each point while the tip of the probe is resonantly oscillated. For this reason, not only the interatomic force but also other physical property information can be obtained from information on the excitation state (for example, frequency and phase) of the cantilever holding the probe.

本発明に係る走査型プローブ顕微鏡では、1度の測定により、原子間力と、磁気力及び静電気力のうちの少なくとも1つの力とを同時に測定するため、1回の測定で測定対象試料の表面形状と、該試料表面から任意の距離だけ離れた位置での試料表面の物性情報を再構成することが可能となり、従来のように、適切な距離を探索するために、何度も測定を繰り返す必要がない。   In the scanning probe microscope according to the present invention, the atomic force and at least one of the magnetic force and the electrostatic force are simultaneously measured by one measurement. It is possible to reconstruct the shape and physical property information of the sample surface at a position separated from the sample surface by an arbitrary distance, and repeat the measurement many times in order to search for an appropriate distance as in the past. There is no need.

そして、本発明に係る走査型プローブ顕微鏡で得られた、試料の表面の物性に起因する磁気力又は/及び静電気力のボリュームデータは、一つの試料に関する、表面形状とその磁気的性質又は/及び電気的性質の直接的な関係を表すものである。これにより、試料の表面物性の統合的研究の進展が期待される。   The volume data of the magnetic force or / and electrostatic force resulting from the physical properties of the surface of the sample obtained with the scanning probe microscope according to the present invention is the surface shape and its magnetic properties or / and It represents a direct relationship of electrical properties. This is expected to advance integrated research on the surface physical properties of samples.

走査型プローブ顕微鏡(SPM)による試料表面形状観察の様子を示す説明図。Explanatory drawing which shows the mode of sample surface shape observation by a scanning probe microscope (SPM). 本発明に係る走査型プローブ顕微鏡の一つの実施例である静電気力顕微鏡の要部の概略構成図。The schematic block diagram of the principal part of the electrostatic force microscope which is one Example of the scanning probe microscope which concerns on this invention. 前記静電気力顕微鏡におけるカンチレバー励振部の概略構成図。The schematic block diagram of the cantilever excitation part in the said electrostatic force microscope. 本発明に係る走査型プローブ顕微鏡の他の実施例である磁気力顕微鏡の、試料と探針の周囲の概略構成図。The schematic block diagram of the circumference | surroundings of a sample and a probe of the magnetic force microscope which is another Example of the scanning probe microscope which concerns on this invention. 実施例の磁気力顕微鏡におけるボリュームデータ取得のための動作のフローチャート。The flowchart of the operation | movement for volume data acquisition in the magnetic force microscope of an Example. 実施例の磁気力顕微鏡におけるボリュームデータ取得のための動作の概略説明図。The schematic explanatory drawing of the operation | movement for volume data acquisition in the magnetic force microscope of an Example. 実施例の磁気力顕微鏡で得られるボリュームデータを二次元画像の重ね合わせで表した説明図。Explanatory drawing which represented the volume data obtained with the magnetic force microscope of an Example by the superimposition of a two-dimensional image.

以下、本発明に係る走査型プローブ顕微鏡の一つの実施例である静電気力顕微鏡について、添付図面を参照して説明する。図2はこの静電気力顕微鏡の要部の概略構成図、図3はその静電気力顕微鏡におけるカンチレバー励振部の概略構成図である。   Hereinafter, an electrostatic force microscope which is one embodiment of a scanning probe microscope according to the present invention will be described with reference to the accompanying drawings. FIG. 2 is a schematic configuration diagram of a main part of the electrostatic force microscope, and FIG. 3 is a schematic configuration diagram of a cantilever excitation unit in the electrostatic force microscope.

図2に示すように、観察対象である試料3は略円筒形状であるスキャナ1の上に載置された試料ホルダ2の上に保持される。スキャナ1は、試料3を互いに直交するX、Yの2軸方向に走査するXYスキャナとX軸及びY軸に対し直交するZ軸方向に微動させるZスキャナとを含み、それぞれ水平位置制御部33、垂直位置制御部32から印加される電圧によって変位を生じる圧電素子を駆動源としている。試料3の上方には先端に探針6を備えるカンチレバー5が配置され、このカンチレバー5は、カンチレバーホルダに上下方向に振動可能に固定されている。   As shown in FIG. 2, the sample 3 to be observed is held on a sample holder 2 mounted on a scanner 1 having a substantially cylindrical shape. The scanner 1 includes an XY scanner that scans the sample 3 in two directions of X and Y orthogonal to each other, and a Z scanner that finely moves the sample 3 in the Z-axis direction orthogonal to the X-axis and Y-axis. The drive source is a piezoelectric element that is displaced by a voltage applied from the vertical position control unit 32. A cantilever 5 having a probe 6 at the tip is disposed above the sample 3, and the cantilever 5 is fixed to the cantilever holder so as to vibrate in the vertical direction.

カンチレバー5のZ軸方向の変位を検出するために、その上方には、レーザ光源11、ミラー12、13、及び光検出器14を含む光学的変位検出部10が設けられている。光学的変位検出部10においては、レーザ光源11から出射したレーザ光をミラー12で略垂直に反射させ、カンチレバー5の背面先端付近に照射する。カンチレバー5はシリコン又は窒化シリコンなどから成るが、その前面(試料3との対向面)及び背面には金(Au)、アルミニウム(Al)、等の金属薄膜が蒸着等により形成されている。それによりカンチレバー5の背面は鏡面となっており、上方から照射されたレーザ光は高い効率で反射する。このカンチレバー5の背面からの反射光はミラー13を介して光検出器14に導入される。光検出器14はカンチレバー5の振動方向(変位方向、Z軸方向)に複数(通常2つ)に分割された受光面を有するか、或いは、Z軸方向及びY軸方向に4分割された受光面を有する。カンチレバー5が上下に変位するとこれら複数の受光面に入射する光量の割合が変化するから、その複数の受光光量に応じた検出信号を演算処理することで、カンチレバー5のZ軸方向の変位量を算出することができる。この光検出器14による検出信号は増幅されて振幅位相検出部30に入力され、そこで得られたカンチレバー5の変位の振幅・位相に関する情報がデータ処理部31に与えられる。   In order to detect the displacement of the cantilever 5 in the Z-axis direction, an optical displacement detector 10 including a laser light source 11, mirrors 12 and 13, and a photodetector 14 is provided above the cantilever 5. In the optical displacement detection unit 10, the laser light emitted from the laser light source 11 is reflected substantially vertically by the mirror 12 and is irradiated near the rear end of the cantilever 5. The cantilever 5 is made of silicon, silicon nitride, or the like, and a metal thin film such as gold (Au) or aluminum (Al) is formed on the front surface (the surface facing the sample 3) and the back surface by vapor deposition or the like. Thereby, the back surface of the cantilever 5 is a mirror surface, and the laser light irradiated from above is reflected with high efficiency. The reflected light from the back surface of the cantilever 5 is introduced into the photodetector 14 via the mirror 13. The photodetector 14 has a light receiving surface divided into a plurality (usually two) in the vibration direction (displacement direction, Z axis direction) of the cantilever 5, or the light receiving surface divided into four in the Z axis direction and the Y axis direction. Has a surface. When the cantilever 5 is displaced up and down, the ratio of the amount of light incident on the plurality of light receiving surfaces changes. Therefore, the amount of displacement of the cantilever 5 in the Z-axis direction can be calculated by processing a detection signal corresponding to the plurality of received light amounts. Can be calculated. The detection signal from the photodetector 14 is amplified and input to the amplitude / phase detection unit 30, and information about the amplitude / phase of the displacement of the cantilever 5 obtained there is provided to the data processing unit 31.

図3に示すように、試料ホルダ2は直流成分遮断用のコンデンサ25を介して励振電圧生成部21に接続され、一端がカンチレバー5の前面及び背面の金属薄膜5aと電気的に接続された導電性のリード部20の他端は本顕微鏡の接地電位(GND)に接続されている。励振電圧生成部21は、搬送波発生部22、変調波発生部23、振幅変調部24を含む。搬送波発生部22はカンチレバー5の共振周波数よりも高い所定の周波数範囲の中の周波数f0の正弦波電圧を発生するものである。一方、変調波発生部23は搬送波よりも低い周波数でカンチレバー5を励振させたい周波数fmの正弦波電圧を発生するものである。振幅変調部24は、搬送波の振幅を変調波波形に応じて変調する。したがって、振幅変調部24の出力、つまり試料ホルダ2に印加される励振電圧は周波数がf0でその包絡線は変調波波形に一致している。これにより、カンチレバー5前面の金属薄膜5aと試料3の間に励振電圧が印加される。なお、コンデンサ25は、励振電圧生成部21で生成される励振電圧が切り替えられるときに生じる大きな直流電圧を遮断するためのものである。 As shown in FIG. 3, the sample holder 2 is connected to the excitation voltage generator 21 via a DC component blocking capacitor 25, and one end is electrically connected to the metal thin film 5a on the front surface and back surface of the cantilever 5. The other end of the conductive lead portion 20 is connected to the ground potential (GND) of the microscope. The excitation voltage generator 21 includes a carrier wave generator 22, a modulated wave generator 23, and an amplitude modulator 24. The carrier wave generator 22 generates a sine wave voltage having a frequency f 0 within a predetermined frequency range higher than the resonance frequency of the cantilever 5. Meanwhile, the modulation wave generator 23 is for generating a sine wave voltage of frequency f m is desired to excite the cantilever 5 at a lower frequency than the carrier wave. The amplitude modulation unit 24 modulates the amplitude of the carrier wave according to the modulation wave waveform. Accordingly, the output of the amplitude modulation section 24, i.e. the excitation voltage applied to the sample holder 2 thereof envelope frequency at f 0 are matched to the modulated waveform. Thereby, an excitation voltage is applied between the metal thin film 5 a on the front surface of the cantilever 5 and the sample 3. The capacitor 25 is for cutting off a large DC voltage generated when the excitation voltage generated by the excitation voltage generator 21 is switched.

また、励振電圧生成部21、垂直位置制御部32、水平位置制御部33は、主制御部34により制御され、該主制御部34には測定のために必要な条件やパラメータなどを設定するための操作部35や測定結果を表示するための表示部36なども接続されている。   Further, the excitation voltage generation unit 21, the vertical position control unit 32, and the horizontal position control unit 33 are controlled by the main control unit 34, in order to set conditions, parameters, and the like necessary for measurement in the main control unit 34. An operation unit 35 and a display unit 36 for displaying measurement results are also connected.

ここで、上記励振電圧がカンチレバー5前面の金属薄膜5aと試料3の間(以下「探針−試料間」と記す)に印加された場合における、カンチレバー5に作用する静電気力について説明する。
いま、或る電圧Vが探針−試料間に印加されたときに、探針−試料間の静電気力Fesfは次の(1)式となる。ここで、Ctsは探針−試料間の静電容量、zは探針−試料間距離である。
探針−試料間に、直流電圧VDCと振幅変調信号VAC,p-0(搬送波の角周波数ω0、変調波の角周波数ωm)を印加する場合、印加電圧Vmodは次の(2)式で表される。
したがって、探針−試料間に電圧Vmodを印加したときの探針−試料間の静電気力FAM esfは次の(3)式となる。
Here, the electrostatic force acting on the cantilever 5 when the excitation voltage is applied between the metal thin film 5a on the front surface of the cantilever 5 and the sample 3 (hereinafter referred to as “probe-to-sample”) will be described.
Now, when a certain voltage V is applied between the probe and the sample, the electrostatic force F esf between the probe and the sample is expressed by the following equation (1). Here, C ts is the capacitance between the probe and the sample, and z is the distance between the probe and the sample.
When a DC voltage V DC and an amplitude modulation signal V AC, p-0 (an angular frequency ω 0 of a carrier wave and an angular frequency ω m of a modulated wave) are applied between the probe and the sample, the applied voltage V mod is the following ( It is expressed by equation (2).
Therefore, the electrostatic force F AM esf between the probe and the sample when the voltage V mod is applied between the probe and the sample is expressed by the following equation (3).

(3)式に示すように、静電気力FAM esfは、直流成分を始めとする様々な周波数の成分を含むが、その1つとして変調波の角周波数ωmの成分が存在することが分かる。即ち、静電気力FAM esfによってカンチレバー5は変調波の角周波数ωmの成分を以て振動するから、例えばロックインアンプなどによりこの特定の周波数成分を検出することにより、角周波数ωm成分のみの静電気力を抽出することが可能である。 As shown in the equation (3), the electrostatic force F AM esf includes components of various frequencies including a direct current component, and one of them is a component of the angular frequency ω m of the modulated wave. . That is, the cantilever 5 vibrates with the component of the angular frequency ω m of the modulated wave due to the electrostatic force F AM esf . For example, by detecting this specific frequency component with a lock-in amplifier or the like, the static electricity of only the angular frequency ω m component is detected. It is possible to extract the force.

以上は、静電気力顕微鏡について詳しく説明したが、磁気力顕微鏡についても、探針と試料の間の磁気力を測定するという点で上記実施例の静電気力顕微鏡と異なるだけであり、その他の機構、原理はほぼ同じである。磁気力顕微鏡の場合、例えば図4に示すように、試料3と探針6の周囲に磁場形成装置7を設け、両者を磁場の中に置けば、上記同様に、試料3と探針6の間に働く磁気力を測定することができる。   The above is a detailed description of the electrostatic force microscope, but the magnetic force microscope is also different from the electrostatic force microscope of the above embodiment in that it measures the magnetic force between the probe and the sample, and other mechanisms, The principle is almost the same. In the case of a magnetic force microscope, for example, as shown in FIG. 4, if a magnetic field forming device 7 is provided around the sample 3 and the probe 6 and both are placed in the magnetic field, the sample 3 and the probe 6 are in the same manner as described above. The magnetic force acting between them can be measured.

次に、図5及び図6により、本発明の実施例である磁気力顕微鏡(MFM)における走査方法の概念を示す。一般的なSPMの走査は、まずX方向に速い速度で1ライン走査し、1ラインのX走査が終わった後、Y方向に少しずらし、再び1ラインのX走査を行う。このX走査のような早い走査を高速走査、Y方向のような遅い走査を低速走査と呼ぶ。   Next, FIGS. 5 and 6 show the concept of a scanning method in a magnetic force microscope (MFM) which is an embodiment of the present invention. In general SPM scanning, first, one line is scanned in the X direction at a high speed, and after the X scanning of one line is completed, the scanning is slightly shifted in the Y direction, and X scanning of one line is performed again. Fast scanning such as X scanning is called high-speed scanning, and slow scanning such as Y direction is called low-speed scanning.

本実施例のMFMでは、高速走査の方向と低速走査の方向を変更し、図6に示すように、Z方向に高速走査、X方向に低速走査を行う。すると、1つの高速走査はフォースカーブを取得することと同じになり、それをX座標を変えながら行うこととなる。   In the MFM of this embodiment, the direction of high-speed scanning and the direction of low-speed scanning are changed, and as shown in FIG. 6, high-speed scanning in the Z direction and low-speed scanning in the X direction are performed. Then, one high-speed scanning is the same as acquiring a force curve, and it is performed while changing the X coordinate.

詳しく説明すると、図5に示すように、まずカンチレバーの励振を開始し(ステップS1)、探針先端を所定の高さZmaxに置く(或いは、スキャナの方を移動させる。以下同様。S2)。その位置でカンチレバー振動の周波数及び/又は位相の変化を測定する(S3)。これにより、探針先端と試料表面の間の静電気的/磁気的相互作用を測定することができる。次に、探針先端の位置をZ方向に微小距離ΔZだけ下げ(S4)、カンチレバーの振動の振幅wが所定値w0以下になったか否かを判定する(S5)。w<w0となった時点で、探針先端が試料表面に接触すると判断し、探針をX方向に微小距離ΔXだけ移動する(S6)。そして探針先端を前記高さZmaxまで引き上げ(S2)、以降、同様の測定を繰り返す。このような測定を繰り返し、X方向に所定の距離Xmaxだけ移動した時点で、今度はY方向に微小距離ΔYだけ移動し、同様の測定を繰り返す(S7、S8、S9)。 More specifically, as shown in FIG. 5, first, excitation of the cantilever is started (step S1), and the tip of the probe is placed at a predetermined height Zmax (or the scanner is moved. The same applies hereinafter, S2). The frequency and / or phase change of the cantilever vibration is measured at that position (S3). Thereby, the electrostatic / magnetic interaction between the probe tip and the sample surface can be measured. Then, lowering the position of the probe tip in the Z direction by a small distance [Delta] Z (S4), the amplitude w of the oscillation of the cantilever is determined whether it is below a predetermined value w 0 (S5). When w <w 0 , it is determined that the tip of the probe is in contact with the sample surface, and the probe is moved in the X direction by a minute distance ΔX (S6). Then, the tip of the probe is raised to the height Zmax (S2), and thereafter the same measurement is repeated. When such a measurement is repeated and moved by a predetermined distance Xmax in the X direction, the measurement is moved by a minute distance ΔY in the Y direction, and the same measurement is repeated (S7, S8, S9).

上記のようにZ-X方向の走査を行うことにより1つの二次元画像が得られ、続いてこのような二次元画像をY座標を変えながら取得することにより、試料表面上の3次元座標上での情報が取得できる。これをボリュームデータと呼ぶ。二次元画像の重ね合わせによりボリュームデータが生成される様子を図7に示す。   By performing scanning in the ZX direction as described above, one two-dimensional image is obtained, and by subsequently acquiring such a two-dimensional image while changing the Y coordinate, the three-dimensional coordinate on the sample surface is obtained. Information can be acquired. This is called volume data. FIG. 7 shows how volume data is generated by superimposing two-dimensional images.

SPMでは1つの座標において1つのデータだけではなく、複数のデータを取り込むことが可能である。つまり、同じ3次元座標で複数のボリュームデータが得られることとなる。上記MFMを例にとると、ボリュームデータの一つは原子間力、すなわち表面形状のデータであり、別のボリュームデータは磁気力データとなる。磁気力は試料表面からの距離にも依存するため、一般なMFMでは形状に起因する原子間力が及ばない距離まで探針を離した状態で磁気力の測定を行うか、表面形状をあらかじめ記憶し、そのデータを用いて探針と試料表面との距離を制御しながら磁気力を測定する(リフトモード)。しかしながら、本実施例のMFMでは、表面形状と磁気力のデータがすべてのXYZ座標において得られているため、表面形状データから探針と試料表面との距離が一定となるZを抽出し、それを磁気力データに適用することで、リフトモードと同様の結果が得られる。さらに、リフトモードでは1つの距離でのみのデータしか得られないのに対し、本特許の手法では、表面形状から抽出するZ座標は任意の距離に設定できるため、様々な距離での磁気力像が再構築可能となる。   In SPM, it is possible to capture not only one data but one data at one coordinate. That is, a plurality of volume data can be obtained with the same three-dimensional coordinates. Taking the MFM as an example, one of the volume data is atomic force, that is, surface shape data, and the other volume data is magnetic force data. Since the magnetic force also depends on the distance from the sample surface, in general MFM, the magnetic force is measured with the probe released to a distance where the interatomic force due to the shape does not reach, or the surface shape is stored in advance. Then, using the data, the magnetic force is measured while controlling the distance between the probe and the sample surface (lift mode). However, in the MFM of this embodiment, since the surface shape and magnetic force data are obtained at all XYZ coordinates, the Z where the distance between the probe and the sample surface is constant is extracted from the surface shape data. By applying to the magnetic force data, the same result as in the lift mode can be obtained. In addition, in the lift mode, only data at one distance can be obtained, whereas in the method of this patent, the Z coordinate extracted from the surface shape can be set to an arbitrary distance, so magnetic force images at various distances can be set. Can be reconstructed.

1…スキャナ
2…試料ホルダ
3…試料
5…カンチレバー
5a…金属薄膜
6…探針
7…磁場形成装置
10…光学的変位検出部
11…レーザ光源
12、13…ミラー
14…光検出器
20…リード部
21…励振電圧生成部
22…搬送波発生部
23…変調波発生部
24…振幅変調部
25…コンデンサ
30…振幅位相検出部
31…データ処理部
32…垂直位置制御部
33…水平位置制御部
34…主制御部
35…操作部
36…表示部
DESCRIPTION OF SYMBOLS 1 ... Scanner 2 ... Sample holder 3 ... Sample 5 ... Cantilever 5a ... Metal thin film 6 ... Probe 7 ... Magnetic field formation apparatus 10 ... Optical displacement detection part 11 ... Laser light source 12, 13 ... Mirror 14 ... Photo detector 20 ... Lead Unit 21 ... excitation voltage generation unit 22 ... carrier wave generation unit 23 ... modulation wave generation unit 24 ... amplitude modulation unit 25 ... capacitor 30 ... amplitude phase detection unit 31 ... data processing unit 32 ... vertical position control unit 33 ... horizontal position control unit 34 ... Main control part 35 ... Operation part 36 ... Display part

Claims (2)

a) 試料表面と探針先端の相対的位置を、両者を結ぶZ方向と、それに垂直なXY面内で変化させる3次元移動機構と、
b) 探針先端を共振振動させつつ、試料表面と探針先端の間に働く、原子間力と、磁気力及び静電気力のうちの少なくとも1つの力とを測定する力測定手段と、
c) 試料表面と探針先端の間の距離を前記3次元移動機構によりZ方向に所定範囲内で変化させつつ前記力測定手段により測定を行い、その後、両者の位置をXY面内で変化させて同様の測定を行う、という操作を繰り返すことにより、前記少なくとも2つの力の3次元データであるボリュームデータを取得するボリュームデータ取得手段と
を備えることを特徴とする走査型プローブ顕微鏡。
a) a three-dimensional movement mechanism that changes the relative position of the sample surface and the tip of the probe in the Z direction connecting them and the XY plane perpendicular to the Z direction;
b) a force measuring means for measuring an atomic force and at least one of a magnetic force and an electrostatic force acting between the sample surface and the probe tip while causing the probe tip to resonate and vibrate;
c) The distance between the sample surface and the tip of the probe is measured by the force measuring means while changing the distance in the predetermined direction in the Z direction by the three-dimensional moving mechanism, and then the position of both is changed in the XY plane. A scanning probe microscope comprising: volume data acquisition means for acquiring volume data that is three-dimensional data of the at least two forces by repeating the same measurement operation.
前記力測定手段が原子間力と磁気力を測定することを特徴とする請求項1に記載の走査型プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein the force measuring unit measures an atomic force and a magnetic force.
JP2014236215A 2014-11-21 2014-11-21 Scanning probe microscope Active JP6287775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236215A JP6287775B2 (en) 2014-11-21 2014-11-21 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236215A JP6287775B2 (en) 2014-11-21 2014-11-21 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2016099220A true JP2016099220A (en) 2016-05-30
JP6287775B2 JP6287775B2 (en) 2018-03-07

Family

ID=56076813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236215A Active JP6287775B2 (en) 2014-11-21 2014-11-21 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP6287775B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324298A (en) * 2021-12-16 2022-04-12 东风汽车集团股份有限公司 Method for measuring sputtering rate
CN114324981A (en) * 2020-10-09 2022-04-12 株式会社岛津制作所 Scanning probe microscope

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526662A (en) * 1991-07-25 1993-02-02 Hitachi Ltd Scanning type interatomic force/magnetic force microscope and analogous device thereof
JPH05187864A (en) * 1992-01-13 1993-07-27 Hitachi Ltd Surface microscope and method for examining object under it
JPH06213910A (en) * 1992-11-30 1994-08-05 Digital Instr Inc Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JPH09218213A (en) * 1995-12-07 1997-08-19 Sony Corp Method and apparatus for observing considerably minute magnetic domain
US5907096A (en) * 1997-06-02 1999-05-25 International Business Machines Corporation Detecting fields with a two-pass, dual-amplitude-mode scanning force microscope
JP2001522045A (en) * 1997-10-31 2001-11-13 トレック・インコーポレーテッド Electrostatic force detector with cantilever for electrostatic force microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526662A (en) * 1991-07-25 1993-02-02 Hitachi Ltd Scanning type interatomic force/magnetic force microscope and analogous device thereof
JPH05187864A (en) * 1992-01-13 1993-07-27 Hitachi Ltd Surface microscope and method for examining object under it
JPH06213910A (en) * 1992-11-30 1994-08-05 Digital Instr Inc Method and interaction device for accurately measuring parameter of surface other than shape or for performing work associated with shape
JPH09218213A (en) * 1995-12-07 1997-08-19 Sony Corp Method and apparatus for observing considerably minute magnetic domain
US5907096A (en) * 1997-06-02 1999-05-25 International Business Machines Corporation Detecting fields with a two-pass, dual-amplitude-mode scanning force microscope
JP2001522045A (en) * 1997-10-31 2001-11-13 トレック・インコーポレーテッド Electrostatic force detector with cantilever for electrostatic force microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114324981A (en) * 2020-10-09 2022-04-12 株式会社岛津制作所 Scanning probe microscope
JP2022063163A (en) * 2020-10-09 2022-04-21 株式会社島津製作所 Scanning probe microscope
JP7444017B2 (en) 2020-10-09 2024-03-06 株式会社島津製作所 scanning probe microscope
CN114324981B (en) * 2020-10-09 2024-04-26 株式会社岛津制作所 Scanning probe microscope
CN114324298A (en) * 2021-12-16 2022-04-12 东风汽车集团股份有限公司 Method for measuring sputtering rate

Also Published As

Publication number Publication date
JP6287775B2 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
JP2005531781A (en) Scanning probe microscope
CN108802431B (en) Detection method of scanning probe microscope with magnetic-electric signal detection function
EP2392930B1 (en) Scanning probe microscope
JPH0626855A (en) Interatomic power microscope
JP5813966B2 (en) Displacement detection mechanism and scanning probe microscope using the same
EP2757380B1 (en) Potential-measuring device, and atomic force microscope
JP4496350B2 (en) Atomic force microscope
JP4831484B2 (en) Potential difference detection method and scanning probe microscope
TW201636616A (en) Method for imaging a feature using a scanning probe microscope
JP4834817B2 (en) Atomic force microscope and method for measuring interaction force using atomic force microscope
JPWO2007072706A1 (en) Scanning probe microscope
JP2010210609A (en) Approach method for probe and sample in scanning probe microscope
JP6287775B2 (en) Scanning probe microscope
JP2004294218A (en) Measuring method of physical property value and scanning probe microscope
WO2014132341A1 (en) Surface charge density measuring device using atomic force microscope
JP4474556B2 (en) Scanning probe microscope
JP5418413B2 (en) Cantilever excitation method in atomic force microscope
JP4913242B2 (en) Dynamic mode AFM device
JP5765146B2 (en) Cantilever excitation method and atomic force microscope in atomic force microscope
JP5672200B2 (en) Dielectric property measurement method using atomic force microscope
JP3764917B2 (en) High frequency micro vibration measurement device
JP2003042931A (en) Scanning probe microscope
JP2005164544A (en) Probe apparatus, scanning probe microscope, and sample display method
JP6001728B2 (en) Displacement detection mechanism and scanning probe microscope using the same
CN114324981B (en) Scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R151 Written notification of patent or utility model registration

Ref document number: 6287775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151