JP2016099192A - Ground fault detection circuit failure diagnosis device - Google Patents

Ground fault detection circuit failure diagnosis device Download PDF

Info

Publication number
JP2016099192A
JP2016099192A JP2014235461A JP2014235461A JP2016099192A JP 2016099192 A JP2016099192 A JP 2016099192A JP 2014235461 A JP2014235461 A JP 2014235461A JP 2014235461 A JP2014235461 A JP 2014235461A JP 2016099192 A JP2016099192 A JP 2016099192A
Authority
JP
Japan
Prior art keywords
ground fault
detection circuit
fault detection
diagnosis
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014235461A
Other languages
Japanese (ja)
Other versions
JP2016099192A5 (en
JP6456115B2 (en
Inventor
大介 田嶌
Daisuke Tajima
大介 田嶌
西尾 直樹
Naoki Nishio
直樹 西尾
清俊 田中
Kiyotoshi Tanaka
清俊 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014235461A priority Critical patent/JP6456115B2/en
Publication of JP2016099192A publication Critical patent/JP2016099192A/en
Publication of JP2016099192A5 publication Critical patent/JP2016099192A5/ja
Application granted granted Critical
Publication of JP6456115B2 publication Critical patent/JP6456115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault detection circuit failure diagnosis device capable of determining whether the ground fault detected during power generation of a solar cell is a ground fault of the solar cell or a failure of the ground fault detection circuit.SOLUTION: A ground fault detection circuit failure diagnosis device for detecting a ground fault of a solar cell 1 comprises: a ground fault detection circuit 21 which outputs voltage based on the ground fault current detected by a zero-phase current transformer 4 which detects ground fault current from the solar cell 1; a self-diagnosis circuit 22 which diagnoses whether the ground fault detection circuit 21 is faulty when the output voltage from the ground fault detection circuit 21 during power generation of the solar cell 1 is a value indicative of a ground fault of the solar cell 1; and a control unit 23 which controls the display of the ground fault of the solar cell 1 or the failure of the ground fault detection circuit 21 on the basis of the diagnosis results of the self-diagnosis circuit 22.SELECTED DRAWING: Figure 1

Description

本発明は、太陽光発電システムにおいて太陽電池の地絡を検出する地絡検出回路故障診断装置に関する。   The present invention relates to a ground fault detection circuit failure diagnosis device that detects a ground fault of a solar cell in a solar power generation system.

従来、太陽光発電システムには、太陽電池の地絡による故障を検出する地絡検出回路を備えるものがある。地絡検出回路は、太陽電池の地絡故障を検出できるが、地絡検出回路自体が故障していると、太陽電池が地絡していないにも係わらず誤って太陽電池が地絡していると誤検出する場合がある。下記特許文献1では、太陽光発電システムの起動時、地絡検出回路が故障しているかどうかを自己診断し、異常が検出された場合は地絡検出回路の異常を表示する技術が開示されている。   Conventionally, some solar power generation systems include a ground fault detection circuit that detects a failure due to a ground fault of a solar cell. The ground fault detection circuit can detect the ground fault of the solar cell, but if the ground fault detection circuit itself is faulty, the solar cell will be accidentally grounded even though the solar cell is not ground fault. May be falsely detected. The following Patent Document 1 discloses a technique for self-diagnosis whether a ground fault detection circuit is faulty at the time of starting a photovoltaic power generation system and displaying an abnormality of the ground fault detection circuit when an abnormality is detected. Yes.

特開平9−215203号公報JP-A-9-215203

しかしながら、上記従来の技術によれば、起動時は正常であっても、運転開始後に地絡検出回路が故障した場合、または温度変化によって地絡検出回路からの出力が変動した場合など、太陽電池の地絡を検出した時点で実際に地絡検出回路が正常に動作しているかどうか判断できない、という問題があった。修理対応するサービスマンなどは、地絡検出回路での太陽電池の地絡の検出が誤っていた場合でも、起動時に地絡検出回路が正常だったときは、故障原因の発見のため太陽電池の地絡を調査することになり、かえって故障原因の発見までに時間を要することになる。   However, according to the above-described conventional technology, even when the start-up is normal, when the ground fault detection circuit fails after the start of operation, or when the output from the ground fault detection circuit fluctuates due to a temperature change, etc. There is a problem that it cannot be determined whether or not the ground fault detection circuit is actually operating normally at the time when the ground fault is detected. Even if the ground fault detection circuit detects a fault in the ground fault detection circuit even if the ground fault detection circuit detects that the ground fault detection circuit is normal at the start-up, The ground fault will be investigated, and it will take time to find the cause of the failure.

本発明は、上記に鑑みてなされたものであって、太陽電池の発電中に太陽電池の地絡を検出した場合、太陽電池の地絡か地絡検出回路の故障かを判定可能な地絡検出回路故障診断装置を得ることを目的とする。   The present invention has been made in view of the above, and when a ground fault of a solar cell is detected during power generation of the solar cell, it is possible to determine whether the ground fault of the solar cell or the fault of the ground fault detection circuit is detected. An object is to obtain a detection circuit fault diagnosis device.

上述した課題を解決し、目的を達成するために、本発明は、太陽電池の地絡を検出する地絡検出回路故障診断装置であって、前記太陽電池からの地絡電流を検出する地絡電流検出部で検出された前記地絡電流に基づく電圧を出力する地絡検出回路と、前記太陽電池の発電中において前記地絡検出回路からの出力電圧が前記太陽電池の地絡を示す値であった場合、前記地絡検出回路が故障しているかどうかを診断する自己診断回路と、前記自己診断回路の診断結果に基づいて、前記太陽電池の地絡または前記地絡検出回路の故障を表示する制御を行う制御部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a ground fault detection circuit fault diagnosis device that detects a ground fault of a solar cell, and detects a ground fault current from the solar cell. A ground fault detection circuit that outputs a voltage based on the ground fault current detected by the current detection unit, and an output voltage from the ground fault detection circuit during power generation of the solar battery is a value indicating a ground fault of the solar battery. If there is, a self-diagnosis circuit for diagnosing whether or not the ground fault detection circuit is faulty, and indicating a ground fault of the solar cell or a fault of the ground fault detection circuit based on a diagnosis result of the self-diagnosis circuit And a control unit for performing control.

本発明によれば、太陽電池の発電中に太陽電池の地絡を検出した場合、太陽電池の地絡か地絡検出回路の故障かを判定できる、という効果を奏する。   According to the present invention, when a ground fault of a solar battery is detected during power generation of the solar battery, it is possible to determine whether the ground fault of the solar battery or the fault of the ground fault detection circuit can be determined.

本発明の実施の形態にかかる地絡検出回路故障診断装置を備えた太陽光発電システムの構成例を示す図The figure which shows the structural example of the solar energy power generation system provided with the ground-fault detection circuit failure diagnostic apparatus concerning embodiment of this invention. 地絡検出回路を故障診断する動作を示すフローチャートFlow chart showing operation for fault diagnosis of ground fault detection circuit 零相変流器での直流配線およびテスト配線の配線状態を示す図Diagram showing wiring status of DC wiring and test wiring in zero phase current transformer 零相変流器で検出された地絡電流と正常な地絡検出回路からの出力電圧との関係を示す図The figure which shows the relation between the ground fault current detected by the zero phase current transformer and the output voltage from the normal ground fault detection circuit

以下に、本発明の実施の形態にかかる地絡検出回路故障診断装置を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, a ground fault detection circuit failure diagnosis apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態.
図1は、本発明の実施の形態にかかる地絡検出回路故障診断装置を備えた太陽光発電システム100の構成例を示す図である。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a photovoltaic power generation system 100 including a ground fault detection circuit failure diagnosis device according to an embodiment of the present invention.

太陽光発電システム100は、太陽光発電を行って直流電力を出力する太陽電池1と、太陽電池1とパワーコンディショナ10とを接続する接続箱2と、接続箱2とパワーコンディショナ10との接続をオンまたはオフする直流開閉器3と、太陽電池1の地絡による直流電流である地絡電流の変動を検出する直流電流検出部である零相変流器(ZCT:Zero-phase Current Transformer)4と、太陽電池1からの直流電力の電圧を昇圧するコンバータ5と、コンバータ5によって昇圧された直流電力を交流電力に変換するインバータ6と、インバータ6からの交流電力をフィルタリングするフィルタ回路7と、パワーコンディショナ10と交流系統9との間の接続をオンまたオフする連系リレー8と、パワーコンディショナ10へ交流電力を供給し、またパワーコンディショナ10から交流電力の供給を受けることが可能な交流系統9と、パワーコンディショナ10の動作を制御する制御回路11と、太陽光発電システム100の動作状態を表示する外部表示器12と、を備える。   The solar power generation system 100 includes a solar cell 1 that performs solar power generation and outputs DC power, a connection box 2 that connects the solar cell 1 and the power conditioner 10, and a connection box 2 and a power conditioner 10. A DC switch 3 that turns on or off the connection, and a zero-phase current transformer (ZCT) that is a DC current detection unit that detects fluctuations in a ground fault current that is a DC current due to a ground fault of the solar cell 1 ) 4, a converter 5 that boosts the voltage of the DC power from the solar cell 1, an inverter 6 that converts the DC power boosted by the converter 5 into AC power, and a filter circuit 7 that filters the AC power from the inverter 6 And an interconnection relay 8 for turning on and off the connection between the power conditioner 10 and the AC system 9, and supplying AC power to the power conditioner 10. AC system 9 that can be supplied with AC power from the power conditioner 10, a control circuit 11 that controls the operation of the power conditioner 10, and an external display 12 that displays the operating state of the photovoltaic power generation system 100. And comprising.

図1に示す太陽光発電システム100において、直流開閉器3、零相変流器4、コンバータ5、インバータ6、フィルタ回路7、および連系リレー8で、パワーコンディショナ10を構成する。   In the photovoltaic power generation system 100 shown in FIG. 1, the power conditioner 10 is configured by the DC switch 3, the zero-phase current transformer 4, the converter 5, the inverter 6, the filter circuit 7, and the interconnection relay 8.

なお、零相変流器4については、太陽電池1の地絡電流の変動を検出できるものであれば他の構成を用いてもよい。また、制御回路11と外部表示器12との間の接続は、有線接続または無線接続のいずれでもよい。外部表示器12において、表示を行うために必要な情報を制御回路11から取得できればよいので、制御回路11と外部表示器12との間の通信方法は特に限定しない。   In addition, about the zero phase current transformer 4, if the fluctuation | variation of the ground fault current of the solar cell 1 can be detected, you may use another structure. The connection between the control circuit 11 and the external display 12 may be either a wired connection or a wireless connection. Since the external display 12 only needs to acquire information necessary for display from the control circuit 11, the communication method between the control circuit 11 and the external display 12 is not particularly limited.

地絡検出回路故障診断装置を構成する制御回路11は、零相変流器4で検出された地絡電流に基づく電圧を出力する地絡検出回路21と、地絡検出回路21が正常かどうかを診断する自己診断回路22と、自己診断回路22の診断結果に基づいて、太陽電池1の地絡または地絡検出回路21の故障などを表示する制御を行う制御部23と、太陽電池1の地絡または地絡検出回路21の故障などを表示する表示部24と、を備える。   The control circuit 11 constituting the ground fault detection circuit failure diagnosis device includes a ground fault detection circuit 21 that outputs a voltage based on the ground fault current detected by the zero-phase current transformer 4, and whether the ground fault detection circuit 21 is normal. The self-diagnosis circuit 22 for diagnosing the fault, the control unit 23 for performing control to display a ground fault of the solar cell 1 or a fault of the ground fault detection circuit 21 based on the diagnosis result of the self-diagnosis circuit 22, And a display unit 24 that displays a ground fault or a fault of the ground fault detection circuit 21.

制御回路11は、コンバータ5およびインバータ6などの動作を制御して交流系統9との連系運転を制御しているが、一般的な動作については従来と同様のため詳細な説明は省略する。ここでは、制御回路11において、地絡検出回路故障診断装置の部分について、地絡検出回路21の故障診断に必要な構成および動作について説明する。なお、制御回路11では、表示部24を削除し、各種の表示を外部表示器12だけに表示するようにしてもよい。   The control circuit 11 controls the operation of the converter 5, the inverter 6, and the like to control the interconnection operation with the AC system 9. However, the general operation is the same as the conventional one, and detailed description thereof is omitted. Here, in the control circuit 11, the configuration and operation necessary for the fault diagnosis of the ground fault detection circuit 21 will be described with respect to the ground fault detection circuit fault diagnosis device. In the control circuit 11, the display unit 24 may be deleted and various displays may be displayed only on the external display 12.

つづいて、地絡検出回路故障診断装置において、地絡検出回路21を故障診断する動作について説明する。図2は、地絡検出回路21を故障診断する動作を示すフローチャートである。まず、太陽光発電システム100では、日射が得られると、太陽電池1が太陽光による発電を開始して直流電力を出力する。太陽電池1での発電電力がパワーコンディショナ10を動作できる程度まで大きくなると、パワーコンディショナ10では制御回路11を動作させるための制御電源(図示せず)が起動する(ステップS1)。   Subsequently, an operation of diagnosing the fault of the ground fault detection circuit 21 in the ground fault detection circuit fault diagnosis apparatus will be described. FIG. 2 is a flowchart showing an operation for diagnosing a fault in the ground fault detection circuit 21. First, in the solar power generation system 100, when solar radiation is obtained, the solar cell 1 starts power generation by sunlight and outputs DC power. When the power generated by the solar cell 1 increases to such an extent that the power conditioner 10 can be operated, the power conditioner 10 starts a control power source (not shown) for operating the control circuit 11 (step S1).

パワーコンディショナ10の制御電源の起動後、制御回路11では、地絡検出回路21の自己診断を行う(ステップS2)。ここで、地絡検出回路21の自己診断を行う方法について説明する。図3は、零相変流器4での直流配線41およびテスト配線42の配線状態を示す図である。また、図4は、零相変流器4で検出された地絡電流と正常な地絡検出回路21からの出力電圧との関係を示す図である。地絡検出回路21は、零相変流器4で検出された地絡電流の大きさに対して図4に示す特性で電圧を出力する。   After the control power supply of the power conditioner 10 is started, the control circuit 11 performs self-diagnosis of the ground fault detection circuit 21 (step S2). Here, a method for performing the self-diagnosis of the ground fault detection circuit 21 will be described. FIG. 3 is a diagram illustrating a wiring state of the DC wiring 41 and the test wiring 42 in the zero-phase current transformer 4. FIG. 4 is a diagram showing the relationship between the ground fault current detected by the zero-phase current transformer 4 and the output voltage from the normal ground fault detection circuit 21. The ground fault detection circuit 21 outputs a voltage with the characteristics shown in FIG. 4 with respect to the magnitude of the ground fault current detected by the zero-phase current transformer 4.

図3において、直流配線41は図1に示す直流開閉器3とコンバータ5との間の配線を示し、テスト配線42は自己診断回路22からテスト電流を流すための配線である。直流配線41およびテスト配線42は、ともに零相変流器4を貫通する配線となっている。制御回路11での地絡検出回路21の自己診断方法は、自己診断回路22が、テスト配線42に流すテスト電流を変えたときの地絡検出回路21からの出力電圧に基づいて、地絡検出回路21が正常かどうかを判定する。   In FIG. 3, a DC wiring 41 indicates a wiring between the DC switch 3 and the converter 5 illustrated in FIG. 1, and a test wiring 42 is a wiring for flowing a test current from the self-diagnosis circuit 22. Both the DC wiring 41 and the test wiring 42 are wirings that penetrate the zero-phase current transformer 4. The self-diagnosis method of the ground fault detection circuit 21 in the control circuit 11 is based on the output voltage from the ground fault detection circuit 21 when the self-diagnosis circuit 22 changes the test current passed through the test wiring 42. It is determined whether the circuit 21 is normal.

自己診断回路22は、テスト電流が0mA、すなわちテスト配線42にテスト電流を流さない状態で、零相変流器4で検出された地絡電流0mAに相当する地絡検出回路21からの出力電圧を測定する。自己診断回路22は、地絡検出回路21からの出力電圧が図4の地絡電流0mAに対応する2.5Vの場合、地絡検出回路21のオフセットは正常と診断する。一方、自己診断回路22は、地絡検出回路21からの出力電圧が2.5Vから規定された値以上外れていた場合、地絡検出回路21は異常と診断し、初期設定の不具合などに基づくオフセット故障と判定する。   The self-diagnosis circuit 22 outputs the output voltage from the ground fault detection circuit 21 corresponding to the ground fault current 0 mA detected by the zero-phase current transformer 4 in a state where the test current is 0 mA, that is, the test current is not passed through the test wiring 42. Measure. The self-diagnosis circuit 22 diagnoses that the offset of the ground fault detection circuit 21 is normal when the output voltage from the ground fault detection circuit 21 is 2.5 V corresponding to the ground fault current 0 mA of FIG. On the other hand, the self-diagnosis circuit 22 diagnoses that the ground fault detection circuit 21 is abnormal when the output voltage from the ground fault detection circuit 21 is not less than a specified value from 2.5 V, and is based on the initial setting failure or the like. Judged as an offset failure.

また、自己診断回路22は、テスト配線42に+50mAのテスト電流を流した状態で、零相変流器4で検出された地絡電流+50mAに相当する地絡検出回路21からの出力電圧を測定する。自己診断回路22は、地絡検出回路21からの出力電圧が図4の地絡電流+50mAに対応する3.5Vの場合、地絡検出回路21のゲインは正常と診断する。一方、自己診断回路22は、地絡検出回路21からの出力電圧が3.5Vから規定された値以上外れていた場合、地絡検出回路21は異常と診断し、零相変流器4で検出された変動する電流値を正しい電圧値に変換して出力できないゲイン故障と判定する。   The self-diagnosis circuit 22 measures the output voltage from the ground fault detection circuit 21 corresponding to the ground fault current +50 mA detected by the zero-phase current transformer 4 in a state where a test current of +50 mA is passed through the test wiring 42. To do. The self-diagnosis circuit 22 diagnoses that the gain of the ground fault detection circuit 21 is normal when the output voltage from the ground fault detection circuit 21 is 3.5 V corresponding to the ground fault current +50 mA in FIG. On the other hand, the self-diagnosis circuit 22 diagnoses that the ground fault detection circuit 21 is abnormal when the output voltage from the ground fault detection circuit 21 is not less than a specified value from 3.5 V, and the zero-phase current transformer 4 The detected variable current value is converted into a correct voltage value and determined as a gain failure that cannot be output.

また、自己診断回路22は、テスト配線42に−50mAのテスト電流を流した状態で、零相変流器4で検出された地絡電流−50mAに相当する地絡検出回路21からの出力電圧を測定する。自己診断回路22は、地絡検出回路21からの出力電圧が図4の地絡電流−50mAに対応する1.5Vの場合、地絡検出回路21のゲインは正常と診断する。一方、自己診断回路22は、地絡検出回路21からの出力電圧が1.5Vから規定された値以上外れていた場合、地絡検出回路21は異常と診断し、ゲイン故障と判定する。   The self-diagnosis circuit 22 outputs an output voltage from the ground fault detection circuit 21 corresponding to the ground fault current of −50 mA detected by the zero-phase current transformer 4 in a state where a test current of −50 mA is passed through the test wiring. Measure. The self-diagnosis circuit 22 diagnoses that the gain of the ground fault detection circuit 21 is normal when the output voltage from the ground fault detection circuit 21 is 1.5 V corresponding to the ground fault current of −50 mA in FIG. On the other hand, if the output voltage from the ground fault detection circuit 21 deviates by more than a specified value from 1.5V, the self-diagnosis circuit 22 diagnoses the ground fault detection circuit 21 as abnormal and determines that it is a gain failure.

なお、零相変流器4で検出された電流に対して正常な地絡検出回路21の出力電圧の特性が図4に示すように直線の場合、自己診断回路22では、ゲインが正常かどうかを判定する測定について、テスト配線42に+50mAのテスト電流を流した場合またはテスト配線42に−50mAのテスト電流を流した場合のいずれか一方のみの測定を行い、もう一方の測定を省略してもよい。また、自己診断回路22では、テスト配線42に流すテスト電流は+50mAまたは−50mA以外の電流値を用いてもよい。自己診断回路22では、地絡検出回路21について図4に示す特性の確認ができればよいので、ゲインの確認については0mA以外のテスト電流を用いて行うことも可能である。   When the output voltage characteristic of the ground fault detection circuit 21 that is normal with respect to the current detected by the zero-phase current transformer 4 is a straight line as shown in FIG. 4, the self-diagnosis circuit 22 determines whether the gain is normal. In the measurement for determining whether or not a test current of +50 mA is applied to the test wiring 42 or a test current of −50 mA is applied to the test wiring 42, only one measurement is performed and the other measurement is omitted. Also good. In the self-diagnosis circuit 22, a current value other than +50 mA or −50 mA may be used as the test current flowing through the test wiring 42. Since the self-diagnosis circuit 22 only needs to be able to confirm the characteristics shown in FIG. 4 for the ground fault detection circuit 21, the gain can be confirmed using a test current other than 0 mA.

図2のフローチャートに戻る。自己診断回路22での診断の結果、地絡検出回路21が正常であった場合(ステップS3:Yes)、制御部23は、自己診断回路22から地絡検出回路21が正常である旨の通知を受け、コンバータ5およびインバータ6を動作させ、連系リレー8をオンし、交流系統9へ交流電力の出力を行い、連系運転を開始する(ステップS4)。   Returning to the flowchart of FIG. When the ground fault detection circuit 21 is normal as a result of the diagnosis in the self-diagnosis circuit 22 (step S3: Yes), the control unit 23 notifies the self-diagnosis circuit 22 that the ground fault detection circuit 21 is normal. In response, the converter 5 and the inverter 6 are operated, the interconnection relay 8 is turned on, AC power is output to the AC system 9, and the interconnection operation is started (step S4).

連系運転開始後、自己診断回路22および制御部23は、地絡検出回路21からの出力電圧を監視することで、太陽電池1の地絡が検出されたかどうかを確認する(ステップS5)。ここでは、図4に示す特性に対応して、零相変流器4での電流レベルが−50mAより大きく+50mA未満のとき、太陽電池1は地絡していない、すなわち、地絡検出回路21からの出力電圧が1.5Vより大きく3.5V未満のとき、太陽電池1は地絡していないとする。自己診断回路22および制御部23は、地絡検出回路21からの出力電圧が1.5Vより大きく3.5V未満の場合、太陽電池1は地絡していないと判定し(ステップS5:No)、地絡検出回路21からの出力電圧の監視を継続する。太陽電池1の地絡を検出しない間、制御部23では、交流系統9との連系運転を継続する。   After starting the interconnection operation, the self-diagnosis circuit 22 and the control unit 23 monitor the output voltage from the ground fault detection circuit 21 to confirm whether or not the ground fault of the solar cell 1 has been detected (step S5). Here, corresponding to the characteristics shown in FIG. 4, when the current level in the zero-phase current transformer 4 is greater than −50 mA and less than +50 mA, the solar cell 1 is not grounded, that is, the ground fault detection circuit 21. When the output voltage from is greater than 1.5V and less than 3.5V, it is assumed that the solar cell 1 is not grounded. When the output voltage from the ground fault detection circuit 21 is greater than 1.5V and less than 3.5V, the self-diagnosis circuit 22 and the control unit 23 determine that the solar cell 1 is not grounded (No in step S5). The monitoring of the output voltage from the ground fault detection circuit 21 is continued. While the ground fault of the solar cell 1 is not detected, the control unit 23 continues the interconnection operation with the AC system 9.

自己診断回路22および制御部23は、地絡検出回路21からの出力電圧が1.5V以下または3.5V以上の場合、太陽電池1の地絡を検出したと判定する(ステップS5:Yes)。   The self-diagnosis circuit 22 and the control unit 23 determine that the ground fault of the solar cell 1 has been detected when the output voltage from the ground fault detection circuit 21 is 1.5 V or less or 3.5 V or more (step S5: Yes). .

制御部23は、太陽電池1の地絡を検出した場合(ステップS5:Yes)、連系リレー8をオフし、交流系統9との連系運転を停止する(ステップS6)。   When the ground fault of the solar cell 1 is detected (step S5: Yes), the control unit 23 turns off the interconnection relay 8 and stops the interconnection operation with the AC system 9 (step S6).

自己診断回路22は、太陽電池1の地絡を検出した場合(ステップS5:Yes)、制御部23から連系運転停止の通知を受けた後、地絡検出回路21の自己診断を行う(ステップS7)。制御回路11での自己診断方法は前述のステップS2のときと同じである。   When the self-diagnosis circuit 22 detects a ground fault of the solar cell 1 (step S5: Yes), the self-diagnosis circuit 22 performs a self-diagnosis of the ground fault detection circuit 21 after receiving notification of the interconnection operation stop from the control unit 23 (step S5). S7). The self-diagnosis method in the control circuit 11 is the same as that in step S2.

自己診断回路22は、自己診断の結果、テスト配線42のテスト電流0mAのときの地絡検出回路21からの出力電圧が正常、すなわち、地絡検出回路21のオフセットが正常であり(ステップS8:Yes)、テスト配線42のテスト電流+50mAまたは−50mAのときの地絡検出回路21からの出力電圧が正常、すなわち、地絡検出回路21のゲインが正常の場合(ステップS9:Yes)、地絡検出回路21は正常である旨を制御部23へ通知する。   As a result of self-diagnosis, the self-diagnosis circuit 22 has a normal output voltage from the ground fault detection circuit 21 when the test current of the test wiring 42 is 0 mA, that is, the offset of the ground fault detection circuit 21 is normal (step S8: Yes), when the output voltage from the ground fault detection circuit 21 is normal when the test current of the test wiring 42 is +50 mA or −50 mA, that is, the gain of the ground fault detection circuit 21 is normal (step S9: Yes), the ground fault The detection circuit 21 notifies the control unit 23 that it is normal.

制御部23は、自己診断回路22から通知を受け、地絡検出回路21は正常であることから、太陽電池1が地絡していると判定し、外部表示器12および表示部24に太陽電池1の地絡を表示する(ステップS10)。制御部23が外部表示器12および表示部24に太陽電池1の地絡を表示する方法は、エラーコード、例えば「E−29」と表示する方法があるが、これに限定するものではない。制御部23が太陽電池1の地絡を表示するのは、外部表示器12または表示部24のいずれか一方でもよい。   The control unit 23 receives a notification from the self-diagnosis circuit 22 and determines that the solar cell 1 is grounded because the ground fault detection circuit 21 is normal, and the solar cell 1 is displayed on the external display 12 and the display unit 24. 1 ground fault is displayed (step S10). Although the method for displaying the ground fault of the solar cell 1 on the external indicator 12 and the display unit 24 by the control unit 23 includes a method of displaying an error code, for example, “E-29”, it is not limited to this. The control unit 23 may display the ground fault of the solar cell 1 either by the external display 12 or the display unit 24.

自己診断回路22は、自己診断の結果、テスト配線42のテスト電流0mAのときの地絡検出回路21からの出力電圧が異常、すなわち、地絡検出回路21のオフセットが異常であった場合(ステップS8:No)、地絡検出回路21のオフセット故障と判定し(ステップS11)、地絡検出回路21のオフセット故障を制御部23へ通知する。   The self-diagnosis circuit 22 determines that the output voltage from the ground fault detection circuit 21 is abnormal when the test current of the test wiring 42 is 0 mA, that is, the offset of the ground fault detection circuit 21 is abnormal (step). S8: No), it is determined that the ground fault detection circuit 21 has an offset fault (step S11), and the control unit 23 is notified of the offset fault of the ground fault detection circuit 21.

制御部23は、自己診断回路22からの通知を受け、外部表示器12および表示部24に地絡検出回路21の故障を表示する(ステップS13)。制御部23が外部表示器12および表示部24に地絡検出回路21の故障を表示する方法は、エラーコード、例えば「E−31」と表示する方法があるが、これに限定するものではない。制御部23が地絡検出回路21の故障を表示するのは、外部表示器12または表示部24のいずれか一方でもよい。   The control unit 23 receives the notification from the self-diagnosis circuit 22, and displays the failure of the ground fault detection circuit 21 on the external display 12 and the display unit 24 (step S13). There is a method in which the control unit 23 displays a failure of the ground fault detection circuit 21 on the external display 12 and the display unit 24, but there is a method of displaying an error code, for example, “E-31”, but is not limited thereto. . The control unit 23 may display the failure of the ground fault detection circuit 21 either in the external display 12 or the display unit 24.

また、制御部23では、単に地絡検出回路21が故障していると表示するだけでなく、地絡検出回路21がオフセット故障していることを表示する制御も可能である。制御部23は、自己診断回路22から地絡検出回路21がオフセット故障している旨の通知を受けている。そのため、制御部23は、例えば、故障修理対応するサービスマンから一般のユーザが簡単にできない操作を受け付けた場合に、「E−31」の表示をさらに詳細にしてオフセット故障を示す「E3100」を外部表示器12および表示部24に表示することができる。なお、制御部23は、最初から「E3100」の表示を行ってもよい。   In addition, the control unit 23 can display not only that the ground fault detection circuit 21 is faulty but also display that the ground fault detection circuit 21 is faulty. The control unit 23 receives notification from the self-diagnosis circuit 22 that the ground fault detection circuit 21 has an offset failure. Therefore, for example, when an operation that cannot be easily performed by a general user is received from a service person corresponding to the failure repair, the control unit 23 displays “E3100” indicating the offset failure by further displaying “E-31”. It can be displayed on the external display 12 and the display unit 24. The control unit 23 may display “E3100” from the beginning.

自己診断回路22は、自己診断の結果、テスト配線42のテスト電流0mAのときの地絡検出回路21からの出力電圧が正常、すなわち、地絡検出回路21のオフセットが正常であるが(ステップS8:Yes)、テスト配線42のテスト電流+50mAまたは−50mAのときの地絡検出回路21からの出力電圧が異常、すなわち、地絡検出回路21のゲインが異常であった場合(ステップS9:No)、地絡検出回路21のゲイン故障と判定し(ステップS12)、地絡検出回路21のゲイン故障を制御部23へ通知する。   As a result of self-diagnosis, the self-diagnosis circuit 22 has a normal output voltage from the ground fault detection circuit 21 when the test current of the test wiring 42 is 0 mA, that is, the offset of the ground fault detection circuit 21 is normal (step S8). : Yes), when the output voltage from the ground fault detection circuit 21 when the test current of the test wiring 42 is +50 mA or −50 mA is abnormal, that is, the gain of the ground fault detection circuit 21 is abnormal (step S9: No). Then, it is determined that there is a gain failure in the ground fault detection circuit 21 (step S12), and the control unit 23 is notified of the gain failure in the ground fault detection circuit 21.

制御部23は、自己診断回路22からの通知を受け、外部表示器12および表示部24に地絡検出回路21の故障を表示する(ステップS13)。制御部23が外部表示器12および表示部24に地絡検出回路21の故障を表示する方法は、エラーコード、例えば「E−31」と表示する方法があるが、これに限定するものではない。制御部23が地絡検出回路21の故障を表示するのは、外部表示器12または表示部24のいずれか一方でもよい。   The control unit 23 receives the notification from the self-diagnosis circuit 22, and displays the failure of the ground fault detection circuit 21 on the external display 12 and the display unit 24 (step S13). There is a method in which the control unit 23 displays a failure of the ground fault detection circuit 21 on the external display 12 and the display unit 24, but there is a method of displaying an error code, for example, “E-31”, but is not limited thereto. . The control unit 23 may display the failure of the ground fault detection circuit 21 either in the external display 12 or the display unit 24.

また、制御部23では、単に地絡検出回路21が故障していると表示するだけでなく、地絡検出回路21がゲイン故障していることを表示することも可能である。制御部23は、自己診断回路22から地絡検出回路21がゲイン故障している旨の通知を受けている。そのため、制御部23は、例えば、故障修理対応するサービスマンから一般のユーザが簡単にできない操作を受け付けた場合に、「E−31」の表示をさらに詳細にしてゲイン故障を示す「E3101」を外部表示器12および表示部24に表示することができる。なお、制御部23は、最初から「E3101」の表示を行ってもよい。   Further, the control unit 23 can not only display that the ground fault detection circuit 21 has failed, but can also display that the ground fault detection circuit 21 has failed. The control unit 23 receives a notification from the self-diagnosis circuit 22 that the ground fault detection circuit 21 has a gain failure. Therefore, for example, when an operation that cannot be easily performed by a general user is received from a service person corresponding to the failure repair, the control unit 23 displays “E- 311” indicating the gain failure by further displaying “E-31”. It can be displayed on the external display 12 and the display unit 24. The control unit 23 may display “E3101” from the beginning.

なお、図2のフローチャートにおいて、パワーコンディショナ10の制御電源の起動後の自己診断(ステップS2)の結果、地絡検出回路21が異常であった場合(ステップS3:No)、自己診断回路22は、ステップS8以降の動作により、地絡検出回路21のオフセット故障かゲイン故障かを判定して制御部23へ通知する。そして、制御部23が、外部表示器12および表示部24に、地絡検出回路21の故障、さらにオフセット故障またはゲイン故障を表示させる。   In the flowchart of FIG. 2, when the ground fault detection circuit 21 is abnormal (step S <b> 3: No) as a result of the self-diagnosis (step S <b> 2) after starting the control power supply of the power conditioner 10, the self-diagnosis circuit 22 Determines whether the ground fault detection circuit 21 has an offset fault or a gain fault by the operation after step S8 and notifies the control unit 23 of it. Then, the control unit 23 causes the external display 12 and the display unit 24 to display a fault of the ground fault detection circuit 21, and further an offset fault or a gain fault.

以上説明したように、本実施の形態によれば、制御回路11では、太陽電池1の発電中において、零相変流器4で検出された直流電流に基づく地絡検出回路21からの出力電圧が太陽電池1の地絡を示す値であった場合、自己診断回路22は、地絡検出回路21が故障しているかどうかの自己診断を行い、自己診断の結果、太陽電池1が地絡しているか、または地絡検出回路21が故障しているかを制御部23へ通知し、制御部23が、太陽電池1の地絡または地絡検出回路21の故障を表示部24および外部表示器12へ表示することとした。制御回路11では、パワーコンディショナ10の運転開始後に加えて、太陽電池1の発電中、すなわちパワーコンディショナ10の運転中に地絡検出回路21からの出力電圧が太陽電池1の地絡を示す値であった場合にも、地絡検出回路21が故障していないかどうかの自己診断を行い、太陽電池1が地絡しているのか、地絡検出回路21が故障しているのかを判定する。これにより、ユーザ、修理対応するサービスマンなどは、太陽電池1の地絡か地絡検出回路21の故障か判別できるため、早期に故障発見ができ、修理対応を迅速に行うことができる。   As described above, according to the present embodiment, in the control circuit 11, the output voltage from the ground fault detection circuit 21 based on the DC current detected by the zero-phase current transformer 4 during power generation of the solar cell 1. Is a value indicating the ground fault of the solar cell 1, the self-diagnosis circuit 22 performs a self-diagnosis as to whether the ground fault detection circuit 21 has failed, and as a result of the self-diagnosis, the solar cell 1 has a ground fault. Or the ground fault detection circuit 21 is notified to the control unit 23, and the control unit 23 indicates the ground fault of the solar cell 1 or the fault of the ground fault detection circuit 21 by the display unit 24 and the external indicator 12. It was decided to display. In the control circuit 11, the output voltage from the ground fault detection circuit 21 indicates the ground fault of the solar cell 1 during the power generation of the solar cell 1, that is, during the operation of the power conditioner 10 in addition to the start of the operation of the power conditioner 10. Even if it is a value, a self-diagnosis is performed to determine whether the ground fault detection circuit 21 has failed, and it is determined whether the solar cell 1 has a ground fault or the ground fault detection circuit 21 has failed. To do. As a result, a user, a service person who handles repairs, and the like can determine whether the ground fault of the solar battery 1 or the fault of the ground fault detection circuit 21 can be detected, so that the failure can be detected at an early stage and repairs can be performed quickly.

以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。   The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

1 太陽電池、2 接続箱、3 直流開閉器、4 零相変流器、5 コンバータ、6 インバータ、7 フィルタ回路、8 連系リレー、9 交流系統、10 パワーコンディショナ、11 制御回路、12 外部表示器、21 地絡検出回路、22 自己診断回路、23 制御部、24 表示部、100 太陽光発電システム。   DESCRIPTION OF SYMBOLS 1 Solar cell, 2 Junction box, 3 DC switch, 4 Zero phase current transformer, 5 Converter, 6 Inverter, 7 Filter circuit, 8 interconnection relay, 9 AC system, 10 Power conditioner, 11 Control circuit, 12 External Display, 21 Ground fault detection circuit, 22 Self-diagnosis circuit, 23 Control unit, 24 Display unit, 100 Solar power generation system.

Claims (3)

太陽電池の地絡を検出する地絡検出回路故障診断装置であって、
前記太陽電池からの地絡電流を検出する地絡電流検出部で検出された前記地絡電流に基づく電圧を出力する地絡検出回路と、
太陽光発電システムの発電中において前記地絡検出回路からの出力電圧が前記太陽電池の地絡を示す値であった場合、前記地絡検出回路が故障しているかどうかを診断する自己診断回路と、
前記自己診断回路の診断結果に基づいて、前記太陽電池の地絡または前記地絡検出回路の故障を表示する制御を行う制御部と、
を備えることを特徴とする地絡検出回路故障診断装置。
A ground fault detection circuit fault diagnosis device for detecting a ground fault of a solar cell,
A ground fault detection circuit that outputs a voltage based on the ground fault current detected by a ground fault current detection unit that detects a ground fault current from the solar cell;
A self-diagnosis circuit for diagnosing whether or not the ground fault detection circuit is faulty when an output voltage from the ground fault detection circuit is a value indicating a ground fault of the solar cell during power generation of the solar power generation system; ,
Based on the diagnosis result of the self-diagnosis circuit, a control unit that performs control to display a ground fault of the solar cell or a fault of the ground fault detection circuit;
A ground fault detection circuit fault diagnosis device comprising:
前記自己診断回路は、前記直流電流検出部に流すテスト電流を制御して、前記地絡検出回路の故障が、前記直流電流がゼロのときの前記出力電圧の異常によるオフセット故障か、前記直流電流がゼロ以外のときの前記出力電圧の異常によるゲイン故障かを判定し、
前記制御部は、前記自己診断回路の判定結果に基づいて、前記地絡検出回路のオフセット故障またはゲイン故障を表示する制御を行う、
ことを特徴とする請求項1に記載の地絡検出回路故障診断装置。
The self-diagnosis circuit controls a test current passed through the DC current detection unit, and the fault of the ground fault detection circuit is an offset fault due to an abnormality in the output voltage when the DC current is zero, or the DC current To determine if the gain is faulty due to an abnormality in the output voltage when is non-zero,
The control unit performs control to display an offset failure or a gain failure of the ground fault detection circuit based on a determination result of the self-diagnosis circuit.
The ground fault detection circuit failure diagnosis apparatus according to claim 1.
前記自己診断回路は、前記太陽光発電システムが停止中に前記地絡検出回路の診断を実施する制御を行う、
ことを特徴とする請求項1および請求項2に記載の地絡検出回路故障診断装置。
The self-diagnosis circuit performs control to perform diagnosis of the ground fault detection circuit while the photovoltaic power generation system is stopped.
The ground fault detection circuit failure diagnosis apparatus according to claim 1 or 2, wherein the ground fault detection circuit fault diagnosis apparatus is provided.
JP2014235461A 2014-11-20 2014-11-20 Fault detection device for ground fault detection circuit Expired - Fee Related JP6456115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014235461A JP6456115B2 (en) 2014-11-20 2014-11-20 Fault detection device for ground fault detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014235461A JP6456115B2 (en) 2014-11-20 2014-11-20 Fault detection device for ground fault detection circuit

Publications (3)

Publication Number Publication Date
JP2016099192A true JP2016099192A (en) 2016-05-30
JP2016099192A5 JP2016099192A5 (en) 2017-12-14
JP6456115B2 JP6456115B2 (en) 2019-01-23

Family

ID=56076068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014235461A Expired - Fee Related JP6456115B2 (en) 2014-11-20 2014-11-20 Fault detection device for ground fault detection circuit

Country Status (1)

Country Link
JP (1) JP6456115B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213390A (en) * 2018-06-07 2019-12-12 ニチコン株式会社 Power conditioner and power storage system
JP2020046261A (en) * 2018-09-18 2020-03-26 住友電気工業株式会社 Method for diagnosing soundness of zero-phase current transformer and power conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239672B (en) * 2020-03-19 2022-07-29 东南大学 Machine learning algorithm-based gradient fault prediction method for optical fiber current transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018740A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Dc ground fault detector and interconnected system power generating apparatus
JP2006184160A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Current detection apparatus for three-phase a.c. motor with failure detection function
JP2006187150A (en) * 2004-12-28 2006-07-13 Omron Corp Power conditioner and its self-diagnostic method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018740A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Dc ground fault detector and interconnected system power generating apparatus
JP2006184160A (en) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd Current detection apparatus for three-phase a.c. motor with failure detection function
JP2006187150A (en) * 2004-12-28 2006-07-13 Omron Corp Power conditioner and its self-diagnostic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019213390A (en) * 2018-06-07 2019-12-12 ニチコン株式会社 Power conditioner and power storage system
JP7072989B2 (en) 2018-06-07 2022-05-23 ニチコン株式会社 Power storage system
JP2020046261A (en) * 2018-09-18 2020-03-26 住友電気工業株式会社 Method for diagnosing soundness of zero-phase current transformer and power conditioner

Also Published As

Publication number Publication date
JP6456115B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5788538B2 (en) Motor drive device with insulation deterioration detection function and motor insulation resistance detection method
JP5352743B2 (en) Distributed power supply system and control method thereof
JP5138122B2 (en) Distributed power generator and method of operating the same
JP5691816B2 (en) Abnormality detection device for solar panel
KR101818916B1 (en) Fault diagnosis apparatus, system and method of permanent magnet motor
JP4206998B2 (en) Power conditioner and its self-diagnosis method
JP5855699B2 (en) Motor driving device having welding detection function of magnetic contactor
US10090680B2 (en) High accuracy mains filter monitoring for a multi-phase power system
JP2012120376A (en) Inverter device
JP2012184985A (en) Dispersion type power generation system
JP6456115B2 (en) Fault detection device for ground fault detection circuit
JP6287062B2 (en) Inverter
JP2012222923A (en) Distributed generator
US20180259563A1 (en) Distributed power supply
JP6555161B2 (en) Arc detector
JP2008157838A (en) Insulation monitoring device
JP6680368B2 (en) Uninterruptible power system
JP5518657B2 (en) Ground resistance meter
KR101032487B1 (en) Power conditioner for solar power generation
JP5288931B2 (en) Motor drive device for determining the cause of phase loss in a multi-phase motor
JP2016099192A5 (en)
JP2015027146A (en) Power conditioner
US20200292596A1 (en) Monitoring system
JP6287109B2 (en) Inverter
TWI609187B (en) Insulation monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181218

R150 Certificate of patent or registration of utility model

Ref document number: 6456115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees