JP4206998B2 - Power conditioner and its self-diagnosis method - Google Patents

Power conditioner and its self-diagnosis method Download PDF

Info

Publication number
JP4206998B2
JP4206998B2 JP2004379659A JP2004379659A JP4206998B2 JP 4206998 B2 JP4206998 B2 JP 4206998B2 JP 2004379659 A JP2004379659 A JP 2004379659A JP 2004379659 A JP2004379659 A JP 2004379659A JP 4206998 B2 JP4206998 B2 JP 4206998B2
Authority
JP
Japan
Prior art keywords
detection circuit
pulse signal
current detection
ground fault
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379659A
Other languages
Japanese (ja)
Other versions
JP2006187150A (en
Inventor
康弘 坪田
耕太郎 中村
雅夫 馬渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2004379659A priority Critical patent/JP4206998B2/en
Publication of JP2006187150A publication Critical patent/JP2006187150A/en
Application granted granted Critical
Publication of JP4206998B2 publication Critical patent/JP4206998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は太陽光発電システムなどの自己診断機能を有するパワーコンディショナに係り、特に、地絡電流を検出する地絡電流検出回路および漏洩電流を検出する漏洩電流検出回路の自己診断機能を備えたパワーコンディショナに関する。   The present invention relates to a power conditioner having a self-diagnosis function such as a solar power generation system, and more particularly, has a self-diagnosis function of a ground fault current detection circuit for detecting a ground fault current and a leak current detection circuit for detecting a leak current. It relates to the inverter.

系統(商用電源)と連系運転されるパワーコンディショナは、公共の商用電源ラインに接続されるため、高い信頼性が要求される。このため、従来のパワーコンディショナには、系統側を保護するために、交流過電圧、交流不足電圧、交流過周波数、交流不足周波数、直流分流出電流、直流地絡電流および漏洩電流などに対する保護機能が搭載されている。   Since the power conditioner that is connected to the grid (commercial power supply) is connected to a public commercial power supply line, high reliability is required. For this reason, the conventional power conditioner has a protection function against AC overvoltage, AC undervoltage, AC overfrequency, AC underfrequency, DC component outflow current, DC ground fault current, leakage current, etc. to protect the system side. Is installed.

例えば、直流地絡電流および漏洩電流の保護機能は、電力線を貫通させた電流センサ(ZCTなどの変流器)で電力線に流れる電流のアンバランスを検出し、地絡電流検出回路で直流地絡電流を検出し、漏洩電流検出回路で漏洩電流を検出することによって、パワーコンディショナを系統側から切り離すように構成されている。   For example, the DC ground fault current and leakage current protection function detects the imbalance of the current flowing through the power line with a current sensor (current transformer such as ZCT) that penetrates the power line, and the ground fault current detection circuit detects the DC ground fault. By detecting the current and detecting the leakage current with the leakage current detection circuit, the power conditioner is configured to be disconnected from the system side.

また、保護機能を有する技術は、「特許文献1」(太陽光発電システム)に開示されているように、発電起動毎に、保護装置に電力配電系統の異常模擬信号を出力し、異常模擬信号による保護装置の動作を確認することにより、保護装置の自己診断を自動的に実行するものが知られている。   Further, as disclosed in “Patent Document 1” (solar power generation system), the technology having a protection function outputs an abnormality simulation signal of the power distribution system to the protection device every time power generation is started. It is known that the self-diagnosis of the protection device is automatically executed by confirming the operation of the protection device according to the above.

これにより、顧客側での特別な点検作業を行うことなく、常に正常な保護機能を具備した状態で系統連系運転が行える。
特開平9−215203号公報
As a result, grid-connected operation can be performed with a normal protection function without any special inspection work on the customer side.
JP-A-9-215203

しかしながら、従来のパワーコンディショナは、地絡電流検出回路や漏洩電流検出回路に故障が発生し、直流地絡電流や漏洩電流が流れているにも拘わらず、地絡電流検出回路や漏洩電流検出回路が検出できない場合、または小さな故障電流(地絡電流検出回路や漏洩電流検出回路)しか流れていないという、所謂危険サイド側に検出した場合には、系統側が保護されず、大きな災害をもたらす虞がある。   However, the conventional power conditioner has a fault in the ground fault current detection circuit or leakage current detection circuit, and the ground fault current detection circuit or leakage current detection is detected even though a DC ground fault current or leakage current is flowing. If the circuit cannot be detected, or if it is detected on the so-called dangerous side that only a small fault current (ground fault current detection circuit or leakage current detection circuit) is flowing, the system side may not be protected and a major disaster may occur. There is.

また、「特許文献1」に開示された太陽光発電システムは、電源電圧や周波数を定格から上下に変動させた異常模擬信号に対して保護機能が動作するか否かを確認することにより、保護装置の自己診断を実行しているが、保護装置そのものの特性などを自己診断していないため、異常模擬信号では検出できない意外な故障が保護装置に発生し、危険サイド側に検出してしまう虞がある。   Further, the photovoltaic power generation system disclosed in “Patent Document 1” is protected by confirming whether or not the protection function operates for an abnormal simulation signal in which the power supply voltage and frequency are fluctuated up and down from the rating. Although the self-diagnosis of the device is performed, but the characteristics of the protection device itself are not self-diagnosis, an unexpected failure that cannot be detected by the abnormal simulation signal may occur in the protection device and be detected on the dangerous side. There is.

なお、「特許文献1」に開示された方式を直流地絡電流や漏洩電流に対する保護に適用することは、異常模擬信号の構成が困難になることが想定される。   Note that applying the method disclosed in “Patent Document 1” to protection against DC ground fault current and leakage current is expected to make it difficult to configure an abnormal simulation signal.

最近、太陽光発電システムなどの普及がめざましくなるにつれて、系統側に障害を及ぼすことを回避するために、ヨーロッパではパワーコンディショナに対する適用基準が厳しくなってきており、保護装置への自己診断機能の要求も高まる傾向にあって、ユーザからも強く要望されている。   In recent years, with the spread of solar power generation systems and the like, the standard of application for power conditioners has become stricter in Europe in order to avoid damaging the grid side. There is a tendency for demand to increase, and there is a strong demand from users.

この発明はこのような課題を解決するためになされたもので、その目的は地絡電流検出回路や漏洩電流検出回路の自己診断を単純な構成で確実に実行可能なパワーコンディショナを提供することにある。   The present invention has been made to solve such problems, and an object of the present invention is to provide a power conditioner that can reliably execute self-diagnosis of a ground fault current detection circuit and a leakage current detection circuit with a simple configuration. It is in.

前記課題を解決するためこの発明に係るパワーコンディショナは、発振回路から所定周波数のパルス信号をZCTと抵抗器の直列回路に供給し、ZCTを貫通する電力線に流れる電流のアンバランスによって変化するインピーダンスと抵抗器とで分圧された信号成分に基づいて地絡電流あるいは漏洩電流を検出する地絡電流検出回路および漏洩電流検出回路を備えたパワーコンディショナにおいて、発振回路の信号条件を変化させ、地絡電流検出回路または漏洩電流検出回路で検出する信号成分に基づいて地絡電流検出回路および漏洩電流検出回路が正常または異常の自己診断を行う自己診断手段を備えたことを特徴とする。   In order to solve the above-described problems, a power conditioner according to the present invention supplies a pulse signal having a predetermined frequency from an oscillation circuit to a series circuit of ZCT and a resistor, and impedance that varies depending on an imbalance of current flowing through a power line passing through the ZCT. In the power conditioner having a ground fault current detection circuit and a leak current detection circuit that detect a ground fault current or a leakage current based on a signal component divided by the resistor and the resistor, the signal condition of the oscillation circuit is changed, The ground fault current detection circuit and the leak current detection circuit include self-diagnosis means for performing normal diagnosis or abnormality self-diagnosis based on a signal component detected by the ground fault current detection circuit or the leak current detection circuit.

この発明に係るパワーコンディショナは、発振回路の信号条件を変化させ、地絡電流検出回路または漏洩電流検出回路で検出する信号成分に基づいて地絡電流検出回路および漏洩電流検出回路が正常または異常の自己診断を行う自己診断手段を備えたので、パワーコンディショナを系統側から切り離した状態で、地絡電流検出回路または漏洩電流検出回路そのものの特性をチェックして正常か異常かを正確に判定することができる。   The power conditioner according to the present invention changes the signal condition of the oscillation circuit, and the ground fault current detection circuit and the leak current detection circuit are normal or abnormal based on the signal component detected by the ground fault current detection circuit or the leak current detection circuit. The self-diagnosis means for self-diagnosis is provided, and the characteristics of the ground fault current detection circuit or leakage current detection circuit itself are checked accurately with the power conditioner disconnected from the system side to determine whether it is normal or abnormal. can do.

また、この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、発振回路が出力する所定周波数の信号成分を検出する信号検出回路を備えたことを特徴とする。   The self-diagnosis means according to the present invention includes a signal detection circuit that sets a signal condition of a pulse signal generated by the oscillation circuit and detects a signal component of a predetermined frequency output from the oscillation circuit.

この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、発振回路が出力する所定周波数の信号成分を検出する信号検出回路を備えたので、地絡電流検出回路または漏洩電流検出回路に発振出力を供給する発振回路の正常または異常をチェックすることができる。   Since the self-diagnosis means according to the present invention includes a signal detection circuit for setting a signal condition of a pulse signal generated by the oscillation circuit and detecting a signal component of a predetermined frequency output from the oscillation circuit, the ground fault current detection circuit or The normality or abnormality of the oscillation circuit that supplies the oscillation output to the leakage current detection circuit can be checked.

さらに、この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、信号検出回路が検出した信号成分、地絡電流検出回路が検出した信号成分および漏洩電流検出回路が検出した信号成分に基づいて発振回路、地絡電流検出回路および漏洩電流検出回路の正常または異常を判定する自己診断制御手段を備えたことを特徴とする。   Further, the self-diagnostic means according to the present invention sets the signal condition of the pulse signal generated by the oscillation circuit, the signal component detected by the signal detection circuit, the signal component detected by the ground fault current detection circuit, and the leakage current detection circuit Self-diagnosis control means for determining whether the oscillation circuit, ground fault current detection circuit, and leakage current detection circuit are normal or abnormal based on the detected signal component is provided.

この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、信号検出回路が検出した信号成分、地絡電流検出回路が検出した信号成分および漏洩電流検出回路が検出した信号成分に基づいて発振回路、地絡電流検出回路および漏洩電流検出回路の正常または異常を判定する自己診断制御手段を備えたので、信号検出回路のハード、信号条件ソフトおよび正常または異常の判定ソフトだけで自己診断機能を実現することができる。   The self-diagnosis means according to the present invention sets the signal condition of the pulse signal generated by the oscillation circuit, detects the signal component detected by the signal detection circuit, the signal component detected by the ground fault current detection circuit, and the leakage current detection circuit Self-diagnosis control means that determines whether the oscillation circuit, ground fault current detection circuit, and leakage current detection circuit are normal or abnormal based on the signal component, so the signal detection circuit hardware, signal condition software, and normal or abnormal determination software The self-diagnosis function can be realized only by this.

また、この発明に係る自己診断制御手段は、所定周波数のパルス信号の信号条件を設定するとともに、信号検出回路が検出したパルス信号成分と基準値とを比較し、発振回路の正常または異常を判定することを特徴とする。   The self-diagnosis control means according to the present invention sets a signal condition of a pulse signal having a predetermined frequency and compares the pulse signal component detected by the signal detection circuit with a reference value to determine whether the oscillation circuit is normal or abnormal. It is characterized by doing.

この発明に係る自己診断制御手段は、所定周波数のパルス信号の信号条件を設定するとともに、信号検出回路が検出したパルス信号成分と基準値とを比較し、発振回路の正常または異常を判定するので、発振回路の動作を保証することができる。   The self-diagnosis control means according to the present invention sets the signal condition of the pulse signal having a predetermined frequency and compares the pulse signal component detected by the signal detection circuit with the reference value to determine whether the oscillation circuit is normal or abnormal. The operation of the oscillation circuit can be guaranteed.

さらに、この発明に係る自己診断制御手段は、所定周波数のパルス信号と、所定周波数と異なる周波数のパルス信号の信号条件を設定するとともに、地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値とを比較し、地絡電流検出回路の正常または異常を判定することを特徴とする。   Furthermore, the self-diagnosis control means according to the present invention sets a signal condition of a pulse signal having a predetermined frequency and a pulse signal having a frequency different from the predetermined frequency, and a deviation between both pulse signal components detected by the ground fault current detection circuit. And the ground fault reference value are compared to determine whether the ground fault current detection circuit is normal or abnormal.

この発明に係る自己診断制御手段は、所定周波数のパルス信号と、所定周波数と異なる周波数のパルス信号の信号条件を設定するとともに、地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値とを比較し、地絡電流検出回路の正常または異常を判定するので、パルス信号の周波数を変化し、地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値を比較することで、地絡電流検出回路の動作を保証することができる。   The self-diagnosis control unit according to the present invention sets a signal condition of a pulse signal having a predetermined frequency and a pulse signal having a frequency different from the predetermined frequency, and also detects a deviation between both pulse signal components detected by the ground fault current detection circuit and the ground. The fault reference value is compared to determine whether the ground fault current detection circuit is normal or abnormal, so the frequency of the pulse signal is changed, the deviation of both pulse signal components detected by the ground fault current detection circuit and the ground fault reference value Can be assured for the operation of the ground fault current detection circuit.

また、この発明に係る自己診断制御手段は、所定周波数で所定デューティのパルス信号と、所定周波数で異なるデューティのパルス信号の信号条件を設定するとともに、漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値とを比較し、漏洩電流検出回路の正常または異常を判定することを特徴とする。   Further, the self-diagnosis control means according to the present invention sets the signal conditions of a pulse signal with a predetermined duty at a predetermined frequency and a pulse signal with a different duty at a predetermined frequency, and both pulse signal components detected by the leakage current detection circuit And a leakage reference value are compared to determine whether the leakage current detection circuit is normal or abnormal.

この発明に係る自己診断制御手段は、所定周波数で所定デューティのパルス信号と、所定周波数で異なるデューティのパルス信号の信号条件を設定するとともに、漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値とを比較し、漏洩電流検出回路の正常または異常を判定するので、パルス信号のデューティを変化し、漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値を比較することで、漏洩電流検出回路の動作を保証することができる。   The self-diagnosis control means according to the present invention sets a signal condition of a pulse signal having a predetermined duty at a predetermined frequency and a pulse signal having a different duty at a predetermined frequency, and a deviation between both pulse signal components detected by the leakage current detection circuit. Is compared with the leakage reference value to determine whether the leakage current detection circuit is normal or abnormal. Therefore, the duty of the pulse signal is changed and the deviation of both pulse signal components detected by the leakage current detection circuit is compared with the leakage reference value. By doing so, the operation of the leakage current detection circuit can be guaranteed.

また、この発明に係るパワーコンディショナの自己診断方法は、所定周波数のパルス信号を発生するステップ(S11)と、所定周波数のパルス信号成分を検出するステップ(S12)と、異なる周波数のパルス信号を発生するステップ(S13)と、異なる周波数のパルス信号成分を検出するステップ(S14)と、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算するステップ(S15)と、偏差成分が地絡基準値内にあるか否かを判定するステップ(S16)と、偏差成分が地絡基準値内にある場合には、地絡電流検出回路が正常と判定するステップ(S17)と、偏差成分が地絡基準値外にある場合には、地絡電流検出回路が異常と判定するステップ(S18)とを備えたことを特徴とする。   The power conditioner self-diagnosis method according to the present invention includes a step of generating a pulse signal of a predetermined frequency (S11), a step of detecting a pulse signal component of a predetermined frequency (S12), and a pulse signal of a different frequency. Generating step (S13), detecting a pulse signal component having a different frequency (S14), calculating a deviation component between a pulse signal component having a different frequency and a pulse signal component having a predetermined frequency (S15), and a deviation component Determining whether or not the ground fault is within the ground fault reference value (S16), and determining that the ground fault current detection circuit is normal when the deviation component is within the ground fault reference value (S17); When the deviation component is outside the ground fault reference value, the ground fault current detection circuit includes a step (S18) for determining that the abnormality is present.

この発明に係るパワーコンディショナの自己診断方法は、所定周波数のパルス信号を発生するステップ(S11)と、所定周波数のパルス信号成分を検出するステップ(S12)と、異なる周波数のパルス信号を発生するステップ(S13)と、異なる周波数のパルス信号成分を検出するステップ(S14)と、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算するステップ(S15)と、偏差成分が地絡基準値内にあるか否かを判定するステップ(S16)と、偏差成分が地絡基準値内にある場合には、地絡電流検出回路が正常と判定するステップ(S17)と、偏差成分が地絡基準値外にある場合には、地絡電流検出回路が異常と判定するステップ(S18)とを備えたので、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分が地絡基準値内にあれば正常と判定し、地絡基準値外にあれば異常と判定することができる。   The power conditioner self-diagnosis method according to the present invention includes a step (S11) of generating a pulse signal having a predetermined frequency, a step (S12) of detecting a pulse signal component having a predetermined frequency, and a pulse signal having a different frequency. A step (S13), a step (S14) for detecting a pulse signal component having a different frequency, a step (S15) for calculating a deviation component between a pulse signal component having a different frequency and a pulse signal component having a predetermined frequency, A step (S16) for determining whether or not the ground fault reference value is within, a step (S17) for determining that the ground fault current detection circuit is normal when the deviation component is within the ground fault reference value, and a deviation component Is present outside the ground fault reference value, the ground fault current detection circuit has a step (S18) for determining that there is an abnormality. A deviation component of the pulse signal component of a predetermined frequency is determined to be normal if in ground fault reference value, it can be determined that abnormality if outside ground fault reference value.

さらに、この発明に係るパワーコンディショナの自己診断方法は、所定周波数で、所定デューティのパルス信号を発生するステップ(S21)と、所定デューティのパルス信号成分を検出するステップ(S22)と、所定周波数で、異なるデューティのパルス信号を発生するステップ(S23)と、異なるデューティのパルス信号成分を検出するステップ(S24)と、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算するステップ(S25)と、偏差成分が漏洩基準値内にあるか否かを判定するステップ(S26)と、偏差成分が漏洩基準値内にある場合には、漏洩電流検出回路が正常と判定するステップ(S27)と、偏差成分が漏洩基準値外にある場合には、漏洩電流検出回路が異常と判定するステップ(S28)とを備えたことを特徴とする。   Further, the power conditioner self-diagnosis method according to the present invention includes a step of generating a pulse signal having a predetermined duty at a predetermined frequency (S21), a step of detecting a pulse signal component having a predetermined duty (S22), and a predetermined frequency. Thus, a step of generating a pulse signal having a different duty (S23), a step of detecting a pulse signal component having a different duty (S24), and a deviation component between the pulse signal component having a different duty and the pulse signal component having a predetermined duty are calculated. A step (S25), a step (S26) for determining whether or not the deviation component is within the leakage reference value, and a step for determining that the leakage current detection circuit is normal when the deviation component is within the leakage reference value If the deviation component is outside the leakage reference value (S27), the leakage current detection circuit determines that it is abnormal. Characterized by comprising a step (S28).

この発明に係るパワーコンディショナの自己診断方法は、所定周波数で、所定デューティのパルス信号を発生するステップ(S21)と、所定デューティのパルス信号成分を検出するステップ(S22)と、所定周波数で、異なるデューティのパルス信号を発生するステップ(S23)と、異なるデューティのパルス信号成分を検出するステップ(S24)と、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算するステップ(S25)と、偏差成分が漏洩基準値内にあるか否かを判定するステップ(S26)と、偏差成分が漏洩基準値内にある場合には、漏洩電流検出回路が正常と判定するステップ(S27)と、偏差成分が漏洩基準値外にある場合には、漏洩電流検出回路が異常と判定するステップ(S28)とを備えたので、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分が漏洩基準値内にあれば正常と判定し、漏洩基準値外にあれば異常と判定することができる。   The power conditioner self-diagnosis method according to the present invention includes a step (S21) of generating a pulse signal having a predetermined duty at a predetermined frequency, a step (S22) of detecting a pulse signal component having a predetermined duty, and a predetermined frequency. A step of generating a pulse signal having a different duty (S23), a step of detecting a pulse signal component having a different duty (S24), and a step of calculating a deviation component between the pulse signal component having a different duty and a pulse signal component having a predetermined duty (S24). S25), a step of determining whether or not the deviation component is within the leakage reference value (S26), and a step of determining that the leakage current detection circuit is normal when the deviation component is within the leakage reference value (S27) ) And the step of determining that the leakage current detection circuit is abnormal when the deviation component is outside the leakage reference value S28), it is determined that the pulse signal component having a different duty and the deviation component of the pulse signal component having a predetermined duty are within the leakage reference value, and is determined to be normal if the deviation component is outside the leakage reference value. it can.

この発明に係るパワーコンディショナは、発振回路の信号条件を変化させ、地絡電流検出回路または漏洩電流検出回路で検出する信号成分に基づいて地絡電流検出回路または前記漏洩電流検出回路が正常または異常の自己診断を行う自己診断手段を備えたので、パワーコンディショナを系統側から切り離した状態で、地絡電流検出回路または漏洩電流検出回路そのものの特性をチェックして正常か異常かを正確に判定することができ、使い勝手がよく、装置の信頼性を高めることができる。   The power conditioner according to the present invention changes the signal condition of the oscillation circuit, and the ground fault current detection circuit or the leak current detection circuit is normal based on a signal component detected by the ground fault current detection circuit or the leak current detection circuit. Since it has a self-diagnosis means for self-diagnosis of abnormality, check the characteristics of the ground fault current detection circuit or leakage current detection circuit itself with the power conditioner disconnected from the system side to determine whether it is normal or abnormal It is possible to make a determination, and it is easy to use and can improve the reliability of the apparatus.

また、この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、発振回路が出力する所定周波数の信号成分を検出する信号検出回路を備えたので、地絡電流検出回路または漏洩電流検出回路に発振出力を供給する発振回路の正常または異常をチェックすることができ、装置の信頼性を一層高めることができる。   The self-diagnosis means according to the present invention includes a signal detection circuit for setting a signal condition of a pulse signal generated by the oscillation circuit and detecting a signal component of a predetermined frequency output from the oscillation circuit. The normality or abnormality of the oscillation circuit that supplies the oscillation output to the circuit or the leakage current detection circuit can be checked, and the reliability of the device can be further improved.

さらに、この発明に係る自己診断手段は、発振回路が発生するパルス信号の信号条件を設定し、信号検出回路が検出した信号成分、地絡電流検出回路が検出した信号成分および漏洩電流検出回路が検出した信号成分に基づいて発振回路、地絡電流検出回路および漏洩電流検出回路の正常または異常を判定する自己診断制御手段を備えたので、信号検出回路のハード、信号条件ソフトおよび正常または異常の判定ソフトだけで自己診断機能を実現することができ、単純な構成で、自己診断を確実に実行して信頼性の向上を図ることができる。   Further, the self-diagnostic means according to the present invention sets the signal condition of the pulse signal generated by the oscillation circuit, the signal component detected by the signal detection circuit, the signal component detected by the ground fault current detection circuit, and the leakage current detection circuit Self-diagnosis control means that determines whether the oscillation circuit, ground fault current detection circuit, and leakage current detection circuit are normal or abnormal based on the detected signal component is provided, so the signal detection circuit hardware, signal condition software, and normal or abnormal The self-diagnosis function can be realized only by the determination software, and the self-diagnosis can be reliably executed with a simple configuration to improve the reliability.

また、この発明に係る自己診断制御手段は、所定周波数のパルス信号の信号条件を設定するとともに、信号検出回路が検出したパルス信号成分と基準値とを比較し、発振回路の正常または異常を判定するので、発振回路の動作を保証することができ、発振回路の自己診断を確実に実行することができる。   The self-diagnosis control means according to the present invention sets a signal condition of a pulse signal having a predetermined frequency and compares the pulse signal component detected by the signal detection circuit with a reference value to determine whether the oscillation circuit is normal or abnormal. Therefore, the operation of the oscillation circuit can be ensured, and the self-diagnosis of the oscillation circuit can be reliably executed.

さらに、この発明に係る自己診断制御手段は、所定周波数のパルス信号と、所定周波数と異なる周波数のパルス信号の信号条件を設定するとともに、地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値とを比較し、地絡電流検出回路の正常または異常を判定するので、パルス信号の周波数を変化し、地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値を比較することで、地絡電流検出回路の動作を保証することができ、地絡電流検出回路の自己診断を確実に実行することができる。   Furthermore, the self-diagnosis control means according to the present invention sets a signal condition of a pulse signal having a predetermined frequency and a pulse signal having a frequency different from the predetermined frequency, and a deviation between both pulse signal components detected by the ground fault current detection circuit. Is compared with the ground fault reference value to determine whether the ground fault current detection circuit is normal or abnormal, so the frequency of the pulse signal is changed and the deviation of both pulse signal components detected by the ground fault current detection circuit and the ground fault are detected. By comparing the reference values, the operation of the ground fault current detection circuit can be guaranteed, and the self-diagnosis of the ground fault current detection circuit can be surely executed.

また、この発明に係る自己診断制御手段は、所定周波数で所定デューティのパルス信号と、所定周波数で異なるデューティのパルス信号の信号条件を設定するとともに、漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値とを比較し、漏洩電流検出回路の正常または異常を判定するので、パルス信号のデューティを変化し、漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値を比較することで、漏洩電流検出回路の動作を保証することができ、漏洩電流検出回路の自己診断を確実に実行することができる。   Further, the self-diagnosis control means according to the present invention sets the signal conditions of a pulse signal with a predetermined duty at a predetermined frequency and a pulse signal with a different duty at a predetermined frequency, and both pulse signal components detected by the leakage current detection circuit Is compared with the leakage reference value to determine whether the leakage current detection circuit is normal or abnormal, so the duty of the pulse signal is changed and the deviation of both pulse signal components detected by the leakage current detection circuit and the leakage reference value By comparing these, the operation of the leakage current detection circuit can be guaranteed, and the self-diagnosis of the leakage current detection circuit can be surely executed.

また、この発明に係るパワーコンディショナの自己診断方法は、所定周波数のパルス信号を発生するステップ(S11)と、所定周波数のパルス信号成分を検出するステップ(S12)と、異なる周波数のパルス信号を発生するステップ(S13)と、異なる周波数のパルス信号成分を検出するステップ(S14)と、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算するステップ(S15)と、偏差成分が地絡基準値内にあるか否かを判定するステップ(S16)と、偏差成分が地絡基準値内にある場合には、地絡電流検出回路が正常と判定するステップ(S17)と、偏差成分が地絡基準値外にある場合には、地絡電流検出回路が異常と判定するステップ(S18)とを備えたので、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分が地絡基準値内にあれば正常と判定し、地絡基準値外にあれば異常と判定することができ、地絡電流検出回路の自己診断を容易に、かつ確実に実行することができる。   The power conditioner self-diagnosis method according to the present invention includes a step of generating a pulse signal of a predetermined frequency (S11), a step of detecting a pulse signal component of a predetermined frequency (S12), and a pulse signal of a different frequency. Generating step (S13), detecting a pulse signal component having a different frequency (S14), calculating a deviation component between a pulse signal component having a different frequency and a pulse signal component having a predetermined frequency (S15), and a deviation component Determining whether or not the ground fault is within the ground fault reference value (S16), and determining that the ground fault current detection circuit is normal when the deviation component is within the ground fault reference value (S17); When the deviation component is outside the ground fault reference value, the ground fault current detection circuit includes a step (S18) for determining that there is an abnormality. If the deviation component of the signal component and the pulse signal component of the predetermined frequency is within the ground fault reference value, it can be determined to be normal, and if it is outside the ground fault reference value, it can be determined to be abnormal. Can be executed easily and reliably.

さらに、この発明に係るパワーコンディショナの自己診断方法は、所定周波数で、所定デューティのパルス信号を発生するステップ(S21)と、所定デューティのパルス信号成分を検出するステップ(S22)と、所定周波数で、異なるデューティのパルス信号を発生するステップ(S23)と、異なるデューティのパルス信号成分を検出するステップ(S24)と、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算するステップ(S25)と、偏差成分が漏洩基準値内にあるか否かを判定するステップ(S26)と、偏差成分が漏洩基準値内にある場合には、漏洩電流検出回路が正常と判定するステップ(S27)と、偏差成分が漏洩基準値外にある場合には、漏洩電流検出回路が異常と判定するステップ(S28)とを備えたので、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分が漏洩基準値内にあれば正常と判定し、漏洩基準値外にあれば異常と判定することができ、漏洩電流検出回路の自己診断を容易に、かつ確実に実行することができる。   Further, the power conditioner self-diagnosis method according to the present invention includes a step of generating a pulse signal having a predetermined duty at a predetermined frequency (S21), a step of detecting a pulse signal component having a predetermined duty (S22), and a predetermined frequency. Thus, a step of generating a pulse signal having a different duty (S23), a step of detecting a pulse signal component having a different duty (S24), and a deviation component between the pulse signal component having a different duty and the pulse signal component having a predetermined duty are calculated. A step (S25), a step (S26) for determining whether or not the deviation component is within the leakage reference value, and a step for determining that the leakage current detection circuit is normal when the deviation component is within the leakage reference value If the deviation component is outside the leakage reference value (S27), the leakage current detection circuit determines that it is abnormal. Step (S28) is provided, so that if the deviation component of the pulse signal component having a different duty and the pulse signal component having a predetermined duty is within the leakage reference value, it is determined to be normal, and if it is outside the leakage reference value, it is determined to be abnormal. Therefore, the self-diagnosis of the leakage current detection circuit can be executed easily and reliably.

以下、この発明の実施の形態を添付図面に基づいて説明する。図1はこの発明に係るパワーコンディショナが適用される太陽光発電システムの一実施の形態システム構成図である。図1において、太陽光発電システム1は、太陽光を直流電力に変換して出力する太陽電池2と、太陽電池2から供給される直流電力を系統側(商用電源)の周波数(50Hz/60Hz)および交流電圧に同期させた交流電力に変換して出力するパワーコンディショナ3とから構成する。   Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a system configuration diagram of an embodiment of a photovoltaic power generation system to which a power conditioner according to the present invention is applied. In FIG. 1, a solar power generation system 1 includes a solar battery 2 that converts sunlight into direct-current power and outputs it, and direct-current power supplied from the solar battery 2 on the system side (commercial power supply) frequency (50 Hz / 60 Hz). And a power conditioner 3 that converts the AC power to an AC voltage synchronized with the AC voltage and outputs the AC power.

パワーコンディショナ3は、直流電力を交流電力に変換するインバータ4、インバータ4を系統側に接続または系統側から遮断するリレー5、例えば電力線U相、W相(単層3線式)を貫通させて電流が電力線にアンバランス(不平衡)で流れる場合に、故障電流が流れる状態を検知するZCT(変流器)8、ZCT(変流器)8が検出したセンサ検知量から地絡電流を検出する地絡電流検出回路9、ZCT(変流器)8が検出したセンサ検知量から漏電電流を検出する漏洩電流検出回路10、パワーコンディショナ3全体の動作を制御する制御装置6を備える。   The power conditioner 3 passes through an inverter 4 that converts DC power into AC power, and a relay 5 that connects or disconnects the inverter 4 from the system side, for example, the power line U-phase and W-phase (single-layer three-wire system). ZCT (current transformer) 8 that detects the state in which the fault current flows when the current flows unbalanced in the power line, and the ground fault current is calculated from the sensor detection amount detected by the ZCT (current transformer) 8. A ground fault current detection circuit 9 to detect, a leakage current detection circuit 10 to detect a leakage current from a sensor detection amount detected by a ZCT (current transformer) 8, and a control device 6 to control the operation of the entire power conditioner 3 are provided.

制御装置6は、地絡電流検出回路9から供給される地絡情報や漏洩電流検出回路10から供給される漏電情報に基づいてインバータ4を停止制御したり、リレー5を遮断制御することにより、故障電流が流れることに伴う、系統側への障害発生を防止する制御を行う。   The control device 6 controls the stop of the inverter 4 based on the ground fault information supplied from the ground fault current detection circuit 9 or the leakage information supplied from the leakage current detection circuit 10 or controls the relay 5 to be cut off. Control is performed to prevent the occurrence of a fault on the system side due to the flow of the fault current.

また、制御装置6は、発振回路の信号条件を変化させ、地絡電流検出回路9または漏洩電流検出回路10で検出する信号成分に基づいて地絡電流検出回路9または前記漏洩電流検出回路10が正常または異常の自己診断を行う自己診断手段7を備える。   Further, the control device 6 changes the signal condition of the oscillation circuit, and the ground fault current detection circuit 9 or the leak current detection circuit 10 determines whether the ground fault current detection circuit 9 or the leak current detection circuit 10 detects the signal component detected by the ground fault current detection circuit 9 or the leak current detection circuit 10. Self-diagnosis means 7 for performing normal or abnormal self-diagnosis is provided.

自己診断手段7は、パワーコンディショナ3の起動時に、太陽電池2から供給される直流電力がインバータ4および自己診断手段7を動作させる電力に達した時点で、リレー5を開放状態にしてパワーコンディショナ3を系統側から切り離し、インバータ4を動作させた状態で、地絡電流検出回路9および漏洩電流検出回路10の自己診断を実行する。   The self-diagnosis means 7 opens the relay 5 when the DC power supplied from the solar battery 2 reaches the power for operating the inverter 4 and the self-diagnosis means 7 when the power conditioner 3 is started. The self-diagnosis of the ground-fault current detection circuit 9 and the leakage current detection circuit 10 is executed in a state in which the na 3 is disconnected from the system side and the inverter 4 is operated.

また、自己診断手段7は、地絡電流検出回路9および漏洩電流検出回路10の自己診断をして正常であることを判定すると、自己診断動作を停止し、制御装置6による通常のパワーコンディショナ3の動作に切り替わる。   Further, when the self-diagnosis means 7 performs a self-diagnosis of the ground fault current detection circuit 9 and the leakage current detection circuit 10 and determines that they are normal, the self-diagnosis unit 7 stops the self-diagnosis operation, and a normal power conditioner by the control device 6 is stopped. The operation is switched to (3).

図2はこの発明に係る自己診断手段の一実施の形態要部ブロック構成図である。図2において自己診断手段7の周辺の構成要件であるZCT(変流器)8、地絡電流検出回路9、漏洩電流検出回路10、発振回路11および抵抗器Rは、パワーコンディショナ3の通常動作に、地絡電流や漏洩電流の故障電流を検出するための既存のものである。   FIG. 2 is a block diagram showing the principal part of one embodiment of the self-diagnosis means according to the present invention. In FIG. 2, the ZCT (current transformer) 8, the ground fault current detection circuit 9, the leakage current detection circuit 10, the oscillation circuit 11, and the resistor R, which are constituent elements around the self-diagnosis means 7, are the normal ones of the power conditioner 3. It is an existing one for detecting a fault current such as a ground fault current or a leakage current in operation.

自己診断時、ZCT(変流器)8は、電力線(U層〜W層)に交流電流が流れておらず、発振回路11から供給される発振出力VS(パルス信号)に対してインピーダンスZvを有し、抵抗器Rと直列回路を形成する。   At the time of self-diagnosis, the ZCT (current transformer) 8 has an impedance Zv with respect to the oscillation output VS (pulse signal) supplied from the oscillation circuit 11 because no alternating current flows through the power line (U layer to W layer). And form a series circuit with the resistor R.

発振回路11は、自己診断手段7から供給される信号条件JSに対応した発振出力VS(パルス信号)を出力する。信号条件JSは、例えば+5Vの所定周波数(例えば、1KHz)のパルス信号であり、発振出力VS(パルス信号)は、±5vのピークツウピーク値10vの所定周波数(1KHz)のパルス信号である。なお、発振出力VS(パルス信号)は、信号条件JGの周波数および信号条件JLのデューティが変更されてもパルス信号のレベル(電圧値)の関係には変化がない(ピークツウピーク値10v)。   The oscillation circuit 11 outputs an oscillation output VS (pulse signal) corresponding to the signal condition JS supplied from the self-diagnosis means 7. The signal condition JS is, for example, a pulse signal having a predetermined frequency (for example, 1 KHz) of +5 V, and the oscillation output VS (pulse signal) is a pulse signal having a predetermined frequency (1 KHz) having a peak-to-peak value of 10 v of ± 5 v. The oscillation output VS (pulse signal) does not change in the relationship of the level (voltage value) of the pulse signal (peak-to-peak value 10v) even if the frequency of the signal condition JG and the duty of the signal condition JL are changed.

分圧出力VDは、発振出力VS(ピークツウピーク値10v)をインピーダンスZvと抵抗器Rで分圧したパルス信号のレベル{=VS×R/(R+Zv)}となるが、インピーダンスZvがパルス信号の周波数やデューティにより変化するため、インピーダンスZvに応じて変化する。   The divided voltage output VD becomes the level {= VS × R / (R + Zv)} of the pulse signal obtained by dividing the oscillation output VS (peak-to-peak value 10v) by the impedance Zv and the resistor R, but the impedance Zv is the pulse signal. Therefore, it changes according to the impedance Zv.

インピーダンスZvは、発振出力VSのパルス信号の周波数やデューティに応じて変化する。例えば、発振出力VSの周波数が1KHzでデューティが50%の場合にインピーダンスZv1、周波数が500Hzでデューティが50%の場合にインピーダンスZv2、周波数が1KHzでデューティが51%と49%を10ms毎に変化する場合にインピーダンスZv3となる。   The impedance Zv changes according to the frequency and duty of the pulse signal of the oscillation output VS. For example, when the frequency of the oscillation output VS is 1 KHz and the duty is 50%, the impedance is Zv1, when the frequency is 500 Hz and the duty is 50%, the impedance is Zv2, and when the frequency is 1 KHz, the duty is 51% and 49% changes every 10 ms. In this case, impedance Zv3 is obtained.

インピーダンスZv1、Zv2、Zv3に対応した分圧出力VDをそれぞれ分圧出力(パルス信号のレベル)VD1、VD2、VD3とすると、VD1=VS×R/(R+Zv1)、VD2=VS×R/(R+Zv2)、VD3=VS×R/(R+Zv3)となり、分圧出力VDは、インピーダンスZv1、Zv2、Zv3の変化に伴って変化することになる。   If the divided voltage outputs VD corresponding to the impedances Zv1, Zv2, and Zv3 are divided voltage outputs (pulse signal levels) VD1, VD2, and VD3, VD1 = VS × R / (R + Zv1), VD2 = VS × R / (R + Zv2 ), VD3 = VS * R / (R + Zv3), and the divided voltage output VD changes as the impedances Zv1, Zv2, and Zv3 change.

発振回路11の自己診断は、周波数が1KHzでデューティが50%のパルス信号である発振出力VSに基づいて実行する。また、地絡電流検出回路9の自己診断は、周波数が1KHzでデューティが50%のパルス信号である分圧出力VD1と周波数が500Hzでデューティが50%のパルス信号である分圧出力VD2に基づいて実行する。さらに、地漏洩電流検出回路10の自己診断は、周波数が1KHzでデューティが50%のパルス信号である分圧出力VD1と周波数が1KHzでデューティが51%と49%を10ms毎に変化するパルス信号である分圧出力VD3に基づいて実行する。   The self-diagnosis of the oscillation circuit 11 is executed based on the oscillation output VS which is a pulse signal having a frequency of 1 KHz and a duty of 50%. The self-diagnosis of the ground fault current detection circuit 9 is based on the divided voltage output VD1 which is a pulse signal having a frequency of 1 KHz and a duty of 50% and the divided voltage output VD2 which is a pulse signal having a frequency of 500 Hz and a duty of 50%. And execute. Further, the self-diagnosis of the ground leakage current detection circuit 10 includes a divided output VD1 which is a pulse signal having a frequency of 1 KHz and a duty of 50%, and a pulse signal in which the frequency is 1 KHz and the duty is 51% and 49% every 10 ms. This is executed based on the divided voltage output VD3.

地絡電流検出回路9は、電圧フォロア、整流回路、増幅回路およびローパスフィルタなどで構成し、周波数が1KHzでデューティが50%のパルス信号である分圧出力VD1を入力とし、直流に変換した信号検出出力VG1を自己診断手段7に提供する。   The ground fault current detection circuit 9 is composed of a voltage follower, a rectifier circuit, an amplifier circuit, a low-pass filter, etc., and receives a divided output VD1, which is a pulse signal having a frequency of 1 KHz and a duty of 50%, and is converted into a direct current signal. The detection output VG1 is provided to the self-diagnosis means 7.

また、地絡電流検出回路9は、周波数が500Hzでデューティが50%のパルス信号である分圧出力VD2を入力とし、直流に変換した地絡検出出力VG2を自己診断手段7に提供する。   Further, the ground fault current detection circuit 9 receives the divided voltage output VD2 which is a pulse signal having a frequency of 500 Hz and a duty of 50% as an input, and provides the ground fault detection output VG2 converted to direct current to the self-diagnosis means 7.

漏洩電流検出回路10は、電圧フォロア、ローパスフィルタ、ハイパスフィルタ、増幅回路および整流回路などで構成し、周波数が1KHzでデューティが50%のパルス信号である分圧出力VD1を入力とし、直流に変換した漏洩検出出力VL1を自己診断手段7に提供する。   The leakage current detection circuit 10 is composed of a voltage follower, a low-pass filter, a high-pass filter, an amplifier circuit, a rectifier circuit, and the like, and receives a divided output VD1, which is a pulse signal having a frequency of 1 KHz and a duty of 50%, and converts it into a direct current. The leak detection output VL1 is provided to the self-diagnosis means 7.

また、漏洩電流検出回路10は、周波数が1KHzでデューティが51%と49%を10ms毎に変化するパルス信号である分圧出力VD3を入力とし、直流に変換した漏洩検出出力VL2を自己診断手段7に提供する。   Further, the leakage current detection circuit 10 receives as input the divided output VD3 which is a pulse signal whose frequency is 1 KHz and duty changes 51% and 49% every 10 ms, and the leakage detection output VL2 converted into direct current is self-diagnostic means. 7 to provide.

地絡電流検出回路9の異常は、回路のオープン故障、ショート故障、増幅器の発振などにより、地絡検出出力VG1や地絡検出出力VG2の正規の値(ノミナル値)からの変化によって検出される。   An abnormality in the ground fault current detection circuit 9 is detected by a change from the normal value (nominal value) of the ground fault detection output VG1 or the ground fault detection output VG2 due to an open circuit fault, a short circuit fault, oscillation of the amplifier, or the like. .

漏洩電流検出回路10の異常も、回路のオープン故障、ショート故障、増幅器の発振などにより、漏洩検出出力VL1や漏洩検出出力VL2の正規の値(ノミナル値)からの変化によって検出される。   An abnormality of the leakage current detection circuit 10 is also detected by a change from the normal value (nominal value) of the leakage detection output VL1 or the leakage detection output VL2 due to an open circuit failure, a short circuit failure, an amplifier oscillation, or the like.

また、ZCT(変流器)8および抵抗器Rのオープン故障やショート故障の場合にも、地絡検出出力VG1、地絡検出出力VG2および漏洩検出出力VL1、漏洩検出出力VL2が正規の値(ノミナル値)から大幅に変化するので、地絡電流検出回路9および漏洩電流検出回路10の異常として検出される。   Also, in the case of an open failure or short-circuit failure of the ZCT (current transformer) 8 and the resistor R, the ground fault detection output VG1, the ground fault detection output VG2, the leak detection output VL1, and the leak detection output VL2 are normal values ( From the nominal value), it is detected as an abnormality in the ground fault current detection circuit 9 and the leakage current detection circuit 10.

ここで、信号条件JGの周波数に対する地絡電流検出回路9の地絡検出出力VG2特性、信号条件JLのデューティに対する漏洩電流検出回路10の漏洩検出出力VL2特性について説明する。図6はこの発明に係る地絡検出出力(VG2)の周波数特性図である。図6において、周波数1KHzで、デューティ50%のパルス信号に対する地絡検出出力VG1は、およそ1.0vであり、周波数を1KHzから低下させると地絡検出出力VG2が増加し、周波数800Hzでは地絡検出出力VG2が2.0v、500Hzでは地絡検出出力VG2が4.0vとなる。   Here, the ground fault detection output VG2 characteristic of the ground fault current detection circuit 9 with respect to the frequency of the signal condition JG and the leak detection output VL2 characteristic of the leak current detection circuit 10 with respect to the duty of the signal condition JL will be described. FIG. 6 is a frequency characteristic diagram of the ground fault detection output (VG2) according to the present invention. In FIG. 6, the ground fault detection output VG1 for a pulse signal with a frequency of 1 KHz and a duty of 50% is about 1.0 V. When the frequency is decreased from 1 KHz, the ground fault detection output VG2 increases. When the detection output VG2 is 2.0 v and 500 Hz, the ground fault detection output VG2 is 4.0 v.

地絡電流検出回路9の自己診断では、地絡検出出力VG1と地絡検出出力VG2の偏差(=VG2−VG1)を処理に利用するので、500Hz(地絡検出出力VG2=4.0v)と1KHz(地絡検出出力VG1=1.0v)を採用すると、偏差(=VG2−VG1)が3vとなって充分な値を確保できるため、周波数を500Hzに設定する。   In the self-diagnosis of the ground fault current detection circuit 9, since the deviation (= VG2-VG1) between the ground fault detection output VG1 and the ground fault detection output VG2 is used for processing, 500 Hz (ground fault detection output VG2 = 4.0 v) is obtained. If 1 KHz (ground fault detection output VG1 = 1.0 v) is adopted, the deviation (= VG2−VG1) becomes 3 v and a sufficient value can be secured, so the frequency is set to 500 Hz.

なお、偏差(=VG2−VG1)が充分であれば、周波数が500Hzでなく、別の周波数(例えば、800Hz:地絡検出出力VG2が2.0v)であってもよい。   If the deviation (= VG2−VG1) is sufficient, the frequency may not be 500 Hz but may be another frequency (for example, 800 Hz: ground fault detection output VG2 is 2.0 v).

図7はこの発明に係る漏洩検出出力(VL2)のデューティ特性図である。図7において、デューティを50%から変化させると漏洩検出出力VL2が増加し、デューティ50%では漏洩検出出力VL2が0v、デューティ51%では漏洩検出出力VL2が2.0vとなる。   FIG. 7 is a duty characteristic diagram of the leakage detection output (VL2) according to the present invention. In FIG. 7, when the duty is changed from 50%, the leak detection output VL2 increases. When the duty is 50%, the leak detection output VL2 is 0v, and when the duty is 51%, the leak detection output VL2 is 2.0v.

漏洩電流検出回路10の自己診断では、漏洩検出出力VL1と漏洩検出出力VL2の偏差(=VL2−VL1)を処理に利用するので、デューティ49%⇔51%(漏洩検出出力VL2=2.0v)とデューティ50%(漏洩検出出力VL2=0v)を採用すると、偏差(=VL2−VL1)が2.0vとなって充分な値を確保できるため、デューティ49%と51%を10ms毎に変化させるように設定する。   In the self-diagnosis of the leakage current detection circuit 10, since the deviation (= VL2−VL1) between the leakage detection output VL1 and the leakage detection output VL2 is used for processing, the duty is 49% ⇔51% (leakage detection output VL2 = 2.0v) And 50% duty (leakage detection output VL2 = 0v), the deviation (= VL2−VL1) becomes 2.0v and a sufficient value can be secured, so the duty 49% and 51% are changed every 10 ms. Set as follows.

なお、偏差(=VL2−VL1)が充分であれば、デューティ49%⇔51%でなく、別のデューティ(例えば、デューティ48%⇔52%:漏洩検出出力VL2が4.0v)であってもよい。   If the deviation (= VL2−VL1) is sufficient, even if the duty is not 49% ⇔51% but another duty (for example, duty 48% ⇔52%: leakage detection output VL2 is 4.0 v). Good.

自己診断手段7は、図1に示す制御装置6の一部に含まれ、マイクロプロセッサとソフトプログラムを基本に構成し、信号検出回路12および自己診断制御手段13を備える。   The self-diagnosis unit 7 is included in a part of the control device 6 shown in FIG. 1, and basically includes a microprocessor and a software program, and includes a signal detection circuit 12 and a self-diagnosis control unit 13.

信号検出回路12は、電圧フォロア、増幅回路、整流回路およびローバスフィルタなどで構成し、発振回路11から供給される周波数が1KHzでデューティが50%のパルス信号(10vピークツウピーク)である発振出力VSを入力とし、直流に変換した信号検出出力VS1(信号成分)を自己診断制御手段13に提供する。   The signal detection circuit 12 includes a voltage follower, an amplifier circuit, a rectifier circuit, a low-pass filter, and the like, and is an oscillation that is a pulse signal (10v peak-to-peak) with a frequency of 1 KHz and a duty of 50% supplied from the oscillation circuit 11. A signal detection output VS1 (signal component) converted to a direct current with the output VS as an input is provided to the self-diagnosis control means 13.

なお、発振回路11の異常は、発振出力VSが大きい、小さいまたは出力がないなどにより、信号検出出力VS1が正規の値(ノミナル値)からの変化によって検出される。   The abnormality of the oscillation circuit 11 is detected by a change in the signal detection output VS1 from a normal value (nominal value) due to the oscillation output VS being large, small, or no output.

このように、この発明に係る自己診断手段7は、発振回路11が発生する信号(発振出力VS)の信号条件JSを設定し、発振回路11が出力する所定周波数(1KHzのパルス信号)の信号成分(信号検出出力VS1)を検出する信号検出回路12を備えたので、地絡電流検出回路9または漏洩電流検出回路10に発振出力VSを供給する発振回路11の正常または異常をチェックすることができ、装置の信頼性を一層高めることができる。   Thus, the self-diagnosis means 7 according to the present invention sets the signal condition JS of the signal (oscillation output VS) generated by the oscillation circuit 11, and outputs a signal of a predetermined frequency (1 KHz pulse signal) output from the oscillation circuit 11. Since the signal detection circuit 12 for detecting the component (signal detection output VS1) is provided, it is possible to check whether the oscillation circuit 11 supplying the oscillation output VS to the ground fault current detection circuit 9 or the leakage current detection circuit 10 is normal or abnormal. The reliability of the apparatus can be further enhanced.

自己診断制御手段13は、+5Vのパルス信号で形成された3種の信号条件JS、信号条件JGおよび信号条件JLを設定し、発振回路11に供給する。   The self-diagnosis control means 13 sets three types of signal conditions JS, signal conditions JG and signal conditions JL formed by a + 5V pulse signal, and supplies them to the oscillation circuit 11.

ここで、信号条件JS、信号条件JGおよび信号条件JLについて説明する。図3はこの発明に係る信号条件(JS)の一実施の形態パルス信号波形図である。図3において、信号条件JSは、周波数1KHz(所定周波数)で、デューティ50%、波高値(レベル)+5vのパルス信号である。   Here, the signal condition JS, the signal condition JG, and the signal condition JL will be described. FIG. 3 is a pulse signal waveform diagram of an embodiment of the signal condition (JS) according to the present invention. In FIG. 3, the signal condition JS is a pulse signal having a frequency of 1 KHz (predetermined frequency), a duty of 50%, and a peak value (level) + 5v.

図4はこの発明に係る信号条件(JG)の一実施の形態パルス信号波形図である。図4において、信号条件JGは、周波数500Hz(異なる周波数)で、デューティ50%、波高値(レベル)+5vのパルス信号である。   FIG. 4 is a pulse signal waveform diagram of an embodiment of the signal condition (JG) according to the present invention. In FIG. 4, the signal condition JG is a pulse signal with a frequency of 500 Hz (different frequency), a duty of 50%, and a peak value (level) + 5v.

図5はこの発明に係る信号条件(JL)の一実施の形態パルス信号波形図である。図5において、信号条件JLは、周波数1KHzでデューティ51%と49%で10ms毎に変化する、波高値(レベル)+5vのパルス信号である。信号条件JLは、1KHzのデューティ50%のパルス信号を一周期50Hzの1/2周期をデューティ51%のパルス信号にし、他の1/2周期をデューティ49%に、繰り返し変化させる。   FIG. 5 is a pulse signal waveform diagram of one embodiment of the signal condition (JL) according to the present invention. In FIG. 5, the signal condition JL is a pulse signal having a peak value (level) +5 v that changes every 10 ms at a frequency of 1 KHz and a duty of 51% and 49%. In the signal condition JL, a pulse signal with a duty of 50% at 1 KHz is changed to a pulse signal with a duty of 51% at a half cycle of 50 Hz and the other half cycle is changed to a duty of 49%.

また、自己診断制御手段13は、信号条件JS、JG、JLを発振回路11に設定する際、常に、信号条件JSを設定し、信号検出回路12の信号検出出力Vs1に基づいて発振回路11が正常であるか否かを監視している。   The self-diagnosis control means 13 always sets the signal condition JS when setting the signal conditions JS, JG, and JL in the oscillation circuit 11, and the oscillation circuit 11 is set based on the signal detection output Vs1 of the signal detection circuit 12. It monitors whether or not it is normal.

地絡電流検出回路9および漏洩電流検出回路10の自己診断を実行する場合、特に順序を決定せず、例えば地絡電流検出回路9の自己診断を実行する際には、信号条件JSを設定し、地絡電流検出回路9の地絡検出出力VG1を検出すると、信号条件JGを設定し、地絡電流検出回路9の地絡検出出力VG2を検出した後、地絡検出出力VG2と地絡検出出力VG1の偏差(=VG2−VG1)に基づいて地絡電流検出回路9が正常であることを判定して地絡電流検出回路9の自己診断を終了する。   When the self-diagnosis of the ground fault current detection circuit 9 and the leakage current detection circuit 10 is executed, the order is not particularly determined. For example, when the self-diagnosis of the ground fault current detection circuit 9 is executed, the signal condition JS is set. When the ground fault detection output VG1 of the ground fault current detection circuit 9 is detected, the signal condition JG is set, and after detecting the ground fault detection output VG2 of the ground fault current detection circuit 9, the ground fault detection output VG2 and the ground fault detection are detected. Based on the deviation of output VG1 (= VG2-VG1), it is determined that ground fault current detection circuit 9 is normal, and self-diagnosis of ground fault current detection circuit 9 is terminated.

続いて、例えば漏洩電流検出回路10の自己診断を実行する際には、信号条件JSを設定し、漏洩電流検出回路10の漏洩検出出力VL1を検出すると、信号条件JLを設定し、漏洩電流検出回路10の漏洩検出出力VL2を検出した後、漏洩検出出力VL2と漏洩検出出力VL1の偏差(=VL2−VL1)に基づいて漏洩電流検出回路10が正常であることを判定して漏洩電流検出回路10の自己診断を終了する。   Subsequently, for example, when the self-diagnosis of the leakage current detection circuit 10 is executed, the signal condition JS is set, and when the leakage detection output VL1 of the leakage current detection circuit 10 is detected, the signal condition JL is set to detect the leakage current. After detecting the leakage detection output VL2 of the circuit 10, it is determined that the leakage current detection circuit 10 is normal based on the deviation (= VL2−VL1) between the leakage detection output VL2 and the leakage detection output VL1. 10 self-diagnosis is completed.

自己診断制御手段13は、発振回路11の自己診断のための基準値、地絡電流検出回路9の自己診断のための地絡基準値および漏洩電流検出回路10の自己診断のための漏洩基準値を設定する。   The self-diagnosis control means 13 is a reference value for self-diagnosis of the oscillation circuit 11, a ground fault reference value for self-diagnosis of the ground fault current detection circuit 9, and a leak reference value for self-diagnosis of the leak current detection circuit 10. Set.

発振回路11の自己診断の際、信号検出出力VS1と基準値を比較し、信号検出出力VS1が基準値内にあれば発振回路11が正常と判定し、信号検出出力VS1が基準値外にあれば発振回路11が異常と判定する。   During self-diagnosis of the oscillation circuit 11, the signal detection output VS1 is compared with a reference value. If the signal detection output VS1 is within the reference value, the oscillation circuit 11 is determined to be normal, and the signal detection output VS1 is outside the reference value. In this case, the oscillation circuit 11 is determined to be abnormal.

地絡電流検出回路9の自己診断の際、地絡検出出力VG2と地絡検出出力VG1の偏差(=VG2−VG1)と地絡基準値を比較し、偏差(=VG2−VG1)が地絡基準値内にあれば地絡電流検出回路9が正常と判定し、偏差(=VG2−VG1)が地絡基準値外にあれば地絡電流検出回路9が異常と判定する。   During self-diagnosis of the ground fault current detection circuit 9, the difference between the ground fault detection output VG2 and the ground fault detection output VG1 (= VG2-VG1) is compared with the ground fault reference value, and the deviation (= VG2-VG1) is the ground fault. If it is within the reference value, the ground fault current detection circuit 9 is determined to be normal, and if the deviation (= VG2−VG1) is outside the ground fault reference value, the ground fault current detection circuit 9 is determined to be abnormal.

漏洩電流検出回路10の自己診断の際、漏洩検出出力VL2と漏洩検出出力VL1の偏差(=VL2−VL1)と漏洩基準値を比較し、偏差(=VL2−VL1)が漏洩基準値内にあれば漏洩電流検出回路10が正常と判定し、偏差(=VL2−VL1)が漏洩基準値外にあれば漏洩電流検出回路10が異常と判定する。   When the self-diagnosis of the leakage current detection circuit 10 is performed, the deviation (= VL2-VL1) between the leakage detection output VL2 and the leakage detection output VL1 is compared with the leakage reference value, and the deviation (= VL2-VL1) is within the leakage reference value. For example, the leakage current detection circuit 10 is determined to be normal, and if the deviation (= VL2−VL1) is outside the leakage reference value, the leakage current detection circuit 10 is determined to be abnormal.

このように、この発明に係る自己診断手段7は、発振回路11が発生するパルス信号(発振出力VS)の信号条件JS,JG,JLを設定し、信号検出回路12が検出した信号成分(信号検出出力VS1)、地絡電流検出回路9が検出した信号成分(地絡検出出力VG1,VG2)および漏洩電流検出回路10が検出した信号成分(漏洩検出出力VL1,VL2)に基づいて発振回路11、地絡電流検出回路9および漏洩電流検出回路10の正常または異常を判定する自己診断制御手段13を備えたので、信号検出回路11のハード、信号条件ソフトおよび正常または異常の判定ソフトだけで自己診断機能を実現することができ、単純な構成で、自己診断を確実に実行して信頼性の向上を図ることができる。   Thus, the self-diagnosis means 7 according to the present invention sets the signal conditions JS, JG, JL of the pulse signal (oscillation output VS) generated by the oscillation circuit 11, and detects the signal component (signal) detected by the signal detection circuit 12. Based on the detection output VS1), the signal component detected by the ground fault current detection circuit 9 (ground fault detection output VG1, VG2) and the signal component detected by the leakage current detection circuit 10 (leakage detection output VL1, VL2). Since the self-diagnosis control means 13 for determining whether the ground fault current detection circuit 9 and the leakage current detection circuit 10 are normal or abnormal is provided, the self-detection control means 13 is used only for the hardware of the signal detection circuit 11, the signal condition software, and the normal or abnormal determination software. A diagnostic function can be realized, and with a simple configuration, self-diagnosis can be reliably executed to improve reliability.

また、この発明に係る自己診断制御手段13は、所定周波数(1KHz)のパルス信号の信号条件JSを設定するとともに、信号検出回路11が検出したパルス信号成分(信号検出出力VS1)と基準値とを比較し、発振回路11の正常または異常を判定するので、発振回路11の動作を保証することができ、発振回路11の自己診断を確実に実行することができる。   Further, the self-diagnosis control means 13 according to the present invention sets the signal condition JS of the pulse signal having a predetermined frequency (1 KHz), the pulse signal component (signal detection output VS1) detected by the signal detection circuit 11, and the reference value. Are compared to determine whether the oscillation circuit 11 is normal or abnormal, so that the operation of the oscillation circuit 11 can be ensured and the self-diagnosis of the oscillation circuit 11 can be reliably executed.

さらに、この発明に係る自己診断制御手段13は、所定周波数(1KHz)のパルス信号と、所定周波数と異なる周波数(500Hz)のパルス信号の信号条件JS,JGを設定するとともに、地絡電流検出回路9が検出した双方のパルス信号成分(地絡検出出力VG1,VG2)の偏差(=VG2−VG1)と地絡基準値とを比較し、地絡電流検出回路9の正常または異常を判定するので、パルス信号の周波数を変化(1kHzから500Hz)し、地絡電流検出回路9が検出した双方のパルス信号成分の偏差(=VG1−VG2)と地絡基準値を比較することで、地絡電流検出回路9の動作を保証することができ、地絡電流検出回路9の自己診断を確実に実行することができる。   Further, the self-diagnosis control means 13 according to the present invention sets a signal condition JS, JG of a pulse signal having a predetermined frequency (1 KHz) and a pulse signal having a frequency (500 Hz) different from the predetermined frequency, and a ground fault current detection circuit. Since the deviation (= VG2-VG1) of both pulse signal components detected by 9 (ground fault detection outputs VG1, VG2) and the ground fault reference value are compared, it is determined whether the ground fault current detection circuit 9 is normal or abnormal. By changing the frequency of the pulse signal (from 1 kHz to 500 Hz) and comparing the deviation (= VG1−VG2) of both pulse signal components detected by the ground fault current detection circuit 9 with the ground fault reference value, The operation of the detection circuit 9 can be ensured, and the self-diagnosis of the ground fault current detection circuit 9 can be reliably executed.

また、この発明に係る自己診断制御手段13は、所定周波数(1KHz)で所定デューティ(50%)のパルス信号と、所定周波数(1KHz)で異なるデューティのパルス信号の信号条件JS,JLを設定するとともに、漏洩電流検出回路10が検出した双方のパルス信号成分(漏洩検出出力VL1,VL2)の偏差(=VL2−VL1)と漏洩基準値とを比較し、漏洩電流検出回路10の正常または異常を判定するので、パルス信号のデューティを変化し、漏洩電流検出回路10が検出した双方のパルス信号成分の偏差(=VL2−VL1)と漏洩基準値を比較することで、漏洩電流検出回路10の動作を保証することができ、漏洩電流検出回路10の自己診断を確実に実行することができる。   The self-diagnosis control means 13 according to the present invention sets signal conditions JS and JL of a pulse signal having a predetermined duty (50%) at a predetermined frequency (1 KHz) and a pulse signal having a different duty at a predetermined frequency (1 KHz). At the same time, the deviation (= VL2-VL1) of both pulse signal components (leakage detection outputs VL1, VL2) detected by the leakage current detection circuit 10 is compared with the leakage reference value to determine whether the leakage current detection circuit 10 is normal or abnormal. Therefore, by changing the duty of the pulse signal and comparing the deviation reference value with the deviation (= VL2−VL1) of both pulse signal components detected by the leakage current detection circuit 10, the operation of the leakage current detection circuit 10 is performed. And the self-diagnosis of the leakage current detection circuit 10 can be reliably executed.

上記で説明したように、発振回路11、地絡電流検出回路9および漏洩電流検出回路10の自己診断を実行し、発振回路11、地絡電流検出回路9および漏洩電流検出回路10が正常と判定して全ての自己診断を終了すると、閉結情報JRをリレー5に供給して、リレー5を閉結してパワーコンディショナ3と系統側を接続し、太陽光発電システム1の運転を開始する。   As described above, the self-diagnosis of the oscillation circuit 11, the ground fault current detection circuit 9 and the leakage current detection circuit 10 is executed, and it is determined that the oscillation circuit 11, the ground fault current detection circuit 9 and the leakage current detection circuit 10 are normal. When all the self-diagnosis is completed, the closing information JR is supplied to the relay 5, the relay 5 is closed, the power conditioner 3 and the system side are connected, and the operation of the photovoltaic power generation system 1 is started. .

しかし、発振回路11、地絡電流検出回路9および漏洩電流検出回路10の自己診断を実行中に、発振回路11、地絡電流検出回路9または漏洩電流検出回路10のいずれかで異常と判定された時点で、停止情報JIをインバータ4に供給して、インバータ4を停止し、太陽光発電システム1の運転を停止する。   However, while the self-diagnosis of the oscillation circuit 11, the ground fault current detection circuit 9, and the leakage current detection circuit 10 is being executed, it is determined that one of the oscillation circuit 11, the ground fault current detection circuit 9, or the leakage current detection circuit 10 is abnormal. At this point, the stop information JI is supplied to the inverter 4, the inverter 4 is stopped, and the operation of the photovoltaic power generation system 1 is stopped.

以上説明したように、この発明に係るパワーコンディショナ3は、発振回路11の信号条件を変化させ、地絡電流検出回路9または漏洩電流検出回路10で検出する信号成分に基づいて地絡電流検出回路9または前記漏洩電流検出回路10が正常または異常の自己診断を行う自己診断手段7を備えたので、パワーコンディショナ3を系統側から切り離した状態で、地絡電流検出回路9または漏洩電流検出回路10そのものの特性をチェックして正常か異常かを正確に判定することができ、使い勝手がよく、装置の信頼性を高めることができる。   As described above, the power conditioner 3 according to the present invention changes the signal condition of the oscillation circuit 11 and detects the ground fault current based on the signal component detected by the ground fault current detection circuit 9 or the leakage current detection circuit 10. Since the circuit 9 or the leakage current detection circuit 10 includes self-diagnosis means 7 for performing normal or abnormal self-diagnosis, the ground fault current detection circuit 9 or leakage current detection is performed with the power conditioner 3 disconnected from the system side. By checking the characteristics of the circuit 10 itself, it is possible to accurately determine whether it is normal or abnormal, and it is easy to use and can improve the reliability of the apparatus.

次に、パワーコンディショナの自己診断方法について説明する。図8はこの発明に係る発振回路の自己診断の一実施の形態要部動作フロー図である。なお、動作フロー図は、図2を参照して説明する。   Next, a self-diagnosis method for the inverter will be described. FIG. 8 is an operation flowchart of the main part of one embodiment of the self-diagnosis of the oscillation circuit according to the present invention. The operation flow diagram will be described with reference to FIG.

ステップS1では、所定周波数のパルス信号を発生する。なお、ステップS1の動作は、発振回路11および自己診断制御手段13が実行する。   In step S1, a pulse signal having a predetermined frequency is generated. The operation of step S1 is executed by the oscillation circuit 11 and the self-diagnosis control means 13.

ステップS2では、パルス信号成分を検出する。なお、ステップS2の動作は、信号検出回路12が実行する。   In step S2, a pulse signal component is detected. The operation of step S2 is executed by the signal detection circuit 12.

ステップS3では、パルス信号成分が基準値内にあるか否かを判定し、パルス信号成分が基準値内にある場合には、ステップS4に移行する。一方、パルス信号成分が基準値外にある場合には、ステップS5に移行する。なお、ステップS3の動作は、自己診断制御手段13が実行する。   In step S3, it is determined whether or not the pulse signal component is within the reference value. If the pulse signal component is within the reference value, the process proceeds to step S4. On the other hand, if the pulse signal component is outside the reference value, the process proceeds to step S5. The operation of step S3 is executed by the self-diagnosis control means 13.

ステップS4では、発振回路が正常と判定する。   In step S4, it is determined that the oscillation circuit is normal.

ステップS5では、発振回路が異常と判定する。なお、ステップS4およびステップS5の動作は、自己診断制御手段13が実行する。   In step S5, it is determined that the oscillation circuit is abnormal. In addition, the operation | movement of step S4 and step S5 is performed by the self-diagnosis control means 13.

このように、この発明に係るパワーコンディショナ(発振回路)の自己診断方法は、所定周波数のパルス信号を発生するステップS1と、パルス信号成分を検出するステップS2と、パルス信号成分が基準値内にあるか否かを判定するステップS3と、パルス信号成分が基準値内にある場合には、発振回路が正常と判定するステップS4と、パルス信号成分が基準値外にある場合には、発振回路が異常と判定するステップS5とを備えたので、パルス信号成分が基準値内にあれば正常と判定し、基準値外にあれば異常と判定することができ、発信回路の自己診断を容易に、かつ確実に実行することができる。   Thus, the power conditioner (oscillation circuit) self-diagnosis method according to the present invention includes step S1 for generating a pulse signal of a predetermined frequency, step S2 for detecting the pulse signal component, and the pulse signal component is within the reference value. Step S3 for determining whether the pulse signal component is within the reference value, step S4 for determining that the oscillation circuit is normal, and oscillation if the pulse signal component is outside the reference value Step S5 for determining that the circuit is abnormal can be determined to be normal if the pulse signal component is within the reference value, and can be determined to be abnormal if the pulse signal component is outside the reference value. It can be carried out reliably and reliably.

図9はこの発明に係る地絡電流検出回路の自己診断の一実施の形態要部動作フロー図である。なお、動作フロー図は、図2を参照して説明する。   FIG. 9 is an operation flowchart of the main part of one embodiment of the self-diagnosis of the ground fault current detection circuit according to the present invention. The operation flow diagram will be described with reference to FIG.

図9において、ステップS11では、所定周波数のパルス信号を発生する。なお、ステップS11の動作は、発振回路11および自己診断制御手段13が実行する。   In FIG. 9, in step S11, a pulse signal having a predetermined frequency is generated. The operation of step S11 is executed by the oscillation circuit 11 and the self-diagnosis control means 13.

ステップS12では、所定周波数のパルス信号成分を検出する。なお、ステップS12の動作は、地絡電流検出回路9が実行する。   In step S12, a pulse signal component having a predetermined frequency is detected. The operation of step S12 is executed by the ground fault current detection circuit 9.

ステップS13では、異なる周波数のパルス信号を発生する。なお、ステップS13の動作は、発振回路11および自己診断制御手段13が実行する。   In step S13, pulse signals having different frequencies are generated. The operation of step S13 is executed by the oscillation circuit 11 and the self-diagnosis control means 13.

ステップS14では、異なる周波数のパルス信号成分を検出する。なお、ステップS14の動作は、地絡電流検出回路9が実行する。   In step S14, pulse signal components having different frequencies are detected. The operation of step S14 is executed by the ground fault current detection circuit 9.

ステップS15では、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算する。なお、ステップS15の動作は、自己診断制御手段13が実行する。   In step S15, a deviation component between a pulse signal component having a different frequency and a pulse signal component having a predetermined frequency is calculated. The operation of step S15 is executed by the self-diagnosis control means 13.

ステップS16では、偏差成分が地絡基準値内にあるか否かを判定し、偏差成分が地絡基準値内にある場合にはステップS17に移行する。一方、偏差成分が地絡基準外にある場合にはステップS18に移行する。なお、ステップS16の動作は、自己診断制御手段13が実行する。   In step S16, it is determined whether or not the deviation component is within the ground fault reference value. If the deviation component is within the ground fault reference value, the process proceeds to step S17. On the other hand, if the deviation component is outside the ground fault reference, the process proceeds to step S18. The operation of step S16 is executed by the self-diagnosis control means 13.

ステップS17では、地絡電流検出回路9が正常と判定する。   In step S17, it is determined that the ground fault current detection circuit 9 is normal.

ステップS18では、地絡電流検出回路13が異常と判定する。なお、ステップS17およびステップS18の動作は、自己診断制御手段13が実行する。   In step S18, the ground fault current detection circuit 13 determines that there is an abnormality. In addition, the operation | movement of step S17 and step S18 is performed by the self-diagnosis control means 13.

このように、この発明に係るパワーコンディショナ(地絡電流検出回路)の自己診断方法は、所定周波数のパルス信号を発生するステップS11と、所定周波数のパルス信号成分を検出するステップS12と、異なる周波数のパルス信号を発生するステップS13と、異なる周波数のパルス信号成分を検出するステップS14と、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算するステップS15と、偏差成分が地絡基準値内にあるか否かを判定するステップS16と、偏差成分が地絡基準値内にある場合には、地絡電流検出回路が正常と判定するステップS17と、偏差成分が地絡基準値外にある場合には、地絡電流検出回路が異常と判定するステップS18とを備えたので、異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分が地絡基準値内にあれば正常と判定し、地絡基準値外にあれば異常と判定することができ、絡電流検出回路の自己診断を容易に、かつ確実に実行することができる。   As described above, the self-diagnosis method for the power conditioner (ground fault current detection circuit) according to the present invention is different from step S11 for generating a pulse signal of a predetermined frequency and step S12 for detecting a pulse signal component of a predetermined frequency. Step S13 for generating a pulse signal with a frequency, Step S14 for detecting a pulse signal component with a different frequency, Step S15 for calculating a deviation component between a pulse signal component with a different frequency and a pulse signal component with a predetermined frequency, Step S16 for determining whether the ground fault is within the ground fault reference value, Step S17 for determining that the ground fault current detection circuit is normal when the deviation component is within the ground fault reference value, and the deviation component being the ground fault Step S18 for determining that the ground fault current detection circuit is abnormal when it is outside the reference value. If the deviation component of the pulse signal component of the predetermined frequency is within the ground fault reference value, it can be determined to be normal, and if it is outside the ground fault reference value, it can be determined to be abnormal, making the self-diagnosis of the fault current detection circuit easy. And can be executed reliably.

図10はこの発明に係る漏洩電流検出回路の自己診断の一実施の形態要部動作フロー図である。なお、動作フロー図は、図2を参照して説明する。   FIG. 10 is an operation flowchart of the main part of one embodiment of the self-diagnosis of the leakage current detection circuit according to the present invention. The operation flow diagram will be described with reference to FIG.

ステップS21では、所定デューティのパルス信号を発生する。なお、ステップS21の動作は、発振回路11および自己診断制御手段13が実行する。   In step S21, a pulse signal having a predetermined duty is generated. The operation of step S21 is executed by the oscillation circuit 11 and the self-diagnosis control means 13.

ステップS22では、所定デューティのパルス信号成分を検出する。なお、ステップS22の動作は、漏洩電流検出回路10が実行する。   In step S22, a pulse signal component having a predetermined duty is detected. The operation in step S22 is executed by the leakage current detection circuit 10.

ステップS23では、所定周波数で、異なるデューティのパルス信号を発生する。なお、ステップS23の動作は、発振回路11および自己診断制御手段13が実行する。   In step S23, pulse signals with different duties are generated at a predetermined frequency. The operation of step S23 is executed by the oscillation circuit 11 and the self-diagnosis control means 13.

ステップS24では、異なるデューティのパルス信号成分を検出する。なお、ステップS24の動作は、漏洩電流検出回路10が実行する。   In step S24, pulse signal components having different duties are detected. The operation of step S24 is executed by the leakage current detection circuit 10.

ステップS25では、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算する。なお、ステップS25の動作は、自己診断制御手段13が実行する。   In step S25, a deviation component between a pulse signal component having a different duty and a pulse signal component having a predetermined duty is calculated. The operation in step S25 is executed by the self-diagnosis control unit 13.

ステップS26では、偏差成分が漏洩基準値内にあるか否かを判定し、偏差成分が漏洩基準値内にある場合にはステップS27に移行する。一方、偏差成分が漏洩基準値外にある場合にはステップS28に移行する。なお、ステップS26の動作は、自己診断制御手段13が実行する。   In step S26, it is determined whether or not the deviation component is within the leakage reference value. If the deviation component is within the leakage reference value, the process proceeds to step S27. On the other hand, if the deviation component is outside the leakage reference value, the process proceeds to step S28. The operation of step S26 is executed by the self-diagnosis control means 13.

ステップS27では、漏洩電流検出回路が正常と判定する。   In step S27, it is determined that the leakage current detection circuit is normal.

ステップS28では、漏洩電流検出回路が異常と判定する。なお、ステップS27およびステップS28の動作は、自己診断制御手段13が実行する。   In step S28, it is determined that the leakage current detection circuit is abnormal. In addition, the operation | movement of step S27 and step S28 is performed by the self-diagnosis control means 13.

このように、この発明に係るパワーコンディショナ(漏洩電流検出回路)の自己診断方法は、所定周波数で、所定デューティのパルス信号を発生するステップS21と、所定デューティのパルス信号成分を検出するステップS22と、所定周波数で、異なるデューティのパルス信号を発生するステップS23と、異なるデューティのパルス信号成分を検出するステップS24と、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算するステップS25と、偏差成分が漏洩基準値内にあるか否かを判定するステップS26と、偏差成分が漏洩基準値内にある場合には、漏洩電流検出回路が正常と判定するステップS27と、偏差成分が漏洩基準値外にある場合には、漏洩電流検出回路が異常と判定するステップS28とを備えたので、異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分が漏洩基準値内にあれば正常と判定し、漏洩基準値外にあれば異常と判定することができ、漏洩電流検出回路の自己診断を容易に、かつ確実に実行することができる。   As described above, in the self-diagnosis method for the power conditioner (leakage current detection circuit) according to the present invention, step S21 for generating a pulse signal with a predetermined duty at a predetermined frequency, and step S22 for detecting a pulse signal component with a predetermined duty. Step S23 for generating a pulse signal having a different duty at a predetermined frequency, Step S24 for detecting a pulse signal component having a different duty, and calculating a deviation component between the pulse signal component having a different duty and the pulse signal component having a predetermined duty. Step S25, Step S26 for determining whether or not the deviation component is within the leakage reference value, Step S27 for determining that the leakage current detection circuit is normal when the deviation component is within the leakage reference value, and the deviation If the component is outside the leakage reference value, the leakage current detection circuit determines that it is abnormal. Therefore, if the deviation component between the pulse signal component having a different duty and the pulse signal component having a predetermined duty is within the leakage reference value, it is determined to be normal, and if it is outside the leakage reference value, it is determined to be abnormal. The self-diagnosis of the leakage current detection circuit can be easily and reliably executed.

発振回路の自己診断、地絡電流検出回路の自己診断および漏洩電流検出回路の自己診断は、特に実行する順序を決定することなく、任意の順序で実行する。なお、地絡電流検出回路および漏洩電流検出回路の自己診断は、パワーコンディショナの運転開始時に実行するが、発振回路の自己診断は、パワーコンディショナの運転開始時に実行するとともに、パワーコンディショナが系統側と接続された運転中でも、常時、継続して実行し、発振回路を監視する。また、発信回路、地絡電流検出回路および漏洩電流検出回路の自己診断で、いずれか1つでも異常と判定された場合には、パワーコンディショナを停止する。   The self-diagnosis of the oscillation circuit, the self-diagnosis of the ground-fault current detection circuit, and the self-diagnosis of the leakage current detection circuit are executed in an arbitrary order without determining the order of execution. The self-diagnosis of the ground fault current detection circuit and the leakage current detection circuit is executed at the start of the operation of the power conditioner, while the self-diagnosis of the oscillation circuit is executed at the start of the operation of the power conditioner and the power conditioner Even during operation connected to the grid side, it is continuously executed to monitor the oscillation circuit. Further, when any one of the self-diagnosis of the transmission circuit, the ground fault current detection circuit, and the leakage current detection circuit is determined to be abnormal, the power conditioner is stopped.

本発明に係るパワーコンディショナは、地絡電流検出回路や漏洩電流検出回路の自己診断を単純な構成で確実に実行可能なもので、系統と連系して動作するあらゆるパワーコンディショナに適用することができる。   The power conditioner according to the present invention can reliably execute self-diagnosis of the ground fault current detection circuit and the leakage current detection circuit with a simple configuration, and is applied to any power conditioner operating in conjunction with the system. be able to.

この発明に係るパワーコンディショナが適用される太陽光発電システムの一実施の形態システム構成図System configuration diagram of one embodiment of a photovoltaic power generation system to which a power conditioner according to the present invention is applied この発明に係る自己診断手段の一実施の形態要部ブロック構成図Block diagram of main part of one embodiment of self-diagnosis means according to the present invention この発明に係る信号条件(JS)の一実施の形態パルス信号波形図One embodiment of signal condition (JS) according to the present invention Pulse signal waveform diagram この発明に係る信号条件(JG)の一実施の形態パルス信号波形図One embodiment of signal condition (JG) according to the present invention Pulse signal waveform diagram この発明に係る信号条件(JL)の一実施の形態パルス信号波形図Pulse signal waveform diagram of one embodiment of signal condition (JL) according to the present invention この発明に係る地絡検出出力(VG2)の周波数特性図Frequency characteristic diagram of ground fault detection output (VG2) according to the present invention この発明に係る漏洩検出出力(VL2)のデューティ特性図Duty characteristic diagram of leak detection output (VL2) according to the present invention この発明に係る発振回路の自己診断の一実施の形態要部動作フロー図Operation flow diagram of main part of one embodiment of self-diagnosis of oscillation circuit according to the present invention この発明に係る地絡電流検出回路の自己診断の一実施の形態要部動作フロー図Main part operation flow diagram of one embodiment of self-diagnosis of ground fault current detection circuit according to the present invention この発明に係る漏洩電流検出回路の自己診断の一実施の形態要部動作フロー図Main part operation flow diagram of one embodiment of self-diagnosis of leakage current detection circuit according to the present invention

符号の説明Explanation of symbols

1 太陽光発電システム
2 太陽電池
3 パワーコンディショナ
4 インバータ
5 リレー
6 制御装置
7 自己診断手段
8 ZCT(変流器)
9 地絡電流検出回路
10 漏洩電流検出回路
11 発振回路
12 信号検出回路
13 自己診断制御手段
Zv インピーダンス
R 抵抗器
JS,JG,JL 信号条件
VS 発振出力
VD 分圧出力
VS1 信号検出出力
VG1,VG2 地絡検出出力
VL1,VL2 漏洩検出出力
JI 停止情報
JR 閉結情報
DESCRIPTION OF SYMBOLS 1 Solar power generation system 2 Solar cell 3 Power conditioner 4 Inverter 5 Relay 6 Control apparatus 7 Self-diagnosis means 8 ZCT (current transformer)
9 Ground fault current detection circuit 10 Leakage current detection circuit 11 Oscillation circuit 12 Signal detection circuit 13 Self-diagnosis control means Zv Impedance R Resistor JS, JG, JL Signal condition VS Oscillation output VD Voltage division output VS1 Signal detection output VG1, VG2 Ground Fault detection output VL1, VL2 Leakage detection output JI Stop information JR Closure information

Claims (8)

発振回路から所定周波数のパルス信号をZCTと抵抗器の直列回路に供給し、前記ZCTを貫通する電力線に流れる電流のアンバランスによって変化するインピーダンスと前記抵抗器とで分圧された信号成分に基づいて地絡電流あるいは漏洩電流を検出する地絡電流検出回路および漏洩電流検出回路を備えたパワーコンディショナにおいて、
前記発振回路の信号条件を変化させ、前記地絡電流検出回路または前記漏洩電流検出回路で検出する信号成分に基づいて前記地絡電流検出回路および前記漏洩電流検出回路が正常または異常の自己診断を行う自己診断手段を備えたことを特徴とするパワーコンディショナ。
A pulse signal having a predetermined frequency is supplied from an oscillation circuit to a series circuit of ZCT and a resistor, and is based on an impedance that changes due to an imbalance of current flowing through a power line passing through the ZCT and a signal component divided by the resistor. In a power conditioner equipped with a ground fault current detection circuit and a leak current detection circuit for detecting ground fault current or leakage current,
The ground fault current detection circuit and the leak current detection circuit perform normal diagnosis or abnormal self-diagnosis based on a signal component detected by the ground fault current detection circuit or the leak current detection circuit by changing a signal condition of the oscillation circuit. A power conditioner comprising a self-diagnosis means for performing.
前記自己診断手段は、前記発振回路が発生するパルス信号の信号条件を設定し、前記発振回路が出力する所定周波数の信号成分を検出する信号検出回路を備えたことを特徴とする請求項1記載のパワーコンディショナ。   2. The self-diagnosis unit includes a signal detection circuit that sets a signal condition of a pulse signal generated by the oscillation circuit and detects a signal component of a predetermined frequency output from the oscillation circuit. Power conditioner. 前記自己診断手段は、前記発振回路が発生するパルス信号の信号条件を設定し、前記信号検出回路が検出した信号成分、前記地絡電流検出回路が検出した信号成分および前記漏洩電流検出回路が検出した信号成分に基づいて前記発振回路、前記地絡電流検出回路および前記漏洩電流検出回路の正常または異常を判定する自己診断制御手段を備えたことを特徴とする請求項1記載のパワーコンディショナ。   The self-diagnosis means sets a signal condition of a pulse signal generated by the oscillation circuit, detects a signal component detected by the signal detection circuit, a signal component detected by the ground fault current detection circuit, and the leakage current detection circuit 2. The power conditioner according to claim 1, further comprising self-diagnosis control means for determining whether the oscillation circuit, the ground fault current detection circuit, and the leakage current detection circuit are normal or abnormal based on the signal component. 前記自己診断制御手段は、所定周波数のパルス信号の信号条件を設定するとともに、前記信号検出回路が検出したパルス信号成分と基準値とを比較し、前記発振回路の正常または異常を判定することを特徴とする請求項3記載のパワーコンディショナ。   The self-diagnosis control means sets a signal condition of a pulse signal having a predetermined frequency and compares the pulse signal component detected by the signal detection circuit with a reference value to determine whether the oscillation circuit is normal or abnormal. The power conditioner according to claim 3, wherein 前記自己診断制御手段は、所定周波数のパルス信号と、所定周波数と異なる周波数のパルス信号の信号条件を設定するとともに、前記地絡電流検出回路が検出した双方のパルス信号成分の偏差と地絡基準値とを比較し、前記地絡電流検出回路の正常または異常を判定することを特徴とする請求項3記載のパワーコンディショナ。   The self-diagnosis control unit sets a signal condition of a pulse signal having a predetermined frequency and a pulse signal having a frequency different from the predetermined frequency, and a deviation between both pulse signal components detected by the ground fault current detection circuit and a ground fault reference 4. The power conditioner according to claim 3, wherein the power conditioner is compared with a value to determine whether the ground fault current detection circuit is normal or abnormal. 前記自己診断制御手段は、所定周波数で所定デューティのパルス信号と、所定周波数で異なるデューティのパルス信号の信号条件を設定するとともに、前記漏洩電流検出回路が検出した双方のパルス信号成分の偏差と漏洩基準値とを比較し、前記漏洩電流検出回路の正常または異常を判定することを特徴とする請求項3記載のパワーコンディショナ。   The self-diagnosis control unit sets signal conditions for a pulse signal with a predetermined duty at a predetermined frequency and a pulse signal with a different duty at a predetermined frequency, and the deviation and leakage of both pulse signal components detected by the leakage current detection circuit 4. The power conditioner according to claim 3, wherein the power conditioner is compared with a reference value to determine whether the leakage current detection circuit is normal or abnormal. パワーコンディショナの自己診断方法であって、
所定周波数のパルス信号を発生するステップ(S11)と、
所定周波数のパルス信号成分を検出するステップ(S12)と、
異なる周波数のパルス信号を発生するステップ(S13)と、
異なる周波数のパルス信号成分を検出するステップ(S14)と、
異なる周波数のパルス信号成分と所定周波数のパルス信号成分の偏差成分を演算するステップ(S15)と、
偏差成分が地絡基準値内にあるか否かを判定するステップ(S16)と、
偏差成分が地絡基準値内にある場合には、地絡電流検出回路が正常と判定するステップ(S17)と、
偏差成分が地絡基準値外にある場合には、地絡電流検出回路が異常と判定するステップ(S18)と、
を備えたことを特徴とするパワーコンディショナの自己診断方法。
A self-diagnosis method for the inverter,
Generating a pulse signal of a predetermined frequency (S11);
Detecting a pulse signal component of a predetermined frequency (S12);
Generating a pulse signal of a different frequency (S13);
Detecting pulse signal components of different frequencies (S14);
Calculating a deviation component between a pulse signal component having a different frequency and a pulse signal component having a predetermined frequency (S15);
Determining whether the deviation component is within the ground fault reference value (S16);
When the deviation component is within the ground fault reference value, the step of determining that the ground fault current detection circuit is normal (S17);
If the deviation component is outside the ground fault reference value, the step of determining that the ground fault current detection circuit is abnormal (S18);
A self-diagnosis method for a power conditioner, comprising:
パワーコンディショナの自己診断方法であって、
所定周波数で、所定デューティのパルス信号を発生するステップ(S21)と、
所定デューティのパルス信号成分を検出するステップ(S22)と、
所定周波数で、異なるデューティのパルス信号を発生するステップ(S23)と、
異なるデューティのパルス信号成分を検出するステップ(S24)と、
異なるデューティのパルス信号成分と所定デューティのパルス信号成分の偏差成分を演算するステップ(S25)と、
偏差成分が漏洩基準値内にあるか否かを判定するステップ(S26)と、
偏差成分が漏洩基準値内にある場合には、漏洩電流検出回路が正常と判定するステップ(S27)と、
偏差成分が漏洩基準値外にある場合には、漏洩電流検出回路が異常と判定するステップ(S28)と、
を備えたことを特徴とする自己診断方法。
A self-diagnosis method for the inverter,
Generating a pulse signal with a predetermined duty at a predetermined frequency (S21);
Detecting a pulse signal component having a predetermined duty (S22);
Generating a pulse signal having a different duty at a predetermined frequency (S23);
Detecting a pulse signal component having a different duty (S24);
Calculating a deviation component between a pulse signal component having a different duty and a pulse signal component having a predetermined duty (S25);
Determining whether the deviation component is within the leakage reference value (S26);
When the deviation component is within the leakage reference value, the step of determining that the leakage current detection circuit is normal (S27);
If the deviation component is outside the leakage reference value, the step of determining that the leakage current detection circuit is abnormal (S28);
A self-diagnosis method comprising:
JP2004379659A 2004-12-28 2004-12-28 Power conditioner and its self-diagnosis method Active JP4206998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379659A JP4206998B2 (en) 2004-12-28 2004-12-28 Power conditioner and its self-diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379659A JP4206998B2 (en) 2004-12-28 2004-12-28 Power conditioner and its self-diagnosis method

Publications (2)

Publication Number Publication Date
JP2006187150A JP2006187150A (en) 2006-07-13
JP4206998B2 true JP4206998B2 (en) 2009-01-14

Family

ID=36739823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379659A Active JP4206998B2 (en) 2004-12-28 2004-12-28 Power conditioner and its self-diagnosis method

Country Status (1)

Country Link
JP (1) JP4206998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548755A (en) * 2015-12-11 2016-05-04 上能电气股份有限公司 Method of detecting inverter AC and DC-side grounding through single grounding insulation impedance detection network

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905141B2 (en) * 2007-01-12 2012-03-28 オムロン株式会社 Fault current detection circuit and fault current detection method
US9172296B2 (en) 2007-05-23 2015-10-27 Advanced Energy Industries, Inc. Common mode filter system and method for a solar power inverter
US8294296B2 (en) 2007-08-03 2012-10-23 Advanced Energy Industries, Inc. System, method, and apparatus for remotely coupling photovoltaic arrays
US8203069B2 (en) 2007-08-03 2012-06-19 Advanced Energy Industries, Inc System, method, and apparatus for coupling photovoltaic arrays
US7768751B2 (en) * 2008-01-29 2010-08-03 Advanced Energy Industries, Inc. System and method for ground fault detection and interruption
US7964837B2 (en) 2007-12-31 2011-06-21 Advanced Energy Industries, Inc. Photovoltaic inverter interface device, system, and method
US7619200B1 (en) 2008-08-10 2009-11-17 Advanced Energy Industries, Inc. Device system and method for coupling multiple photovoltaic arrays
US8461508B2 (en) 2008-08-10 2013-06-11 Advanced Energy Industries, Inc. Device, system, and method for sectioning and coupling multiple photovoltaic strings
US8362644B2 (en) 2008-12-02 2013-01-29 Advanced Energy Industries, Inc. Device, system, and method for managing an application of power from photovoltaic arrays
US20120049627A1 (en) * 2010-08-24 2012-03-01 Sanyo Electric Co., Ltd. Current collecting box for photovoltaic power generation
KR101180691B1 (en) 2010-10-13 2012-09-07 (주)설악전기 Real-time monitoring apparatus leakage current and insulation resistance for distributing pannel
DE102011050590A1 (en) 2011-05-24 2012-11-29 Sma Solar Technology Ag Insulation monitoring with a test signal of variable frequency
KR101878669B1 (en) * 2011-11-03 2018-07-16 엘지전자 주식회사 Photovoltaic power generating apparatus and controlling method of the same in grid-connected system
JP5948958B2 (en) * 2012-02-29 2016-07-06 富士電機機器制御株式会社 Current detector
JP6362837B2 (en) 2012-08-29 2018-07-25 京セラ株式会社 Zero-phase current transformer, ground fault current detection device, power conditioner, and zero-phase current transformer failure detection method
WO2014079775A1 (en) * 2012-11-21 2014-05-30 Sma Solar Technology Ag Insulation measuring method for transformer-less inverters
JP6248716B2 (en) * 2014-03-12 2017-12-20 オムロン株式会社 Failure handling device and power supply system
JP6420984B2 (en) * 2014-07-08 2018-11-07 株式会社ダイヘン Power conditioner, terminal device, and soundness confirmation method
JP6456115B2 (en) * 2014-11-20 2019-01-23 三菱電機株式会社 Fault detection device for ground fault detection circuit
CN105223519B (en) * 2015-09-28 2019-04-02 广东易事特电源股份有限公司 Photovoltaic inverter leakage current protection act test device
JP6555161B2 (en) * 2016-03-10 2019-08-07 オムロン株式会社 Arc detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690247B2 (en) * 1989-12-22 1994-11-14 テンパール工業株式会社 Insulation resistance measuring device self-diagnosis method
JP3157386B2 (en) * 1994-06-24 2001-04-16 三菱電機株式会社 Ground fault detector
JP3804276B2 (en) * 1998-06-30 2006-08-02 松下電工株式会社 Solar power system
JP2000019211A (en) * 1998-07-01 2000-01-21 Matsushita Electric Ind Co Ltd Leak detector
JP3805953B2 (en) * 2000-07-10 2006-08-09 オムロン株式会社 Power conditioner and solar power generation system using the same
JP4039156B2 (en) * 2002-07-18 2008-01-30 日産自動車株式会社 Fault diagnosis device for ground fault detection circuit
JP4082676B2 (en) * 2003-05-29 2008-04-30 株式会社デンソー Electric leakage detection device inspection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548755A (en) * 2015-12-11 2016-05-04 上能电气股份有限公司 Method of detecting inverter AC and DC-side grounding through single grounding insulation impedance detection network
CN105548755B (en) * 2015-12-11 2018-11-09 上能电气股份有限公司 The method for detecting inverter AC and DC side ground connection by single ground insulation impedance detection network

Also Published As

Publication number Publication date
JP2006187150A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4206998B2 (en) Power conditioner and its self-diagnosis method
JP6105705B2 (en) Abnormality detection device and power conditioner for grid interconnection relay
JP5646752B2 (en) Grid-connected inverter device and control method thereof
US20120249038A1 (en) Ground scheme identification method
US20130222951A1 (en) Fault protection circuit for photovoltaic power system
WO2008016179A1 (en) Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
CN104698321A (en) Electric device fault detecting system
CN103185850B (en) For detecting the apparatus and method of switching device fault in inverter
CN104515927B (en) Detector and method for detecting the earth fault in high resistance grounding system
US9595895B2 (en) Motor control system and method for protecting inrush resistor
US10024928B2 (en) Inverter and detection method for an inverter for detecting a network fault
JP2010104157A (en) Uninterruptible power supply unit and method for interrupting uninterruptible power supply unit
US20170033679A1 (en) Detecting ground faults on non-isolated dc systems
JP2012120376A (en) Inverter device
CN109655757B (en) UPS system detection method and system
CN203368336U (en) Frequency converter
JP6842953B2 (en) Power converter
CN105301370A (en) Three-phase AC detection protection device and detection protection method therefor
WO2017090139A1 (en) Device for detecting fault in grid interconnection relay, and power conditioner
JP6456115B2 (en) Fault detection device for ground fault detection circuit
JP4905141B2 (en) Fault current detection circuit and fault current detection method
KR101032487B1 (en) Power conditioner for solar power generation
JP4244025B2 (en) Distributed power supply device and method for detecting DC ground fault thereof
JP5369818B2 (en) Inverter device failure detection method
JP6989032B2 (en) Uninterruptible power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4206998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250