JP2016099092A - Air conditioning system, control device for air conditioner and control method for air conditioner - Google Patents

Air conditioning system, control device for air conditioner and control method for air conditioner Download PDF

Info

Publication number
JP2016099092A
JP2016099092A JP2014238503A JP2014238503A JP2016099092A JP 2016099092 A JP2016099092 A JP 2016099092A JP 2014238503 A JP2014238503 A JP 2014238503A JP 2014238503 A JP2014238503 A JP 2014238503A JP 2016099092 A JP2016099092 A JP 2016099092A
Authority
JP
Japan
Prior art keywords
air conditioner
temperature
air
thermal
closed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238503A
Other languages
Japanese (ja)
Other versions
JP6233283B2 (en
Inventor
英明 塩田
Hideaki Shioda
英明 塩田
特手 義信
Yoshinobu Kotte
義信 特手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014238503A priority Critical patent/JP6233283B2/en
Publication of JP2016099092A publication Critical patent/JP2016099092A/en
Application granted granted Critical
Publication of JP6233283B2 publication Critical patent/JP6233283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning system capable of satisfying both securing comfort and suppressing power consumption, a control device for an air conditioner and a control method for an air conditioner for controlling a plurality of air conditioners.SOLUTION: In an air conditioning system 1, a control device 5 includes: a total electric power calculation unit 55 which calculates a total electric power amount in which electric power amounts consumed by first and second air conditioners 21, 22 respectively are acquired and each of the electric power amounts is added up, by using a temperature detection result and thermal load distribution ratio information of a temperature sensor group 4, for each combination of setting temperature included in each operation condition, on the basis of the operation condition including the setting temperature determined according to virtually divided space characteristics the first and second air conditioners 21, 22 correspond to; and an air conditioner control unit 57 for controlling the first and second air conditioners 21, 22 respectively by the combination of setting temperatures which becomes the minimum electric power amount out of the total electric power amounts.SELECTED DRAWING: Figure 1

Description

本発明は、空気調和システム、空気調和機の制御装置および空気調和機の制御方法に関する。   The present invention relates to an air conditioner system, an air conditioner control device, and an air conditioner control method.

スーパーマーケットやコンビニエンスストア等の店舗では、空気調和機を用いた温度制御を行っている。また、店舗には、冷蔵冷凍ショーケース等の温冷熱源、日射による熱、人の出入りによる外気熱などの様々な熱源が存在し、空気調和機に対する負荷となっている。店舗全体の消費電力を効率的に運用するために、たとえば、店舗内に設置された1台の空気調和機と複数の冷蔵冷凍ショーケースとの双方を連携して集中制御する冷蔵冷凍空調装置が提案されている(例えば、特許文献1参照)。この冷蔵冷凍空調装置は、快適性を確保するとともに、冷蔵冷凍ショーケースの負荷および空気調和機の負荷が、消費電力量を抑制できる理想的な割合になるように、冷蔵冷凍ショーケースおよび空気調和機の運転を制御している。   In stores such as supermarkets and convenience stores, temperature control using an air conditioner is performed. In addition, the store has various heat sources such as a hot / cold heat source such as a refrigerated freezer showcase, heat from solar radiation, and outside air heat by people coming and going, which is a load on the air conditioner. In order to efficiently operate the power consumption of the entire store, for example, a refrigerated refrigerating and air-conditioning apparatus that performs centralized control in cooperation with one air conditioner installed in a store and a plurality of refrigerated freezer showcases. It has been proposed (see, for example, Patent Document 1). This refrigerated refrigeration air conditioner ensures comfort, and the refrigerated showcase and air-conditioning load are designed to achieve an ideal ratio that can reduce the power consumption. The machine operation is controlled.

特開2013−130377号公報JP 2013-130377 A

ところで、一般的に、スーパーマーケットやコンビニエンスストア等の店舗では、複数の空気調和機を設置している場合が多い。従来においては、このように複数の空気調和機が設置されている場合でも、全ての空気調和機に対して同じ条件で一律制御していた。しかしながら、冷蔵冷凍ショーケースのような温冷熱源は店舗内で均等に配置されるとは限らず、また、日射による熱や人の出入りによる外気熱の侵入も考慮すると、各空気調和機に係る熱負荷は互いに異なる場合がほとんどである。さらに、店舗内では、場所に応じて快適性が求められるか否かも異なっている。このため、複数の空気調和機に対して同じ条件で一律に制御する従来の方法では、快適性の確保と消費電力量の抑制との双方を満たすことができなかった。   By the way, generally, a store such as a supermarket or a convenience store often has a plurality of air conditioners. Conventionally, even when a plurality of air conditioners are installed in this manner, all air conditioners are uniformly controlled under the same conditions. However, hot and cold heat sources such as refrigerated freezer showcases are not always evenly arranged in the store, and in consideration of intrusion of heat by sunlight and outside air heat by people coming and going, it is related to each air conditioner In most cases, the heat loads are different from each other. Furthermore, in the store, whether or not comfort is required depends on the location. For this reason, in the conventional method of uniformly controlling a plurality of air conditioners under the same conditions, it has been impossible to satisfy both of ensuring comfort and suppressing power consumption.

本発明は、上記に鑑みてなされたものであって、快適性の確保と消費電力量の抑制との双方を満たすことができる空気調和システム、複数の空気調和機を制御する空気調和機の制御装置および空気調和機の制御方法を提供することを目的とする。   The present invention has been made in view of the above, and is an air conditioning system that can satisfy both of ensuring comfort and suppressing power consumption, and control of an air conditioner that controls a plurality of air conditioners. An object of the present invention is to provide an apparatus and a control method for an air conditioner.

上述した課題を解決し、目的を達成するために、本発明にかかる空気調和システムは、一つの閉じた空間の温度制御を行う空気調和システムであって、前記一つの閉じた空間に対して設けられた複数の空気調和機と、前記複数の空気調和機のそれぞれに対応させて前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサと、前記複数の温度センサによる温度検出結果と、前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに前記空気調和機が消費する電力量を前記空気調和機ごとに求めた結果に応じて、前記複数の空気調和機が消費する合計電力量が最小となるように前記複数の空気調和機をそれぞれ制御する制御装置と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, an air conditioning system according to the present invention is an air conditioning system that performs temperature control of one closed space, and is provided for the one closed space. A plurality of air conditioners and a plurality of temperatures installed at least one in each of the plurality of divided spaces obtained by virtually dividing the one closed space in correspondence with each of the plurality of air conditioners. A sensor, a temperature detection result by the plurality of temperature sensors, and a distribution ratio in which thermal loads due to a plurality of thermal elements related to the one closed space are respectively distributed to the plurality of divided spaces, As a result of obtaining for each air conditioner the amount of power consumed by the air conditioner based on operating conditions including a set temperature determined according to the characteristics of the divided space to which the air conditioner corresponds. Flip it, characterized in that the total amount of power the plurality of air conditioners is consumed and a control unit for controlling each of the plurality of air conditioners so as to have a minimum.

また、本発明にかかる空気調和機の制御装置は、一つの閉じた空間の温度制御のために前記一つの閉じた空間に対して設けられた複数の空気調和機を制御する空気調和機の制御装置であって、前記複数の空気調和機のそれぞれに対応させて前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果と、前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに前記空気調和機が消費する電力量を前記空気調和機ごとに演算した結果に応じて、前記複数の空気調和機が消費する合計電力量が最小となるように前記複数の空気調和機をそれぞれ制御することを特徴とする。   In addition, the air conditioner control device according to the present invention controls an air conditioner that controls a plurality of air conditioners provided for the one closed space for temperature control of the one closed space. Temperature detection by a plurality of temperature sensors, each of which is installed in each of a plurality of divided spaces obtained by virtually dividing the one closed space in correspondence with each of the plurality of air conditioners. Using the result and a distribution ratio in which thermal loads due to a plurality of thermal elements related to the one closed space are respectively distributed to the plurality of divided spaces, the divided spaces corresponding to the respective air conditioners The total amount consumed by the plurality of air conditioners according to the result of calculating for each air conditioner the amount of power consumed by the air conditioner based on the operating conditions including the set temperature determined according to the characteristics of Electric Amount and wherein the plurality of air conditioners to be controlled respectively so as to minimize.

また、本発明にかかる空気調和機の制御装置は、各空気調和機の運転条件をそれぞれ記憶する運転条件記憶部と、前記分配比率を、前記複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を記憶する熱負荷情報記憶部と、前記運転条件記憶部に記憶された各空気調和機の運転条件をもとに、各運転条件に含まれる設定温度の組み合わせごとに、前記複数の温度センサによる温度検出結果と前記熱負荷情報記憶部が記憶する前記熱負荷分配比率情報とを用いて、前記空気調和機が消費する電力量を前記空気調和機ごとに求め、該求めた各電力量を合計した合計電力量をそれぞれ演算する合計電力量演算部と、前記合計電力量演算部が演算した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせを抽出し、該抽出した設定温度の組み合わせで前記複数の空気調和機をそれぞれ制御する空気調和機制御部と、を備えたことを特徴とする。   An air conditioner control device according to the present invention includes an operating condition storage unit that stores operating conditions of each air conditioner, and a thermal load distribution that indicates the distribution ratio for each of the plurality of thermal elements. Based on the operating conditions of each air conditioner stored in the operating condition storage unit and the heat load information storing unit storing the ratio information, the plurality of temperatures for each combination of set temperatures included in each operating condition Using the temperature detection result by the sensor and the thermal load distribution ratio information stored in the thermal load information storage unit, the amount of electric power consumed by the air conditioner is obtained for each air conditioner, and each obtained electric energy The total power amount calculation unit that calculates the total power amount calculated by summing the total power amount, and the combination of the set temperature that is the smallest total power amount among the total power amounts calculated by the total power amount calculation unit is extracted and extracted. Setting An air conditioner control unit that controls each of the plurality of air conditioners in combination of temperature, further comprising a characterized.

また、本発明にかかる空気調和機の制御装置は、前記複数の熱的要素は、少なくとも、各空気調和機、前記一つの閉じた空間内にある温冷熱源、日射熱、並びに、前記一つの閉じた空間内に侵入した外気熱であることを特徴とする。   In the control device for an air conditioner according to the present invention, the plurality of thermal elements include at least each air conditioner, a heating / cooling heat source in the one closed space, solar heat, and the one It is characterized by outside air heat that has entered into a closed space.

また、本発明にかかる空気調和機の制御装置は、前記合計電力量演算部は、各熱的要素の熱負荷を求め、該求めた熱的要素の熱負荷を、前記熱負荷分配比率情報で示された比率で各分割空間にそれぞれ分配し、各分割空間にそれぞれ分配された熱負荷と前記設定温度とをもとに、前記空気調和機が消費する電力量を前記空気調和機ごとに求めることを特徴とする。   Further, in the control device for an air conditioner according to the present invention, the total electric energy calculation unit obtains a thermal load of each thermal element, and the obtained thermal load of the thermal element is determined by the thermal load distribution ratio information. It distributes to each divided space at the indicated ratio, and calculates the amount of power consumed by the air conditioner for each air conditioner based on the thermal load and the set temperature respectively distributed to each divided space. It is characterized by that.

また、本発明にかかる空気調和機の制御方法は、一つの閉じた空間の温度制御のために前記一つの閉じた空間に対して設けられた複数の空気調和機を制御する制御装置が行う空気調和機の制御方法であって、各空気調和機に対応して前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果を取得する温度検出結果取得処理と、それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに各運転条件に含まれる設定温度の組み合わせを取得する温度組み合わせ取得処理と、前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間に分配される分配比率を、前記複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を取得する熱負荷分配比率情報取得処理と、前記温度検出結果取得処理において取得した温度検出結果と、前記熱負荷分配比率情報取得処理において取得した前記熱負荷分配比率情報とを用いて、前記温度組み合わせ取得処理において取得した前記設定温度の組み合わせごとに、前記空気調和機が消費する電力量を前記空気調和機ごとに求め、該求めた各電力量を合計した合計電力量をそれぞれ演算する合計電力量演算処理と、前記合計電力量演算処理において演算した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせを抽出し、該抽出した温度の組み合わせで前記複数の空気調和機をそれぞれ制御する空気調和機制御処理と、を含むことを特徴とする。   In addition, the air conditioner control method according to the present invention includes an air performed by a control device that controls a plurality of air conditioners provided for the one closed space for temperature control of the one closed space. A method for controlling a conditioner, wherein the temperature is detected by a plurality of temperature sensors installed at least one in each of a plurality of divided spaces obtained by virtually dividing the one closed space corresponding to each air conditioner. Combination of temperature detection result acquisition process for acquiring results and set temperature included in each operation condition based on operation condition including set temperature determined according to the characteristics of the divided space to which each air conditioner corresponds And a distribution ratio in which thermal loads due to a plurality of thermal elements related to the one closed space are distributed to the plurality of divided spaces, for each of the plurality of thermal elements. Thermal load distribution ratio information acquisition processing for acquiring the indicated thermal load distribution ratio information, temperature detection results acquired in the temperature detection result acquisition processing, and thermal load distribution acquired in the thermal load distribution ratio information acquisition processing Using the ratio information, for each combination of the set temperatures acquired in the temperature combination acquisition process, the amount of power consumed by the air conditioner is obtained for each air conditioner, and the obtained amounts of power are totaled. A total power amount calculation process for calculating the total power amount, and a combination of the set temperature that is the smallest total power amount among the total power amounts calculated in the total power amount calculation process, and the combination of the extracted temperatures And an air conditioner control process for controlling each of the plurality of air conditioners.

本発明によれば、複数の空気調和機のそれぞれに対応させて一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果と、一つの閉じた空間に関連する複数の熱的要素による熱負荷が複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの空気調和機が対応する分割空間の特性に応じて定められる設定温度を含む運転条件をもとに空気調和機が消費する電力量を空気調和機ごとに演算した結果に応じて、複数の空気調和機が消費する合計電力量が最小となるように複数の空気調和機をそれぞれ制御するため、快適性の確保と消費電力量の抑制との双方を満たすことができる。   According to the present invention, a temperature detection result by a plurality of temperature sensors installed at least one in each of a plurality of divided spaces obtained by virtually dividing one closed space corresponding to each of the plurality of air conditioners. And a distribution ratio in which thermal loads due to a plurality of thermal elements related to one closed space are distributed to the plurality of divided spaces, respectively, according to the characteristics of the divided spaces to which each air conditioner corresponds. The total power consumed by multiple air conditioners is minimized according to the result of calculating the amount of power consumed by the air conditioner for each air conditioner based on the operating conditions including the set temperature. Since each of the plurality of air conditioners is controlled, both of ensuring comfort and suppressing power consumption can be satisfied.

図1は、本発明の実施の形態にかかる空気調和システムの構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a configuration of an air conditioning system according to an embodiment of the present invention. 図2は、図1に示す空気調和システムの空気調和対象である店舗の内部構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of an internal configuration of a store that is an air conditioning target of the air conditioning system illustrated in FIG. 1. 図3は、図1に示す制御装置が行う空気調和機の制御方法の処理手順を示すフローチャートである。FIG. 3 is a flowchart showing a processing procedure of the air conditioner control method performed by the control device shown in FIG. 1. 図4は、図1に示す第1空気調和機および第2空気調和機の設定温度の組み合わせを例示した表を示す図である。FIG. 4 is a diagram illustrating a table illustrating combinations of set temperatures of the first air conditioner and the second air conditioner illustrated in FIG. 1. 図5は、図1に示す熱負荷情報記憶部が記憶する熱負荷分配比率情報の一例を示す図である。FIG. 5 is a diagram illustrating an example of heat load distribution ratio information stored in the heat load information storage unit illustrated in FIG. 1. 図6は、図1に示す空気調和機およびショーケースの熱負荷と、空間設定温度との関係の一例を示す図である。FIG. 6 is a diagram illustrating an example of the relationship between the heat load of the air conditioner and the showcase illustrated in FIG. 1 and the space setting temperature. 図7は、図1に示す空気調和機およびショーケースの熱負荷と、空間設定温度との関係の一例を示す図である。FIG. 7 is a diagram illustrating an example of the relationship between the heat load of the air conditioner and the showcase illustrated in FIG. 1 and the space setting temperature. 図8は、図1に示す合計電力量演算部の演算結果の一例を示す図である。FIG. 8 is a diagram illustrating an example of a calculation result of the total power amount calculation unit illustrated in FIG. 1.

以下に、本発明にかかる実施の形態の一例として、一つの閉じた空間に複数の空気調和機が設けられた空気調和システムについて説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。   Hereinafter, an air conditioning system in which a plurality of air conditioners are provided in one closed space will be described as an example of an embodiment according to the present invention. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.

(実施の形態)
本実施の形態にかかる空気調和システムにおいては、複数の空気調和機のそれぞれに対応させて一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果と、一つの閉じた空間に関連する複数の熱的要素による熱負荷が複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの空気調和機が対応する分割空間の特性に応じて定められる設定温度を含む運転条件をもとに空気調和機が消費する電力量を空気調和機ごとに演算した結果に応じて、複数の空気調和機が消費する合計電力量が最小となるように複数の空気調和機をそれぞれ制御する。本実施の形態では、一つの閉じた空間として、一つの店舗の内部空間を例として説明する。
(Embodiment)
In the air conditioning system according to the present embodiment, a plurality of at least one installed in each of a plurality of divided spaces obtained by virtually dividing one closed space in correspondence with each of the plurality of air conditioners. Using the temperature detection result by the temperature sensor and the distribution ratio in which the thermal load due to the plurality of thermal elements related to one closed space is distributed to the plurality of divided spaces, the respective air conditioners correspond to Total energy consumed by multiple air conditioners according to the result of calculating for each air conditioner the amount of power consumed by the air conditioner based on the operating conditions including the set temperature determined according to the characteristics of the space Each of the plurality of air conditioners is controlled so as to minimize. In the present embodiment, an internal space of one store will be described as an example of one closed space.

図1は、本発明の実施の形態にかかる空気調和システムの構成の一例を示すブロック図である。図2は、本実施の形態の空気調和システムが設置される店舗の内部構成の一例を示す図である。   FIG. 1 is a block diagram showing an example of a configuration of an air conditioning system according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of an internal configuration of a store in which the air conditioning system according to the present embodiment is installed.

図1および図2に示すように、実施の形態にかかる空気調和システム1は、店舗Sの内部空間に対して設けられた空気調和機群2と、ショーケース群3と、温度センサ群4と、空気調和機群2およびショーケース群3の運転を制御する制御装置5と、を備える。   As shown in FIG. 1 and FIG. 2, an air conditioner system 1 according to the embodiment includes an air conditioner group 2, a showcase group 3, a temperature sensor group 4, and the like provided in the interior space of a store S. And a control device 5 that controls the operation of the air conditioner group 2 and the showcase group 3.

空気調和機群2は、たとえば、店舗Sの天井等に設けられた第1空気調和機21および第2空気調和機22を有する。図2に例示するように、第1空気調和機21は、店舗Sの出入り口Eとレジカウンタとの間の天井に設けられ、第2空気調和機22は、店舗Sの奥の後述する第4ショーケース34手前の天井に設けられる。   The air conditioner group 2 includes, for example, a first air conditioner 21 and a second air conditioner 22 provided on the ceiling of the store S or the like. As illustrated in FIG. 2, the first air conditioner 21 is provided on the ceiling between the entrance / exit E of the store S and the register counter, and the second air conditioner 22 is a fourth to be described later in the back of the store S. It is provided on the ceiling in front of the showcase 34.

ショーケース群3は、冷蔵冷凍装置であり、図2に例示するように、店舗S奥の壁面に並んで配置された第1ショーケース31〜第4ショーケース34を有する。   The showcase group 3 is a refrigerated refrigerator, and includes a first showcase 31 to a fourth showcase 34 arranged side by side on the wall surface behind the store S as illustrated in FIG.

空気調和システム1では、店舗Sの内部空間を複数の空気調和機のそれぞれに対応させて仮想的に分割し、該分割した分割空間の特性に対応させて空気調和機ごとに最適制御を行いながら、最大電力量の低減も行っている。図2の例では、第1空気調和機21は、店舗Sの内部空間を仮想的に分割した分割空間の一方の分割空間A1に配置し、第2空気調和機22は、他方の分割空間A2に配置される。分割の仕方は、複数の空気調和機、ショーケース、窓、出入り口、レジカウンタ等のレイアウトに応じて決められる。分割空間A1は第1空気調和機21に対応し、分割空間A2は第2空気調和機22に対応する。   In the air conditioning system 1, the interior space of the store S is virtually divided corresponding to each of the plurality of air conditioners, and optimal control is performed for each air conditioner corresponding to the characteristics of the divided spaces. The maximum amount of power is also reduced. In the example of FIG. 2, the first air conditioner 21 is arranged in one divided space A1 of the divided space obtained by virtually dividing the internal space of the store S, and the second air conditioner 22 is arranged in the other divided space A2. Placed in. The division method is determined according to the layout of a plurality of air conditioners, showcases, windows, doorways, register counters, and the like. The divided space A1 corresponds to the first air conditioner 21, and the divided space A2 corresponds to the second air conditioner 22.

温度センサ群4は、第1温度センサ41、第2温度センサ42、および、室外用温度センサ43を少なくとも含む。第1温度センサ41、第2温度センサ42、および、室外用温度センサ43は、異なる領域に少なくとも一つずつ設置される。第1温度センサ41は、たとえば、図2に示す分割空間A1の第1空気調和機21周辺に設けられ、設置された周辺の温度を検出する。第2温度センサ42は、たとえば、分割空間A2の第2空気調和機22周辺に設けられ、設置された周辺の温度を検出する。室外用温度センサ43は、たとえば、店舗Sの窓W2外に設けられ、店舗Sの外気温を検出する。各温度センサは、検出した各温度結果を制御装置5に出力する。各温度センサは、定期的に温度検出を行ってもよく、制御装置5から温度検出指示があった時に温度検出を行ってもよい。   The temperature sensor group 4 includes at least a first temperature sensor 41, a second temperature sensor 42, and an outdoor temperature sensor 43. At least one of the first temperature sensor 41, the second temperature sensor 42, and the outdoor temperature sensor 43 is installed in different areas. The first temperature sensor 41 is provided, for example, around the first air conditioner 21 in the divided space A1 shown in FIG. 2 and detects the temperature of the installed surroundings. The second temperature sensor 42 is provided, for example, around the second air conditioner 22 in the divided space A2 and detects the temperature of the installed surroundings. The outdoor temperature sensor 43 is provided outside the window W2 of the store S, for example, and detects the outside air temperature of the store S. Each temperature sensor outputs each detected temperature result to the control device 5. Each temperature sensor may periodically detect temperature, or may perform temperature detection when a temperature detection instruction is issued from the control device 5.

制御装置5は、空気調和機群2の各空気調和機、ショーケース群3の各ショーケース、温度センサ群4の各温度センサに接続し、空気調和機群2の各空気調和機およびショーケース群3の各ショーケースの運転を制御する。制御装置5は、入力部51、出力部52、運転条件記憶部53、熱負荷情報記憶部54、合計電力量演算部55、および、制御部56を備える。   The control device 5 is connected to each air conditioner of the air conditioner group 2, each showcase of the showcase group 3, and each temperature sensor of the temperature sensor group 4, and each air conditioner and showcase of the air conditioner group 2. Control the operation of each group 3 showcase. The control device 5 includes an input unit 51, an output unit 52, an operation condition storage unit 53, a thermal load information storage unit 54, a total power amount calculation unit 55, and a control unit 56.

入力部51は、キーボード、各種ボタン、各種スイッチ等の入力デバイスや、マウスやタッチパネル等のポインティングデバイスを含み、これらのデバイスに対する空気調和システム1の管理者の操作に応じた空気調和制御に関する指示信号を制御部56に入力する。   The input unit 51 includes input devices such as a keyboard, various buttons, and various switches, and pointing devices such as a mouse and a touch panel, and an instruction signal related to air conditioning control according to the operation of the administrator of the air conditioning system 1 for these devices. Is input to the control unit 56.

出力部52は、ディスプレイやプリンタなどを有し、空気調和システム1の空気調和制御に関する情報を出力する。   The output unit 52 includes a display, a printer, and the like, and outputs information related to air conditioning control of the air conditioning system 1.

運転条件記憶部53は、第1空気調和機21および第2空気調和機22の運転条件をそれぞれ記憶する。第1空気調和機21および第2空気調和機22の運転条件は、第1空気調和機21および第2空気調和機22が対応する分割空間A1および分割空間A2の特性に応じて予め決められている。運転条件は、温度や湿度をパラメータとして含んでいる。運転条件は、パラメータの組み合わせに応じて、快適性優先運転条件と、省エネルギー優先条件とが設定されている。   The operating condition storage unit 53 stores the operating conditions of the first air conditioner 21 and the second air conditioner 22, respectively. The operating conditions of the first air conditioner 21 and the second air conditioner 22 are determined in advance according to the characteristics of the divided space A1 and the divided space A2 to which the first air conditioner 21 and the second air conditioner 22 correspond. Yes. The operating conditions include temperature and humidity as parameters. As the driving conditions, comfort priority driving conditions and energy saving priority conditions are set according to the combination of parameters.

快適性優先運転条件は、快適性を優先させるようにパラメータが設定される。快適性優先運転条件は、たとえば、冷房時および暖房時の温度範囲が22℃以上26℃以下に設定されている。省エネ優先運転条件は、省エネルギー性を優先させるようにパラメータが設定される。省エネ優先運転条件は、冷房時の温度範囲が24℃以上28℃以下に設定されており、暖房時の温度範囲が20℃以上24℃以下に設定されている。第1空気調和機21および第2空気調和機22の運転条件は、来客数、外気温、季節、時間帯等に応じて、スケジュール管理されている。第1空気調和機21に対応する分割空間A1は、レジカウンタを含み、従業員や会計待ちの客が留まることが多いため、快適性優先運転条件が設定される時間帯が多い。これに対し、第2空気調和機22に対応する分割空間A2は、人が留まることが分割空間A1よりも少ないため、省エネ性優先条件が設定される時間帯が多い。これらの各運転条件および設定温度範囲は、入力部51などを介して予め入力されることによって運転条件記憶部53に記憶される。また、図示しない専用ネットワーク回線を介して外部装置から入力されることによって、運転条件記憶部53に記憶してもよい。なお、設定温度範囲は、運転条件ごとに予め決まっているが、入力部51などを介して変更が可能である。   In the comfort priority driving conditions, parameters are set so as to give priority to comfort. As the comfort priority operation condition, for example, the temperature range during cooling and heating is set to 22 ° C. or higher and 26 ° C. or lower. In the energy saving priority operation condition, a parameter is set so that energy saving is prioritized. The energy-saving priority operation condition is that the temperature range during cooling is set to 24 ° C. or higher and 28 ° C. or lower, and the temperature range during heating is set to 20 ° C. or higher and 24 ° C. or lower. The operating conditions of the first air conditioner 21 and the second air conditioner 22 are schedule-managed according to the number of visitors, outside air temperature, season, time zone, and the like. The divided space A1 corresponding to the first air conditioner 21 includes a cash register counter, and there are many employees and customers waiting for check-in, so there are many times when comfort priority operation conditions are set. On the other hand, the divided space A2 corresponding to the second air conditioner 22 has less time for people to stay than the divided space A1, and therefore there are many time zones in which energy saving priority conditions are set. These operating conditions and set temperature ranges are stored in the operating condition storage unit 53 by being input in advance via the input unit 51 or the like. Further, it may be stored in the operating condition storage unit 53 by being input from an external device via a dedicated network line (not shown). The set temperature range is predetermined for each operating condition, but can be changed via the input unit 51 or the like.

熱負荷情報記憶部54は、店舗Sの内部空間に関連する複数の熱的要素による熱負荷が複数の分割空間にそれぞれ分配される分配比率を、複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を記憶する。図2に示す例では、複数の熱的要素として、少なくとも、店舗Sの内部空間にある温冷熱源である第1空気調和機21、第2空気調和機22、漏れ冷気(矢印Y31〜34参照)を放出する第1〜第4ショーケース31〜34に加え、窓W1,W2を介した日射熱(矢印Y11,Y12参照)、出入り口Eを介して店舗Sの内部空間内に侵入した外気熱(矢印Y21参照)、および、人Hが含まれる。分割空間A1,A2に対する各熱的要素の熱負荷分配比率は、予め求められて熱負荷情報記憶部54に記憶される。また、各要素の熱負荷の分配比率は、店舗Sの空気調和機、ショーケース等の温冷熱源の配置変更や機種変更、窓や出入口の配置変更などに応じて、適宜変更される。   The thermal load information storage unit 54 indicates a distribution ratio in which the thermal loads due to the plurality of thermal elements related to the internal space of the store S are respectively distributed to the plurality of divided spaces for each of the plurality of thermal elements. Store distribution ratio information. In the example shown in FIG. 2, as a plurality of thermal elements, at least a first air conditioner 21 and a second air conditioner 22 that are hot / cold heat sources in the internal space of the store S, leakage cold air (see arrows Y31 to 34). ) In addition to the first to fourth showcases 31 to 34, solar heat through the windows W1 and W2 (see arrows Y11 and Y12), and outside air heat that has entered the store S through the doorway E. (See arrow Y21) and person H are included. The thermal load distribution ratio of each thermal element with respect to the divided spaces A1 and A2 is obtained in advance and stored in the thermal load information storage unit 54. In addition, the distribution ratio of the heat load of each element is appropriately changed according to the change in the arrangement of the heating / cooling heat source such as the air conditioner and the showcase of the store S, the change in the model, the change in the arrangement of the windows and the entrances and the like.

合計電力量演算部55は、運転条件記憶部53に記憶された運転条件の中から、制御対象期間における各空気調和機の運転条件を取得する。合計電力量演算部55は、取得した各空気調和機の運転条件をもとに、各運転条件に含まれる各設定温度の組み合わせを取得する。合計電力量演算部は、取得した設定温度の組み合わせごとに、第1空気調和機21および第2空気調和機22が消費する電力量を空気調和機ごとに求める。そして、合計電力量演算部55は、該求めた各電力量を合計した合計電力量を、設定温度の組み合わせごとに、それぞれ演算する。合計電力量演算部55は、温度センサ群4の各温度センサによる温度検出結果と、熱負荷情報記憶部54が記憶する熱負荷分配比率情報と、を少なくとも用いて、第1空気調和機21および第2空気調和機22の各電力量を求める。   The total electric energy calculation unit 55 acquires the operation condition of each air conditioner in the control target period from the operation conditions stored in the operation condition storage unit 53. The total electric energy calculation part 55 acquires the combination of each preset temperature contained in each operation condition based on the acquired operation condition of each air conditioner. A total electric energy calculating part calculates | requires the electric energy which the 1st air conditioner 21 and the 2nd air conditioner 22 consume for every combination of the acquired set temperature for every air conditioner. And the total electric energy calculating part 55 calculates the total electric energy which totaled each calculated | required electric energy for every combination of preset temperature, respectively. The total electric energy calculation unit 55 uses at least the temperature detection result by each temperature sensor of the temperature sensor group 4 and the thermal load distribution ratio information stored in the thermal load information storage unit 54, and uses the first air conditioner 21 and Each electric energy of the 2nd air conditioner 22 is calculated | required.

制御部56は、図示しないメモリ等に保持された各種プログラムおよびパラメータを実行して制御装置5の各構成部位の各処理および各動作を制御する。制御部56は、制御装置5の各構成部位に入出力されるデータについて入出力制御を行い、また、各構成部位に対してデータに対する所定の処理を行わせる。制御部56は、空気調和機制御部57を備える。空気調和機制御部57は、合計電力量演算部55が演算した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせを抽出し、該抽出した設定温度の組み合わせで第1空気調和機21および第2空気調和機22をそれぞれ制御する。   The control unit 56 executes various programs and parameters stored in a memory (not shown) and controls each process and each operation of each component of the control device 5. The control unit 56 performs input / output control on data input / output to / from each component of the control device 5 and causes each component to perform predetermined processing on the data. The control unit 56 includes an air conditioner control unit 57. The air conditioner control unit 57 extracts the set temperature combination that is the smallest total power amount among the total power amounts calculated by the total power amount calculation unit 55, and the first air conditioner is combined with the extracted set temperature combination. The machine 21 and the second air conditioner 22 are controlled.

図3は、図1に示す制御装置5が行う空気調和機の制御方法の処理手順を示すフローチャートである。図3に示すように、制御装置5では、制御部56が、温度センサ群4の各温度センサによる温度検出結果を取得する温度検出結果取得処理を行う(ステップS1)。制御部56は、第1温度センサ41による分割空間A1の温度検出結果、第2温度センサ42による分割空間A2の温度検出結果とともに、室外用温度センサ43によって店舗S外の外気温の温度検出結果を取得する。制御部56が取得した各温度検出結果は、合計電力量演算部55に出力される。   FIG. 3 is a flowchart showing a processing procedure of an air conditioner control method performed by the control device 5 shown in FIG. 1. As shown in FIG. 3, in the control device 5, the control unit 56 performs a temperature detection result acquisition process for acquiring a temperature detection result by each temperature sensor of the temperature sensor group 4 (step S <b> 1). The controller 56 detects the temperature detection result of the outside temperature outside the store S by the outdoor temperature sensor 43 together with the temperature detection result of the division space A1 by the first temperature sensor 41 and the temperature detection result of the division space A2 by the second temperature sensor 42. To get. Each temperature detection result acquired by the control unit 56 is output to the total power amount calculation unit 55.

合計電力量演算部55は、運転条件記憶部53に記憶された運転条件の中から、制御対象期間における第1空気調和機21および第2空気調和機22の運転条件を取得し、取得した運転条件に含まれる設定温度の全てを組み合わせを取得する温度組み合わせ取得処理を行う(ステップS2)。   The total electric energy calculation unit 55 acquires the operation conditions of the first air conditioner 21 and the second air conditioner 22 in the control target period from the operation conditions stored in the operation condition storage unit 53, and acquires the acquired operation. A temperature combination acquisition process for acquiring combinations of all the set temperatures included in the conditions is performed (step S2).

図4は、合計電力量の演算対象となる第1空気調和機21および第2空気調和機22の設定温度の組み合わせを例示した表を示す図である。たとえば、第1空気調和機21は、快適性優先運転条件に決められており、図4の組み合わせ表Tでは、上述したように設定温度が22℃以上26℃以下の範囲で決められている。第2空気調和機22は、省エネ優先運転条件に決められており、上述したように設定温度が24℃以上28℃以下の範囲で決められている。したがって、第1空気調和機21および第2空気調和機22の設定温度の組み合わせは、セル群Rに含まれるセルC1〜C25に示すように25通りある。たとえば、セルC1は、第1空気調和機21の設定温度が22℃であり、第2空気調和機22の設定温度が24℃である組み合わせに対応する。セルC2は、第1空気調和機21の設定温度が23℃であり、第2空気調和機22の設定温度が24℃である組み合わせに対応する。合計電力量演算部55は、このセルC1〜C25に示す25通りの設定温度の組み合わせごとに、以降に説明するステップS4〜ステップS7の処理を行うことによって、空気調和機が消費する電力量を空気調和機ごとに求め、該求めた各電力量を合計した合計電力量を、対応するセルに順次入れていく。   FIG. 4 is a diagram illustrating a table illustrating combinations of set temperatures of the first air conditioner 21 and the second air conditioner 22 that are targets for calculating the total electric energy. For example, the first air conditioner 21 is determined in the comfort priority operation condition, and in the combination table T in FIG. 4, the set temperature is determined in the range of 22 ° C. or more and 26 ° C. or less as described above. The second air conditioner 22 is determined in the energy saving priority operation condition, and as described above, the set temperature is determined in the range of 24 ° C. or more and 28 ° C. or less. Accordingly, there are 25 combinations of set temperatures of the first air conditioner 21 and the second air conditioner 22 as shown in the cells C1 to C25 included in the cell group R. For example, the cell C1 corresponds to a combination in which the set temperature of the first air conditioner 21 is 22 ° C. and the set temperature of the second air conditioner 22 is 24 ° C. The cell C2 corresponds to a combination in which the set temperature of the first air conditioner 21 is 23 ° C. and the set temperature of the second air conditioner 22 is 24 ° C. The total electric energy calculation part 55 performs the process of step S4-step S7 demonstrated below for every combination of 25 setting temperature shown to this cell C1-C25, and calculates the electric energy which an air conditioner consumes. Obtained for each air conditioner, the total amount of power obtained by summing the obtained amounts of power is sequentially put into the corresponding cells.

合計電力量演算部55は、ステップS2において求めた設定温度の各組み合わせのうち、合計電力量の演算対象となる最初の温度組み合わせを選択する(ステップS3)。たとえば、合計電力量演算部55は、図4の組み合わせ表TのセルC1に対応する設定温度の組み合わせを最初の演算対象として選択する。   The total electric energy calculation unit 55 selects the first temperature combination that is the calculation target of the total electric energy among the combinations of the set temperatures obtained in step S2 (step S3). For example, the total electric energy calculation unit 55 selects the set temperature combination corresponding to the cell C1 in the combination table T of FIG. 4 as the first calculation target.

合計電力量演算部55は、運転条件記憶部53を参照し、店舗Sの内部空間に関連する複数の要素による熱負荷が分割空間A1,A2にそれぞれ分配される分配比率を、複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を取得する熱負荷分配比率情報取得処理を行う(ステップS4)。   The total electric energy calculation unit 55 refers to the operation condition storage unit 53, and determines the distribution ratio at which the thermal loads due to the plurality of elements related to the internal space of the store S are distributed to the divided spaces A1 and A2, respectively. Thermal load distribution ratio information acquisition processing is performed to acquire the thermal load distribution ratio information shown for each element (step S4).

図5は、熱負荷情報記憶部54が記憶する熱負荷分配比率情報の一例を示す図である。図5に示す熱負荷分配比率表Dは、図2の店舗Sに関連する各熱的要素の熱負荷が分割空間A1,A2にそれぞれ分配される比率を示す一覧表である。熱負荷分配比率表Dでは、第1空気調和機21、第2空気調和機22、第1〜第4ショーケース31〜34、窓W1、W2から侵入する日射熱量、出入り口Eから侵入する外気熱量、人的熱等について、最大負荷と、分割空間A1,A2にそれぞれ分配される熱負荷の分配比率とが、それぞれ対応付けられている。   FIG. 5 is a diagram illustrating an example of thermal load distribution ratio information stored in the thermal load information storage unit 54. The thermal load distribution ratio table D shown in FIG. 5 is a list showing the ratios in which the thermal loads of the thermal elements related to the store S in FIG. 2 are distributed to the divided spaces A1 and A2, respectively. In the heat load distribution ratio table D, the first air conditioner 21, the second air conditioner 22, the first to fourth showcases 31 to 34, the amount of solar heat entering from the windows W1 and W2, the amount of outside air heat entering from the doorway E. For human heat and the like, the maximum load and the distribution ratio of the thermal load distributed to each of the divided spaces A1 and A2 are associated with each other.

合計電力量演算部55は、演算対象の設定温度の組み合わせにおける各空気調和機の熱負荷を演算する(ステップS5)。合計電力量演算部55は、少なくとも、温度検出結果取得処理において取得した温度検出結果と、熱負荷分配比率取得処理において取得した熱負荷分配比率情報とを用いて、第1空気調和機21および第2空気調和機22が消費する熱負荷総量をそれぞれ求める。   The total electric energy calculation unit 55 calculates the heat load of each air conditioner in the combination of set temperatures to be calculated (step S5). The total electric energy calculation unit 55 uses at least the temperature detection result acquired in the temperature detection result acquisition process and the heat load distribution ratio information acquired in the heat load distribution ratio acquisition process, and the first air conditioner 21 and the first air conditioner 21. 2 Calculate the total heat load consumed by the air conditioner 22.

ステップS5の処理内容について説明する。実施の形態1では、各外気温、各室温および空間の広さ等に応じて、第1空気調和機21における熱負荷の初期値と空間設定温度との関係、および、第2空気調和機22における熱負荷の初期値と空間設定温度との関係が予め求められている。また、第1〜第4ショーケース31〜34についても、ショーケースごとに、各外気温、各室温および空間の広さ等に応じて、熱負荷の初期値と庫内設定温度との関係が予め求められている。これらの各関係は、たとえば熱負荷情報記憶部54に記憶されている。   The processing content of step S5 will be described. In the first embodiment, the relationship between the initial value of the heat load and the space setting temperature in the first air conditioner 21 and the second air conditioner 22 according to each outside air temperature, each room temperature, the size of the space, and the like. The relationship between the initial value of the thermal load and the space setting temperature is obtained in advance. Moreover, also about the 1st-4th showcases 31-34, according to each outside temperature, each room temperature, the size of space, etc. for every showcase, the relationship between the initial value of a thermal load and the set temperature in a store | warehouse | chamber is shown. It is requested in advance. Each of these relationships is stored in, for example, the thermal load information storage unit 54.

図6は、ステップS1において取得した外気温および室温に対応する第1空気調和機21の熱負荷の初期値と空間設定温度との関係を示す図である。図6は、冷房時のものに対応し、曲線L1は、第1空気調和機21の熱負荷の初期値と、空間設定温度との関係を示す。たとえば、セルC1(図4参照)の設定温度の組み合わせに対応させて、第1空気調和機21の熱負荷総量を求める場合を例に説明する。この場合、合計電力量演算部55は、矢印Y41に示すように、空間設定温度22℃に対応する熱負荷a1を第1空気調和機21の熱負荷の初期値として求める。合計電力量演算部55は、熱負荷分配表D(図5参照)の冷房時の第1空気調和機21の分配比率に従い、求めた熱負荷a1のうちの70%を分割空間A1に分配し、熱負荷a1のうちの30%を分割空間A2に分配する。   FIG. 6 is a diagram showing the relationship between the initial value of the thermal load of the first air conditioner 21 corresponding to the outside air temperature and room temperature acquired in step S1 and the space set temperature. FIG. 6 corresponds to that during cooling, and a curve L1 indicates the relationship between the initial value of the heat load of the first air conditioner 21 and the space setting temperature. For example, the case where the total heat load of the first air conditioner 21 is determined in association with the combination of the set temperatures of the cell C1 (see FIG. 4) will be described as an example. In this case, the total electric energy calculation unit 55 obtains the thermal load a1 corresponding to the space setting temperature 22 ° C. as the initial value of the thermal load of the first air conditioner 21, as indicated by an arrow Y41. The total power calculation unit 55 distributes 70% of the obtained heat load a1 to the divided space A1 according to the distribution ratio of the first air conditioner 21 during cooling in the heat load distribution table D (see FIG. 5). 30% of the heat load a1 is distributed to the divided space A2.

続いて、合計電力量演算部55は、ステップS1において取得した外気温および室温に対応する第2空気調和機22の熱負荷の初期値と空間設定温度との関係を参照し、セルC1の設定温度の組み合わせに対応させて、空間設定温度24℃の場合の第2空気調和機22の熱負荷の初期値を求める。合計電力量演算部55は、熱負荷分配表Dの冷房時の第2空気調和機22の分配比率に従い、求めた第2空気調和機22の熱負荷の初期値のうちの20%を分割空間A1に分配し、熱負荷c1のうちの80%を分割空間A2に分配する。同様に、合計電力量演算部55は、第1〜第4ショーケース31〜34についても、ショーケースごとに、ステップS1において取得した外気温および室温に対応するショーケースの熱負荷の初期値と庫内設定温度との関係を参照し、熱負荷の初期値を第1〜第4ショーケース31〜34ごとにそれぞれ求め、求めた各熱負荷を、熱負荷分配表Dの分配比率に従い、分割空間A1,A2に分配する。なお、参考までに、図7の曲線L2に、暖房時における第1空気調和機21の熱負荷の初期値と空間設定温度との関係の一例を示す。   Subsequently, the total electric energy calculation unit 55 refers to the relationship between the initial value of the thermal load of the second air conditioner 22 corresponding to the outside air temperature and room temperature acquired in step S1 and the space setting temperature, and sets the cell C1. Corresponding to the combination of temperatures, the initial value of the heat load of the second air conditioner 22 when the space setting temperature is 24 ° C. is obtained. The total electric energy calculation unit 55 divides 20% of the obtained initial value of the heat load of the second air conditioner 22 according to the distribution ratio of the second air conditioner 22 during cooling in the heat load distribution table D into the divided space. It distributes to A1, and 80% of the heat load c1 is distributed to the divided space A2. Similarly, for the first to fourth showcases 31 to 34, the total electric energy calculation unit 55 also sets the initial value of the heat load of the showcase corresponding to the outside air temperature and the room temperature acquired in step S1 for each showcase. Referring to the relationship with the set temperature in the cabinet, the initial value of the thermal load is obtained for each of the first to fourth showcases 31 to 34, and each obtained thermal load is divided according to the distribution ratio of the thermal load distribution table D. Distribute to spaces A1 and A2. For reference, an example of the relationship between the initial value of the thermal load of the first air conditioner 21 and the space setting temperature is shown in a curve L2 in FIG.

合計電力量演算部55は、店舗Sに関連する他の熱的要素の熱負荷もそれぞれ求め、熱負荷分配表Dの分配比率に従い分割空間A1,A2に分配する。合計電力量演算部55は、演算対象である時間帯、室外用温度センサ43から求めた外気温、第1温度センサ41による検出温度および窓W1,W2の断熱特性等をもとに、窓W1,W2から侵入する日射熱の熱負荷を求め、求めた熱負荷のうちの85%を分割空間A1に分配し、15%を分割空間A2に分配する。合計電力量演算部55は、演算対象である時間帯、室外用温度センサ43から求めた外気温および出入り口Eの開閉回数や断熱特性等をもとに、出入り口Eから侵入する外気熱の熱負荷を求め、求めた熱負荷のうちの70%を分割空間A1に分配し、30%を分割空間A2に分配する。そして、合計電力量演算部55は、過去の来客数データ等をもとに演算対象である時間帯にレジカウンタ付近に留まる人Hの数を推定し、推定した人数に対応する人的熱負荷を求め、求めた熱負荷のうちの95%を分割空間A1に分配し、5%を分割空間A2に分配する。   The total electric energy calculation unit 55 also obtains the thermal loads of other thermal elements related to the store S, and distributes them to the divided spaces A1 and A2 according to the distribution ratio of the thermal load distribution table D. The total electric energy calculation unit 55 calculates the window W1 based on the time zone to be calculated, the outside air temperature obtained from the outdoor temperature sensor 43, the temperature detected by the first temperature sensor 41, the heat insulation characteristics of the windows W1 and W2, and the like. , W2 is calculated, and 85% of the calculated heat load is distributed to the divided space A1, and 15% is distributed to the divided space A2. The total electric energy calculation unit 55 calculates the heat load of the outside air entering from the entrance / exit E based on the time zone to be calculated, the outside air temperature obtained from the outdoor temperature sensor 43, the number of times of opening / closing the entrance / exit E, the heat insulation characteristics, etc. And 70% of the obtained thermal load is distributed to the divided space A1, and 30% is distributed to the divided space A2. Then, the total electric energy calculation unit 55 estimates the number of people H staying in the vicinity of the register counter in the time zone to be calculated based on the past visitor number data and the like, and the human heat load corresponding to the estimated number of people 95% of the obtained thermal load is distributed to the divided space A1, and 5% is distributed to the divided space A2.

このように、合計電力量演算部55は、内部空間の熱量の分布特性をもとに各分割空間A1,A2に関連する各熱的要素の熱負荷を分割空間A1および分割空間A2に分配し、分割空間A1,A2のそれぞれの熱負荷の総量を求める。合計電力量演算部55は、求めた分割空間A1,A2の熱負荷の各総量と、設定温度とをもとに、第1空気調和機21、第2空気調和機22にそれぞれかかる熱負荷の総量を、空気調和機ごとに求める。合計電力量演算部55は、第1空気調和機21については、分割空間A1の熱負荷の総量と、セルC1に対応する第1空気調和機21の設定温度22℃とに基づいて、第1空気調和機21の熱負荷を求める。合計電力量演算部55は、第2空気調和機22については、分割空間A2の熱負荷の総量と、セルC1に対応する第2空気調和機22の設定温度24℃とに基づいて、第1空気調和機21の熱負荷の総量を求める。   As described above, the total power calculation unit 55 distributes the thermal load of each thermal element related to each divided space A1, A2 to the divided space A1 and the divided space A2 based on the distribution characteristics of the heat quantity in the internal space. Then, the total amount of each heat load in the divided spaces A1 and A2 is obtained. The total power amount calculation unit 55 calculates the heat load applied to each of the first air conditioner 21 and the second air conditioner 22 based on the total amount of the heat loads in the divided spaces A1 and A2 and the set temperature. The total amount is obtained for each air conditioner. For the first air conditioner 21, the total power amount calculation unit 55 is configured based on the total amount of heat load in the divided space A1 and the set temperature 22 ° C. of the first air conditioner 21 corresponding to the cell C1. The heat load of the air conditioner 21 is obtained. For the second air conditioner 22, the total power amount calculation unit 55 is configured based on the total amount of heat load in the divided space A2 and the set temperature 24 ° C. of the second air conditioner 22 corresponding to the cell C1. The total amount of heat load of the air conditioner 21 is obtained.

合計電力量演算部55は、ステップS5において求めた第1空気調和機21の熱負荷の総量と、第2空気調和機22の熱負荷の総量とをそれぞれ電力量(エネルギー量)に換算する(ステップS6)。合計電力量演算部55は、ステップS6において換算した第1空気調和機21の電力量と第2空気調和機22の電力量を合計した合計電力量を演算する合計電力量演算処理を行い(ステップS7)、この設定温度の組み合わせにおける合計電力量を取得する。   The total power amount calculation unit 55 converts the total heat load of the first air conditioner 21 and the total heat load of the second air conditioner 22 obtained in step S5 into respective power amounts (energy amounts) ( Step S6). The total electric energy calculation unit 55 performs a total electric energy calculation process for calculating the total electric energy obtained by adding the electric energy of the first air conditioner 21 and the electric energy of the second air conditioner 22 converted in step S6 (step S6). S7), and obtain the total amount of power for this set temperature combination.

合計電力量演算部55は、全ての温度組み合わせに対して合計電力量を演算したか否かを判断する(ステップS8)。合計電力量演算部55は、全ての温度組み合わせに対して合計電力量を演算していないと判断した場合(ステップS8:No)、演算対象となる次の温度組み合わせを選択して(ステップS9)、ステップS4以降の処理を行う。合計電力量演算部55は、たとえばセルC1に対応する温度組み合わせに関する合計電力量の演算が終了した場合には、次のセルC2に対応する温度組み合わせに対して、ステップS4以降の処理を行い、セルC2に対応する温度組み合わせにおける空気調和機群2の合計電力量を求める。   The total power calculation unit 55 determines whether or not the total power is calculated for all temperature combinations (step S8). When determining that the total power amount is not calculated for all temperature combinations (step S8: No), the total power amount calculation unit 55 selects the next temperature combination to be calculated (step S9). Then, the processing after step S4 is performed. For example, when the calculation of the total power amount related to the temperature combination corresponding to the cell C1 is completed, the total power amount calculation unit 55 performs the processing after step S4 on the temperature combination corresponding to the next cell C2, The total electric energy of the air conditioner group 2 in the temperature combination corresponding to the cell C2 is obtained.

一方、合計電力量演算部55が、全ての温度組み合わせに対して合計電力量を演算したと判断した場合(ステップS8:Yes)、空気調和機制御部57は、合計電力量演算部55が演算した各合計電力量のうち合計電力量が最少となる温度組み合わせを第1空気調和機21および第2空気調和機22の運転条件として抽出する(ステップS10)。空気調和機制御部57は、ステップS10において抽出した設定温度の組み合わせで第1空気調和機21および第2空気調和機22をそれぞれ制御する空気調和機制御処理を行う(ステップS11)。   On the other hand, when the total power amount calculation unit 55 determines that the total power amount has been calculated for all temperature combinations (step S8: Yes), the air conditioner control unit 57 calculates the total power amount calculation unit 55. The temperature combination that minimizes the total power amount among the total power amounts thus extracted is extracted as the operating condition of the first air conditioner 21 and the second air conditioner 22 (step S10). The air conditioner control unit 57 performs an air conditioner control process for controlling the first air conditioner 21 and the second air conditioner 22 with the combination of the set temperatures extracted in step S10 (step S11).

図8は、合計電力量演算部55の演算結果の一例を示す図である。たとえば、空気調和機制御部57には、合計電力量演算部55の演算結果として、セルC1〜C25に、それぞれ演算された合計電力量が入れられた合計電力量演算表T1(図8参照)が出力される。この例では、第1空気調和機21の電力量および第2空気調和機22の電力量との合計は、合計電力量演算表T1のセルC14に対応する組み合わせの設定温度の場合に最小となる。したがって、空気調和機制御部57は、セルC14に対応する設定温度の組み合わせを第1空気調和機21および第2空気調和機22の運転条件として抽出する。そして、空気調和機制御部57は、抽出したセルC14に対応する設定温度の組み合わせに従い、第1空気調和機21の設定温度を25℃とし、第2空気調和機22の設定温度を26℃として、各空気調和機をそれぞれ制御する。この結果、第1空気調和機21に対応する分割空間A1では、快適性優先運転条件に含まれる25℃の室温に調整され、第2空気調和機22に対応する分割空間A2では、省エネ優先運転条件に含まれる26℃の室温に調整される。   FIG. 8 is a diagram illustrating an example of a calculation result of the total power amount calculation unit 55. For example, in the air conditioner control unit 57, as a calculation result of the total power amount calculation unit 55, a total power amount calculation table T1 in which the calculated total power amount is put in each of the cells C1 to C25 (see FIG. 8). Is output. In this example, the sum of the electric energy of the first air conditioner 21 and the electric energy of the second air conditioner 22 is minimum when the set temperature is a combination corresponding to the cell C14 in the total electric energy calculation table T1. . Therefore, the air conditioner control unit 57 extracts the combination of the set temperatures corresponding to the cell C14 as the operating conditions of the first air conditioner 21 and the second air conditioner 22. And the air conditioner control part 57 sets the set temperature of the 1st air conditioner 21 to 25 degreeC, and sets the set temperature of the 2nd air conditioner 22 to 26 degreeC according to the combination of the set temperature corresponding to the extracted cell C14. Each air conditioner is controlled individually. As a result, in the divided space A1 corresponding to the first air conditioner 21, the room temperature is adjusted to 25 ° C. included in the comfort priority operation condition, and in the divided space A2 corresponding to the second air conditioner 22, the energy saving priority operation is performed. It is adjusted to a room temperature of 26 ° C. included in the conditions.

このように、実施の形態では、複数の空気調和機が設けられた一つの閉じた空間を各空気調和機に対応させて仮想的に分割し、それぞれの空気調和機が対応する分割空間の特性に応じて定められる設定温度を含む運転条件をもとに空気調和機が消費する電力量を空気調和機ごとに求めた結果に応じて、複数の空気調和機が消費する合計電力量が最小となるように複数の空気調和機をそれぞれ制御する。言い換えると、本実施の形態では、仮想的に分割した分割空間A1,A2の特性に対応させて第1空気調和機21および第2空気調和機22をそれぞれ最適な運転条件で制御するとともに電力量の低減も実行しているため、快適性を求められる分割空間では快適性を確保しながら、空間全体の空気調和に要する消費電力の低減を図ることができる。さらに、本実施の形態では、制御対象の空間における熱分布特性をもとに各分割空間A1、A2に各熱的要素の熱負荷を分配し、分配後の各分割空間のそれぞれの熱負荷総量と設定温度とに応じて、実際に各空気調和機にかかる熱負荷総量を求めているため、各分割空間A1、A2の室温を、適切に設定温度に調整することができる。   As described above, in the embodiment, one closed space provided with a plurality of air conditioners is virtually divided corresponding to each air conditioner, and the characteristics of the divided spaces to which each air conditioner corresponds. The total amount of power consumed by multiple air conditioners is minimized according to the result of determining the amount of power consumed by the air conditioner for each air conditioner based on the operating conditions including the set temperature determined according to A plurality of air conditioners are controlled so as to be. In other words, in the present embodiment, the first air conditioner 21 and the second air conditioner 22 are controlled under optimum operating conditions in accordance with the characteristics of the virtually divided divided spaces A1 and A2, and the electric energy Therefore, it is possible to reduce power consumption required for air conditioning in the entire space while ensuring comfort in the divided space where comfort is required. Furthermore, in the present embodiment, the thermal load of each thermal element is distributed to each divided space A1, A2 based on the heat distribution characteristics in the space to be controlled, and the total heat load of each divided space after distribution. Since the total heat load applied to each air conditioner is actually obtained according to the set temperature, the room temperature of each of the divided spaces A1, A2 can be appropriately adjusted to the set temperature.

なお、本実施の形態では、制御装置5は、定期的、外気変化に応じたタイミング、或いは、予め設定されたタイミングで、図3に示すステップS1〜ステップS11の処理を行うことによって、快適性および省エネ性の双方を満たすように、第1空気調和機21および第2空気調和機22の制御を行う。   In the present embodiment, the control device 5 performs the processes of Step S1 to Step S11 shown in FIG. 3 at regular timings according to changes in the outside air, or at preset timings, thereby improving comfort. In addition, the first air conditioner 21 and the second air conditioner 22 are controlled so as to satisfy both of the energy saving properties.

また、本実施の形態で説明したシステム構成は一例であり、用途や目的に応じて様々なシステム構成例があることは言うまでもない。実施の形態では、制御装置5が、運転条件記憶部53、熱負荷情報記憶部54および合計電力量演算部55の全てを備える場合を例に説明したが、もちろんこれに限らず、運転条件記憶部53、熱負荷情報記憶部54および合計電力量演算部55は、ネットワーク回線でそれぞれ接続する複数の装置に分散していてもよい。この場合、空気調和機制御部57は、合計電力量演算部55において演算された設定温度の各組み合わせに対応するそれぞれの合計電力量を、ネットワーク回線を介して取得し、該取得した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせで第1空気調和機21および第2空気調和機22をそれぞれ制御すればよい。もちろん、制御装置5の制御対象である空気調和機も二台に限るものではなく、三台以上であってもよい。図4の例では、二台の空気調和機の設定温度の組み合わせをセルに対応させて電力量を求めているが、三台以上の場合を含め、設定温度の組み合わせを多次元配列に対応させて電力量を求めてもよい。   In addition, the system configuration described in the present embodiment is an example, and it goes without saying that there are various system configuration examples depending on applications and purposes. In the embodiment, the case where the control device 5 includes all of the operation condition storage unit 53, the thermal load information storage unit 54, and the total power amount calculation unit 55 has been described as an example. The unit 53, the thermal load information storage unit 54, and the total power amount calculation unit 55 may be distributed over a plurality of devices that are connected via a network line. In this case, the air conditioner control unit 57 acquires each total power amount corresponding to each combination of the set temperatures calculated by the total power amount calculation unit 55 via the network line, and each acquired total power What is necessary is just to control the 1st air conditioner 21 and the 2nd air conditioner 22 with the combination of the setting temperature used as the smallest total electric energy among quantity, respectively. Of course, the number of air conditioners to be controlled by the control device 5 is not limited to two, and may be three or more. In the example of FIG. 4, the amount of electric power is obtained by associating a set temperature combination of two air conditioners with a cell, but the combination of set temperature is associated with a multidimensional array, including the case of three or more units. The amount of power may be obtained.

また、本実施の形態の空気調和システム1は、一つの閉じた空間の空気調和制御を行うものであるため、一階と二階が吹き抜けとなって一つの空間を形成する場合にも適用可能である。   Moreover, since the air conditioning system 1 of this Embodiment performs the air conditioning control of one closed space, it is applicable also when the 1st floor and the 2nd floor form a single space. is there.

また、本実施の形態にかかる制御装置5で実行される各処理に対する実行プログラムは、インストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよく、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、インターネット等のネットワーク経由で提供または配布するように構成してもよい。   An execution program for each process executed by the control device 5 according to the present embodiment is a file in an installable format or an executable format, and is a CD-ROM, flexible disk (FD), CD-R, DVD ( It may be configured to be recorded on a computer-readable recording medium such as Digital Versatile Disk), and provided by being stored on a computer connected to a network such as the Internet and downloaded via the network. You may comprise as follows. Further, it may be configured to be provided or distributed via a network such as the Internet.

1 空気調和システム
2 空気調和機群
3 ショーケース群
4 温度センサ群
5 制御装置
21 第1空気調和機
22 第2空気調和機
31〜34 第1〜第4ショーケース
41 第1温度センサ
42 第2温度センサ
43 室外用温度センサ
51 入力部
52 出力部
53 運転条件記憶部
54 熱負荷情報記憶部
55 合計電力量演算部
56 制御部
57 空気調和機制御部
DESCRIPTION OF SYMBOLS 1 Air conditioning system 2 Air conditioner group 3 Showcase group 4 Temperature sensor group 5 Control apparatus 21 1st air conditioner 22 2nd air conditioner 31-34 1st-4th showcase 41 1st temperature sensor 42 2nd Temperature sensor 43 Outdoor temperature sensor 51 Input unit 52 Output unit 53 Operating condition storage unit 54 Thermal load information storage unit 55 Total power amount calculation unit 56 Control unit 57 Air conditioner control unit

Claims (6)

一つの閉じた空間の温度制御を行う空気調和システムであって、
前記一つの閉じた空間に対して設けられた複数の空気調和機と、
前記複数の空気調和機のそれぞれに対応させて前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサと、
前記複数の温度センサによる温度検出結果と、前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに前記空気調和機が消費する電力量を前記空気調和機ごとに求めた結果に応じて、前記複数の空気調和機が消費する合計電力量が最小となるように前記複数の空気調和機をそれぞれ制御する制御装置と、
を備えたことを特徴とする空気調和システム。
An air conditioning system that controls the temperature of one closed space,
A plurality of air conditioners provided for the one closed space;
A plurality of temperature sensors installed at least one in each of a plurality of divided spaces obtained by virtually dividing the one closed space in correspondence with each of the plurality of air conditioners;
Using the temperature detection results by the plurality of temperature sensors and a distribution ratio in which thermal loads due to a plurality of thermal elements related to the one closed space are distributed to the plurality of divided spaces, respectively, the air In accordance with the result of determining the amount of power consumed by the air conditioner for each air conditioner based on the operating conditions including the set temperature determined according to the characteristics of the divided space to which the conditioner corresponds. A control device that controls each of the plurality of air conditioners such that the total amount of power consumed by the air conditioner is minimized;
An air conditioning system characterized by comprising:
一つの閉じた空間の温度制御のために前記一つの閉じた空間に対して設けられた複数の空気調和機を制御する空気調和機の制御装置であって、
前記複数の空気調和機のそれぞれに対応させて前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果と、前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間にそれぞれ分配される分配比率とを用いて、それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに前記空気調和機が消費する電力量を前記空気調和機ごとに演算した結果に応じて、前記複数の空気調和機が消費する合計電力量が最小となるように前記複数の空気調和機をそれぞれ制御することを特徴とする空気調和機の制御装置。
A control device for an air conditioner for controlling a plurality of air conditioners provided for the one closed space for temperature control of the one closed space,
Temperature detection results by a plurality of temperature sensors installed at least one in each of a plurality of divided spaces obtained by virtually dividing the one closed space corresponding to each of the plurality of air conditioners, and the one According to the characteristics of the divided space to which each air conditioner corresponds, using a distribution ratio in which thermal loads due to a plurality of thermal elements related to one closed space are respectively distributed to the plurality of divided spaces. The total power consumed by the plurality of air conditioners is minimized according to the result of calculating for each air conditioner the amount of power consumed by the air conditioner based on the operating conditions including the set temperature that is determined. The air conditioner control apparatus characterized by controlling each of the plurality of air conditioners.
当該空気調和機の制御装置は、
各空気調和機の運転条件をそれぞれ記憶する運転条件記憶部と、
前記分配比率を、前記複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を記憶する熱負荷情報記憶部と、
前記運転条件記憶部に記憶された各空気調和機の運転条件をもとに、各運転条件に含まれる設定温度の組み合わせごとに、前記複数の温度センサによる温度検出結果と前記熱負荷情報記憶部が記憶する前記熱負荷分配比率情報とを用いて、前記空気調和機が消費する電力量を前記空気調和機ごとに求め、該求めた各電力量を合計した合計電力量をそれぞれ演算する合計電力量演算部と、
前記合計電力量演算部が演算した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせを抽出し、該抽出した設定温度の組み合わせで前記複数の空気調和機をそれぞれ制御する空気調和機制御部と、
を備えたことを特徴とする請求項2に記載の空気調和機の制御装置。
The control device of the air conditioner is
An operating condition storage unit for storing the operating conditions of each air conditioner;
A thermal load information storage unit for storing thermal load distribution ratio information indicating the distribution ratio for each of the plurality of thermal elements;
Based on the operating conditions of each air conditioner stored in the operating condition storage unit, for each combination of set temperatures included in each operating condition, temperature detection results by the plurality of temperature sensors and the thermal load information storage unit Using the heat load distribution ratio information stored in the table, the electric power consumed by the air conditioner is obtained for each air conditioner, and the total electric power for calculating the total electric energy obtained by summing the obtained electric energy is calculated. A quantity calculation unit;
An air conditioner that extracts a set temperature combination that is the smallest total electric energy among the total electric energy calculated by the total electric energy calculation unit, and controls each of the plurality of air conditioners by the extracted set temperature combination Machine control unit,
The air conditioner control device according to claim 2, further comprising:
前記複数の熱的要素は、少なくとも、各空気調和機、前記一つの閉じた空間内にある温冷熱源、日射熱、並びに、前記一つの閉じた空間内に侵入した外気熱であることを特徴とする請求項3に記載の空気調和機の制御装置。   The plurality of thermal elements are at least each air conditioner, a heating / cooling heat source in the one closed space, solar heat, and outside air heat that has entered the one closed space. The control device for an air conditioner according to claim 3. 前記合計電力量演算部は、各熱的要素の熱負荷を求め、該求めた熱的要素の熱負荷を、前記熱負荷分配比率情報で示された比率で各分割空間にそれぞれ分配し、各分割空間にそれぞれ分配された熱負荷と前記設定温度とをもとに、前記空気調和機が消費する電力量を前記空気調和機ごとに求めることを特徴とする請求項3または4に記載の空気調和機の制御装置。   The total electric energy calculation unit obtains the thermal load of each thermal element, distributes the obtained thermal load of the thermal element to each divided space at a ratio indicated by the thermal load distribution ratio information, The air according to claim 3 or 4, wherein the amount of electric power consumed by the air conditioner is determined for each air conditioner based on the heat load and the set temperature respectively distributed to the divided spaces. Harmonic machine control device. 一つの閉じた空間の温度制御のために前記一つの閉じた空間に対して設けられた複数の空気調和機を制御する制御装置が行う空気調和機の制御方法であって、
各空気調和機に対応して前記一つの閉じた空間を仮想的に分割した複数の分割空間の各々に少なくとも一つずつ設置された複数の温度センサによる温度検出結果を取得する温度検出結果取得処理と、
それぞれの前記空気調和機が対応する前記分割空間の特性に応じて定められる設定温度を含む運転条件をもとに各運転条件に含まれる設定温度の組み合わせを取得する温度組み合わせ取得処理と、
前記一つの閉じた空間に関連する複数の熱的要素による熱負荷が前記複数の分割空間に分配される分配比率を、前記複数の熱的要素ごとにそれぞれ示した熱負荷分配比率情報を取得する熱負荷分配比率情報取得処理と、
前記温度検出結果取得処理において取得した温度検出結果と、前記熱負荷分配比率情報取得処理において取得した前記熱負荷分配比率情報とを用いて、前記温度組み合わせ取得処理において取得した前記設定温度の組み合わせごとに、前記空気調和機が消費する電力量を前記空気調和機ごとに求め、該求めた各電力量を合計した合計電力量をそれぞれ演算する合計電力量演算処理と、
前記合計電力量演算処理において演算した各合計電力量のうち最も小さい合計電力量となる設定温度の組み合わせを抽出し、該抽出した温度の組み合わせで前記複数の空気調和機をそれぞれ制御する空気調和機制御処理と、
を含むことを特徴とする空気調和機の制御方法。
A control method for an air conditioner performed by a control device for controlling a plurality of air conditioners provided for the one closed space for temperature control of one closed space,
Temperature detection result acquisition processing for acquiring temperature detection results by a plurality of temperature sensors installed at least one in each of a plurality of divided spaces obtained by virtually dividing the one closed space corresponding to each air conditioner When,
A temperature combination acquisition process for acquiring a combination of set temperatures included in each operation condition based on an operation condition including a set temperature determined according to the characteristics of the divided space corresponding to each air conditioner;
Obtaining thermal load distribution ratio information for each of the plurality of thermal elements indicating a distribution ratio in which thermal loads due to the plurality of thermal elements related to the one closed space are distributed to the plurality of divided spaces. Heat load distribution ratio information acquisition processing;
For each combination of the set temperatures acquired in the temperature combination acquisition process, using the temperature detection result acquired in the temperature detection result acquisition process and the thermal load distribution ratio information acquired in the thermal load distribution ratio information acquisition process And calculating the total amount of electric power consumed by the air conditioner for each of the air conditioners, and calculating the total amount of electric power obtained by totaling the calculated amounts of electric power, and
An air conditioner that extracts a combination of set temperatures that is the smallest total electric energy among the total electric energy calculated in the total electric energy calculation process, and controls each of the plurality of air conditioners by the extracted temperature combination. Control processing,
The control method of the air conditioner characterized by including.
JP2014238503A 2014-11-26 2014-11-26 Air conditioning system, air conditioner control device, and air conditioner control method Active JP6233283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238503A JP6233283B2 (en) 2014-11-26 2014-11-26 Air conditioning system, air conditioner control device, and air conditioner control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238503A JP6233283B2 (en) 2014-11-26 2014-11-26 Air conditioning system, air conditioner control device, and air conditioner control method

Publications (2)

Publication Number Publication Date
JP2016099092A true JP2016099092A (en) 2016-05-30
JP6233283B2 JP6233283B2 (en) 2017-11-22

Family

ID=56076782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238503A Active JP6233283B2 (en) 2014-11-26 2014-11-26 Air conditioning system, air conditioner control device, and air conditioner control method

Country Status (1)

Country Link
JP (1) JP6233283B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403190A (en) * 2016-09-30 2017-02-15 广东美的制冷设备有限公司 Electric quantity setting control method, controller, intelligent equipment and air conditioner
KR20190081615A (en) * 2017-12-29 2019-07-09 에스큐아이소프트(주) Method for calculating the optimal room temperature by using the measurement amount of each of a plurality of heating and cooling facilities
JP2021028569A (en) * 2020-11-30 2021-02-25 高砂熱学工業株式会社 Control apparatus, control method, and control program of air conditioning system, and air conditioning system
KR102607306B1 (en) * 2022-10-14 2023-11-29 주식회사 씨드앤 Apparatus and method for setting combination desired temperature for air conditioners installed in target zone, and method for calculating basis relationship information of the target zone using the same
WO2024111951A1 (en) * 2022-11-22 2024-05-30 한국전자기술연구원 Method and system for inferring optimal indoor cooling/heating setting temperature

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201523A (en) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp Air conditioner and method for controlling it
JP2000171071A (en) * 1998-12-09 2000-06-23 Taisei Corp Air conditioning control method
JP2001289485A (en) * 2000-01-31 2001-10-19 Mitsubishi Electric Corp Composite system and its operating method
JP2007187341A (en) * 2006-01-11 2007-07-26 Daikin Ind Ltd Accumulated heat using operation device, accumulated heat using operation system, accumulated heat using operation method and accumulated heat using operation program
JP2009053749A (en) * 2007-08-23 2009-03-12 Shimizu Corp Room temperature distribution modeling apparatus and room temperature distribution modeling method
US20100262298A1 (en) * 2009-03-27 2010-10-14 Siemens Energy & Automation, Inc. System and Method for Climate Control Set-Point Optimization Based On Individual Comfort
JP2011214794A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Air conditioning system control device
JP2012202614A (en) * 2011-03-25 2012-10-22 Mitsubishi Electric Corp Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201523A (en) * 1997-11-11 1999-07-30 Mitsubishi Electric Corp Air conditioner and method for controlling it
JP2000171071A (en) * 1998-12-09 2000-06-23 Taisei Corp Air conditioning control method
JP2001289485A (en) * 2000-01-31 2001-10-19 Mitsubishi Electric Corp Composite system and its operating method
JP2007187341A (en) * 2006-01-11 2007-07-26 Daikin Ind Ltd Accumulated heat using operation device, accumulated heat using operation system, accumulated heat using operation method and accumulated heat using operation program
JP2009053749A (en) * 2007-08-23 2009-03-12 Shimizu Corp Room temperature distribution modeling apparatus and room temperature distribution modeling method
US20100262298A1 (en) * 2009-03-27 2010-10-14 Siemens Energy & Automation, Inc. System and Method for Climate Control Set-Point Optimization Based On Individual Comfort
JP2011214794A (en) * 2010-04-01 2011-10-27 Mitsubishi Electric Corp Air conditioning system control device
JP2012202614A (en) * 2011-03-25 2012-10-22 Mitsubishi Electric Corp Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403190A (en) * 2016-09-30 2017-02-15 广东美的制冷设备有限公司 Electric quantity setting control method, controller, intelligent equipment and air conditioner
CN106403190B (en) * 2016-09-30 2019-04-19 广东美的制冷设备有限公司 Control method, controller, smart machine and air-conditioning is arranged in electricity
KR20190081615A (en) * 2017-12-29 2019-07-09 에스큐아이소프트(주) Method for calculating the optimal room temperature by using the measurement amount of each of a plurality of heating and cooling facilities
KR102033407B1 (en) * 2017-12-29 2019-10-17 에스큐아이소프트 주식회사 Method for calculating the optimal room temperature by using the measurement amount of each of a plurality of heating and cooling facilities
JP2021028569A (en) * 2020-11-30 2021-02-25 高砂熱学工業株式会社 Control apparatus, control method, and control program of air conditioning system, and air conditioning system
JP7043573B2 (en) 2020-11-30 2022-03-29 高砂熱学工業株式会社 Air conditioning system controls, control methods, control programs, and air conditioning systems
KR102607306B1 (en) * 2022-10-14 2023-11-29 주식회사 씨드앤 Apparatus and method for setting combination desired temperature for air conditioners installed in target zone, and method for calculating basis relationship information of the target zone using the same
KR102644167B1 (en) * 2022-10-14 2024-03-06 주식회사 씨드앤 Apparatus and method for setting combination desired temperature for air conditioners installed in target zone to ensure that the overall room temperature of the target area and room temperature at individual points in the target area satisfy comfortable temperature
WO2024080462A1 (en) * 2022-10-14 2024-04-18 주식회사 씨드앤 Device and method for setting desired combination temperature of cooler-heater devices installed in target area, and method for calculating base relation information of target area by using same
WO2024111951A1 (en) * 2022-11-22 2024-05-30 한국전자기술연구원 Method and system for inferring optimal indoor cooling/heating setting temperature

Also Published As

Publication number Publication date
JP6233283B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP6233283B2 (en) Air conditioning system, air conditioner control device, and air conditioner control method
US20200257257A1 (en) Apparatus and method for controlling comfort temperature of air conditioning device or air conditioning system
US11719456B2 (en) Thermostat temperature compensation modeling
US20160054021A1 (en) Temperature control method and apparatus
EP3107173B1 (en) Demand control device and program
WO2014115717A1 (en) Energy-management device and energy-management system
CN103453619B (en) Demand discriminating gear and method of discrimination, air-conditioner control system and control method
WO2011145732A1 (en) Air-conditioning system
WO2016009506A1 (en) Air conditioning controller, air conditioning control method, and program
CN104298191B (en) Heat prediction management based energy consumption control method in intelligent building
JP6635419B2 (en) Information terminal control method and energy saving support system
US11029052B2 (en) Operation device and method to control an air conditioner based on weather change patterns
WO2011145734A1 (en) Air-conditioning system
JP2011257072A (en) Energy management apparatus
Jain et al. Portable+ A Ubiquitous And Smart Way Towards Comfortable Energy Savings
JP6343499B2 (en) Energy management system
JP2012047398A (en) Energy-saving support device
JP2017180990A (en) Air conditioner
US11143426B2 (en) Thermal demand adjustment device for energy network and thermal demand adjustment method for energy network
JP2019203652A (en) Shop air-conditioning system
JP2008025951A (en) Method and device for controlling operation of air conditioning equipment
JP2005201482A (en) Temperature and humidity setting support device and temperature and humidity setting support method
EP3199893B1 (en) Combined air conditioning and refrigerating installation
WO2014010186A1 (en) Air conditioning control device, air conditioning control system, air conditioning system and program
KR102287293B1 (en) Method, System, and Computer-Readable Medium for Controlling Multiple Air Conditioners in Space

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171009

R150 Certificate of patent or registration of utility model

Ref document number: 6233283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250