JP2016096277A - Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same - Google Patents

Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same Download PDF

Info

Publication number
JP2016096277A
JP2016096277A JP2014232257A JP2014232257A JP2016096277A JP 2016096277 A JP2016096277 A JP 2016096277A JP 2014232257 A JP2014232257 A JP 2014232257A JP 2014232257 A JP2014232257 A JP 2014232257A JP 2016096277 A JP2016096277 A JP 2016096277A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
halide
group
perovskite compound
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014232257A
Other languages
Japanese (ja)
Inventor
陽広 小島
Akihiro Kojima
陽広 小島
伸三 岸本
Shinzo Kishimoto
伸三 岸本
和志 池上
Kazushi Ikegami
和志 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peccell Technologies Inc
Original Assignee
Peccell Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peccell Technologies Inc filed Critical Peccell Technologies Inc
Priority to JP2014232257A priority Critical patent/JP2016096277A/en
Publication of JP2016096277A publication Critical patent/JP2016096277A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid type solar battery which can be used as an alternative of a dye-sensitized solar battery with poor endurance, or an organic thin film solar battery with poor light resistance or humidity resistance.SOLUTION: A solid type photoelectric conversion element comprises: a pair of electrode bases; and a photoelectric conversion layer between the pair of electrode bases. The photoelectric conversion layer includes one compound selected from halide based organic inorganic hybrid perovskite compounds represented by the general formulas (1) to (4) and halide based inorganic perovskite compounds shown by the general formula (5), or a mixture of two or more compounds thereof. The photoelectric conversion layer is formed as a coating on the electrode base with a liquid solution according to a coating film formation or vapor deposition method; and the liquid solution contains a precursor which can form the halide based organic inorganic hybrid perovskite compound or the inorganic perovskite compound. The base may be of glass, a metal or a transparent resin.SELECTED DRAWING: Figure 1

Description

本願発明は光電変換層にハライド系有機無機混成ペロブスカイト化合物及び/又はハライド系無機ペロブスカイト化合物を用いた固体光電変換素子に関する。   The present invention relates to a solid photoelectric conversion element using a halide organic-inorganic hybrid perovskite compound and / or a halide inorganic perovskite compound in a photoelectric conversion layer.

現在、太陽電池は固体型の太陽電池であるpn接合型の太陽電池が商品化され広く市場で使用されている。このpn接合型太陽電池では、シリコン結晶やアモルファスシリコン薄膜、非シリコン系の化合物半導体の多層薄膜を用いる。しかし、これらの太陽電池は、高温もしくは真空下で製造するために、プラントのコストが高く、エネルギーペイバックタイムが長いという欠点がある。このため、低温でより低コストで製造が可能な太陽電池の開発が期待されている。そのひとつは大気中で低コストの量産が可能な色素増感型太陽電池であり、色素増感型太陽電池は透明導電性基板上に形成された二酸化チタンナノ粒子を代表とする金属酸化物半導体ナノ粒子からなる多孔質半導体微粒子層に増感色素を担持させた光作用極基板(光電極)と、導電性基板上に白金またはカーボンの対極層を形成した対極基板(対向電極)とを、互いに対向させて配置し、この基板間に電解質溶液を満たし、この電解質溶液を封止した構造からなる。この色素増感型太陽電池は製造工程が簡単であり低コストで製造できるメリットはあるが、電解液として液体を使用すること、増感色素として有機色素又は有機金属化合物であるルテニウム色素を使用するため、特に過酷な環境下では十分な耐久性が得られないという問題があった(特許文献1)。
一方、電解液、増感色素を用いない有機薄膜太陽電池が一般に広く知られている。しかしながら、色素増感型太陽電池に比べて光電変換効率は低く、有機材料を用いていることから太陽電池の耐久性に懸念がある。また、これらの太陽電池モジュールのユニットの製造には多くの工程が必要であり、コストダウンのためには製造工程の簡略化が望まれている。
At present, pn junction type solar cells, which are solid type solar cells, are commercialized and widely used in the market. In this pn junction type solar cell, a silicon crystal, an amorphous silicon thin film, or a non-silicon compound semiconductor multilayer thin film is used. However, since these solar cells are manufactured at a high temperature or under vacuum, there are disadvantages that the cost of the plant is high and the energy payback time is long. For this reason, development of a solar cell that can be manufactured at a lower temperature at a lower temperature is expected. One of them is a dye-sensitized solar cell that can be mass-produced at low cost in the atmosphere. The dye-sensitized solar cell is a metal oxide semiconductor nano-particle represented by titanium dioxide nanoparticles formed on a transparent conductive substrate. A photoactive electrode substrate (photoelectrode) in which a sensitizing dye is supported on a porous semiconductor fine particle layer made of particles, and a counter electrode substrate (counter electrode) in which a platinum or carbon counter electrode layer is formed on a conductive substrate. It is arranged so as to face each other, and has a structure in which the electrolyte solution is filled between the substrates and the electrolyte solution is sealed. Although this dye-sensitized solar cell has a merit that it can be manufactured at a low cost with a simple manufacturing process, it uses a liquid as an electrolyte, and uses a ruthenium dye that is an organic dye or an organometallic compound as a sensitizing dye. For this reason, there is a problem that sufficient durability cannot be obtained particularly in a severe environment (Patent Document 1).
On the other hand, organic thin-film solar cells that do not use an electrolytic solution and a sensitizing dye are generally widely known. However, the photoelectric conversion efficiency is lower than that of the dye-sensitized solar cell, and there is a concern about the durability of the solar cell because an organic material is used. Moreover, many processes are required for manufacturing these solar cell module units, and simplification of the manufacturing process is desired for cost reduction.

近年、次世代太陽電池として、ハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物を用いた太陽電池が活発に研究されている。非特許文献1には、電解液の代わりにホール移動型の無機ペロブスカイト化合物(CsSnI3)を用いた固体型の色素増感型太陽電池について開示されている。しかしながら、光吸収材として色素増感太陽電池と同じルテニウム色素を多孔質半導体微粒子(酸化チタン)層に吸着させ、使用しているため、色素の脱着や分解に起因する太陽電池の耐久性に問題がある。
また、非特許文献2には、増感色素に代えて有機無機混成ペロブスカイト化合物を使用することが開示されている。しかしながら、色素増感太陽電池と同様に電解液を使用するため十分な耐久性が得られないという問題がある。
In recent years, solar cells using halide organic / inorganic hybrid perovskite compounds and halide inorganic perovskite compounds have been actively studied as next-generation solar cells. Non-Patent Document 1 discloses a solid-state dye-sensitized solar cell using a hole transfer inorganic perovskite compound (CsSnI 3 ) instead of an electrolyte. However, because the same ruthenium dye as the dye-sensitized solar cell is adsorbed to the porous semiconductor fine particle (titanium oxide) layer and used as a light absorbing material, there is a problem in the durability of the solar cell due to the desorption and decomposition of the dye. There is.
Non-Patent Document 2 discloses that an organic-inorganic hybrid perovskite compound is used in place of the sensitizing dye. However, there is a problem that sufficient durability cannot be obtained because an electrolytic solution is used as in the dye-sensitized solar cell.

特許文献2には多孔質半導体微粒子層に有機無機混成ペロブスカイト化合物を吸着させ、電解液も有機系色素も使用しない固体型の光電変換素子が開示されている。これは多孔質半導体微粒子層がn型で、有機無機混成ペロブスカイト化合物がp型となる太陽電池と考えられ、低コストで製造が可能で耐久性も良い太陽電池としての可能性を持っている。しかしながら、現在のシリコン型太陽電池にかわる低コストで商業的にメリットのある太陽電池を作製するには、光電変換素子層の構成を更に簡略化する必要がある。   Patent Document 2 discloses a solid-state photoelectric conversion element in which an organic-inorganic hybrid perovskite compound is adsorbed on a porous semiconductor fine particle layer and neither an electrolytic solution nor an organic dye is used. This is considered to be a solar cell in which the porous semiconductor fine particle layer is n-type and the organic-inorganic hybrid perovskite compound is p-type, and has the potential as a solar cell that can be manufactured at low cost and has good durability. However, it is necessary to further simplify the configuration of the photoelectric conversion element layer in order to produce a low-cost and commercially advantageous solar cell in place of the current silicon type solar cell.

特許文献3には多孔質半導体微粒子層を用いず、n型として有機無機混成ペロブスカイト化合物、p型として無機ペロブスカイト化合物を接合した固体型の光電変換素子が開示されている。 しかしながら、太陽電池の究極的な低コスト化を実現するには、常温製造可能な単層構成の固体型太陽電池が望まれていた。   Patent Document 3 discloses a solid-state photoelectric conversion element in which an organic-inorganic hybrid perovskite compound is bonded as n-type and an inorganic perovskite compound is bonded as p-type without using a porous semiconductor fine particle layer. However, in order to realize the ultimate cost reduction of a solar cell, a solid-type solar cell having a single layer structure that can be manufactured at room temperature has been desired.

非特許文献3、4には一対の透明電極基板間に強誘電体であるチタン酸ジルコン酸鉛に代表されるペロブスカイト酸化物を単層で用いた単層構成の太陽電池が開示されている。この太陽電池は単層構成であり好ましい形態であるが、これらの強誘電性を示すペロブスカイト酸化物は可視光領域に吸収をもたないため、光電流が低く太陽電池としての光変換効率が非常に低いという問題がある。また、太陽電池の構成は非常に単純だが、常温製造が不可能で真空化で製造する必要があるため、製造コストが高くなる問題がある。   Non-Patent Documents 3 and 4 disclose solar cells having a single layer structure in which a perovskite oxide typified by lead zirconate titanate, which is a ferroelectric material, is used as a single layer between a pair of transparent electrode substrates. Although this solar cell has a single-layer structure and is a preferred form, these perovskite oxides exhibiting ferroelectricity do not absorb in the visible light region, and therefore have low photocurrent and very high photoconversion efficiency as a solar cell. There is a problem that it is low. Moreover, although the structure of a solar cell is very simple, since it cannot manufacture at normal temperature and needs to manufacture by vacuuming, there exists a problem that manufacturing cost becomes high.

非特許文献5には特定の結晶構造を有する有機無機混成ペロブスカイト化合物が常温で誘電性を示すことは開示されている。しかしながら、誘電性を有する有機無機混成ペロブスカイト化合物を光吸収層とする単層構成の光電変換素子については全く開示されていない。   Non-Patent Document 5 discloses that an organic-inorganic hybrid perovskite compound having a specific crystal structure exhibits dielectric properties at room temperature. However, there is no disclosure of a photoelectric conversion element having a single layer structure in which an organic / inorganic hybrid perovskite compound having dielectric properties is used as a light absorption layer.

本願発明は一対の電極基板間にハライド系有機無機混成ペロブスカイト化合物、又はハライド系無機ペロブスカイト化合物の単層膜を形成するだけで、太陽電池としての機能を有することを新たに見出したもので、本発明のハライド系ペロブスカイト化合物の層が光吸収剤として機能すると共に、強誘電体として自己誘電して電荷分離が起きるため、単独層で太陽電池としての特性を示すものと考えられる。
本願発明のハライド系有機無機混成ペロブスカイト化合物、又はハライド系無機ペロブスカイト化合物は、前記の非特許文献3、4に記載されたペロブスカイト酸化物と異なり、ハロゲンを含むペロブスカイト結晶であり、可視光領域に吸収をもつため光電流が高く、従来知られている色素増感太陽電池と同等の光変換効率を有すると考えられる。
また、本願発明のハライド系有機無機混成ペロブスカイト化合物、又はハライド系無機ペロブスカイト化合物は有機溶剤塗布が可能であり、常温で製造が可能であるため製造コストも低くできる。
The present invention newly found out that it has a function as a solar cell only by forming a single layer film of a halide organic-inorganic hybrid perovskite compound or a halide-based inorganic perovskite compound between a pair of electrode substrates. Since the halide perovskite compound layer of the invention functions as a light absorber and self-dielectrically acts as a ferroelectric substance to cause charge separation, it is considered that a single layer exhibits characteristics as a solar cell.
Unlike the perovskite oxides described in Non-Patent Documents 3 and 4, the halide-based organic-inorganic hybrid perovskite compound of the present invention or the halide-based inorganic perovskite compound is a perovskite crystal containing halogen and is absorbed in the visible light region. Therefore, it is considered that the photocurrent is high and the light conversion efficiency is equivalent to that of a conventionally known dye-sensitized solar cell.
In addition, the halide organic / inorganic hybrid perovskite compound or the halide inorganic perovskite compound of the present invention can be applied with an organic solvent and can be manufactured at room temperature, so that the manufacturing cost can be reduced.

米国特許4927721号公報US Pat. No. 4,927,721 EP2693503号公報EP2693503 特開2014−049596号公報JP 2014-049596 A

Nature 2012年,485巻,486頁Nature 2012, 485, 486 Journal of the American Chemical Society 2009年,131巻,6050頁Journal of the American Chemical Society 2009, 131, 6050 Journal of Materials Chemistry A 2014年,2,6027−6041頁Journal of Materials Chemistry A 2014, 2, 6027-6041 Journal of the American Chemical Society 2012年,12巻,2803頁Journal of the American Chemical Society 2012, 12, 2803 The Journal of Physical Chemistry Letters 2014年, 5巻, 3335頁The Journal of Physical Chemistry Letters 2014, 5, 3335

本願発明では、光電変換層にハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物からなるエネルギー変換効率の高い固体型光電変換素子を用いることで、増感色素の劣化や電解液の漏洩に起因する耐久性に問題がある色素増感型太陽電池、あるいは、耐光性、耐湿性に問題のある有機薄膜太陽電池の上述した課題を解決することを見出した。   In the present invention, by using a solid-type photoelectric conversion element having a high energy conversion efficiency composed of a halide-based organic-inorganic hybrid perovskite compound and a halide-based inorganic perovskite compound in the photoelectric conversion layer, it is caused by deterioration of the sensitizing dye or leakage of the electrolytic solution. It has been found that the above-mentioned problems of a dye-sensitized solar cell having a problem in durability or an organic thin film solar cell having a problem in light resistance and moisture resistance are solved.

本願発明は、下記(1)乃至(7)の態様で実施できる。   The present invention can be implemented in the following aspects (1) to (7).

(態様1) 一対の電極基板間に光電変換層を有する固体型光電変換素子であって、前記光電変換層が、下記一般式(1)乃至(4)に示すハライド系有機無機混成ペロブスカイト化合物若しくは下記一般式(5)に示すハライド系無機ペロブスカイト化合物から選択された化合物を、単独または2以上混合して構成されたものであることを特徴とする固体型光電変換素子である。
CH3NH313 (1)
(式中、Mは、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
(RNH3214 (2)
(式中、Rは炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、Mは、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
CH3NH3SnX3 (3)
(式中、Xは、F,Cl,Br,Iである。)
(R2NH32SnX4 (4)
(式中、R2は炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、Xは、F,Cl,Br,Iである。)
CsM23 (5)
(式中、M2は、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)。
(Aspect 1) A solid-state photoelectric conversion element having a photoelectric conversion layer between a pair of electrode substrates, wherein the photoelectric conversion layer is a halide organic-inorganic hybrid perovskite compound represented by the following general formulas (1) to (4): A solid-type photoelectric conversion element comprising a compound selected from halide-based inorganic perovskite compounds represented by the following general formula (5) alone or in combination of two or more.
CH 3 NH 3 M 1 X 3 (1)
(In the formula, M 1 is a divalent metal ion, and X is F, Cl, Br, or I.)
(R 1 NH 3 ) 2 M 1 X 4 (2)
(Wherein R 1 is an alkyl group, alkenyl group, aralkyl group, aryl group, heterocyclic group or aromatic heterocyclic group having 2 or more carbon atoms, M 1 is a divalent metal ion, and X is F, Cl, Br, I.)
CH 3 NH 3 SnX 3 (3)
(In the formula, X is F, Cl, Br, or I.)
(R 2 NH 3 ) 2 SnX 4 (4)
(Wherein R 2 is an alkyl group, alkenyl group, aralkyl group, aryl group, heterocyclic group or aromatic heterocyclic group having 2 or more carbon atoms, and X is F, Cl, Br, or I.)
CsM 2 X 3 (5)
(Wherein M 2 is a divalent metal ion and X is F, Cl, Br, I).

(態様2) 前記光電変換層は、前記一対のいずれか一方の電極基板上に塗膜形成されたものであって、前記塗膜は一般式(1)から(4)のハライド系有機無機混成ペロブスカイト化合物または一般式(5)に示すハライド系無機ペロブスカイト化合物を構成し得る前駆体を含む溶液を用いて形成されたものであることを特徴とする(態様1)に記載した固体光電変換素子である。 (Aspect 2) The photoelectric conversion layer is a coating film formed on any one of the pair of electrode substrates, and the coating film is a hybrid organic / inorganic hybrid of the general formulas (1) to (4). The solid photoelectric conversion element according to (Aspect 1), wherein the solid photoelectric conversion element is formed using a solution containing a perovskite compound or a precursor capable of constituting a halide-based inorganic perovskite compound represented by the general formula (5) is there.

(態様3) 前記光電変換層は、前記一対のいずれか一方の電極基板上に被膜形成されたものであって、前記被膜は一般式(1)から(4)のハライド系有機無機混成ペロブスカイト化合物または一般式(5)に示すハライド系無機ペロブスカイト化合物を電極基板上に蒸着して形成されたものであることを特徴とする(態様1)に記載した固体光電変換素子である。 (Aspect 3) The photoelectric conversion layer is a film formed on any one of the pair of electrode substrates, and the film is a halide organic-inorganic hybrid perovskite compound represented by general formulas (1) to (4). Or it is formed by vapor-depositing the halide type | system | group inorganic perovskite compound shown in General formula (5) on an electrode substrate, It is a solid photoelectric conversion element as described in (aspect 1) characterized by the above-mentioned.

(態様4) 前記電極基板と前記光電変換層の間にバッファ層を形成したことを特徴とする(態様1)乃至(態様3)のいずれかに記載した固体型光電変換素子である。 (Aspect 4) The solid-state photoelectric conversion element according to any one of (Aspect 1) to (Aspect 3), wherein a buffer layer is formed between the electrode substrate and the photoelectric conversion layer.

(態様5) 前記一対の電極基板のいずれか一方の基板が、透明基板であることを特徴とする(態様1)乃至(態様4)のいずれかに記載した固体光電変換素子である。 (Aspect 5) The solid photoelectric conversion element according to any one of (Aspect 1) to (Aspect 4), wherein any one of the pair of electrode substrates is a transparent substrate.

(態様6) 前記一対の電極基板が導電層を有する透明基板であって、前記導電層が導電性有機材料からなることを特徴とする(態様1)乃至(態様5)のいずれかに記載した固体光電変換素子である。 (Aspect 6) According to any one of (Aspect 1) to (Aspect 5), the pair of electrode substrates is a transparent substrate having a conductive layer, and the conductive layer is made of a conductive organic material. It is a solid photoelectric conversion element.

(態様7) 前記一対の電極基板のいずれか一方の基板が、金属基板であることを特徴とする(態様1)乃至(態様4)のいずれかに記載した固体光電変換素子である。 (Aspect 7) The solid photoelectric conversion element according to any one of (Aspect 1) to (Aspect 4), wherein any one of the pair of electrode substrates is a metal substrate.

本願発明によって、構造的にも単純で製造コストが安く、かつ光で励起した電子が自身の内部誘電効果で電荷分離する固体接合型光電変換素子が得られる。色素増感型太陽電池のように増感色素の劣化や電解液の漏洩に起因する耐久性に問題はない。有機薄膜太陽電池に比べて耐光性、耐湿性に優れる。   According to the present invention, it is possible to obtain a solid junction type photoelectric conversion element that is structurally simple and low in manufacturing cost and in which electrons excited by light undergo charge separation by its own internal dielectric effect. There is no problem in durability caused by deterioration of the sensitizing dye or leakage of the electrolyte as in the dye-sensitized solar cell. Excellent light and moisture resistance compared to organic thin film solar cells.

本願発明の固体接合型光電変換素子の構造の1例を示す模式図である。It is a schematic diagram which shows an example of the structure of the solid junction type photoelectric conversion element of this invention. 本願発明の固体接合型光電変換素子の構造の1例を示す模式図である。It is a schematic diagram which shows an example of the structure of the solid junction type photoelectric conversion element of this invention.

以下、本願発明の固体接合型光電変換素子について説明する。   Hereinafter, the solid junction photoelectric conversion element of the present invention will be described.

1.固体接合型光電変換素子の構造
図1は、本願発明の固体接合型光電変換素子の構造の1例を示す模式図である。固体接合型光電変換素子は、上部電極基板1及び下部電極基板3からなる一対の電極基板の間に光電変換層2を有する。上部電極基板1と下部電極基板3は、基板が金属基板でない場合には、基板上に導電層(図示せず)を形成する。
図2は、本願発明のバッファ層を設けた固体接合型光電変換素子の構造の1例を示す模式図である。固体接合型光電変換素子は、上部電極基板1及び下部電極基板3からなる一対の電極基板の間に光電変換層2を有し、上部電極基板1と光電変換層2の間にバッファ層4を有する。上部電極基板1と下部電極基板3は、基板が金属基板でない場合には、基板上に導電層(図示せず)を形成する。
以下、電極基板、光電変換層、バッファ層の順で説明する。
1. Structure of Solid Junction Photoelectric Conversion Device FIG. 1 is a schematic diagram showing an example of the structure of a solid junction photoelectric conversion device of the present invention. The solid junction photoelectric conversion element includes a photoelectric conversion layer 2 between a pair of electrode substrates including an upper electrode substrate 1 and a lower electrode substrate 3. When the substrate is not a metal substrate, the upper electrode substrate 1 and the lower electrode substrate 3 form a conductive layer (not shown) on the substrate.
FIG. 2 is a schematic view showing an example of the structure of a solid junction photoelectric conversion element provided with a buffer layer according to the present invention. The solid junction photoelectric conversion element has a photoelectric conversion layer 2 between a pair of electrode substrates including an upper electrode substrate 1 and a lower electrode substrate 3, and a buffer layer 4 between the upper electrode substrate 1 and the photoelectric conversion layer 2. Have. When the substrate is not a metal substrate, the upper electrode substrate 1 and the lower electrode substrate 3 form a conductive layer (not shown) on the substrate.
Hereinafter, the electrode substrate, the photoelectric conversion layer, and the buffer layer will be described in this order.

[1]電極基板
本願発明の電極基板に用いる基板の素材としては、特に制限はなく、目的に応じて適宜選択することがでる。具体例としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、フッ素化環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマレート)、ポリ(ジエチルフマレート)、ポリ(ジイソプロピルマレエート)、ポリエーテルスルホン、ポリフェニレンスルフィド、セルローストリアセテート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、ハイドープシリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板、等を挙げることができる。
[1] Electrode substrate There is no restriction | limiting in particular as a raw material of the board | substrate used for the electrode substrate of this invention, According to the objective, it can select suitably. Specific examples include, for example, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polymethyl acrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, fluorinated cyclic polyolefin, polyimide, polycarbonate, polyvinyl phenol, polyvinyl alcohol, poly (diisopropyl fumarate). Rate), poly (diethyl fumarate), poly (diisopropyl maleate), polyethersulfone, polyphenylene sulfide, cellulose triacetate and other plastic substrates; glass, quartz, aluminum oxide, silicon, highly doped silicon, silicon oxide, tantalum dioxide, Inorganic material substrates such as tantalum pentoxide and indium tin oxide; gold, copper, chromium, titanium, aluminum, etc. Metal substrates, and the like.

(1)透明基板
本願発明に用いる一対の電極基板のいずれか一方は、透明電極基板、具体的にはガラス電極基板又は透明プラスチック電極基板が好ましい。透明プラスチック基板材料としては、無着色で透明性が高く、耐熱性が高く、耐薬品性及びガス遮断性に優れ、かつ低コストの材料が好適である。好適な材料としては、例えば、ポリエステル類(例、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)など)、スチレン類(例、シンジオタクチックポリスチレン(SPS)など)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAr)、ポリスルホン(PSF)、ポリエステルスルホン(PES)、ポリエーテルイミド(PEI)、透明ポリイミド(PI)、シクロオレフィンコポリマー(商品名アートンなど)及び脂環式ポリオレフィン(商品名ゼオノアなど)などが用いられる。なかでも、化学的安定性とコストの点で、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、脂環式ポリオレフィンが特に好ましい。なお、これらのプラスチック基板の構造やその組成においては特に限定されず、本願発明の固体接合型光電変換素子を構成するに値するものであれば、利用することができる。また、ガラス基板材料としては、可視光線透過率80%を超えるものであればく、例えば、白板ガラス、ソーダガラス、硼珪酸ガラス等からなる無機質製基板がある。
(1) Transparent substrate One of the pair of electrode substrates used in the present invention is preferably a transparent electrode substrate, specifically a glass electrode substrate or a transparent plastic electrode substrate. As the transparent plastic substrate material, an uncolored material having high transparency, high heat resistance, excellent chemical resistance and gas barrier properties, and low cost is preferable. Suitable materials include, for example, polyesters (eg, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.), styrenes (eg, syndiotactic polystyrene (SPS), etc.), polyphenylene sulfide (PPS), polycarbonate, etc. (PC), polyarylate (PAr), polysulfone (PSF), polyestersulfone (PES), polyetherimide (PEI), transparent polyimide (PI), cycloolefin copolymer (trade name Arton, etc.) and alicyclic polyolefin (product) Name such as ZEONOR). Of these, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and alicyclic polyolefin are particularly preferable in terms of chemical stability and cost. In addition, it does not specifically limit in the structure of these plastic substrates, or its composition, If it deserves to comprise the solid junction type photoelectric conversion element of this invention, it can utilize. The glass substrate material may be any material that has a visible light transmittance exceeding 80%, such as an inorganic substrate made of white plate glass, soda glass, borosilicate glass, or the like.

プラスチック基板の耐熱性は、ガラス転移温度(Tg)が100℃以上、及び、線熱膨張係数が40ppm/℃以下の少なくともいずれかの物性を満たすことが好ましい。なお、プラスチック基板のTg及び線膨張係数は、JIS K 7121に記載のプラスチックの転移温度測定方法、及び、JIS K 7197に記載のプラスチックの熱機械分析による線膨張率試験方法により測定する。プラスチックフィルムのTgや線膨張係数は、添加剤などによって調整することができる。このような耐熱性に優れる熱可塑性樹脂として、例えば、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン(株)製 ゼオノア1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報の化合物:162℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報の化合物:300℃以上)、ポリイミド等が挙げられ(括弧内はTgを示す)、これらは本願発明における基材として好適である。なかでも、特に透明性が求められる用途には、脂環式ポレオレフィンを使用することが好ましい。   The heat resistance of the plastic substrate preferably satisfies at least one of the physical properties of a glass transition temperature (Tg) of 100 ° C. or higher and a linear thermal expansion coefficient of 40 ppm / ° C. or lower. The Tg and linear expansion coefficient of the plastic substrate are measured by the plastic transition temperature measurement method described in JIS K 7121 and the linear expansion coefficient test method based on the thermomechanical analysis of plastic described in JIS K 7197. The Tg and linear expansion coefficient of the plastic film can be adjusted by additives. Examples of such a thermoplastic resin having excellent heat resistance include polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic polyolefin (for example, ZEONOR 1600: 160 ° C. manufactured by Nippon Zeon Co., Ltd.). , Polyarylate (PAr: 210 ° C.), polyether sulfone (PES: 220 ° C.), polysulfone (PSF: 190 ° C.), cycloolefin copolymer (COC: compound of JP 2001-150584 A, 162 ° C.), fluorene ring Modified polycarbonate (BCF-PC: compound of JP 2000-227603 A: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound of JP 2000-227603 A: 205 ° C.), acryloyl compound (JP 2002) No. 80616 compounds: 300 [deg.] C. or higher), and polyimide, etc. (Tg is shown in parentheses), and these are suitable as the base material in the present invention. Especially, it is preferable to use an alicyclic polyolefin for the use for which transparency is particularly required.

(2)透明導電層
本願発明の透明電極基板には、透明導電層を設ける必要がある。透明導電層の素材としては、導電性金属類(例、白金、金、銀、銅、アルミニウム、インジウム、チタン)、導電性炭素や導電性高分子に代表される導電性有機材料、具体的には導電性炭素として、カーボンブラック、カーボンナノファイバー、カーボンナノチューブ、グラフェン、炭素繊維、フラーレンがあり、導電性高分子として、ポリアセチレン、PEDOT(ポリ(3,4−エチレンジオキシチオフェン))、オリゴチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリパラフェニレンビニレンがある。導電性金属酸化物(例、酸化スズ、酸化亜鉛)または導電性複合金属酸化物(例、インジウム‐スズ酸化物、インジウム−亜鉛酸化物)、Agナノワイヤがある。高い光学的透明性を有するという点で、導電性金属酸化物、導電性複合金属酸化物が好ましく、耐熱性と化学安定性に優れるという点で、インジウム‐スズ複合酸化物(ITO)やインジウム‐亜鉛酸化物(IZO)が特に好ましい。その素材においては、組成内容は他の素材との混合でもよく、また形態なども限定されるものではない。また導電性層の形成においても、その方法は限定されるものではなく、スパッタ法、蒸着法さらには分散物を塗布する方法などが選定できる。透明基板上に透明電極層を設けた電極基板の光透過率(測定波長:500nm)は、60%以上が好ましく、75%以上であることがさらに好ましく、80%以上が最も好ましく、特には85%以上が好ましい。透明電極基板の導電性と透明性は、透明導電層の形成方法を最適化することで、例えば、蒸着時間、分散液塗布量などを最適化することで、両立させることができる。なお、本願発明では、一対の電極基板のいずれか一方を透明電極基板でないものとすることもできる。
(2) Transparent conductive layer It is necessary to provide a transparent conductive layer in the transparent electrode substrate of the present invention. Examples of the material for the transparent conductive layer include conductive metals (eg, platinum, gold, silver, copper, aluminum, indium, titanium), conductive organic materials represented by conductive carbon and conductive polymers, specifically There are carbon black, carbon nanofiber, carbon nanotube, graphene, carbon fiber and fullerene as conductive carbon, and polyacetylene, PEDOT (poly (3,4-ethylenedioxythiophene)), oligothiophene as conductive polymer. , Polypyrrole, polyaniline, polyparaphenylene, polyparaphenylene vinylene. There are conductive metal oxides (eg, tin oxide, zinc oxide) or conductive composite metal oxides (eg, indium-tin oxide, indium-zinc oxide), Ag nanowires. In terms of having high optical transparency, conductive metal oxides and conductive composite metal oxides are preferred, and in terms of heat resistance and chemical stability, indium-tin composite oxide (ITO) and indium- Zinc oxide (IZO) is particularly preferred. In the material, the composition may be mixed with other materials, and the form is not limited. In addition, the method for forming the conductive layer is not limited, and a sputtering method, a vapor deposition method, a method of applying a dispersion, and the like can be selected. The light transmittance (measurement wavelength: 500 nm) of the electrode substrate provided with the transparent electrode layer on the transparent substrate is preferably 60% or more, more preferably 75% or more, most preferably 80% or more, and particularly 85. % Or more is preferable. The conductivity and transparency of the transparent electrode substrate can be achieved by optimizing the formation method of the transparent conductive layer, for example, by optimizing the deposition time, the amount of dispersion applied, and the like. In the present invention, either one of the pair of electrode substrates may not be a transparent electrode substrate.

本願発明においては、低い表面抵抗値を達成するために、導電層に金属を用いることができる。金属メッシュ構造からなる透明導電性層を形成することにより高い透明性も達成できる。低抵抗の金属材料(例、銅、銀、アルミニウム、白金、金、チタン、ニッケルなど)を用いて金属メッシュ構造からなる透明導電性層を形成することが好ましい。この場合には、導電層には集電のための補助リードをパターニングなどにより配置させることができる。補助リードも導電層と同様に低抵抗の金属材料(例、銅、銀、アルミニウム、白金、金、チタン、ニッケルなど)によって形成される。補助リードを含めた表面の抵抗値は本発明の目的に有ったものであれば特に限定されない。ここで補助リードのパターンは透明基板に蒸着、スパッタリングなどにより形成し、さらにその上に酸化スズ、ITO膜、IZO膜などからなる透明導電層を設けることも好ましい。   In the present invention, a metal can be used for the conductive layer in order to achieve a low surface resistance value. High transparency can also be achieved by forming a transparent conductive layer having a metal mesh structure. It is preferable to form a transparent conductive layer having a metal mesh structure using a low-resistance metal material (eg, copper, silver, aluminum, platinum, gold, titanium, nickel, etc.). In this case, auxiliary leads for collecting current can be disposed on the conductive layer by patterning or the like. The auxiliary lead is also formed of a low-resistance metal material (eg, copper, silver, aluminum, platinum, gold, titanium, nickel, etc.) in the same manner as the conductive layer. The resistance value of the surface including the auxiliary lead is not particularly limited as long as it has the object of the present invention. Here, the auxiliary lead pattern is preferably formed on the transparent substrate by vapor deposition, sputtering, or the like, and a transparent conductive layer made of tin oxide, ITO film, IZO film or the like is further provided thereon.

[2]光電変換層
本願発明の光電変換層は、一対の電極基板の間に形成されるものであり、本願発明の固体接合型光電変換素子の電荷分離に寄与して、生じた電子および正孔を各々反対方向の電極に向かって輸送する機能を有する。本願発明の光電変換層は、ハライド系有機無機混成ペロブスカイト化合物、又はハライド系無機ペロブスカイト化合物の単層膜を形成するものである。ハライド系ペロブスカイト化合物の層が光吸収剤として機能すると共に、強誘電体として自己誘電して電荷分離が起きるため、単独層で太陽電池としての特性を示すものである。
以下、ハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物について説明する。
[2] Photoelectric Conversion Layer The photoelectric conversion layer of the present invention is formed between a pair of electrode substrates, contributes to charge separation of the solid junction photoelectric conversion element of the present invention, and generates the positive and negative electrons. Each of the holes has a function of transporting toward the opposite electrode. The photoelectric conversion layer of the present invention forms a monolayer film of a halide-based organic / inorganic hybrid perovskite compound or a halide-based inorganic perovskite compound. The layer of the halide-based perovskite compound functions as a light absorber, and self-dielectrically acts as a ferroelectric substance to cause charge separation, so that a single layer exhibits characteristics as a solar cell.
Hereinafter, the halide organic-inorganic hybrid perovskite compound and the halide inorganic perovskite compound will be described.

(1)ハライド系有機無機混成ペロブスカイト化合物
ハライド系有機無機混成ペロブスカイト化合物とは、単一の分子スケール・コンポジット内に有機・無機両成分に特徴的な望ましい物理特性を組み合わせた(有機無機混成の)ペロブスカイト化合物をいう。ペロブスカイトの基本的構造形態は、ABX3構造であり、頂点共有BX6八面体の三次元ネットワークを有する。ABX3構造のB成分は、Xアニオンの八面体配位をとることができる金属カチオンである。Aカチオンは、BX6八面体間の12の配位孔に位置し、一般に無機カチオンである。Aを無機カチオンから有機カチオンに置換することにより、有機無機混成ペロブスカイト化合物を形成する。
(1) Halide-based organic-inorganic hybrid perovskite compounds Halide-based organic-inorganic hybrid perovskite compounds combine desirable physical properties characteristic of both organic and inorganic components in a single molecular scale composite (organic-inorganic hybrid). Perovskite compound. The basic structural form of perovskite is the ABX3 structure, which has a three-dimensional network of vertex sharing BX6 octahedrons. The B component of the ABX3 structure is a metal cation that can take octahedral coordination of the X anion. A cations are located in 12 coordination holes between BX6 octahedra and are generally inorganic cations. By substituting A from an inorganic cation to an organic cation, an organic-inorganic hybrid perovskite compound is formed.

本願発明のハライド系有機無機混成ペロブスカイト化合物は、下記一般式(1)乃至(4)のいずれかに示す化合物であり、特に、一般式(1)の化合物が好ましい。
CH3NH313 (1)
(式中、M1は、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
(R1NH3214 (2)
(式中、R1は炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、M1は、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
CH3NH3SnX3 (3)
(式中、Xは、F,Cl,Br,Iである。)
(R2NH32SnX4 (4)
(式中、R2は炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、Xは、F,Cl,Br,Iである。)
The halide organic-inorganic hybrid perovskite compound of the present invention is a compound represented by any one of the following general formulas (1) to (4), and a compound of the general formula (1) is particularly preferable.
CH 3 NH 3 M 1 X 3 (1)
(In the formula, M 1 is a divalent metal ion, and X is F, Cl, Br, or I.)
(R 1 NH 3 ) 2 M 1 X 4 (2)
(In the formula, R 1 is an alkyl group having 2 or more carbon atoms, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group or an aromatic heterocyclic group, M1 is a divalent metal ion, and X is F, Cl, Br, I.)
CH 3 NH 3 SnX 3 (3)
(In the formula, X is F, Cl, Br, or I.)
(R 2 NH 3 ) 2 SnX 4 (4)
(Wherein R 2 is an alkyl group, alkenyl group, aralkyl group, aryl group, heterocyclic group or aromatic heterocyclic group having 2 or more carbon atoms, and X is F, Cl, Br, or I.)

本願発明のハライド系有機無機混成ペロブスカイト化合物における無機枠組みは、頂点を共有する金属ハロゲン化物八面体の層を有する。陽イオン性有機層からの正の電荷と平衡をとるため、陰イオン性金属ハロゲン化物層(例えば、M13 2-,M14 2-)は一般に2価の金属である。
本願発明のハライド系有機無機混成ペロブスカイト化合物の陰イオン性金属ハロゲン化物層を構成する金属は、具体的には、M1(例、Cu2+,Ni2+,Mn2+,Fe2+、Co2+、Pd2+、Ge2+、Sn2+、Pb2+、Eu2+)である。
本願発明のハライド系有機無機混成ペロブスカイト化合物の陰イオン性金属ハロゲン化物層を構成するハロゲン化物は、フッ化物、塩化物、臭化物、ヨウ化物、またはこれらの組合せである。このハロゲン化物は、臭化物、ヨウ化物が好ましい。
The inorganic framework in the halide organic-inorganic hybrid perovskite compound of the present invention has a metal halide octahedron layer sharing a vertex. Anionic metal halide layers (eg, M 1 X 3 2− , M 1 X 4 2− ) are generally divalent metals in order to balance the positive charge from the cationic organic layer.
The metal constituting the anionic metal halide layer of the halide-based organic / inorganic hybrid perovskite compound of the present invention is specifically M 1 (eg, Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2+ , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+ ).
The halide constituting the anionic metal halide layer of the halide-based organic / inorganic hybrid perovskite compound of the present invention is fluoride, chloride, bromide, iodide, or a combination thereof. This halide is preferably bromide or iodide.

本願発明の上記一般式(2)のR1としては、炭素数2〜40の置換または未置換のアルキル基、直鎖、分岐または環状のアルキル鎖(好ましくは炭素数2〜30であり、より好ましくは炭素数2〜20であり、炭素数2〜18がもっとも好ましい)。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、イソオクチル基、ノニル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、イコサニル基、ドコサニル基、トリアコンタニル基、テトラアコンタニル基、シクロペンチル基、シクロヘキシル基等が挙げられる。 R 1 in the above general formula (2) of the present invention is a substituted or unsubstituted alkyl group having 2 to 40 carbon atoms, a linear, branched or cyclic alkyl chain (preferably having 2 to 30 carbon atoms, more Preferably it is C2-C20, and C2-C18 is the most preferable). Specifically, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, isooctyl group, nonyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group Group, icosanyl group, docosanyl group, triacontanyl group, tetraacontanyl group, cyclopentyl group, cyclohexyl group and the like.

炭素数2〜40の置換または未置換のアラルキル基としては、アリール基で置換されている低級アルキル基を意味し、アルキル部が直鎖状または分岐鎖状で、好ましい炭素数が1〜5、より好ましくは1であり、アリール部が好ましい炭素数が6〜10、より好ましくは6〜8である。具体的には、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。   The substituted or unsubstituted aralkyl group having 2 to 40 carbon atoms means a lower alkyl group substituted with an aryl group, the alkyl portion is linear or branched, and preferably has 1 to 5 carbon atoms, More preferably, it is 1, and the aryl part preferably has 6 to 10 carbon atoms, more preferably 6 to 8 carbon atoms. Specific examples include a benzyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group.

アルケニル基は、好ましくは炭素数3〜30であり、より好ましくは炭素数3〜20であり、炭素数3〜12が最も好ましい。例えば、ビニル基、1−プロペニル基、2−プロペニル基、2−ブテニル基、オレイル基、アリル基等が挙げられる。アルキニル基としては、アセチレニル、プロパルギル基、3−ペンチニル基、2−ヘキシルニル、2−デカニルを挙げることができる。   The alkenyl group preferably has 3 to 30 carbon atoms, more preferably 3 to 20 carbon atoms, and most preferably 3 to 12 carbon atoms. For example, a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, oleyl group, allyl group and the like can be mentioned. Examples of the alkynyl group include acetylenyl, propargyl group, 3-pentynyl group, 2-hexynyl, and 2-decanyl.

アリール基としては、好ましくは炭素数6〜30の単環または二環のアリール基(例えばフェニル、ナフチル等が挙げられる。)であり、より好ましくは炭素数6〜20のフェニル基または炭素数10〜24のナフチル基であり、更に好ましくは炭素数6〜12のフェニル基または炭素数10〜16のナフチル基である。例えばフェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。これらの基は更に置換基を有していてもよい。一般式(1)において、複素環基としては、例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等が挙げられる。これらの基は更に置換基を有していてもよい。   The aryl group is preferably a monocyclic or bicyclic aryl group having 6 to 30 carbon atoms (for example, phenyl, naphthyl etc.), more preferably a phenyl group having 6 to 20 carbon atoms or 10 carbon atoms. A naphthyl group having 24 to 24, more preferably a phenyl group having 6 to 12 carbon atoms or a naphthyl group having 10 to 16 carbon atoms. For example, a phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, xylyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, pyrenyl group, biphenylyl group and the like can be mentioned. These groups may further have a substituent. In the general formula (1), examples of the heterocyclic group include a pyrrolidyl group, an imidazolidyl group, a morpholyl group, and an oxazolidyl group. These groups may further have a substituent.

芳香族複素環基としては、例えばフリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等が挙げられる。これらの基は更に置換基を有していてもよい。   Examples of aromatic heterocyclic groups include furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, pyrazolyl, thiazolyl, quinazolinyl, carbazolyl, carbolinyl, diaza Examples thereof include a carbazolyl group (in which one of carbon atoms constituting the carboline ring of the carbolinyl group is replaced with a nitrogen atom), a phthalazinyl group, and the like. These groups may further have a substituent.

本願発明のハライド系有機無機混成ペロブスカイト化合物の具体例としては、CH3NH3PbI3、CH3NH3PbBr3、(CH3(CH2)nCHCH3NH32PbI4[n=5〜8]、(C6524NH32PbBr4、CH3NH3SnI3がある。 Specific examples of the halide organic-inorganic hybrid perovskite compound of the present invention include CH 3 NH 3 PbI 3 , CH 3 NH 3 PbBr 3 , (CH 3 (CH 2 ) nCHCH 3 NH 3 ) 2 PbI 4 [n = 5 8], there are (C 6 H 5 C 2 H 4 NH 3) 2 PbBr 4, CH 3 NH 3 SnI 3.

(2)ハライド系無機ペロブスカイト化合物
本願発明のハライド系無機ペロブスカイト化合物は、下記一般式(5)に示されるものである。
CsM23 (5)
(式中、M2は、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
(2) Halide-based inorganic perovskite compound The halide-based inorganic perovskite compound of the present invention is represented by the following general formula (5).
CsM 2 X 3 (5)
(In the formula, M 2 is a divalent metal ion, and X is F, Cl, Br, or I.)

本願発明のハライド系無機ペロブスカイト化合物の陰イオン性金属ハロゲン化物層を構成する金属は、具体的には、M2(例、Cu2+,Ni2+,Mn2+,Fe2+、Co2+、Pd2+、Ge2+、Sn2+、Pb2+、Eu2+)である。 Specifically, the metal constituting the anionic metal halide layer of the halide-based inorganic perovskite compound of the present invention is M 2 (eg, Cu 2+ , Ni 2+ , Mn 2+ , Fe 2+ , Co 2). + , Pd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+ ).

本願発明のハライド系無機ペロブスカイト化合物の陰イオン性金属ハロゲン化物層を構成するハロゲン化物は、フッ化物、塩化物、臭化物、ヨウ化物、またはこれらの組合せである。このハロゲン化物は、臭化物、ヨウ化物が好ましい。   The halide constituting the anionic metal halide layer of the halide-based inorganic perovskite compound of the present invention is fluoride, chloride, bromide, iodide, or a combination thereof. This halide is preferably bromide or iodide.

本願発明のハライド系無機ペロブスカイト化合物の具体例としては、CsSnI3、CsSnBr3がある。 Specific examples of the halide inorganic perovskite compound of the present invention include CsSnI 3 and CsSnBr 3 .

(3)ハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物の被膜形成
本願発明のハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物は、前駆体溶液を用いた自己組織化反応により合成することができる。本願発明のハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物の薄膜は、ハライド系有機無機混成ペロブスカイト化合物又はハライド系無機ペロブスカイト化合物、あるいはこれらの混合物を有機溶剤に溶解した後、グラビア塗布法、バー塗布法、スクリーン印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の塗布方法によって形成できる。また、真空蒸着法により被膜を形成できる。本願発明の光電変換層の膜厚は、1〜500nmが好ましい。
(3) Film formation of halide-based organic / inorganic hybrid perovskite compound and halide-based inorganic perovskite compound The halide-based organic / inorganic hybrid perovskite compound and halide-based inorganic perovskite compound of the present invention are synthesized by a self-organization reaction using a precursor solution. be able to. The thin film of the halide-based organic-inorganic hybrid perovskite compound and the halide-based inorganic perovskite compound of the present invention is a gravure coating method after dissolving the halide-based organic-inorganic hybrid perovskite compound or the halide-based inorganic perovskite compound, or a mixture thereof in an organic solvent, It can be formed by a coating method such as a bar coating method, a screen printing method, a spray method, a spin coating method, a dip method, or a die coating method. Moreover, a film can be formed by a vacuum evaporation method. The film thickness of the photoelectric conversion layer of the present invention is preferably 1 to 500 nm.

(4)ハライド系有機無機混成ペロブスカイト化合物及びハライド系無機ペロブスカイト化合物の溶液
本願発明に用いるハライド系有機無機混成ペロブスカイトの溶液を調製するための溶剤としては、ハライド系有機無機混成ペロブスカイトを溶解できるものであれば特に限定するものではない。エステル類(例、メチルホルメート、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテート、ペンチルアセテート等)、ケトン類(例、γ-ブチロラクトン、Nメチル-2-ピロリドン、アセトン、ジメチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等)、エーテル類(例、ジエチルエーテル、メチル−tert−ブチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、4−メチルジオキソラン、テトラヒドロフラン、メチルテトラヒドロフラン、アニソール、フェネトール等)、アルコール類(例、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、tert−ブタノール、1−ペンタノール、2−メチル−2−ブタノール、メトキシプロパノール、ジアセトンアルコール、シクロヘキサノール、2−フルオロエタノール、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール等)、グリコールエーテル(セロソルブ)類(例、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、トリエチレングリコールジメチルエーテル等)、アミド系溶剤(例、N,N-ジメチルホルムアミド、アセトアミド、N,N-ジメチルアセトアミド等)、ニトリル系溶剤(例、アセトニトリル、イソブチロニトリル、プロピオニトリル、メトキシアセトニトリル等)、カーボート系剤(例、エチレンカーボネート、プロピレンカーボネート等)、ハロゲン化炭化水素(例、塩化メチレン、ジクロロメタン、クロロホルム等)、炭化水素(例、n−ペンタン、シクロヘキサン、n−ヘキサン、ベンゼン、トルエン、キシレン等)、ジメチルスルホキシドがある。これらは分岐構造若しくは環状構造を有していてもよい。エステル類、ケトン類、エーテル類およびアルコール類の官能基(即ち、−O−、−CO−、−COO−、−OH)のいずれかを二つ以上有していてもよい。エステル類、ケトン類、エーテル類およびアルコール類の炭化水素部分における水素原子は、ハロゲン原子(特に、フッ素原子)で置換されていてもよい。
(4) Halide-based organic / inorganic hybrid perovskite compound and halide-based inorganic perovskite compound solution As a solvent for preparing a solution of halide-based organic / inorganic hybrid perovskite used in the present invention, a solution capable of dissolving a halide-based organic / inorganic hybrid perovskite is used. If there is no particular limitation. Esters (eg, methyl formate, ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate, pentyl acetate, etc.), ketones (eg, γ-butyrolactone, N-methyl-2-pyrrolidone, acetone, Dimethyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methylcyclohexanone, etc.), ethers (eg, diethyl ether, methyl-tert-butyl ether, diisopropyl ether, dimethoxymethane, dimethoxyethane, 1,4-dioxane, 1,3- Dioxolane, 4-methyldioxolane, tetrahydrofuran, methyltetrahydrofuran, anisole, phenetole, etc.), alcohols (eg, methanol, ethanol, 1-propanol, 2-propanol, 1 Butanol, 2-butanol, tert-butanol, 1-pentanol, 2-methyl-2-butanol, methoxypropanol, diacetone alcohol, cyclohexanol, 2-fluoroethanol, 2,2,2-trifluoroethanol, 2, 2,3,3-tetrafluoro-1-propanol, etc.), glycol ethers (cellosolves) (eg, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, triethylene glycol) Dimethyl ether, etc.), amide solvents (eg, N, N-dimethylformamide, acetamide, N, N-dimethylacetamide, etc.), nitrile solvents (eg, acetonitrile, isobutyronitrile, pro Pionitrile, methoxyacetonitrile, etc.), carboat agents (eg, ethylene carbonate, propylene carbonate, etc.), halogenated hydrocarbons (eg, methylene chloride, dichloromethane, chloroform, etc.), hydrocarbons (eg, n-pentane, cyclohexane, n- Hexane, benzene, toluene, xylene, etc.) and dimethyl sulfoxide. These may have a branched structure or a cyclic structure. Two or more functional groups of esters, ketones, ethers, and alcohols (that is, —O—, —CO—, —COO—, —OH) may be contained. The hydrogen atom in the hydrocarbon moiety of the esters, ketones, ethers and alcohols may be substituted with a halogen atom (particularly a fluorine atom).

[3]バッファ層
バッファ層は、電極基板と光電変換層との間に成膜されることにより、ショットキー障壁の形成を抑制する役割を持つものである。
[3] Buffer layer The buffer layer has a role of suppressing formation of a Schottky barrier by being formed between the electrode substrate and the photoelectric conversion layer.

バッファ層の素材としては、例えば、酸化銅(Cu2O)等がある。また、バッファ層を形成する方法としては、上記素材を光電変換層に直接スパッタする方法等が挙げられる。 Examples of the material for the buffer layer include copper oxide (Cu 2 O). Examples of a method for forming the buffer layer include a method of directly sputtering the above-described material onto the photoelectric conversion layer.

本願発明に用いるハライド系有機無機混成ペロブスカイト化合物又はハライド系無機ペロブスカイト化合物は光吸収材として作用だけでなく、半導体としての各種特性を示ため電子部品等に幅広い分野に利用することができる。例えば、強誘電体特性を利用してコンデンサー、誘導体メモリーとして、光電変換特性を利用した発光ダイオード、LED、半導体レーザー等の発光素子として、CCDイメージセンサー、撮像管等の受光素子として、電気信号を増幅したり電気信号の流れを高速でON/OFF(スイッチング)するトランジスター、光増幅回路として、圧電特性を利用して薄型スピーカー等の圧電素子として、焦電特性を利用して赤外線検出器等の焦電素子として、光電流に伴う磁気特性を利用して各種の磁気素子や光スイッチとして、利用することができる。
さらに、既存のシリコン太陽電池の上に被膜形成して光電変換効率を向上させること、酸化物ペロブスカイトの表面に被膜形成させて光誘起分極により分極率あるいは分極速度を向上させること、が可能である。
The halide-based organic / inorganic hybrid perovskite compound or the halide-based inorganic perovskite compound used in the present invention can be used not only as a light absorbing material but also in various fields as a semiconductor because it exhibits various characteristics as a semiconductor. For example, as a capacitor or derivative memory using ferroelectric characteristics, as a light emitting element such as a light emitting diode, LED, or semiconductor laser using photoelectric conversion characteristics, as a light receiving element such as a CCD image sensor or imaging tube, an electrical signal can be transmitted. Transistors that amplify and switch electrical signals at high speed (switching), optical amplifier circuits, piezoelectric elements such as thin speakers using piezoelectric characteristics, infrared detectors using pyroelectric characteristics, etc. As a pyroelectric element, it can be used as various magnetic elements and optical switches by utilizing magnetic characteristics associated with photocurrent.
Furthermore, it is possible to improve the photoelectric conversion efficiency by forming a film on the existing silicon solar cell, and to improve the polarizability or the polarization speed by photoinduced polarization by forming a film on the surface of the oxide perovskite. .

次に本願発明の効果を奏する実施態様を実施例として示す。また、表1にそのまとめを示す。   Next, an embodiment that exhibits the effect of the present invention will be shown as an example. Table 1 shows the summary.

(1)ハライド系ペロブスカイト化合物の合成
(1−1)ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕の合成
三口フラスコ内に、メチルアミン〔CH3NH2〕溶液1gとメタノール〔CH3OH〕100mlを入れ、窒素バブリングを行いながらヨウ化水素酸〔HI〕を加えてpHを3〜4程度に調整した後、マグネッチックスターラーにより1時間撹拌した。この溶液をエバポレーターで蒸留した後、40℃で乾燥し、再精製することによりヨウ化メチルアミン〔CH3NH3I〕を合成した。次に合成したヨウ化メチルアミン〔CH3NH3I〕とヨウ化鉛〔PbI2〕をモル比1:1の割合で、ジメチルホルムアルデヒド〔(CH3)2NCHO〕に15重量%濃度となるように混合して溶解し、ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液を調製した。
(1) Synthesis of halide perovskite compound (1-1) Synthesis of halide organic / inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ] In a three-necked flask, 1 g of a methylamine [CH 3 NH 2 ] solution and methanol [ 100 ml of CH 3 OH] was added, and hydroiodic acid [HI] was added while nitrogen bubbling to adjust the pH to about 3 to 4, followed by stirring with a magnetic stirrer for 1 hour. This solution was distilled with an evaporator, dried at 40 ° C., and purified again to synthesize methylamine iodide [CH 3 NH 3 I]. Next, the synthesized methylamine [CH 3 NH 3 I] and lead iodide [PbI 2 ] are in a molar ratio of 1: 1 to a concentration of 15% by weight in dimethylformaldehyde [(CH 3 ) 2 NCHO]. The resulting mixture was dissolved to prepare a dimethylformaldehyde [(CH 3 ) 2 NCHO] solution of a halide organic-inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ].

(1−2)ハライド系有機無機ペロブスカイト化合物B〔C25NH3PbI4〕の合成
三口フラスコ内に、エチルアミン〔C25NH2〕溶液1gとメタノール〔CH3OH〕100mlを入れ、窒素バブリングを行いながらヨウ化水素酸〔HI〕を加えてpHを3〜4程度に調整した後、マグネッチックスターラーにより1時間撹拌した。この溶液をエバポレーターで蒸留した後、40℃で乾燥し、再精製することによりヨウ化エチルアミン〔C25NH3I〕を合成した。次に合成したヨウ化エチルアミン〔C25NH3I〕と沃化鉛〔PbI2〕をモル比1:1の割合で、ジメチルホルムアルデヒド〔(CH3)2NCHO〕に15重量%濃度となるように混合して溶解し、ハライド系有機無機混成ペロブスカイト化合物B〔C25NH3PbI4〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液を調製した。
(1-2) Synthesis of halide organic inorganic perovskite compound B [C 2 H 5 NH 3 PbI 4 ] Into a three-necked flask, 1 g of ethylamine [C 2 H 5 NH 2 ] solution and 100 ml of methanol [CH 3 OH] were placed. Then, hydroiodic acid [HI] was added with nitrogen bubbling to adjust the pH to about 3 to 4, and the mixture was stirred for 1 hour with a magnetic stirrer. This solution was distilled with an evaporator, dried at 40 ° C., and repurified to synthesize ethyl iodide [C 2 H 5 NH 3 I]. Next, the synthesized ethyl iodide [C 2 H 5 NH 3 I] and lead iodide [PbI 2 ] are mixed at a molar ratio of 1: 1 in dimethylformaldehyde [(CH 3 ) 2 NCHO] with a concentration of 15% by weight. The resulting mixture was dissolved to prepare a dimethylformaldehyde [(CH 3 ) 2 NCHO] solution of a halide organic-inorganic hybrid perovskite compound B [C 2 H 5 NH 3 PbI 4 ].

(1−3)ハライド系有機無機ペロブスカイト化合物C〔CH3NH3SnI3〕の合成
三口フラスコ内に、メチルアミン〔CH3NH2〕溶液1gとメタノール〔CH3OH〕100mlを入れ、窒素バブリングを行いながらヨウ化水素酸〔HI〕を加えてpHを3〜4程度に調整した後、マグネッチックスターラーにより1時間撹拌した。この溶液をエバポレーターで蒸留した後、40℃で乾燥し、再精製することによりヨウ化メチルアミン〔CH3NH3I〕を合成した。次に合成したヨウ化メチルアミン〔CH3NH3I〕とヨウ化錫(SnI2)をモル比1:1の割合で、アセトニトリル〔CH3CN〕に10重量%濃度となるように溶解し、ハライド系有機無機混成ペロブスカイト化合物C〔CH3NH3SnI3〕のアセトニトリル〔CH3CN〕溶液を調製した。
(1-3) Synthesis of halide organic inorganic perovskite compound C [CH 3 NH 3 SnI 3 ] In a three-necked flask, 1 g of methylamine [CH 3 NH 2 ] solution and 100 ml of methanol [CH 3 OH] were placed, and nitrogen bubbling was performed. Hydrochloric acid [HI] was added while adjusting the pH to about 3 to 4, and the mixture was stirred with a magnetic stirrer for 1 hour. This solution was distilled with an evaporator, dried at 40 ° C., and purified again to synthesize methylamine iodide [CH 3 NH 3 I]. Next, the synthesized methyl iodide [CH 3 NH 3 I] and tin iodide (SnI 2 ) were dissolved in acetonitrile [CH 3 CN] at a molar ratio of 1: 1 to a concentration of 10% by weight. Then, an acetonitrile [CH 3 CN] solution of a halide organic-inorganic hybrid perovskite compound C [CH 3 NH 3 SnI 3 ] was prepared.

(1−4)ハライド系有機無機ペロブスカイト化合物D〔C25NH3SnI4〕の合成
三口フラスコ内に、エチルアミン〔C25NH2〕溶液1gとメタノール〔CH3OH〕100mlを入れ、窒素バブリングを行いながらヨウ化水素酸〔HI〕を加えてpHを3〜4程度に調整した後、マグネッチックスターラーにより1時間撹拌した。この溶液をエバポレーターで蒸留した後、40℃で乾燥し、再精製することによりヨウ化エチルアミン〔C25NH3I〕を合成した。次に合成したヨウ化エチルアミン〔C25NH3I〕とヨウ化錫(SnI2)をモル比1:1の割合で、アセトニトリル〔CH3CN〕に10重量%濃度となるように溶解し、ハライド系有機無機混成ペロブスカイト化合物D〔C25NH3SnI4〕のアセトニトリル〔CH3CN〕溶液を調製した。
(1-4) Synthesis of Halide Organic Inorganic Perovskite Compound D [C 2 H 5 NH 3 SnI 4 ] In a three-necked flask, 1 g of ethylamine [C 2 H 5 NH 2 ] solution and 100 ml of methanol [CH 3 OH] are placed. Then, hydroiodic acid [HI] was added with nitrogen bubbling to adjust the pH to about 3 to 4, and the mixture was stirred for 1 hour with a magnetic stirrer. This solution was distilled with an evaporator, dried at 40 ° C., and repurified to synthesize ethyl iodide [C 2 H 5 NH 3 I]. Next, the synthesized ethylamine [C 2 H 5 NH 3 I] and tin iodide (SnI 2 ) are dissolved at a molar ratio of 1: 1 in acetonitrile [CH 3 CN] to a concentration of 10% by weight. Then, an acetonitrile [CH 3 CN] solution of the halide-based organic / inorganic hybrid perovskite compound D [C 2 H 5 NH 3 SnI 4 ] was prepared.

(1−5)ハライド系無機ペロブスカイト化合物E〔CsSnI3〕の合成
ヨウ化セシウム〔CsI〕とヨウ化錫〔SnI2〕をモル比1:1の割合で、アセトニトリル〔CH3CN〕に10重量%濃度となるように溶解し、ハライド系無機ペロブスカイト化合物〔CsSnI3〕のアセトニトリル〔CH3CN〕溶液を調製した。
(1-5) Synthesis of Halide Inorganic Perovskite Compound E [CsSnI 3 ] 10 wt.% Of Cesium Iodide [CsI] and Tin Iodide [SnI 2 ] in Acetonitrile [CH 3 CN] at a 1: 1 Ratio % concentration dissolved so to prepare acetonitrile [CH 3 CN] solution of halide inorganic perovskite compound [CsSnI 3].

<実施例1>
(1)光電変換層の作製
ITO透明導電ガラス基板の導電面側に、ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液を0.2μmフィルター付きのシリンジで所定量滴下し、3000rpmの回転数でスピンコート後、60度の熱風循環式オーブン中で10分間加熱乾燥して、光電変換層を作製した。
<Example 1>
(1) Production of Photoelectric Conversion Layer A dimethylformaldehyde [(CH 3 ) 2 NCHO] solution of halide-based organic / inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ] was added to the conductive surface side of the ITO transparent conductive glass substrate. A predetermined amount was dropped with a syringe with a 2 μm filter, spin-coated at a rotational speed of 3000 rpm, and then heat-dried in a hot air circulation oven at 60 degrees for 10 minutes to produce a photoelectric conversion layer.

(2)固体光電変換素子の作製
光電変換層のハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕の被膜層形成面に対し、スパッタ法により白金層を成膜することで固体型光電変換素子を作製した。
(2) Production of solid photoelectric conversion element A solid layer is formed by forming a platinum layer by sputtering on the coating layer forming surface of the halide organic-inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ] of the photoelectric conversion layer. A photoelectric conversion element was produced.

(3)固体光電変換素子の評価
光源として、150Wキセノンランプ光源装置にAM1.5Gフィルターを装着した擬似太陽光源(PEC−L11型、ペクセル・テクノロジーズ(株)製)を用いた。光量は、1sun(約10万lux AM1.5G、100mWcm−2(JIS C 8912のクラスA))に調整した。作製した固体接合型光電変換素子をソースメータ(2400型ソースメータ、Keithley社製)に接続した。電流電圧特性は、1sunの光照射下、バイアス電圧を、0Vから1.8Vまで、0.01V単位で変化させながら出力電流を測定した。同様にバイアス電圧を、逆方向に1.8Vから0Vまでステップさせる測定も行い、順方向と逆方向の測定の平均値を光電流データとして、変換効率を求めた。得られた変換効率は、従来知られている強誘電性を有する酸化物を用いた太陽電池と同等の変換効率であり、本願発明の光電変換素子は良好な光電変換能を有することがわかる。
(3) Evaluation of solid state photoelectric conversion element As a light source, a pseudo solar light source (PEC-L11 type, manufactured by Pexel Technologies Co., Ltd.) in which an AM1.5G filter was attached to a 150 W xenon lamp light source device was used. The amount of light was adjusted to 1 sun (about 100,000 lux AM1.5G, 100 mWcm-2 (JIS C 8912 class A)). The produced solid junction type photoelectric conversion element was connected to a source meter (2400 type source meter, manufactured by Keithley). For the current-voltage characteristics, the output current was measured while changing the bias voltage from 0 V to 1.8 V in units of 0.01 V under 1 sun light irradiation. Similarly, measurement was performed by stepping the bias voltage from 1.8 V to 0 V in the reverse direction, and the conversion efficiency was obtained using the average value of the measurement in the forward direction and the reverse direction as photocurrent data. The obtained conversion efficiency is equivalent to that of a solar cell using a conventionally known oxide having ferroelectricity, and it can be seen that the photoelectric conversion element of the present invention has a good photoelectric conversion ability.

<実施例2>
ペロブスカイト化合物として、ハライド系有機無機混成ペロブスカイト化合物B〔C25NH3PbI4〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液を用いた他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 2>
As the perovskite compound, a dimethylformaldehyde [(CH 3 ) 2 NCHO] solution of a halide-based organic / inorganic hybrid perovskite compound B [C 2 H 5 NH 3 PbI 4 ] was used. The photoelectric conversion element and the photoelectric conversion element were evaluated.

<実施例3>
ペロブスカイト化合物として、ハライド系有機無機混成ペロブスカイト化合物C〔CH3NH3SnI3〕のアセトニトリル〔CH3CN〕溶液を用いた他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 3>
As a perovskite compound, a photoelectric conversion layer, a solid photoelectric conversion element, and a photoelectric conversion were carried out in the same manner as in Example 1 except that an acetonitrile [CH 3 CN] solution of a halide organic-inorganic hybrid perovskite compound C [CH 3 NH 3 SnI 3 ] was used. The device was evaluated.

<実施例4>
ペロブスカイト化合物として、ハライド系有機無機混成ペロブスカイト化合物D〔C25NH3SnI4〕のアセトニトリル〔CH3CN〕溶液を用いた他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 4>
As the perovskite compound, an acetonitrile [CH 3 CN] solution of a halide-based organic / inorganic hybrid perovskite compound D [C 2 H 5 NH 3 SnI 4 ] was used, and in the same manner as in Example 1, a photoelectric conversion layer, a solid photoelectric conversion device, The photoelectric conversion element was evaluated.

<実施例5>
ペロブスカイト化合物として、ハライド系無機ペロブスカイト化合物E〔CsSnI3〕のアセトニトリル〔CH3CN〕溶液を用いた他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 5>
As the perovskite compound, an acetonitrile [CH 3 CN] solution of the halide inorganic perovskite compound E [CsSnI 3 ] was used, and the photoelectric conversion layer, the solid photoelectric conversion element, and the photoelectric conversion element were evaluated in the same manner as in Example 1. .

<実施例6>
ペロブスカイト化合物として、ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbBr3〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液とハライド系無機ペロブスカイト化合物E〔CsSnI3〕のアセトニトリル〔CH3CN〕溶液を1:1の割合で混合した溶液を用いた他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。固体型光電変換素子の変換効率は2.0%であった。ハライド系有機無機混成ペロブスカイト化合物Aとハライド系無機ペロブスカイト化合物Eを混合して光電変換層を作製しても良好な光電変換効率が得られることがわかる。
<Example 6>
As the perovskite compound, a dimethylformaldehyde [(CH3) 2NCHO] solution of a halide organic-inorganic hybrid perovskite compound A [CH 3 NH 3 PbBr 3 ] and an acetonitrile [CH 3 CN] solution of a halide inorganic perovskite compound E [CsSnI 3 ] 1: The photoelectric conversion layer, the solid photoelectric conversion element, and the photoelectric conversion element were evaluated in the same manner as in Example 1 except that the solution mixed at a ratio of 1 was used. The conversion efficiency of the solid photoelectric conversion element was 2.0%. It can be seen that good photoelectric conversion efficiency can be obtained even if the photoelectric conversion layer is prepared by mixing the halide organic / inorganic hybrid perovskite compound A and the halide inorganic perovskite compound E.

<実施例7>
ペロブスカイト化合物として、ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕の被膜形成を共蒸着法により行った他、実施例1と同様に光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 7>
As a perovskite compound, a coating film of a halide organic-inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ] was formed by a co-evaporation method, and in the same manner as in Example 1, a photoelectric conversion layer, a solid photoelectric conversion element, a photoelectric conversion element Was evaluated.

<実施例8>
ITO透明導電ポリエチレンナフタレート(PEN)基板の導電面側に、ハライド系有機無機混成ペロブスカイト化合物A〔CH3NH3PbI3〕のジメチルホルムアルデヒド〔(CH3)2NCHO〕溶液を0.2μmフィルター付きのシリンジで所定量滴下し、3000rpmの回転数でスピンコート後、60度の熱風循環式オーブン中で10分間加熱乾燥して、光電変換層の作製を行った他、実施例1と同様にバッファ層、光電変換層、固体光電変換素子、光電変換素子の評価を行った。
<Example 8>
On the conductive surface side of the ITO transparent conductive polyethylene naphthalate (PEN) substrate, a 0.2 μm filter of a dimethylformaldehyde [(CH 3 ) 2 NCHO] solution of a halide organic-inorganic hybrid perovskite compound A [CH 3 NH 3 PbI 3 ] is attached A predetermined amount was dropped with a syringe, spin-coated at 3000 rpm, heat-dried in a hot air circulation oven at 60 degrees for 10 minutes to produce a photoelectric conversion layer, and a buffer as in Example 1. The layer, the photoelectric conversion layer, the solid photoelectric conversion element, and the photoelectric conversion element were evaluated.

本願発明の固体接合型光電変換素子は、耐久性、耐光性、耐湿性に優れる太陽電池を提供できる。   The solid junction photoelectric conversion element of the present invention can provide a solar cell excellent in durability, light resistance and moisture resistance.

1 上部電極基板
2 光電変換層
3 下部電極基板
4 バッファ層
5 バイアス印加手段
1 Upper electrode substrate 2 Photoelectric conversion layer 3 Lower electrode substrate 4 Buffer layer 5 Bias application means

Claims (7)

一対の電極基板間に光電変換層を有する固体型光電変換素子であって、前記光電変換層が、下記一般式(1)乃至(4)に示すハライド系有機無機混成ペロブスカイト化合物若しくは下記一般式(5)に示すハライド系無機ペロブスカイト化合物から選択された化合物を、単独または2以上混合して構成されたものであることを特徴とする固体型光電変換素子。
CH3NH313 (1)
(式中、Mは、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
(RNH3214 (2)
(式中、Rは炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、Mは、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
CH3NH3SnX3 (3)
(式中、Xは、F,Cl,Br,Iである。)
(R2NH32SnX4 (4)
(式中、R2は炭素数2以上のアルキル基、アルケニル基、アラルキル基、アリール基、複素環基または芳香族複素環基であり、Xは、F,Cl,Br,Iである。)
CsM23 (5)
(式中、M2は、2価の金属イオンであり、Xは、F,Cl,Br,Iである。)
A solid-state photoelectric conversion element having a photoelectric conversion layer between a pair of electrode substrates, wherein the photoelectric conversion layer is a halide organic-inorganic hybrid perovskite compound represented by the following general formulas (1) to (4) or the following general formula ( 5. A solid-state photoelectric conversion element comprising a compound selected from the halide-based inorganic perovskite compounds shown in 5) alone or in a mixture of two or more.
CH 3 NH 3 M 1 X 3 (1)
(In the formula, M 1 is a divalent metal ion, and X is F, Cl, Br, or I.)
(R 1 NH 3 ) 2 M 1 X 4 (2)
(Wherein R 1 is an alkyl group, alkenyl group, aralkyl group, aryl group, heterocyclic group or aromatic heterocyclic group having 2 or more carbon atoms, M 1 is a divalent metal ion, and X is F, Cl, Br, I.)
CH 3 NH 3 SnX 3 (3)
(In the formula, X is F, Cl, Br, or I.)
(R 2 NH 3 ) 2 SnX 4 (4)
(Wherein R 2 is an alkyl group, alkenyl group, aralkyl group, aryl group, heterocyclic group or aromatic heterocyclic group having 2 or more carbon atoms, and X is F, Cl, Br, or I.)
CsM 2 X 3 (5)
(In the formula, M 2 is a divalent metal ion, and X is F, Cl, Br, or I.)
前記光電変換層は、前記一対のいずれか一方の電極基板上に塗膜形成されたものであって、前記塗膜は一般式(1)から(4)のハライド系有機無機混成ペロブスカイト化合物または一般式(5)に示すハライド系無機ペロブスカイト化合物を構成し得る前駆体を含む溶液を用いて形成されたものであることを特徴とする請求項1に記載した固体光電変換素子。 The photoelectric conversion layer is a film formed on any one of the pair of electrode substrates, and the coating film is a halide-based organic-inorganic hybrid perovskite compound represented by general formulas (1) to (4) or a general 2. The solid photoelectric conversion element according to claim 1, wherein the solid photoelectric conversion element is formed using a solution containing a precursor capable of constituting a halide-based inorganic perovskite compound represented by formula (5). 前記光電変換層は、前記一対のいずれか一方の電極基板上に被膜形成されたものであって、前記被膜は一般式(1)から(4)のハライド系有機無機混成ペロブスカイト化合物または一般式(5)に示すハライド系無機ペロブスカイト化合物を電極基板上に蒸着して形成されたものであることを特徴とする請求項1に記載した固体光電変換素子。 The photoelectric conversion layer is a film formed on any one of the pair of electrode substrates, and the film is a halide-based organic-inorganic hybrid perovskite compound represented by general formulas (1) to (4) or a general formula ( The solid-state photoelectric conversion device according to claim 1, wherein the halide-based inorganic perovskite compound shown in 5) is formed by vapor deposition on an electrode substrate. 前記電極基板と前記光電変換層の間にバッファ層を形成したことを特徴とする請求項1乃至請求項3のいずれかに記載した固体型光電変換素子。 The solid-state photoelectric conversion element according to any one of claims 1 to 3, wherein a buffer layer is formed between the electrode substrate and the photoelectric conversion layer. 前記一対の電極基板のいずれか一方の基板が、透明基板であることを特徴とする請求項1乃至請求項4のいずれかに記載した固体光電変換素子。 5. The solid-state photoelectric conversion element according to claim 1, wherein one of the pair of electrode substrates is a transparent substrate. 前記一対の電極基板が導電層を有する透明基板であって、前記導電層が導電性有機材料からなることを特徴とする請求項1乃至請求項5のいずれかに記載した固体光電変換素子。 6. The solid-state photoelectric conversion element according to claim 1, wherein the pair of electrode substrates is a transparent substrate having a conductive layer, and the conductive layer is made of a conductive organic material. 前記一対の電極基板のいずれか一方の基板が、金属基板であることを特徴とする請求項1乃至請求項4のいずれかに記載した固体光電変換素子。 5. The solid-state photoelectric conversion element according to claim 1, wherein one of the pair of electrode substrates is a metal substrate.
JP2014232257A 2014-11-15 2014-11-15 Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same Pending JP2016096277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232257A JP2016096277A (en) 2014-11-15 2014-11-15 Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232257A JP2016096277A (en) 2014-11-15 2014-11-15 Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016096277A true JP2016096277A (en) 2016-05-26

Family

ID=56070867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232257A Pending JP2016096277A (en) 2014-11-15 2014-11-15 Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016096277A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002422T5 (en) 2016-05-12 2019-01-24 Autonetworks Technologies, Ltd. Power distribution board
KR101967157B1 (en) * 2017-11-06 2019-04-09 한국원자력연구원 Radiation sensor having schottky contact structure between metal-semiconductor
KR101967666B1 (en) * 2018-01-18 2019-04-10 성균관대학교 산학협력단 Preparing method of large-area perovskite thin film
JP2019087727A (en) * 2017-07-20 2019-06-06 パナソニックIpマネジメント株式会社 Photosensor having photoelectric conversion layer including perovskite type compound and photodetector device using the same
US10388465B2 (en) 2017-03-07 2019-08-20 Kabushiki Kaisha Toshiba Semiconductor elements and method for manufacturing the same
JP2019212763A (en) * 2018-06-05 2019-12-12 住友化学株式会社 Photoelectric conversion element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326338A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Photoelectric conversion element and its manufacture
US20130233377A1 (en) * 2012-02-21 2013-09-12 Northwestern University Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device
JP2014056962A (en) * 2012-09-13 2014-03-27 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014097299A1 (en) * 2012-12-20 2014-06-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite schottky type solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326338A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Photoelectric conversion element and its manufacture
US20130233377A1 (en) * 2012-02-21 2013-09-12 Northwestern University Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
JP2014056962A (en) * 2012-09-13 2014-03-27 Peccell Technologies Inc Photoelectric conversion element using perovskite compound and method of manufacturing the same
WO2014045021A1 (en) * 2012-09-18 2014-03-27 Isis Innovation Limited Optoelectronic device
WO2014097299A1 (en) * 2012-12-20 2014-06-26 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Perovskite schottky type solar cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOUHEI YAMAMOTO, ET AL.: "Low Temperature TiOx Compact Layer by Chemical Bath Deposition Method for Vapor Deposited Perovskite", [ONLINE], JPN6018015300, 16 October 2014 (2014-10-16), ISSN: 0003786449 *
MARTIN A. GREEN, ET AL.: "The emergence of perovskite solar cells", NATURE PHOTONICS, vol. 8, JPN7018001328, July 2014 (2014-07-01), pages 506 - 514, XP055659180, ISSN: 0003786448, DOI: 10.1038/nphoton.2014.134 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017002422T5 (en) 2016-05-12 2019-01-24 Autonetworks Technologies, Ltd. Power distribution board
US10388465B2 (en) 2017-03-07 2019-08-20 Kabushiki Kaisha Toshiba Semiconductor elements and method for manufacturing the same
JP2019087727A (en) * 2017-07-20 2019-06-06 パナソニックIpマネジメント株式会社 Photosensor having photoelectric conversion layer including perovskite type compound and photodetector device using the same
KR101967157B1 (en) * 2017-11-06 2019-04-09 한국원자력연구원 Radiation sensor having schottky contact structure between metal-semiconductor
KR101967666B1 (en) * 2018-01-18 2019-04-10 성균관대학교 산학협력단 Preparing method of large-area perovskite thin film
US10840028B2 (en) 2018-01-18 2020-11-17 Research & Business Foundation Sungkyunkwan University Preparing method of large-area perovskite thin film
JP2019212763A (en) * 2018-06-05 2019-12-12 住友化学株式会社 Photoelectric conversion element

Similar Documents

Publication Publication Date Title
Nagaoka et al. Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes
Edri et al. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite
Guo et al. Effect of energy alignment, electron mobility, and film morphology of perylene diimide based polymers as electron transport layer on the performance of perovskite solar cells
Wu et al. DMF as an additive in a two-step spin-coating method for 20% conversion efficiency in perovskite solar cells
Bu et al. Low-temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules
JP2016096277A (en) Photoelectric conversion element arranged by use of perovskite compound, and method for manufacturing the same
Chiang et al. Porphyrin dimers as hole-transporting layers for high-efficiency and stable perovskite solar cells
JP6074962B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
JP6031656B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
EP3319136A1 (en) Photoelectric conversion element, and solar cell using same
JP6181261B1 (en) Photoelectric conversion element
JP6069989B2 (en) Method for producing photoelectric conversion element using perovskite compound
US9099657B2 (en) Photoelectric conversion element and solar cell
JP6418469B2 (en) Solar cell
US20170372847A1 (en) Photoelectric conversion element, solar cell, and method for manufacturing photoelectric conversion element
JP2016025170A (en) Photoelectric conversion element consisting of organic-inorganic hybrid structure
JP2016149472A (en) Photoelectric conversion element using perovskite compound
Zhang et al. FAPbI3 perovskite films prepared by solvent self-volatilization for photovoltaic applications
US20110005596A1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
JPWO2012153845A1 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
US20190304707A1 (en) Photoelectric conversion element, solar cell and composition
JP2016207967A (en) Photoelectric transducer employing perovskite compound, and manufacturing method thereof
KR102100910B1 (en) polymer, organic solar cell comprising the polymer and perovskite solar cell comprising the polymer
Jegorovė et al. Branched Fluorenylidene Derivatives with Low Ionization Potentials as Hole-Transporting Materials for Perovskite Solar Cells
Li et al. Molecular Engineering of Polymeric Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002