JP2016096060A - Lighting device - Google Patents
Lighting device Download PDFInfo
- Publication number
- JP2016096060A JP2016096060A JP2014232004A JP2014232004A JP2016096060A JP 2016096060 A JP2016096060 A JP 2016096060A JP 2014232004 A JP2014232004 A JP 2014232004A JP 2014232004 A JP2014232004 A JP 2014232004A JP 2016096060 A JP2016096060 A JP 2016096060A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light distribution
- vertical angle
- distribution curve
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
本発明の実施形態は、光を投光する照明装置に関する。 Embodiments described herein relate generally to a lighting device that projects light.
従来、例えば競技場で使用される投光器等の照明装置は、照射面が遠方にあるため、狭角の配光特性を有している。 2. Description of the Related Art Conventionally, lighting devices such as projectors used in stadiums, for example, have a narrow-angle light distribution characteristic because the irradiation surface is far away.
配光特性を示す指標としてビームの開き具合を示す1/10ビーム角(光度が最も高い光軸である鉛直角0°からの角度であって光度が光軸の光度の1/10となる角度)がある。従来の照明装置では、鉛直角0°付近の光度の比率が高く、鉛直角0°から1/10ビーム角の範囲内に変曲点を有する配光曲線となっている。 1/10 beam angle indicating the degree of beam opening as an index indicating the light distribution characteristic (an angle from the vertical angle 0 °, which is the optical axis with the highest luminous intensity, and the luminous intensity is 1/10 of the luminous intensity of the optical axis) ) In the conventional illuminating device, the ratio of the luminous intensity near the vertical angle of 0 ° is high, and the light distribution curve has an inflection point in the range of the vertical angle of 0 ° to 1/10 beam angle.
従来の照明装置は、鉛直角0°付近の光度の比率が高く、鉛直角0°から1/10ビーム角の範囲内に変曲点を有する配光曲線となっているため、照射面では鉛直角0°付近の光度の比率が高く、照射面の照度にむらが生じやすい問題がある。 The conventional lighting device has a high luminous intensity ratio near the vertical angle of 0 ° and a light distribution curve having an inflection point in the range of the vertical angle of 0 ° to 1/10 beam angle. There is a problem that the ratio of the luminous intensity in the vicinity of an angle of 0 ° is high, and the illuminance on the irradiated surface is likely to be uneven.
本発明が解決しようとする課題は、光を投光する照射面の照度均斉度を向上させることができる照明装置を提供することである。 The problem to be solved by the present invention is to provide an illuminating device capable of improving the illuminance uniformity of the irradiated surface on which light is projected.
実施形態の照明装置は、光源、および光学系を備える。光学系は、光源の光を投光するとともに、投光する光の配光を、光軸である鉛直角0°から1/10ビーム角までの配光曲線が直線状となる配光に制御する。 The illumination device of the embodiment includes a light source and an optical system. The optical system projects light from the light source and controls the light distribution of the emitted light so that the light distribution curve from the vertical angle 0 ° to the 1/10 beam angle, which is the optical axis, is linear. To do.
本発明によれば、照明装置から光を投光する照射面の照度均斉度を向上させることが期待できる。 According to the present invention, it can be expected to improve the illuminance uniformity of the irradiation surface that projects light from the lighting device.
以下、一実施形態を、図1ないし図8を参照して説明する。 Hereinafter, an embodiment will be described with reference to FIGS. 1 to 8.
図2に照明装置10を示す。照明装置10は、例えば競技場で用いられる投光器である。照明装置10は、本体11と、電源ユニット12と、これら本体11および電源ユニット12を設置するための設置台13とを備えている。 FIG. 2 shows the lighting device 10. The illumination device 10 is a projector used in a stadium, for example. The lighting device 10 includes a main body 11, a power supply unit 12, and an installation base 13 for installing the main body 11 and the power supply unit 12.
本体11は、前面が開口するケース16およびケース16の前面を閉塞する透光カバー17を有している。本体11の内部には、複数の光源18が配置されているとともに、光源18毎に光源18からの光を集光して配光を制御する反射体19がそれぞれ配設されている。そして、反射体19によって、光源18の光を投光するとともに、投光する光の配光を制御する光学系20が構成されている。なお、光学系20は、反射体19の他に、レンズ等や他の光学部品を用いてもよい。 The main body 11 has a case 16 whose front surface is open and a translucent cover 17 that closes the front surface of the case 16. A plurality of light sources 18 are disposed inside the main body 11, and reflectors 19 that condense light from the light sources 18 and control light distribution are disposed for each light source 18. The reflector 19 constitutes an optical system 20 that projects the light from the light source 18 and controls the light distribution of the projected light. In addition to the reflector 19, the optical system 20 may use a lens or other optical components.
光源18は、LED等の発光素子21を用いている。光源18は、白色系の光を発生する光源18を主体とするが、色再現性の向上のために、赤色系の光や青緑色の光を発生する光源18を組み合わせてもよい。 The light source 18 uses a light emitting element 21 such as an LED. The light source 18 is mainly a light source 18 that generates white light, but may be combined with a light source 18 that generates red light or blue-green light in order to improve color reproducibility.
また、電源ユニット12は、各光源18に電力を供給し、各光源18を点灯させる。 Further, the power supply unit 12 supplies power to each light source 18 and turns on each light source 18.
そして、照明装置10は、競技場に立設される支柱の上部や競技場の屋根等に複数設置され、競技場内に光を照射する。 Then, a plurality of lighting devices 10 are installed on the upper part of the pillars erected on the stadium, on the roof of the stadium, etc., and irradiate the stadium with light.
次に、図1には、照明装置10が投光する光の配光曲線のグラフを示す。 Next, FIG. 1 shows a graph of a light distribution curve of light projected by the illumination device 10.
グラフの横軸には、光学系20によって投光する光の中心の光軸z(図2参照)を鉛直角0°とした場合の鉛直角を示す。グラフの縦軸には、光学系20によって投光する光の最も高い光度を1とした場合の光度の相対比を示す。配光特性を示す指標としてビームの開き具合を示す1/10ビーム角(光度が最も高い光軸zである鉛直角0°からの角度であって光度が光軸zでの光度の1/10となる角度)があるが、この1/10ビーム角は光度の相対比0.1となる。 The horizontal axis of the graph indicates the vertical angle when the optical axis z (see FIG. 2) of the center of the light projected by the optical system 20 is set to 0 °. The vertical axis of the graph shows the relative ratio of luminous intensity when the highest luminous intensity of light projected by the optical system 20 is 1. 1/10 beam angle indicating the degree of opening of the beam as an index indicating the light distribution characteristic (the angle from the vertical angle 0 ° which is the optical axis z having the highest luminous intensity, and the luminous intensity is 1/10 of the luminous intensity at the optical axis z) This 1/10 beam angle has a relative ratio of luminous intensity of 0.1.
配光曲線AおよびBは、1/10ビーム角が鉛直角15°、変曲点A1およびB1が1/10ビーム角の鉛直角(鉛直角15°)にある。配光曲線Aは、鉛直角0°から1/10ビーム角までが直線に近似した配光曲線となっている。配光曲線Bは、鉛直角0°から1/10ビーム角までの光度の相対比が配光曲線Aよりも高い配光曲線となっている。 In the light distribution curves A and B, the 1/10 beam angle is at a vertical angle of 15 °, and the inflection points A1 and B1 are at the vertical angle of the 1/10 beam angle (vertical angle of 15 °). The light distribution curve A is a light distribution curve that approximates a straight line from a vertical angle of 0 ° to a 1/10 beam angle. The light distribution curve B is a light distribution curve in which the relative ratio of the luminous intensity from the vertical angle of 0 ° to the 1/10 beam angle is higher than that of the light distribution curve A.
さらに、配光曲線Cは、1/10ビーム角が鉛直角15°、変曲点C1が1/10ビーム角の鉛直角にある。そして、配光曲線Cは、鉛直角0°から1/10ビーム角まで直線状となっている。 Further, the light distribution curve C has a 1/10 beam angle at a vertical angle of 15 ° and an inflection point C1 at a vertical angle of 1/10 beam angle. The light distribution curve C is linear from a vertical angle of 0 ° to a 1/10 beam angle.
なお、変曲点A1、B1、C1は、1/10ビーム角以上の鉛直角にあってもよい。 Note that the inflection points A1, B1, and C1 may be at a vertical angle equal to or greater than 1/10 beam angle.
また、配光曲線Dは、比較例として従来の投光器が有する配光曲線を示す。配光曲線Dは、鉛直角0〜5°の範囲での光度の比率が高く、鉛直角0°から1/10ビーム角の範囲内に変曲点D1を有している。1/10ビーム角は鉛直角11°程度となっている。 Moreover, the light distribution curve D shows the light distribution curve which the conventional light projector has as a comparative example. The light distribution curve D has a high luminous intensity ratio in the vertical angle range of 0 to 5 °, and has an inflection point D1 in the range of the vertical angle from 0 ° to 1/10 beam angle. The 1/10 beam angle is about 11 ° in the vertical angle.
本実施形態の照明装置10は、配光曲線A、BまたはCのいずれかを有している。これら配光曲線A、BまたはCは光学系20の設定によって制御する。 The illuminating device 10 of this embodiment has one of the light distribution curves A, B, or C. These light distribution curves A, B or C are controlled by the setting of the optical system 20.
そして、配光曲線AおよびBは、例えばゴンペルツ曲線で数値的に表すことができる。ゴンペルツ曲線は、次の式で表される。 The light distribution curves A and B can be expressed numerically by, for example, Gompertz curves. The Gompertz curve is expressed by the following equation.
ゴンペルツ曲線のパラメータは、K:1(固定)、x:変曲点のx座標、b:変曲点のy座標、c:傾きである。 The Gompertz curve parameters are K: 1 (fixed), x: x coordinate of the inflection point, b: y coordinate of the inflection point, and c: inclination.
配光曲線Aは、K=1、x=15、b=0.1、c=−0.15とするゴンペルツ曲線で表される。 The light distribution curve A is represented by a Gompertz curve with K = 1, x = 15, b = 0.1, and c = −0.15.
配光曲線Bは、K=1、x=15、b=0.1、c=−0.5とするゴンペルツ曲線で表される。 The light distribution curve B is represented by a Gompertz curve with K = 1, x = 15, b = 0.1, and c = −0.5.
なお、配光曲線Cは、K=1、x=15、b=0.1、c=(−0.15よりも小さい値)とするゴンペルツ曲線で表される。 The light distribution curve C is represented by a Gompertz curve with K = 1, x = 15, b = 0.1, and c = (value smaller than −0.15).
図3には、配光曲線Aの場合において、照明装置10から光を照射する照射面の照度分布図を示す。図4には、比較例として、配光曲線Dの従来の投光器から光を照射する照射面の照度分布図を示す。図4に示すように、配光曲線Dの場合には、器具光束が同じ場合、配光曲線Dと比べて相対的に中心光度が特に高くなるため、照射点周辺の照度が著しく高くなる。そのため、照射面内の照度差から照度むらが生じ、照度均斉度(最小値/平均値)が低下してしまう。それに対して、図3に示すように、配光曲線Aの場合には、中心光度が相対的に低くなるため、照射面の照度むらが抑制され、照度均斉度を向上させることができる。 FIG. 3 shows an illuminance distribution diagram of an irradiation surface on which light is emitted from the illumination device 10 in the case of the light distribution curve A. In FIG. 4, the illumination intensity distribution figure of the irradiation surface which irradiates light from the conventional projector of the light distribution curve D is shown as a comparative example. As shown in FIG. 4, in the case of the light distribution curve D, when the instrument luminous flux is the same, the central luminous intensity is particularly higher than that of the light distribution curve D, so that the illuminance around the irradiation point is extremely high. For this reason, illuminance unevenness occurs from the illuminance difference in the irradiation surface, and the illuminance uniformity (minimum value / average value) decreases. On the other hand, as shown in FIG. 3, in the case of the light distribution curve A, since the central luminous intensity is relatively low, uneven illuminance on the irradiated surface is suppressed, and the illuminance uniformity can be improved.
さらに、配光曲線Bの場合にも、配光曲線Aと同様であり、照度均斉度を向上させることができる。 Further, the light distribution curve B is the same as the light distribution curve A, and the illuminance uniformity can be improved.
そのため、K=1、x=15、b=0.1で、かつcの範囲が−0.5≦c≦−0.15の範囲であれば、照度均斉度を向上させることができる。すなわち、図1に示すように、鉛直角0°から1/10ビーム角の範囲の配光曲線が、配光曲線Aと配光曲線Bとの間の範囲にあることで、中心光度が相対的に低くなり、照射面の照度むらの抑制されることで、照度均斉度を向上させることができる。 Therefore, if K = 1, x = 15, b = 0.1 and the range of c is in the range of −0.5 ≦ c ≦ −0.15, the illuminance uniformity can be improved. That is, as shown in FIG. 1, the light intensity distribution curve in the range of the vertical angle 0 ° to 1/10 beam angle is in the range between the light distribution curve A and the light distribution curve B, so that the central luminous intensity is relative. Thus, the illuminance uniformity can be improved by suppressing the uneven illuminance on the irradiated surface.
なお、配光曲線Cの場合にも、配光曲線Aと同様の傾向となり、照度均斉度を向上させることができる。そのため、鉛直角0°から1/10ビーム角の範囲の配光曲線は、配光曲線Aと配光曲線Bとの間の範囲にあることがより好ましいが、配光曲線Cと配光曲線Bとの間の範囲にあっても、配光曲線Dと比べて中心光度が相対的に低くなるため、照度均斉度を向上させることができる。 In the case of the light distribution curve C, the same tendency as that of the light distribution curve A is obtained, and the illuminance uniformity can be improved. Therefore, the light distribution curve in the range of the vertical angle from 0 ° to 1/10 beam angle is more preferably in the range between the light distribution curve A and the light distribution curve B. Even in the range between B and B, since the central luminous intensity is relatively lower than that of the light distribution curve D, the illuminance uniformity can be improved.
また、図5には、配光曲線Aを有する照明装置10を複数用いた競技場における照射面であるグランドエリアの照度分布図を示す。図6には、比較例として、配光曲線Dの従来の投光器を複数用いた競技場における照射面の照度分布図を示す。図5および図6から分かるように、本実施形態の照明装置10を複数台用いる状況においても、グランドエリアにおける照射面の照度均斉度を向上させることができる。 FIG. 5 shows an illuminance distribution diagram of the ground area, which is an irradiation surface in a stadium using a plurality of lighting devices 10 having a light distribution curve A. FIG. 6 shows an illuminance distribution diagram of an irradiation surface in a stadium using a plurality of conventional projectors having a light distribution curve D as a comparative example. As can be seen from FIGS. 5 and 6, even in a situation where a plurality of illumination devices 10 of the present embodiment are used, the illuminance uniformity of the irradiated surface in the ground area can be improved.
また、図7には、照明装置10において鉛直角と球帯光束との関係を示すグラフである。グラフの横軸には鉛直角を示し、縦軸には球帯光度を示す。球帯光度とは、鉛直角θにおける水平角方向の平均光度と鉛直角θにおける球帯係数を掛け合わせたものとする。なお球体係数は器具の全光束を求める際に使用するもので、JIS8105-5:2011に示されている。 FIG. 7 is a graph showing the relationship between the vertical angle and the spherical luminous flux in the illumination device 10. The horizontal axis of the graph indicates the vertical angle, and the vertical axis indicates the luminous intensity of the bulb. The spherical zone luminous intensity is obtained by multiplying the average luminous intensity in the horizontal angle direction at the vertical angle θ by the spherical zone coefficient at the vertical angle θ. Note that the sphere coefficient is used when obtaining the total luminous flux of the instrument, and is shown in JIS8105-5: 2011.
曲線AAは、K=1、x=15、b=0.1、c=−0.15とするゴンペルツ曲線で表される配光曲線Aの場合である。曲線BBは、K=1、x=15、b=0.1、c=−0.5とするゴンペルツ曲線で表される配光曲線Bの場合である。曲線DDは、比較例として、従来の投光器の配光曲線Dの場合である。なお、本実施形態の照明装置10および従来の投光器ともに、器具光束を同じ(110,000lm)にしている。 A curve AA is a case of a light distribution curve A represented by a Gompertz curve with K = 1, x = 15, b = 0.1, and c = −0.15. A curve BB is a case of a light distribution curve B represented by a Gompertz curve with K = 1, x = 15, b = 0.1, and c = −0.5. A curve DD is a case of a light distribution curve D of a conventional projector as a comparative example. It should be noted that the lighting device 10 of this embodiment and the conventional projector have the same luminous flux (110,000 lm).
図8には、鉛直角0〜15°の球帯光束に対する鉛直角5°ずつの球帯光束の比率を示す表である。すなわち、鉛直角0〜15°内の球帯光束が、鉛直角毎にどの程度含まれているかを示している。 FIG. 8 is a table showing the ratio of the spherical light flux at a vertical angle of 5 ° to the spherical light flux at a vertical angle of 0 to 15 °. That is, it indicates how much the spherical luminous flux within the vertical angle of 0 to 15 ° is included for each vertical angle.
従来の投光器すなわち配光曲線Dの場合、鉛直角0〜5°の範囲に球帯光束が集中し、鉛直角5〜10°および鉛直角10〜15°のそれぞれの範囲の球帯光束は少なくなっている。 In the case of the conventional projector, that is, the light distribution curve D, the spherical luminous flux concentrates in the range of the vertical angle of 0 to 5 °, and the spherical luminous flux in each of the vertical angle of 5 to 10 ° and the vertical angle of 10 to 15 ° is small. It has become.
それに対して、本実施形態は、鉛直角0〜5°の範囲に球帯光束よりも、鉛直角5〜10°および鉛直角10〜15°の範囲の球帯光束が大きくなっている。 On the other hand, in this embodiment, the spherical light flux in the range of the vertical angle of 5 to 10 ° and the vertical angle of 10 to 15 ° is larger than the spherical light flux in the range of the vertical angle of 0 to 5 °.
そして、本実施形態の照明装置10は、鉛直角0°〜15°の範囲内の球帯光束における鉛直角5°〜15°の割合が配光曲線Dより大きくなると、中心光度の低い配光形状となり、照射面の照度均斉度を向上させることができる。 When the ratio of the vertical angle of 5 ° to 15 ° in the spherical light flux within the range of the vertical angle of 0 ° to 15 ° becomes larger than the light distribution curve D, the illumination device 10 of the present embodiment has a light distribution with a low central luminous intensity. It becomes a shape and the illuminance uniformity on the irradiated surface can be improved.
以上のように、本実施形態の照明装置10によれば、照射面の照度均斉度を向上させることができる。 As described above, according to the illumination device 10 of the present embodiment, it is possible to improve the illuminance uniformity of the irradiated surface.
すなわち、照明装置10から投光する光の配光を、鉛直角0°から1/10ビーム角までの配光曲線が直線状となる配光に制御することで、中心光度が相対的に低くなり、さらに照射面の照度分布が急な勾配のないおよそ等間隔で照度が下がるような分布となるため、最も照射面の照度均斉度を向上させることができる。また。配光曲線が直線状よりも膨らむ形状でも、中心光度を相対的に低くすることができるため、照射面の照度均斉度を向上させることができる。 That is, by controlling the light distribution of the light emitted from the lighting device 10 to a light distribution in which the light distribution curve from a vertical angle of 0 ° to a 1/10 beam angle is linear, the central luminous intensity is relatively low. Furthermore, since the illuminance distribution on the irradiated surface is such that the illuminance decreases at approximately equal intervals without a steep gradient, the illuminance uniformity on the irradiated surface can be improved most. Also. Even in a shape in which the light distribution curve swells more than a linear shape, the central luminous intensity can be relatively lowered, so that the illuminance uniformity on the irradiated surface can be improved.
照明装置10から投光する光の配光を、鉛直角0°から1/10ビーム角未満までに配光曲線の変曲点がなく、1/10ビーム角以上の鉛直角に配光曲線の変曲点を有する配光に制御することにより、照射面の照度均斉度を向上させることができる。 There is no inflection point of the light distribution curve from the vertical angle 0 ° to less than 1/10 beam angle, and the light distribution curve of the light emitted from the illuminating device 10 has a vertical angle greater than 1/10 beam angle. By controlling the light distribution having an inflection point, the illuminance uniformity on the irradiated surface can be improved.
照明装置10から投光する光の配光を、鉛直角0°から1/10ビーム角までの配光曲線がK=1、b=0.1、x=15でかつ−0.5≦c≦−0.15の範囲を満たすゴンペルツ曲線で表される配光に制御することにより、照射面の照度均斉度を向上させることができる。 The light distribution of the light projected from the illuminating device 10 is such that the light distribution curve from a vertical angle of 0 ° to a 1/10 beam angle is K = 1, b = 0.1, x = 15 and −0.5 ≦ c. By controlling the light distribution represented by a Gompertz curve that satisfies the range of ≦ −0.15, the illuminance uniformity on the irradiated surface can be improved.
照明装置10から投光する光の配光を、鉛直角0〜15°の範囲の球帯光束における鉛直角5〜10°の範囲の球帯光束の比率が0.45%以上、鉛直角0〜15°の範囲の球帯光束における鉛直角10〜15°の範囲の球帯光束の比率が0.29%以上となる配光に制御することにより、照射面の照度均斉度を向上させることができる。 The distribution of the light projected from the illumination device 10 is such that the ratio of the spherical luminous flux in the vertical angle range of 5-10 ° to the vertical luminous flux in the range of vertical angle of 0-15 ° is 0.45% or more, and the vertical angle is 0. By controlling the light distribution so that the ratio of the spherical light flux in the vertical angle range of 10-15 ° to the spherical light flux in the range of ˜15 ° is 0.29% or more, the illuminance uniformity on the irradiated surface is improved. Can do.
さらに、本実施形態の照明装置10では、従来の投光器と全光束が同じ場合、従来の投光器よりも中心光度が低くなるため、水平面の照射面だけでなく、鉛直面の最大照度も低くなる。全体の水平面照度はほぼ同じであるため、照度均斉度の向上だけでなく、均斉度眩しさの評価指標であるGR値(グレア値)を低下させることができる。 Furthermore, in the illumination device 10 of the present embodiment, when the total luminous flux is the same as that of the conventional projector, the central luminosity is lower than that of the conventional projector, so that the maximum illuminance of the vertical plane as well as the horizontal irradiation surface is reduced. Since the overall horizontal plane illuminance is substantially the same, not only the illuminance uniformity can be improved, but also the GR value (glare value), which is an evaluation index of the uniformity glare, can be reduced.
また、本実施形態の照明装置10では、1/10ビーム角以上の光度を従来の投光器よりも抑えることができ、照射面を効率よく照らせることに加えて、照明装置10を斜め方向から見たときの発光面の輝度を低減できるため、照明装置10を直接見たときの眩しさを感じる範囲を狭めることができる。 Moreover, in the illuminating device 10 of this embodiment, the luminous intensity more than 1/10 beam angle can be suppressed from the conventional projector, and in addition to illuminating the irradiation surface efficiently, the illuminating device 10 is viewed from an oblique direction. Since the brightness of the light emitting surface at the time can be reduced, the range in which the user feels dazzling when viewing the illumination device 10 directly can be narrowed.
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10 照明装置
18 光源
20 光学系
10 Lighting equipment
18 Light source
20 Optical system
Claims (3)
前記光源の光を投光するとともに、投光する光の配光を、光軸である鉛直角0°から1/10ビーム角までの配光曲線が直線状となる配光に制御する光学系と;
を具備することを特徴とする照明装置。 With a light source;
An optical system for projecting the light from the light source and controlling the light distribution of the projected light so that the light distribution curve from the vertical angle 0 ° to the 1/10 beam angle as the optical axis is linear. When;
An illumination device comprising:
前記光源の光を投光するとともに、投光する光の配光を、光軸である鉛直角0°での光度が最も高い配光曲線とするとともに1/10ビーム角以上の鉛直角に配光曲線の変曲点を有する配光に制御する光学系と;
を具備することを特徴とする照明装置。 With a light source;
The light from the light source is projected, and the light distribution of the projected light is a light distribution curve having the highest luminous intensity at a vertical angle of 0 °, which is the optical axis, and is distributed at a vertical angle of 1/10 beam angle or more. An optical system for controlling the light distribution having an inflection point of the light curve;
An illumination device comprising:
前記光源の光を投光するとともに、投光する光の配光を、光軸を鉛直角0°とし、鉛直角0〜15°の範囲の球帯光束における鉛直角5〜10°の範囲の球帯光束の比率が0.45%以上、鉛直角0〜15°の範囲の球帯光束における鉛直角10〜15°の範囲の球帯光束の比率が0.29%以上となる配光に制御する光学系と;
を具備することを特徴とする照明装置。 With a light source;
The light of the light source is projected and the light distribution of the projected light is set to a vertical angle of 5 to 10 ° in a spherical luminous flux with a vertical angle of 0 to 15 ° and an optical axis of 0 °. A light distribution in which the ratio of the spherical luminous flux is 0.45% or more and the proportion of the spherical luminous flux in the vertical angle range of 10 to 15 ° is 0.29% or higher in the spherical luminous flux in the range of the vertical angle of 0 to 15 °. An optical system to control;
An illumination device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014232004A JP2016096060A (en) | 2014-11-14 | 2014-11-14 | Lighting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014232004A JP2016096060A (en) | 2014-11-14 | 2014-11-14 | Lighting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016096060A true JP2016096060A (en) | 2016-05-26 |
Family
ID=56071283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014232004A Pending JP2016096060A (en) | 2014-11-14 | 2014-11-14 | Lighting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016096060A (en) |
-
2014
- 2014-11-14 JP JP2014232004A patent/JP2016096060A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641547B2 (en) | Light distribution dispersion control type LED lighting device and lighting method using the device | |
TWI412706B (en) | Light source module using the same | |
EP2620695A3 (en) | Vehicular headlamp | |
JP2017228490A (en) | Vehicular lighting fixture | |
JP2012212047A (en) | Optical lens and illumination device | |
TWI506229B (en) | Light emitting apparatus and lens | |
JP2016058284A (en) | Luminaire | |
JP2010161033A (en) | Illumination device | |
US9291334B2 (en) | Wall wash lighting system | |
JP6518893B2 (en) | Light distribution and dispersion control type LED lighting device | |
CN104033797B (en) | The adjustable shot-light of lighting angle | |
TWM486726U (en) | Lighting apparatus | |
TWI507640B (en) | Light guide element for controling light beam angle and lamp | |
JP2016096060A (en) | Lighting device | |
JP6597963B2 (en) | Lighting device and lighting control system | |
JP2013201101A (en) | Luminaire | |
TWI661155B (en) | An led lamp and a lighting device including the same | |
US9347640B2 (en) | Illuminating device | |
JP2017079200A (en) | Luminaire | |
WO2014167453A1 (en) | Lighting apparatus characterized by an approximately laminar light beam | |
TWI531095B (en) | Light emitting diode device | |
CN105020676B (en) | A kind of optical lens | |
TWI680333B (en) | Light source device and light source system thereof | |
JP2008166184A (en) | Illumination device | |
CN105953175A (en) | Projection lamp lens, light-emitting module with projection lamp lens and projection lamp |