JP2016095537A - Liquid crystal alignment film material - Google Patents

Liquid crystal alignment film material Download PDF

Info

Publication number
JP2016095537A
JP2016095537A JP2016022341A JP2016022341A JP2016095537A JP 2016095537 A JP2016095537 A JP 2016095537A JP 2016022341 A JP2016022341 A JP 2016022341A JP 2016022341 A JP2016022341 A JP 2016022341A JP 2016095537 A JP2016095537 A JP 2016095537A
Authority
JP
Japan
Prior art keywords
alignment film
liquid crystal
polyimide
alignment
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022341A
Other languages
Japanese (ja)
Other versions
JP6158374B2 (en
Inventor
内野 正市
Masaichi Uchino
正市 内野
國松 登
Noboru Kunimatsu
登 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Inc
Original Assignee
Japan Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Display Inc filed Critical Japan Display Inc
Priority to JP2016022341A priority Critical patent/JP6158374B2/en
Publication of JP2016095537A publication Critical patent/JP2016095537A/en
Application granted granted Critical
Publication of JP6158374B2 publication Critical patent/JP6158374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an optical alignment film having large anchoring strength in a liquid crystal display device of an IPS system and to suppress an AC residual image of the liquid crystal display device.SOLUTION: In alignment film material on which optical alignment treatment is applied, a polyimide to be a rigid high polymer and a polyimide to be a soft high polymer are mixed to be used. The material easily generates rotation of an oligomer after emission of polarizing ultraviolet, and can improve dichroic ratio of UV absorption of an alignment film. Thus, anchoring strength by the alignment film to liquid crystal is strong, and an AC residual image can be suppressed.SELECTED DRAWING: Figure 4

Description

本発明は,液晶表示装置に係り,特に配向膜に光の照射で配向制御能を付与した液晶表示装置に関する。   The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device in which an alignment film is provided with an alignment control ability by light irradiation.

液晶表示装置では画素電極および薄膜トランジスタ(TFT)等がマトリクス状に形成されたTFT基板と、TFT基板に対向して、TFT基板の画素電極と対応する場所にカラーフィルタ等が形成された対向基板が設置され、TFT基板と対向基板の間に液晶が挟持されている。そして液晶分子による光の透過率を画素毎に制御することによって画像を形成している。   In a liquid crystal display device, there are a TFT substrate in which pixel electrodes and thin film transistors (TFTs) are formed in a matrix, and a counter substrate in which color filters are formed at locations corresponding to the pixel electrodes of the TFT substrate, facing the TFT substrate. The liquid crystal is sandwiched between the TFT substrate and the counter substrate. An image is formed by controlling the light transmittance of the liquid crystal molecules for each pixel.

液晶表示装置はフラットで軽量であることから、TV等の大型表示装置から、携帯電話やDSC(Digital Still Camera)等、色々な分野で用途が広がっている。一方、液晶表示装置では視野角特性が問題である。視野角特性は、画面を正面から見た場合と、斜め方向から見た場合に、輝度が変化したり、色度が変化したりする現象である。視野角特性は、液晶分子を水平方向の電界によって動作させるIPS(In Plane Switching)方式が優れた特性を有している。   Since the liquid crystal display device is flat and lightweight, the application is expanding in various fields such as a large display device such as a TV, a mobile phone, and a DSC (Digital Still Camera). On the other hand, viewing angle characteristics are a problem in liquid crystal display devices. The viewing angle characteristic is a phenomenon in which luminance changes or chromaticity changes when the screen is viewed from the front and when viewed from an oblique direction. The viewing angle characteristic is excellent in an IPS (In Plane Switching) system in which liquid crystal molecules are operated by a horizontal electric field.

液晶表示装置に使用する配向膜を配向処理すなわち配向制御能を付与する方法として,従来技術としてラビングで処理する方法がある。このラビングによる配向処理は,配向膜を布で擦ることで配向処理を行うものであるが,一方,配向膜に非接触で配向制御能を付与する光配向法という手法がある。IPS方式はプレティルト角が必要無いために、光配向法を適用することが出来る。「特許文献1」〜「特許文献7」は光配向膜に関する公知例であり、直線偏光された紫外線を照射することにより、分子の架橋反応や開裂反応、二量化反応を薄膜内で誘起し、薄膜における分子の並びに異方性を付与することが記載されている。   As a method for imparting an alignment treatment, that is, an alignment control ability, to an alignment film used in a liquid crystal display device, there is a conventional method of rubbing. The alignment treatment by rubbing is performed by rubbing the alignment film with a cloth. On the other hand, there is a technique called a photo-alignment method that imparts alignment control ability to the alignment film in a non-contact manner. Since the IPS method does not require a pretilt angle, a photo-alignment method can be applied. “Patent Document 1” to “Patent Document 7” are known examples of photo-alignment films, and by irradiating linearly polarized ultraviolet rays, a molecular crosslinking reaction, a cleavage reaction, and a dimerization reaction are induced in the thin film. It has been described to impart molecular anisotropy in thin films.

特開2004−86047号公報JP 2004-86047 A 特開2004−20658号公報JP 2004-20658 A 特開2004−163646号公報JP 2004-163646 A 特開2004−341030号公報JP 2004-341030 A 特開2004−346311号公報Japanese Patent Laid-Open No. 2004-346311 特開2005−215029号公報JP 2005-215029 A 特開2006−17880号公報JP 2006-17880 A

従来の光配向処理は、ラビング処理に比べてAC残像と称する焼付きが生じやすい。AC残像は、液晶表示装置を長時間動作させた場合、初期配向の方向が液晶表示装置の製造当初からの方向と、ずれてきてしまい、この原因によって生ずる残像である。AC残像は非可逆的であり、回復はできない。   Conventional photo-alignment processing tends to cause image sticking called an afterimage, compared to rubbing processing. The AC afterimage is an afterimage caused by the cause when the liquid crystal display device is operated for a long time, and the direction of the initial alignment is deviated from the original direction of the liquid crystal display device. AC afterimage is irreversible and cannot be recovered.

このようなAC残像は、(1)配向膜の配向秩序性の向上、(2)配向膜の弾性率、硬度等をパラメータとする機械的強度の向上、(3)配向膜と液晶との親和力の向上によって改善することが出来る。中でも配向膜の配向秩序性の向上がAC残像の低減には特に有効である。   Such an AC afterimage includes (1) improvement in alignment order of the alignment film, (2) improvement in mechanical strength using parameters such as elastic modulus and hardness of the alignment film, and (3) affinity between the alignment film and liquid crystal. It can be improved by improving. Among them, the improvement of the alignment order of the alignment film is particularly effective for reducing the AC afterimage.

しかし、光配向法においては、配向秩序性を向上する有効な方法は見出されていなかった。本発明の課題は、光配向処理において、配向膜の配向秩序性を向上し、AC残像の発生を抑制することである。   However, in the photo-alignment method, an effective method for improving the alignment order has not been found. An object of the present invention is to improve the alignment order of the alignment film and suppress the occurrence of AC afterimage in the photo-alignment treatment.

本発明は上記問題を克服するものであり、具体的な手段は次のとおりである。すなわち、画素電極とTFTを有する画素の上に配向膜が形成されたTFT基板と、前記TFT基板に対向し、カラーフィルタの上に配向膜が形成された対向基板と、前記TFT基板の配向膜と前記対向基板の配向膜の間に液晶が挟持された液晶表示装置であって、前記配向膜は光配向処理を受けており、前記配向膜は、(化1)で示す1,2−ビス(4−アミノフェニル)エタンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物または脱水縮合物をエステル化した配向膜材料と、(化2)で示すパラフェニルジアミンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物または脱水縮合物をエステル化した配向膜材料とを用いていることを特徴とする液晶表示装置である。   The present invention overcomes the above problems, and specific means are as follows. That is, a TFT substrate in which an alignment film is formed on a pixel having a pixel electrode and a TFT, a counter substrate in which an alignment film is formed on a color filter so as to face the TFT substrate, and an alignment film on the TFT substrate And a liquid crystal display device in which a liquid crystal is sandwiched between the alignment films of the counter substrate, the alignment films have undergone a photo-alignment treatment, and the alignment films are 1,2-biss represented by (Chemical Formula 1). An alignment film material obtained by esterifying a dehydration condensate or a dehydration condensate of (4-aminophenyl) ethane and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3); A liquid crystal display device comprising: a phenyldiamine and a dehydrated condensate of 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) or an alignment film material obtained by esterifying the dehydrated condensate. is there.

前記柔構造の全体に対するwt%は0wt%よりも大きく80wt%以下であり、より好ましくは、60wt%以上、80wt%以下である。   The wt% with respect to the entire flexible structure is greater than 0 wt% and not more than 80 wt%, more preferably not less than 60 wt% and not more than 80 wt%.

本発明によれば、光配向膜において、オーダーパラメータ(OP)を大きくすることが出来、アンカリング強度を上げることが出来るので、AC残像を抑制した光配向膜を有する液晶表示装置を実現することが出来る。   According to the present invention, since the order parameter (OP) can be increased and the anchoring strength can be increased in the photo-alignment film, a liquid crystal display device having a photo-alignment film with suppressed AC afterimage is realized. I can do it.

IPS方式の液晶表示装置の断面図である。1 is a cross-sectional view of an IPS liquid crystal display device. 図1の画素電極の平面図である。It is a top view of the pixel electrode of FIG. 配向膜の液性プロセスを示す工程図である。It is process drawing which shows the liquid process of an alignment film. 従来例と本発明による光配向処理において、各工程毎の膜構造を示す模式図である。In the photoalignment process by a prior art example and this invention, it is a schematic diagram which shows the film | membrane structure for every process. 柔構造のwt%と配向膜のオーダーパラメータ(OP)の関係を示すグラフである。It is a graph which shows the relationship between wt% of a flexible structure, and the order parameter (OP) of alignment film.

本発明の実施例を説明する前に、本発明が適用されるIPS方式の液晶表示装置の構造について説明する。図1はIPS方式の液晶表示装置の表示領域における構造を示す断面図である。IPS方式の液晶表示装置の電極構造は種々のものが提案され、実用化されている。図1の構造は、現在広く使用されている構造であって、簡単に言えば、平面ベタで形成された対向電極108の上に絶縁膜を挟んで櫛歯状の画素電極110が形成されている。そして、画素電極110と対向電極108の間の電圧によって液晶分子301を回転させることによって画素毎に液晶層300の光の透過率を制御することにより画像を形成するものである。以下に図1の構造を詳しく説明する。なお、本発明は、図1の構成を例にとって説明するが、図1以外のIPSタイプの液晶表示装置にも適用することが出来る。   Before describing embodiments of the present invention, the structure of an IPS liquid crystal display device to which the present invention is applied will be described. FIG. 1 is a cross-sectional view showing a structure in a display region of an IPS liquid crystal display device. Various electrode structures of IPS liquid crystal display devices have been proposed and put into practical use. The structure shown in FIG. 1 is a structure that is widely used at present. To put it simply, a comb-like pixel electrode 110 is formed on a counter electrode 108 formed of a flat solid with an insulating film interposed therebetween. Yes. Then, an image is formed by controlling the light transmittance of the liquid crystal layer 300 for each pixel by rotating the liquid crystal molecules 301 by the voltage between the pixel electrode 110 and the counter electrode 108. The structure of FIG. 1 will be described in detail below. Although the present invention will be described by taking the configuration of FIG. 1 as an example, it can also be applied to IPS type liquid crystal display devices other than FIG.

図1において、ガラスで形成されるTFT基板100の上に、ゲート電極101が形成されている。ゲート電極101は走査線と同層で形成されている。ゲート電極101はAlNd合金の上にMoCr合金が積層されている。   In FIG. 1, a gate electrode 101 is formed on a TFT substrate 100 made of glass. The gate electrode 101 is formed in the same layer as the scanning line. The gate electrode 101 has a MoCr alloy laminated on an AlNd alloy.

ゲート電極101を覆ってゲート絶縁膜102がSiNによって形成されている。ゲート絶縁膜102の上に、ゲート電極101と対向する位置に半導体層103がa−Si膜によって形成されている。a−Si膜はプラズマCVDによって形成される。a−Si膜はTFTのチャネル部を形成するが、チャネル部を挟んでa−Si膜上にソース電極104とドレイン電極105が形成される。なお、a−Si膜とソース電極104あるいはドレイン電極105との間には図示しないn+Si層が形成される。半導体層とソース電極104あるいはドレイン電極105とのオーミックコンタクトを取るためである。   A gate insulating film 102 is formed of SiN so as to cover the gate electrode 101. A semiconductor layer 103 is formed of an a-Si film on the gate insulating film 102 at a position facing the gate electrode 101. The a-Si film is formed by plasma CVD. The a-Si film forms the channel portion of the TFT, and the source electrode 104 and the drain electrode 105 are formed on the a-Si film with the channel portion interposed therebetween. Note that an n + Si layer (not shown) is formed between the a-Si film and the source electrode 104 or the drain electrode 105. This is for making ohmic contact between the semiconductor layer and the source electrode 104 or the drain electrode 105.

ソース電極104は映像信号線が兼用し、ドレイン電極105は画素電極110と接続される。ソース電極104もドレイン電極105も同層で同時に形成される。本実施例では、ソース電極104あるいはドレイン電極105はMoCr合金で形成される。ソース電極104あるいはドレイン電極105の電気抵抗を下げたい場合は、例えば、AlNd合金をMoCr合金でサンドイッチした電極構造が用いられる。   The source electrode 104 is also used as a video signal line, and the drain electrode 105 is connected to the pixel electrode 110. The source electrode 104 and the drain electrode 105 are simultaneously formed in the same layer. In this embodiment, the source electrode 104 or the drain electrode 105 is made of a MoCr alloy. In order to reduce the electrical resistance of the source electrode 104 or the drain electrode 105, for example, an electrode structure in which an AlNd alloy is sandwiched between MoCr alloys is used.

TFTを覆って無機パッシベーション膜106がSiNによって形成される。無機パッシベーション膜106はTFTの、特にチャネル部を不純物401から保護する。無機パッシベーション膜106の上には有機パッシベーション膜107が形成される。有機パッシベーション膜107はTFTの保護と同時に表面を平坦化する役割も有するので、厚く形成される。厚さは1μmから4μmである。   An inorganic passivation film 106 is formed of SiN so as to cover the TFT. The inorganic passivation film 106 protects the TFT, particularly the channel portion, from the impurities 401. An organic passivation film 107 is formed on the inorganic passivation film 106. The organic passivation film 107 has a role of flattening the surface at the same time as protecting the TFT, and thus is formed thick. The thickness is 1 μm to 4 μm.

有機パッシベーション膜107には感光性のアクリル樹脂、シリコン樹脂、あるいはポリイミド樹脂等が使用される。有機パッシベーション膜107には、画素電極110とドレイン電極105が接続する部分にスルーホール111を形成する必要があるが、有機パッシベーション膜107は感光性なので、フォトレジストを用いずに、有機パッシベーション膜107自体を露光、現像して、スルーホール111を形成することが出来る。   A photosensitive acrylic resin, silicon resin, polyimide resin, or the like is used for the organic passivation film 107. In the organic passivation film 107, it is necessary to form a through hole 111 at a portion where the pixel electrode 110 and the drain electrode 105 are connected. However, since the organic passivation film 107 is photosensitive, the organic passivation film 107 is not used without using a photoresist. The through hole 111 can be formed by exposing and developing itself.

有機パッシベーション膜107の上には対向電極108が形成される。対向電極108は透明導電膜であるITO(Indium Tin Oxide)を表示領域全体にスパッタリングすることによって形成される。すなわち、対向電極108は面状に形成される。対向電極108を全面にスパッタリングによって形成した後、画素電極110とドレイン電極105を導通するためのスルーホール111部だけは対向電極108をエッチングによって除去する。   A counter electrode 108 is formed on the organic passivation film 107. The counter electrode 108 is formed by sputtering ITO (Indium Tin Oxide), which is a transparent conductive film, over the entire display region. That is, the counter electrode 108 is formed in a planar shape. After the counter electrode 108 is formed on the entire surface by sputtering, the counter electrode 108 is removed by etching only in the through hole 111 portion for conducting the pixel electrode 110 and the drain electrode 105.

対向電極108を覆って上部絶縁膜109がSiNによって形成される。上部絶縁膜109が形成された後、エッチングによってスルーホール111を形成する。この上部絶縁膜109をレジストにして無機パッシベーション膜106をエッチングしてスルーホール111を形成する。その後、上部絶縁膜109およびスルーホール111を覆って画素電極110となるITOをスパッタリングによって形成する。スパッタリングしたITOをパターニングして画素電極110を形成する。画素電極110となるITOはスルーホール111にも被着される。スルーホール111において、TFTから延在してきたドレイン電極105と画素電極110が導通し、映像信号が画素電極110に供給されることになる。   An upper insulating film 109 is formed of SiN so as to cover the counter electrode 108. After the upper insulating film 109 is formed, a through hole 111 is formed by etching. The through hole 111 is formed by etching the inorganic passivation film 106 using the upper insulating film 109 as a resist. Thereafter, ITO that becomes the pixel electrode 110 covering the upper insulating film 109 and the through hole 111 is formed by sputtering. The pixel electrode 110 is formed by patterning the sputtered ITO. ITO serving as the pixel electrode 110 is also deposited on the through hole 111. In the through hole 111, the drain electrode 105 extending from the TFT and the pixel electrode 110 become conductive, and a video signal is supplied to the pixel electrode 110.

図2に画素電極110の1例を示す。画素電極110は、櫛歯状の電極である。櫛歯と櫛歯の間にスリット112が形成されている。画素電極110の下方には、平面状の対向電極108が形成されている。画素電極110に映像信号が印加されると、スリット112を通して対向電極108との間に生ずる電気力線によって液晶分子301が回転する。これによって液晶層300を通過する光を制御して画像を形成する。   FIG. 2 shows an example of the pixel electrode 110. The pixel electrode 110 is a comb-like electrode. A slit 112 is formed between the comb teeth. A planar counter electrode 108 is formed below the pixel electrode 110. When a video signal is applied to the pixel electrode 110, the liquid crystal molecules 301 are rotated by electric lines of force generated between the counter electrode 108 through the slit 112. As a result, light passing through the liquid crystal layer 300 is controlled to form an image.

図1はこの様子を断面図として説明したものである。櫛歯状の電極と櫛歯状の電極の間は図1に示すスリット112となっている。対向電極108には一定電圧が印加され、画素電極110には映像信号による電圧が印加される。画素電極110に電圧が印加されると図1に示すように、電気力線が発生して液晶分子301を電気力線の方向に回転させてバックライトからの光の透過を制御する。画素毎にバックライトからの透過が制御されるので、画像が形成されることになる。   FIG. 1 illustrates this as a cross-sectional view. A slit 112 shown in FIG. 1 is formed between the comb-shaped electrode and the comb-shaped electrode. A constant voltage is applied to the counter electrode 108, and a voltage based on a video signal is applied to the pixel electrode 110. When a voltage is applied to the pixel electrode 110, as shown in FIG. 1, the lines of electric force are generated, and the liquid crystal molecules 301 are rotated in the direction of the lines of electric force to control the transmission of light from the backlight. Since transmission from the backlight is controlled for each pixel, an image is formed.

図1の例では、有機パッシベーション膜107の上に、面状に形成された対向電極108が配置され、上部絶縁膜109の上に櫛歯電極110が配置されている。しかしこれとは逆に、有機パッシベーション膜107の上に面状に形成された画素電極110を配置し、上部絶縁膜109の上に櫛歯状の対向電極108が配置される場合もある。画素電極110の上には液晶分子301を配向させるための配向膜113が形成されている。配向膜113は光配向処理が施されている。   In the example of FIG. 1, a counter electrode 108 formed in a planar shape is disposed on the organic passivation film 107, and a comb electrode 110 is disposed on the upper insulating film 109. However, conversely, the pixel electrode 110 formed in a planar shape may be disposed on the organic passivation film 107, and the comb-like counter electrode 108 may be disposed on the upper insulating film 109. An alignment film 113 for aligning liquid crystal molecules 301 is formed on the pixel electrode 110. The alignment film 113 is subjected to a photo-alignment process.

図1において、液晶層300を挟んで対向基板200が設置されている。対向基板200の内側には、カラーフィルタ201が形成されている。カラーフィルタ201は画素毎に、赤、緑、青のカラーフィルタ201が形成されており、カラー画像が形成される。カラーフィルタ201とカラーフィルタ201の間にはブラックマトリクス202が形成され、画像のコントラストを向上させている。なお、ブラックマトリクス202はTFTの遮光膜としての役割も有し、TFTに光電流が流れることを防止している。   In FIG. 1, a counter substrate 200 is provided with a liquid crystal layer 300 interposed therebetween. A color filter 201 is formed inside the counter substrate 200. The color filter 201 is formed with red, green, and blue color filters 201 for each pixel, and a color image is formed. A black matrix 202 is formed between the color filters 201 to improve the contrast of the image. Note that the black matrix 202 also has a role as a light shielding film of the TFT, and prevents a photocurrent from flowing through the TFT.

カラーフィルタ201およびブラックマトリクス202を覆ってオーバーコート膜203が形成されている。カラーフィルタ201およびブラックマトリクス202の表面は凹凸となっているために、オーバーコート膜203によって表面を平らにしている。オーバーコート膜203の上には、液晶の初期配向を決めるための配向膜113が形成されている。この配向膜113にも光配向処理が施されている。   An overcoat film 203 is formed to cover the color filter 201 and the black matrix 202. Since the surface of the color filter 201 and the black matrix 202 is uneven, the surface is flattened by the overcoat film 203. On the overcoat film 203, an alignment film 113 for determining the initial alignment of the liquid crystal is formed. This alignment film 113 is also subjected to a photo-alignment process.

本発明は、図1における光配向膜の配向秩序性を向上してAC残像を低減することである。発明者は、配向膜材料における分子吸光係数、光分解の量子収率等の物性値、並びに、プロセスパラ(加熱温度、加熱時間、露光時間等)と配向秩序性との関係を理論的に解析し、その結果、配向膜材料の分子長軸方向と短軸方向との分子吸光係数比と、偏光露光によるポリイミドの光分解で生成するオリゴマの分子方向変化が、配向秩序性の向上に重要な役割を果たしていることを明らかにした。ここで、分子吸光係数比はεp/εvのことであり、εpはポリイミドの分子長軸方向の分子吸光比であり、εvはポリイミドの分子短軸方向の分子吸光比である。   The present invention is to improve the alignment order of the photo-alignment film in FIG. 1 and reduce the AC afterimage. The inventor theoretically analyzes physical properties such as molecular extinction coefficient and photolysis quantum yield in alignment film materials, and the relationship between process parameters (heating temperature, heating time, exposure time, etc.) and alignment order. As a result, the molecular extinction coefficient ratio between the major and minor molecular directions of the alignment film material and the change in the molecular direction of the oligomer generated by the photodegradation of polyimide by polarized light exposure are important for improving the alignment order. Clarified that he plays a role. Here, the molecular extinction coefficient ratio is εp / εv, εp is the molecular absorption ratio of polyimide in the molecular long axis direction, and εv is the molecular absorption ratio of polyimide in the molecular short axis direction.

分子長軸方向と分子短軸方向との分子吸光係数比が大きいほど、偏光露光による電界ベクトルと平行方向と、直交方法のポリイミドの濃度差は大きくなるので、配向秩序性の高い配向膜の形成が可能になる。一般に分子長軸方向と短軸方向との分子吸光係数比の大きいポリイミドは分子の直線性が高く、剛直な高分子である。   The larger the molecular extinction coefficient ratio between the molecular major axis direction and the molecular minor axis direction, the greater the difference in concentration of polyimide in the orthogonal method with the electric field vector due to polarized light exposure. Is possible. In general, a polyimide having a large ratio of molecular extinction coefficient between the major axis direction and the minor axis direction is a rigid polymer having high molecular linearity.

一方、オリゴマの方向変化量は、柔軟性の高いポリイミド(主鎖にアルキル鎖を有し、偏光露光後の加熱で分子軸回転が誘起されるポリイミド)程大きくなる。このため、光分解での配向秩序性向上と偏光露光での配向秩序性向上を両立させるには、相反するポリイミドの特性を解消する必要があった。   On the other hand, the direction change amount of the oligomer becomes larger as the flexibility of the polyimide (polyimide having an alkyl chain in the main chain and in which molecular axis rotation is induced by heating after polarization exposure). For this reason, in order to achieve both improved alignment order in photolysis and improved alignment order in polarized light exposure, it was necessary to eliminate the conflicting properties of polyimide.

発明者は、光配向膜に要求される剛直性と柔軟性との相反関係は、分子吸光係数比の高いポリイミド(剛直)と、柔軟性の高いポリイミドを混合すれば解消することが出来、高配向秩序性を有する配向膜を実現できることを見出した。以下に実施例を用いて本発明の内容を詳細に説明する。   The inventor can eliminate the reciprocal relationship between rigidity and flexibility required for the photo-alignment film by mixing polyimide (rigid) with a high molecular extinction coefficient ratio and polyimide with high flexibility. It has been found that an alignment film having alignment order can be realized. The contents of the present invention will be described in detail below using examples.

図3は、光配向処理を用いた配向膜の形成工程を示す図である。図3の工程は、TFT基板、対向基板共通である。図1における画素電極が形成されたTFT基板、あるいは、オーバーコート膜が形成された対向基板に配向膜を塗布する。配向膜の塗布は、スピンコーティング、インクジェット、スプレーコートあるいはロッドコーテティング等が用いられる。   FIG. 3 is a diagram illustrating a process of forming an alignment film using photo-alignment processing. The process of FIG. 3 is common to the TFT substrate and the counter substrate. An alignment film is applied to the TFT substrate on which the pixel electrode in FIG. 1 is formed or the counter substrate on which the overcoat film is formed. The alignment film is applied by spin coating, inkjet, spray coating, rod coating, or the like.

配向膜材料としては、(化1)で示す1,2−ビス(4−アミノフェニル)エタンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料、並びに、(化2)で示すパラフェニルジアミンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料を重量比で1:1の割合で含むものである。   As an alignment film material, esterification of a dehydration condensate of 1,2-bis (4-aminophenyl) ethane represented by (Chemical Formula 1) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) And an alignment material obtained by esterifying the dehydration condensate of paraphenyldiamine represented by (Chemical Formula 2) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) in a weight ratio of 1: 1 is included.

Figure 2016095537
Figure 2016095537

Figure 2016095537
Figure 2016095537

Figure 2016095537
Figure 2016095537

塗布された配向膜を230℃で焼成して配向膜のイミド化を行う。このとき、(化2)で示すパラフェニルジアミンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料は剛構造となり(以後剛構造の配向膜)、(化1)で示す1,2−ビス(4−アミノフェニル)エタンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料は柔構造となる(以後柔構造の配向膜)。   The applied alignment film is baked at 230 ° C. to imidize the alignment film. At this time, the alignment material obtained by esterifying the dehydration condensate of paraphenyldiamine represented by (Chemical Formula 2) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) has a rigid structure (hereinafter, a rigid structure) Alignment film), an orientation obtained by esterifying a dehydration condensate of 1,2-bis (4-aminophenyl) ethane represented by (Chemical Formula 1) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) The material has a flexible structure (hereinafter referred to as an alignment film having a flexible structure).

その後、基板の温度を室温近くにまで低下させる。なお、基板は薄いので、焼成炉から出すと短時間で温度は低下する。この状態で、配向膜に対して光配向のために、直線偏光された紫外線を照射する。直線偏光された紫外線によって、高分子の配向膜が当該偏光方向で主鎖が切断されることによって一軸性が付与される。このとき、ポリマーが切断されることによって揮発性の低分子物質、あるいは、オリゴマが生成される。紫外線は、ウシオ製Deep-UVランプ(超高圧He-Xe)と偏光子を組み合わせた偏光露光装置を用いて、配向膜に3J/cm照射した。 Thereafter, the temperature of the substrate is lowered to near room temperature. In addition, since a board | substrate is thin, when it takes out from a baking furnace, temperature will fall in a short time. In this state, the alignment film is irradiated with linearly polarized ultraviolet rays for photoalignment. Uniaxiality is imparted by linearly polarized ultraviolet light by cutting the main chain of the polymer alignment film in the polarization direction. At this time, a volatile low-molecular substance or an oligomer is generated by cutting the polymer. The ultraviolet rays were irradiated to the alignment film at 3 J / cm 2 using a polarization exposure apparatus combining a Ushio Deep-UV lamp (ultra-high pressure He-Xe) and a polarizer.

紫外線照射後、基板を230℃に加熱して、揮発性の低分子物質を揮発させる。このとき、剛構造の配向膜における不揮発性のオリゴマは配向膜中で不動である。一方、柔構造の配向膜における不揮発性のオリゴマは配向膜中で回転することが出来、配向秩序性を向上させることが出来る。   After the ultraviolet irradiation, the substrate is heated to 230 ° C. to volatilize the volatile low-molecular substance. At this time, the nonvolatile oligomer in the alignment film having a rigid structure does not move in the alignment film. On the other hand, the non-volatile oligomer in the alignment film having a flexible structure can be rotated in the alignment film, and the alignment order can be improved.

図4は、従来例における配向膜構造と本発明における配向膜構造を対比して示した模式図である。上側が従来構造であり、下側が本発明による構造である。従来例における材料は、剛構造の配向膜のみで形成され、本発明における材料は、剛構造と柔構造の混在である。図4では、このような配向膜材料を重量比1:1で混合し、石英基板上に塗布したものである。   FIG. 4 is a schematic view showing a comparison between the alignment film structure in the conventional example and the alignment film structure in the present invention. The upper side is a conventional structure, and the lower side is a structure according to the present invention. The material in the conventional example is formed only of a rigid alignment film, and the material in the present invention is a mixture of a rigid structure and a flexible structure. In FIG. 4, such alignment film materials are mixed at a weight ratio of 1: 1 and applied onto a quartz substrate.

図4において、左側の欄は、配向膜を塗布後、230℃で10分間加熱した状態における配向膜の構造の模式図である。従来例は、ポリイミドが格子状に規則正しく形成され、剛構造となっている。これに対して、本発明では、ポリイミドが格子状に形成された剛構造と、フレキシブルなポリイミドがフレキシブルに交差する柔構造とが混在している。   In FIG. 4, the left column is a schematic diagram of the structure of the alignment film in a state where the alignment film is applied and then heated at 230 ° C. for 10 minutes. In the conventional example, polyimide is regularly formed in a lattice shape and has a rigid structure. On the other hand, in the present invention, a rigid structure in which polyimide is formed in a lattice shape and a flexible structure in which flexible polyimide intersects flexibly are mixed.

その後、基板を常温付近にまで冷却し、偏光紫外線を用いて露光した状態を、図4の中欄に示す。図4の中欄において、偏光紫外線によって、紫外線の偏光の電界ベクトル方向において、ポリイミドの主鎖が切断され、配向膜の配向秩序性が現出している。これは、従来構造、本発明の構造とも同様である。   Then, the state which cooled the board | substrate to near normal temperature and exposed using polarized ultraviolet rays is shown in the middle column of FIG. In the middle column of FIG. 4, the main chain of polyimide is cut in the electric field vector direction of polarized light of ultraviolet light by polarized ultraviolet light, and the alignment order of the alignment film appears. This is similar to the conventional structure and the structure of the present invention.

その後、230℃で10分間ほど焼成した状態を図4の右欄に示す。従来例は、剛構造のポリイミドのみで形成されているので、オリゴマが不動である。一方、本発明においては、剛構造と柔構造とが混在している状態であり、剛構造におけるオリゴマ、柔構造におけるオリゴマのいずれも回転して、配向秩序性が向上している。   Then, the state baked at 230 degreeC for about 10 minutes is shown in the right column of FIG. In the conventional example, the oligomer is immobile because it is made of only rigid polyimide. On the other hand, in the present invention, a rigid structure and a flexible structure are mixed, and both the oligomer in the rigid structure and the oligomer in the flexible structure rotate to improve the alignment order.

以上の説明をまとめると次の通りである。すなわち、図4の上部に示した従来構造においては、分子長軸方向と短軸方向とで分子吸光係数差が大きい、剛直なポリイミドを配向膜材料として用いることで、配向秩序性をできるだけ大きくすることが行われていた。これは、ポリイミドの光分解速度がポリイミドの分子吸光係数に比例するので、分子吸光係数の差が大きいほど、偏光紫外線照射後のE‖方向とE⊥方向のポリイミドの濃度差が大きくなることを利用して配向秩序性を大きくするという考えに基づいている。ここで、E‖は偏光の電界ベクトルと平行な成分であり、E⊥は偏光の電界ベクトルと垂直な成分である。   The above description is summarized as follows. That is, in the conventional structure shown in the upper part of FIG. 4, the alignment order is made as large as possible by using rigid polyimide, which has a large difference in molecular extinction coefficient between the molecular long axis direction and the short axis direction, as the alignment film material. Things were going on. This is because the photodegradation rate of polyimide is proportional to the molecular extinction coefficient of polyimide, so the greater the difference in molecular extinction coefficient, the greater the difference in polyimide concentration between E‖ direction and E⊥ direction after polarized UV irradiation. This is based on the idea of increasing orientational ordering. Here, E‖ is a component parallel to the electric field vector of polarization, and E⊥ is a component perpendicular to the electric field vector of polarization.

しかし、分子吸光係数の差が大きいポリイミドは、一般に、分子の直線性が高く、剛直な高分子である。このため、偏光露光後に加熱しても光分解生成物の分子方向は、光分解で生成したままの方向で固定されているため、配向秩序性は大きくならない。   However, a polyimide having a large difference in molecular extinction coefficient is generally a rigid polymer having high molecular linearity. For this reason, even if it heats after polarization exposure, since the molecular direction of a photolysis product is being fixed in the direction as produced | generated by photolysis, orientation orderness does not become large.

一方、図4の下部に示した本発明においては、偏光紫外線によって主鎖が切断される柔軟なポリイミドを混合した配向膜材料を用いる。これにより、図5に示すように、それぞれの配向膜材料を単独で用いた配向膜よりもE‖方向とE⊥方向との配向分子の濃度差が大きくなり、配向秩序性を高くできる。   On the other hand, in the present invention shown in the lower part of FIG. 4, an alignment film material mixed with flexible polyimide whose main chain is cut by polarized ultraviolet rays is used. As a result, as shown in FIG. 5, the concentration difference between the alignment molecules in the E‖ direction and the E⊥ direction becomes larger than that in the alignment film using each alignment film material alone, and the alignment order can be increased.

図5は、剛直なポリイミドと柔軟なポリイミドとを混合した場合の、混合比率と配向秩序性との関係を示している。図5からわかるように、混合した配向膜材料を用いたほうが、個々の配向膜材料を単独で用いた場合よりも配向秩序性が高い。   FIG. 5 shows the relationship between the mixing ratio and the alignment order when a rigid polyimide and a flexible polyimide are mixed. As can be seen from FIG. 5, the alignment order is higher when the mixed alignment film material is used than when each alignment film material is used alone.

図5は、図4に示したサンプルに対して、次のような測定を行ったものである。加熱して得られた配向膜の偏光紫外線スペクトルを測定し、吸光度から配向秩序性の指標である、UV吸収二色比すなわち、(A⊥―A‖)/(A⊥+A‖)を求めた。ここで、A‖はE‖方向の配向膜の吸光度であり、A⊥はE⊥方向の配向膜の吸光度である。なお、Aを吸光度とした場合、A=εCtの関係がある。εは分子吸光係数であり、Cはポリイミドの特定の方向の分子の濃度であり、tはポリイミドの厚さである。   FIG. 5 shows the following measurement performed on the sample shown in FIG. The polarized ultraviolet spectrum of the alignment film obtained by heating was measured, and the UV absorption dichroic ratio, ie, (A 配 向 −A‖) / (A⊥ + A‖), which is an index of alignment order, was obtained from the absorbance. . Here, A‖ is the absorbance of the alignment film in the E‖ direction, and A⊥ is the absorbance of the alignment film in the E⊥ direction. When A is absorbance, there is a relationship of A = εCt. ε is the molecular extinction coefficient, C is the concentration of molecules in a specific direction of the polyimide, and t is the thickness of the polyimide.

図5において、縦軸は、波長245nmの紫外線におけるOP(オーダーパラメータ)であり、横軸は、配向膜における柔構造の配向膜のwt%である。なお、OP(オーダーパラメータ)はUV吸収二色比と同義とする。図5からわかるように、柔構造の割合が50wt%のときのOPの値は0.51である。このときの配向膜による液晶のアンカリング強度を測定したところ、4.1mJ/m2であることがわかった。   In FIG. 5, the vertical axis represents OP (order parameter) in the ultraviolet ray having a wavelength of 245 nm, and the horizontal axis represents wt% of the alignment film having a flexible structure in the alignment film. OP (order parameter) is synonymous with UV absorption dichroic ratio. As can be seen from FIG. 5, the value of OP when the proportion of the flexible structure is 50 wt% is 0.51. When the anchoring strength of the liquid crystal by the alignment film at this time was measured, it was found to be 4.1 mJ / m 2.

比較例として、配向膜材料に(化2)で示すパラフェニルジアミンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した、剛構造となる配向材料のみを用いた場合の配向膜を形成してOPを測定した結果は、0.48であった。また、配向膜材料に(化1)で示す1,2−ビス(4−アミノフェニル)エタンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した柔構造の配向材料のみを用いた場合の配向膜を形成してOPを測定した結果は、0.44であった。すなわち、本発明のように、柔構造と剛構造の配向膜材料を混合して用いることによって、OPすなわち、UV吸収二色比を向上させることが出来る。   As a comparative example, an alignment film material is obtained by esterifying a dehydration condensate of paraphenyldiamine represented by (Chemical Formula 2) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) into a rigid structure. When the alignment film was formed using only the material and the OP was measured, the result was 0.48. Also, the dehydrated condensate of 1,2-bis (4-aminophenyl) ethane represented by (Chemical Formula 1) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) is esterified into the alignment film material. The result of measuring the OP after forming the alignment film using only the alignment material having the flexible structure was 0.44. That is, OP, that is, the UV absorption dichroic ratio can be improved by using a mixture of a flexible structure and a rigid structure film as in the present invention.

図5において、柔構造の配向膜材料を20wt%〜60wt%用いることによって、OPすなわち、UV吸収二色比は0.5以上とすることが出来る。また、柔構造の配向膜材料を80%以下とすることによって、柔構造がゼロの場合におけるOPである0.48を上回ることが出来る。この場合は、柔構造の材料は0wt%よりも大きく、80wt%以下である。   In FIG. 5, OP, that is, the UV absorption dichroic ratio can be 0.5 or more by using 20 wt% to 60 wt% of the alignment film material having a flexible structure. Moreover, by setting the alignment film material having a flexible structure to 80% or less, it is possible to exceed 0.48 which is OP when the flexible structure is zero. In this case, the material of the flexible structure is larger than 0 wt% and 80 wt% or less.

以上のように、本発明によれば、OP(オーダーパラメータ)すなわち、UV吸収二色比を向上させることが出来、配向膜による液晶のアンカリング強度を向上させ、AC残像を抑制することが出来る。   As described above, according to the present invention, OP (order parameter), that is, UV absorption dichroic ratio can be improved, the anchoring strength of liquid crystal by the alignment film can be improved, and AC afterimage can be suppressed. .

以上の実施例では、柔構造を与える配向膜材料として、(化1)で示す1,2−ビス(4−アミノフェニル)エタンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料を用いたが、この他に、(化4)で示す4,4‘−ジアミノジフェニルエーテルおよびその誘導体と、(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料を用いて柔構造の配向膜材料を構成することが出来る。   In the above embodiment, as the alignment film material that gives a flexible structure, 1,2-bis (4-aminophenyl) ethane represented by (Chemical Formula 1) and 1,3-dimethylcyclobutanetetracarboxylic acid dicarboxylic acid represented by (Chemical Formula 3) are used. An alignment material obtained by esterifying an anhydrous dehydration condensate was used, but in addition to this, 4,4′-diaminodiphenyl ether represented by (Chemical Formula 4) and derivatives thereof, and 1,3-dimethyl represented by (Chemical Formula 3) An alignment film material having a flexible structure can be formed using an alignment material obtained by esterifying a dehydration condensate of cyclobutanetetracarboxylic dianhydride.

Figure 2016095537
Figure 2016095537

また、以上の実施例では剛構造を与える配向膜材料として、(化2)で示すパラフェニルジアミンと(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料を用いたが、この他に、(化5)で示すパラフェニレンジアミン誘導体と(化3)で示す1,3−ジメチルシクロブタンテトラカルボン酸二無水物の脱水縮合物をエステル化した配向材料を用いて剛構造の配向膜材料を構成することが出来る。またエステル化物だけでなく1,3−ジメチルシクロブタンテトラカルボン酸二無水物とジアミンとの縮合物も本発明の配向材として好適に用いることもできる。   Further, in the above examples, as an alignment film material giving a rigid structure, a dehydration condensate of paraphenyldiamine represented by (Chemical Formula 2) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) is esterified. In addition to this, a dehydrated condensate of a paraphenylenediamine derivative represented by (Chemical Formula 5) and 1,3-dimethylcyclobutanetetracarboxylic dianhydride represented by (Chemical Formula 3) was esterified. A rigid alignment film material can be formed using the alignment material. In addition to the esterified product, a condensate of 1,3-dimethylcyclobutanetetracarboxylic dianhydride and diamine can also be suitably used as the alignment material of the present invention.

Figure 2016095537
Figure 2016095537

100…TFT基板、 101…ゲート電極、 102…ゲート絶縁膜、 103…半導体層、 104…ソース電極、 105…ドレイン電極、 106…無機パッシベーション膜、 107…有機パッシベーション膜、 108…対向電極、 109…上部絶縁膜、 110…画素電極、 111…スルーホール、 112…スリット、 113…配向膜、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 210…表面導電膜、 300…液晶層、 301…液晶分子   DESCRIPTION OF SYMBOLS 100 ... TFT substrate 101 ... Gate electrode 102 ... Gate insulating film 103 ... Semiconductor layer 104 ... Source electrode 105 ... Drain electrode 106 ... Inorganic passivation film 107 ... Organic passivation film 108 ... Counter electrode 109 ... Upper insulating film, 110 ... pixel electrode, 111 ... through hole, 112 ... slit, 113 ... alignment film, 200 ... counter substrate, 201 ... color filter, 202 ... black matrix, 203 ... overcoat film, 210 ... surface conductive film, 300 ... Liquid crystal layer, 301 ... Liquid crystal molecule

Claims (8)

主鎖にアルキル鎖を有し、イミド化することにより第1のポリイミドとなる第1の材料と、
イミド化することにより第2のポリイミドとなる第2の材料とを含み、
前記第2の材料はパラフェニレンジアミンと1,3−ジメチルシクロブタンテトラカルボン酸二無水物とを反応させた化合物または前記化合物のエステルである、ことを特徴とするIPS方式の液晶表示装置の配向膜に使用される液晶配向膜材料。
A first material that has an alkyl chain in the main chain and becomes a first polyimide by imidization;
A second material that becomes a second polyimide by imidization,
The second material is a compound obtained by reacting paraphenylenediamine and 1,3-dimethylcyclobutanetetracarboxylic dianhydride, or an ester of the compound, and an alignment film for an IPS liquid crystal display device Liquid crystal alignment film material used in
主鎖にアルキル鎖を有し、イミド化することにより第1のポリイミドとなる第1の材料と、
イミド化することにより第2のポリイミドとなる第2の材料とを含み、
前記第2の材料はパラフェニレンジアミン誘導体と1,3−ジメチルシクロブタンテトラカルボン酸二無水物とを反応させた化合物または前記化合物のエステルである、ことを特徴とするIPS方式の液晶表示装置の配向膜に使用される液晶配向膜材料。
A first material that has an alkyl chain in the main chain and becomes a first polyimide by imidization;
A second material that becomes a second polyimide by imidization,
The second material is a compound obtained by reacting a paraphenylenediamine derivative with 1,3-dimethylcyclobutanetetracarboxylic dianhydride or an ester of the compound, and the orientation of an IPS liquid crystal display device Liquid crystal alignment film material used for the film.
前記配向膜材料は、前記第1の材料のエステルである第1のエステルと、前記化合物のエステルである第2のエステルとを有することを特徴とする請求項1又は2に記載の液晶配向膜材料。   The liquid crystal alignment film according to claim 1, wherein the alignment film material includes a first ester that is an ester of the first material and a second ester that is an ester of the compound. material. 前記第1のエステルは液晶配向膜材料全体の重量に対して0wt%よりも大きく、かつ
80wt%以下であることを特徴とする請求項3に記載の液晶配向膜材料。
4. The liquid crystal alignment film material according to claim 3, wherein the first ester is greater than 0 wt% and equal to or less than 80 wt% with respect to the total weight of the liquid crystal alignment film material.
前記第1のエステルは液晶配向膜材料全体の重量に対して20wt%〜60wt%であることを特徴とする請求項3に記載の液晶配向膜材料。   4. The liquid crystal alignment film material according to claim 3, wherein the first ester is 20 wt% to 60 wt% with respect to the total weight of the liquid crystal alignment film material. 分子の長軸方向の分子吸光係数をεpとし、分子の短軸方向の分子吸光係数をεvとし、分子吸光係数比をεp/εvとした場合に、
前記第2のポリイミドは、前記第1のポリイミドよりも前記分子吸光係数比が高いことを特徴とする請求項1乃至5のいずれか1項に記載の液晶配向膜材料。
When the molecular extinction coefficient in the major axis direction of the molecule is εp, the molecular extinction coefficient in the minor axis direction of the molecule is εv, and the molecular extinction coefficient ratio is εp / εv,
The liquid crystal alignment film material according to claim 1, wherein the second polyimide has a higher molecular extinction coefficient ratio than the first polyimide.
前記液晶配向膜材料は、光配向膜材料であることを特徴とする請求項1乃至6のいずれか1項に記載の液晶配向膜材料。   The liquid crystal alignment film material according to claim 1, wherein the liquid crystal alignment film material is a photo alignment film material. 前記第2のポリイミドは、前記第1のポリイミドよりも硬いことを特徴とする請求項1ないし7のいずれか1項に記載の液晶配向膜材料。   The liquid crystal alignment film material according to claim 1, wherein the second polyimide is harder than the first polyimide.
JP2016022341A 2016-02-09 2016-02-09 Liquid crystal alignment film material Active JP6158374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016022341A JP6158374B2 (en) 2016-02-09 2016-02-09 Liquid crystal alignment film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016022341A JP6158374B2 (en) 2016-02-09 2016-02-09 Liquid crystal alignment film material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014091238A Division JP5885772B2 (en) 2014-04-25 2014-04-25 Liquid crystal alignment film material

Publications (2)

Publication Number Publication Date
JP2016095537A true JP2016095537A (en) 2016-05-26
JP6158374B2 JP6158374B2 (en) 2017-07-05

Family

ID=56071834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022341A Active JP6158374B2 (en) 2016-02-09 2016-02-09 Liquid crystal alignment film material

Country Status (1)

Country Link
JP (1) JP6158374B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053583A1 (en) * 2002-12-11 2004-06-24 Nissan Chemical Industries, Ltd. Liquid crystl orientating agent and liquid crystal display element using it
JP2006154048A (en) * 2004-11-26 2006-06-15 Jsr Corp Liquid crystal aligning agent, and transverse electric field type liquid crystal display element
JP5885772B2 (en) * 2014-04-25 2016-03-15 株式会社ジャパンディスプレイ Liquid crystal alignment film material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053583A1 (en) * 2002-12-11 2004-06-24 Nissan Chemical Industries, Ltd. Liquid crystl orientating agent and liquid crystal display element using it
JP2006154048A (en) * 2004-11-26 2006-06-15 Jsr Corp Liquid crystal aligning agent, and transverse electric field type liquid crystal display element
JP5885772B2 (en) * 2014-04-25 2016-03-15 株式会社ジャパンディスプレイ Liquid crystal alignment film material

Also Published As

Publication number Publication date
JP6158374B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP5292438B2 (en) Liquid crystal display
US20230273483A1 (en) Liquid crystal display device and manufacturing method thereof
JP5222864B2 (en) Manufacturing method of liquid crystal display device
TWI494666B (en) Liquid crystal display device and manufacturing method thereof
JP2005351924A (en) Liquid crystal display
US20150049271A1 (en) Liquid crystal display device
JP5885772B2 (en) Liquid crystal alignment film material
JP5537698B2 (en) Liquid crystal alignment film material
JP6158374B2 (en) Liquid crystal alignment film material
JP6200988B2 (en) Liquid crystal display device and alignment film used therefor
JP6430591B2 (en) Alignment film varnish
JP5939589B2 (en) Alignment film material
JP5631954B2 (en) Liquid crystal display
JP5883178B2 (en) Liquid crystal display
JP6162273B2 (en) Liquid crystal display
JP5714673B2 (en) Liquid crystal display
JP2011022612A (en) Alignment layer material and liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6158374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250