JP2016095310A - Bearing measurement method and bearing measurement device - Google Patents

Bearing measurement method and bearing measurement device Download PDF

Info

Publication number
JP2016095310A
JP2016095310A JP2015237112A JP2015237112A JP2016095310A JP 2016095310 A JP2016095310 A JP 2016095310A JP 2015237112 A JP2015237112 A JP 2015237112A JP 2015237112 A JP2015237112 A JP 2015237112A JP 2016095310 A JP2016095310 A JP 2016095310A
Authority
JP
Japan
Prior art keywords
electronic compass
axis
azimuth
axis electronic
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015237112A
Other languages
Japanese (ja)
Other versions
JP6137286B2 (en
Inventor
真己斗 大田
Makoto Ota
真己斗 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2015237112A priority Critical patent/JP6137286B2/en
Publication of JP2016095310A publication Critical patent/JP2016095310A/en
Application granted granted Critical
Publication of JP6137286B2 publication Critical patent/JP6137286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a bearing measurement method using a three-axis electronic compass with which it is possible to accurately measure the specific bearing of a photographing device, e.g., the bearing of the photographic optical axis of the photographing device, irrespective of the postures of the three-axis electronic compass and the photographing device that incorporates it.SOLUTION: Provided is a bearing measurement method for measuring the bearing of a specific direction to a three-axis electronic compass using the three-axis electronic compass and an inclination sensor for detecting the inclination of the three-axis electronic compass, said method having: a step for acquiring the angle of elevation formed by the specific direction and the horizontal plane, and switching, in accordance with the acquired angle of elevation, two output values to select among the three output values obtained from the three-axis electronic compass; a step for acquiring the bearing of earth magnetism from the switched two output values; a step for acquiring the bearing of the angle of rotation in the specific direction from the inclination sensor; a step for calculating, on the basis the acquired angle of elevation, bearing of earth magnetism, and angle of rotation, a deviation angle in the bearing of the specific direction that occurs due to switching.SELECTED DRAWING: Figure 8

Description

本発明は、搭載された撮影装置(デジタルカメラ)の姿勢にかかわらず、常に撮影装置の特定方向の方位(例えば撮影装置の撮影光学系の撮影光軸の方位)を正確に測定できる3軸電子コンパスを用いた方位測定方法および方位測定装置に関する。   The present invention is a three-axis electronic device that can always accurately measure the orientation of a specific direction of the imaging device (for example, the orientation of the imaging optical axis of the imaging optical system of the imaging device) regardless of the orientation of the mounted imaging device (digital camera). The present invention relates to a direction measuring method and a direction measuring apparatus using a compass.

電子コンパスを搭載した双眼鏡等の機器が知られている。例えば、特許文献1には、視野内に電子コンパスを表示できる双眼鏡が開示されており、特許文献2には、観察されている目標物の方位を視野内に表示する双眼鏡が開示されている。しかし、特許文献1、2にあっては、対物光学系光軸や視線が水平に対して大きく傾いた状態、例えば空、天頂を見上げた状態において、方位を正しく検出することができない。   Devices such as binoculars equipped with an electronic compass are known. For example, Patent Document 1 discloses binoculars that can display an electronic compass in the field of view, and Patent Document 2 discloses binoculars that display the orientation of the observed target in the field of view. However, in Patent Documents 1 and 2, the orientation cannot be detected correctly in a state where the optical axis or line of sight of the objective optical system is greatly inclined with respect to the horizontal, for example, when looking up at the sky or the zenith.

また近年、互いに直交する3軸の地磁気センサを備えた3軸電子コンパスが開発されている。この種の3軸電子コンパスが搭載された携帯電話などの機器は、互いに直交する3軸の地磁気センサが地磁気を検出し、さらに重力方向(機器の前後方向の傾き)を検出して、携帯電話のユーザーが向いている方位を求めている(特許文献3)。   In recent years, a three-axis electronic compass having three-axis geomagnetic sensors orthogonal to each other has been developed. A device such as a mobile phone equipped with this type of three-axis electronic compass detects a geomagnetism by a three-axis geomagnetic sensor orthogonal to each other, and further detects the direction of gravity (tilt in the front-rear direction of the device). The direction in which the user is facing is calculated (Patent Document 3).

さらに、地球の自転により撮影装置に対して相対的に移動(日周運動)する天体を撮影するために、撮影装置を固定したままで、撮影装置の撮像素子を駆動(移動)させながら撮影する天体自動追尾撮影が提案されている(特許文献4、5)。   Furthermore, in order to photograph a celestial body that moves relative to the imaging device due to the rotation of the earth (diurnal motion), the imaging device of the imaging device is driven (moved) while the imaging device is fixed. Astronomical automatic tracking photography has been proposed (Patent Documents 4 and 5).

特開2001−13420号公報JP 2001-13420 A 特開平7−43162号公報JP 7-43162 A 特開2007−40982号公報JP 2007-40982 A 特開2008−289052号公報JP 2008-289052 A 特開2010−122672号公報JP 2010-122672 A

このような天体自動追尾撮影では、より精度の高い天体追尾を行うために、撮影装置の撮影光学系が向いている撮影方位を正確に測定する必要がある。   In such celestial automatic tracking shooting, in order to perform celestial tracking with higher accuracy, it is necessary to accurately measure the shooting direction in which the shooting optical system of the shooting device is facing.

しかしながら、特許文献3のような従来の3軸電子コンパスを特許文献4、5のような天体自動追尾撮影に適用して、撮影装置を天頂方向(またはそれに近い方向)に向けた状態で、撮影装置の撮影光学系が向いている撮影方位を測定しようとすると、全く異なる方位が撮影装置の撮影光学系が向いている方位として測定される場合がある。   However, a conventional three-axis electronic compass such as Patent Document 3 is applied to astronomical auto-tracking photographing such as Patent Documents 4 and 5, and the photographing device is directed in the zenith direction (or a direction close thereto). If an attempt is made to measure the shooting direction in which the photographing optical system of the apparatus is directed, a completely different direction may be measured as the direction in which the photographing optical system of the photographing apparatus is directed.

本発明は、このような問題意識に基づき、3軸電子コンパスとこれを搭載した撮影装置の姿勢にかかわらず、撮影装置の特定方向の方位(例えば撮影装置の撮影光学系の撮影光軸の方位)を正確に測定できる3軸電子コンパスを用いた方位測定方法および方位測定装置を得ることを目的とする。   The present invention is based on such a problem awareness, regardless of the orientation of the three-axis electronic compass and the photographing apparatus equipped with the three-axis electronic compass, the orientation of the photographing apparatus in a specific direction (for example, the orientation of the photographing optical axis of the photographing optical system of the photographing apparatus) It is an object of the present invention to obtain an azimuth measuring method and an azimuth measuring apparatus using a three-axis electronic compass capable of accurately measuring).

本発明の3軸電子コンパスを用いた方位測定方法は、直交3軸地磁気センサを有し該センサから得られる各軸の3つの出力値のうち2つを選択して使用する3軸電子コンパスと、この3軸電子コンパスの傾斜を検出する傾斜センサとを用いて、3軸電子コンパスに対する特定方向の方位を測定する方位測定方法であって、上記特定方向と水平面の成す仰角を上記傾斜センサから取得して、取得した仰角に応じて、上記3軸電子コンパスから得られる3つの出力値のうち、選択する2つの出力値を切り換える段階と、上記切り換えられた2つの出力値により地磁気の方位を取得する段階と、上記傾斜センサから上記特定方向回りの回転角を取得する段階と、上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記切り換えによって発生する上記特定方向の方位のずれ角を算出する段階と、上記算出したずれ角により上記特定方向の方位を補正する段階と、を有することを特徴としている。   An azimuth measuring method using a three-axis electronic compass according to the present invention includes a three-axis electronic compass having an orthogonal three-axis geomagnetic sensor and selecting and using two of three output values of each axis obtained from the sensor. An azimuth measuring method for measuring an azimuth in a specific direction with respect to the three-axis electronic compass using an inclination sensor for detecting the inclination of the three-axis electronic compass, wherein an elevation angle formed by the specific direction and a horizontal plane is determined from the tilt sensor. According to the acquired elevation angle, the step of switching two output values to be selected from among the three output values obtained from the three-axis electronic compass, and the geomagnetic azimuth by the two output values thus switched. Generated by the switching based on the step of acquiring, the step of acquiring the rotation angle around the specific direction from the tilt sensor, and the acquired elevation angle, geomagnetic azimuth, and rotation angle. Calculating a deviation angle of orientation of the specific direction that is characterized by having the steps of correcting the orientation of the specific direction by the shift angle calculated above.

本発明の3軸電子コンパスを用いた方位測定方法は、取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する2つの出力値を切り換えることが好ましい。   In the azimuth measuring method using the three-axis electronic compass of the present invention, the acquired elevation angle exceeds the predetermined boundary value in the range of 30 ° to 60 ° or in the range of −30 ° to −60 °. It is preferable to switch between two output values to be selected.

上記ずれ角を算出する段階は、上記仰角をh、上記回転角をθ、上記ずれ角をΔηとしたとき、ずれ角Δηを下記式3によって算出する段階を含むことができる。
Δη=ArcTan(Tan(θ)/sin(h)) ・・・式3
The step of calculating the deviation angle may include the step of calculating the deviation angle Δη by the following equation 3 where the elevation angle is h, the rotation angle is θ, and the deviation angle is Δη.
Δη = ArcTan (Tan (θ) / sin (h)) Equation 3

上記特定方向の方位を補正する段階では、上記切り換え後の3軸電子コンパスから取得した方位をA、上記切り換え後の特定方向の実際の方位をA′としたとき、実際の方位A′を下記式4によって算出する段階を含むことができる。
A′=A + Δη ・・・式4
In the step of correcting the azimuth in the specific direction, when the azimuth obtained from the three-axis electronic compass after the switching is A and the actual azimuth in the specific direction after the switching is A ′, the actual azimuth A ′ is The step of calculating by Equation 4 may be included.
A '= A + Δη (4)

本発明の3軸電子コンパスを用いた方位測定装置は、直交3軸地磁気センサを有し該センサから得られる各軸の3つの出力値のうち2つを選択して使用する3軸電子コンパスと、この3軸電子コンパスの傾斜を検出する傾斜センサとを有し、3軸電子コンパスに対する特定方向の方位を測定する方位測定装置であって、上記特定方向と水平面の成す仰角を上記傾斜センサから取得して、取得した仰角に応じて、上記3軸電子コンパスから得られる3つの出力値のうち、選択する2つの出力値を切り換える切換手段と、上記切り換えられた2つの出力値により地磁気の方位を取得する方位取得手段と、上記傾斜センサから上記特定方向回りの回転角を取得する回転角取得手段と、上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記切換手段による切り換えによって発生する上記特定方向の方位のずれ角を算出するずれ角算出手段と、上記ずれ角算出手段が算出したずれ角により上記特定方向の方位を補正する補正手段と、を有することを特徴としている。   An azimuth measuring apparatus using a three-axis electronic compass according to the present invention includes a three-axis electronic compass having an orthogonal three-axis geomagnetic sensor and selecting and using two of three output values of each axis obtained from the sensor. An azimuth measuring device for measuring an azimuth in a specific direction with respect to the three-axis electronic compass, wherein the elevation angle formed by the specific direction and a horizontal plane is determined from the tilt sensor. According to the acquired elevation angle, switching means for switching two output values to be selected from among the three output values obtained from the three-axis electronic compass, and the direction of geomagnetism by the two switched output values Based on the acquired elevation angle, geomagnetic azimuth, and rotation angle, the azimuth acquisition means for acquiring the rotation angle, the rotation angle acquisition means for acquiring the rotation angle around the specific direction from the tilt sensor, A deviation angle calculating means for calculating the deviation angle of the azimuth in the specific direction generated by switching by the conversion means; and a correcting means for correcting the azimuth in the specific direction based on the deviation angle calculated by the deviation angle calculating means. It is characterized by.

上記切換手段は、取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する2つの出力値を切り換えることが好ましい。   The switching means switches the two output values to be selected when the acquired elevation angle exceeds a predetermined boundary value in a range of 30 ° to 60 ° or a range of −30 ° to −60 °. preferable.

上記ずれ角算出手段は、上記仰角をh、上記回転角をθ、上記ずれ角をΔηとしたとき、ずれ角Δηを下記式3によって算出することができる。
Δη=ArcTan(Tan(θ)/sin(h)) ・・・式3
The deviation angle calculation means can calculate the deviation angle Δη by the following equation 3 where the elevation angle is h, the rotation angle is θ, and the deviation angle is Δη.
Δη = ArcTan (Tan (θ) / sin (h)) Equation 3

上記補正手段は、上記切り換え後の3軸電子コンパスから取得した方位をA、上記切り換え後の特定方向の実際の方位をA′としたとき、実際の方位A′を下記式4によって算出することができる。
A′=A + Δη ・・・式4
The correction means calculates the actual azimuth A ′ by the following equation 4 when the azimuth obtained from the three-axis electronic compass after the switching is A and the actual azimuth in the specific direction after the switching is A ′. Can do.
A '= A + Δη (4)

本発明の3軸電子コンパスを用いた方位測定装置は、例えばデジタルカメラに搭載することができ、上記特定方向は搭載されたデジタルカメラの撮影レンズの撮影光軸と平行に設定することができる。   The azimuth measuring apparatus using the three-axis electronic compass of the present invention can be mounted on, for example, a digital camera, and the specific direction can be set in parallel with the shooting optical axis of the shooting lens of the mounted digital camera.

本発明の3軸電子コンパスを用いた方位測定装置は、測定した上記撮影レンズの撮影光軸の方位を表示する表示手段を備えていることが好ましい。   The azimuth measuring apparatus using the three-axis electronic compass of the present invention preferably includes display means for displaying the measured azimuth of the photographing optical axis of the photographing lens.

本発明によれば、3軸電子コンパスとこれを搭載した撮影装置の姿勢にかかわらず、撮影装置の特定方向の方位(例えば撮影装置の撮影光学系の撮影光軸の方位)を正確に測定できる3軸電子コンパスを用いた方位測定方法および方位測定装置が得られる。   According to the present invention, it is possible to accurately measure the orientation of a specific direction of the imaging device (for example, the orientation of the imaging optical axis of the imaging optical system of the imaging device) regardless of the attitude of the 3-axis electronic compass and the imaging device equipped with the 3-axis electronic compass. An azimuth measuring method and an azimuth measuring apparatus using a three-axis electronic compass are obtained.

3軸電子コンパスを搭載したカメラの姿勢と3軸電子コンパスの3軸との関係を示した斜視図である。It is the perspective view which showed the relationship between the attitude | position of the camera carrying a 3-axis electronic compass, and the 3 axis | shafts of a 3-axis electronic compass. 同カメラを水平に構えた場合の、(A)は側面図、(B)は平面図である。When the camera is held horizontally, (A) is a side view and (B) is a plan view. 同カメラを上方に向けた場合の側面図である。It is a side view at the time of facing the camera upward. 同カメラを上方に向けた場合の(A)は平面図、(B)は同カメラを撮影光軸回りに回転させた平面図である。When the camera is directed upward, (A) is a plan view, and (B) is a plan view in which the camera is rotated around the photographing optical axis. 3軸電子コンパスを回転させて測定した地磁気ベクトルの様子を示したグラフである。It is the graph which showed the mode of the geomagnetic vector measured by rotating a 3-axis electronic compass. 3軸電子コンパスを回転させて測定した地磁気ベクトルの様子を成分分解して示したグラフである。It is the graph which decomposed | disassembled into the component and showed the mode of the geomagnetic vector measured by rotating a 3-axis electronic compass. 本発明の3軸電子コンパスを備えた方位測定装置を適用したデジタルカメラの実施形態の主要構成要素をブロックで示した図である。It is the figure which showed the main component of embodiment of the digital camera to which the azimuth | direction measuring apparatus provided with the 3-axis electronic compass of this invention was applied with the block. 3軸電子コンパスを用いた方位測定方法および方位測定装置により撮影光軸の向いている方位を算出する動作をフローチャートで示した図である。It is the figure which showed the operation | movement which calculates the azimuth | direction which the imaging | photography optical axis is facing with the azimuth | direction measuring method and azimuth | direction measuring apparatus using a 3-axis electronic compass.

図1は、直交3軸の3軸電子コンパス110を搭載したカメラ10の姿勢と、3軸電子コンパス110の3軸(各地磁気センサの最大感度方向軸)との関係を示した斜視図である。この3軸電子コンパス110は、各地磁気センサによって検出される3つの出力値(電圧値など)のうちの2つの出力値を選択して演算し、地磁気(地磁気線)の方位を検出する構成である。3軸電子コンパス110の3軸は、互いに直交するX軸、Y軸及びZ軸で定義される。図1では、3軸電子コンパス110の3軸地磁気センサの一つが、カメラ10の撮影レンズ101の撮影光軸LOと平行に設定されたY軸と一致している。他の2軸地磁気センサは、カメラ10の底面と平行に設定されたX軸、及びカメラ10の上下方向に設定されたZ軸と一致している。   FIG. 1 is a perspective view showing the relationship between the posture of a camera 10 equipped with a three-axis electronic compass 110 having three orthogonal axes and the three axes of the three-axis electronic compass 110 (the maximum sensitivity direction axis of each magnetic sensor). . The three-axis electronic compass 110 is configured to select and calculate two output values of three output values (voltage values, etc.) detected by the various magnetic sensors and detect the direction of the geomagnetism (geomagnetic line). is there. The three axes of the three-axis electronic compass 110 are defined by an X axis, a Y axis, and a Z axis that are orthogonal to each other. In FIG. 1, one of the three-axis geomagnetic sensors of the three-axis electronic compass 110 is coincident with the Y axis set in parallel with the photographing optical axis LO of the photographing lens 101 of the camera 10. The other two-axis geomagnetic sensors coincide with the X axis set in parallel with the bottom surface of the camera 10 and the Z axis set in the vertical direction of the camera 10.

地球上での地磁気(磁力線)は、水平方向を向いていると想定される。地磁気は方向と大きさを有するベクトル(以下「地磁気ベクトル」という)なので、地球上でカメラ10を水平に構えた場合、3軸電子コンパス110のX−Y軸が水平になるように設定されている。地磁気ベクトルとカメラ10及び3軸電子コンパス110の3軸との関係は図2(A)、(B)のようになる。なお、カメラ10を水平に構えた場合とは、撮影光軸LOが水平(水平面と平行)であり、かつカメラ10の底面、あるいはカメラの撮像面の長辺が水平(水平面と平行)な状態をいう。このようにカメラ10を水平に構えた場合、X−Y軸が水平になり、Z軸が鉛直になる。このカメラ10の姿勢が基準位置である。図2ないし図4において、符号Sは地磁気のS極(磁北)方向を、符号Nは地磁気のN極方向を意味している。   It is assumed that geomagnetism (lines of magnetic force) on the earth is oriented horizontally. Since the geomagnetism is a vector having a direction and a magnitude (hereinafter referred to as “geomagnetic vector”), the XY axis of the three-axis electronic compass 110 is set to be horizontal when the camera 10 is held horizontally on the earth. Yes. The relationship between the geomagnetic vector and the three axes of the camera 10 and the three-axis electronic compass 110 is as shown in FIGS. When the camera 10 is held horizontally, the photographing optical axis LO is horizontal (parallel to the horizontal plane), and the bottom surface of the camera 10 or the long side of the imaging surface of the camera is horizontal (parallel to the horizontal plane). Say. When the camera 10 is held horizontally as described above, the XY axis is horizontal and the Z axis is vertical. The posture of the camera 10 is the reference position. In FIG. 2 to FIG. 4, the symbol S denotes the geomagnetic south pole (magnetic north) direction, and the symbol N denotes the geomagnetic north pole direction.

撮影レンズ101の向きを水平面上で変える(パーンする)と、3軸電子コンパス110のX軸、Y軸と地磁気ベクトルの成す角度が変化して、X軸、Y軸方向の地磁気センサの出力が変動するので、X軸、Y軸方向の地磁気センサの出力を合成して、X軸及びY軸により規定される2軸平面(以下、「X−Y平面」という)内における地磁気ベクトルの方向(磁北)を算出できる。   When the direction of the photographic lens 101 is changed (panned) on the horizontal plane, the angle formed by the X axis and Y axis of the three-axis electronic compass 110 and the geomagnetic vector changes, and the output of the geomagnetic sensor in the X axis and Y axis directions is changed. Therefore, the direction of the geomagnetic vector in the biaxial plane defined by the X axis and the Y axis (hereinafter referred to as “XY plane”) is synthesized by combining the outputs of the geomagnetic sensors in the X axis and Y axis directions. Magnetic north) can be calculated.

地磁気は大きさと方向を持つベクトルなので、X−Y平面に投影される地磁気ベクトルの大きさが大きいほど、つまりX−Y平面と水平面の成す角度(絶対値)が0°に近いほど、地磁気ベクトルの方向(磁北(S極)方向、方位)を精度良く正確に算出可能である。一方、カメラ10を上向きもしくは下向きに傾けると(チルトさせると)、X−Y平面と地磁気の成す角度(絶対値)が大きくなって、X−Y平面に投影される地磁気ベクトルが小さくなって精度が下がり、最大角90°では投影した地磁気ベクトルの大きさが0となるため、3軸電子コンパス110の精度、正確さが極端に下がってしまう。そのため、カメラ10をX−Y平面と地磁気の成す角度45°より上向きもしくは下向きに傾けた場合は、X−Y平面ではなく、X−Z平面で地磁気を測定した方が精度が良い。そこで、本実施形態では、カメラ10に加速度センサ(3軸加速度センサ、傾斜センサ)120(図7)を搭載し、加速度センサ120によりカメラ姿勢、例えば撮影レンズ101の撮影光軸LOと水平面が成す仰角(仰角及び俯角を含む)hを測定して、仰角hの絶対値45°を境に、3軸地磁気センサが出力する3つの出力値のうちの2つの出力値の選択を切り換える。つまり、地磁気ベクトルが水平の場合、仰角hの絶対値が45°未満になるX−Y平面またはX−Z平面を構成する地磁気センサの出力値に切り換える。以下、特定の2軸の出力値を切り換えることを「2軸地磁気センサに切り換える」、特定の2軸の出力値を使って演算することを「2軸地磁気センサで測定する」と言う。   Since the geomagnetism is a vector having a magnitude and direction, the greater the magnitude of the geomagnetic vector projected onto the XY plane, that is, the closer the angle (absolute value) between the XY plane and the horizontal plane is to 0 °, the geomagnetic vector. The direction (magnetic north (S pole) direction, orientation) can be calculated accurately and accurately. On the other hand, when the camera 10 is tilted upward or downward (tilted), the angle (absolute value) formed by the XY plane and the geomagnetism increases, and the geomagnetic vector projected on the XY plane decreases, resulting in accuracy. Since the magnitude of the projected geomagnetic vector is 0 at a maximum angle of 90 °, the accuracy and accuracy of the three-axis electronic compass 110 are extremely lowered. Therefore, when the camera 10 is tilted upward or downward from an angle of 45 ° formed by the XY plane and the geomagnetism, it is better to measure the geomagnetism in the XZ plane rather than the XY plane. Therefore, in the present embodiment, an acceleration sensor (3-axis acceleration sensor, tilt sensor) 120 (FIG. 7) is mounted on the camera 10, and the acceleration sensor 120 forms a horizontal plane with the camera posture, for example, the imaging optical axis LO of the imaging lens 101. The elevation angle (including elevation angle and depression angle) h is measured, and the selection of two output values among the three output values output by the triaxial geomagnetic sensor is switched with the absolute value 45 ° of the elevation angle h as a boundary. That is, when the geomagnetic vector is horizontal, the output value is switched to the output value of the geomagnetic sensor constituting the XY plane or the XZ plane where the absolute value of the elevation angle h is less than 45 °. Hereinafter, switching a specific 2-axis output value is referred to as “switching to a 2-axis geomagnetic sensor”, and calculating using a specific 2-axis output value is referred to as “measuring with a 2-axis geomagnetic sensor”.

しかし、X−Z平面を構成する2軸地磁気センサで地磁気を測定するように2軸地磁気センサを切り換えると、2軸地磁気センサはX−Z平面内における地磁気ベクトルを測定することになる。図1に示したカメラ10の場合、例えば3軸電子コンパス110で使用する2軸地磁気センサをX−Z平面に対応する2軸地磁気センサに切り換えると、カメラ10の底部と上部が向いているZ軸方向、またはカメラ10の側面が向いているX軸方向の方位を測定することになる。   However, when the biaxial geomagnetic sensor is switched so that the geomagnetism is measured by the biaxial geomagnetic sensor constituting the XZ plane, the biaxial geomagnetic sensor measures the geomagnetic vector in the XZ plane. In the case of the camera 10 shown in FIG. 1, for example, when the two-axis geomagnetic sensor used in the three-axis electronic compass 110 is switched to the two-axis geomagnetic sensor corresponding to the XZ plane, the bottom and top of the camera 10 are facing Z. The azimuth in the X-axis direction in which the axial direction or the side surface of the camera 10 faces is measured.

カメラ10で、上述の特許文献4、5のような天体自動追尾撮影をするための追尾データを算出する場合、撮影レンズ101が向いている方位情報が高精度で要求される。しかし、仰角hが45°を超えた状態、つまり3軸電子コンパス110がX−Z平面を構成する2軸地磁気センサに切り換えられた状態でカメラ10を撮影光軸LO回りに回転させるようにカメラ姿勢を変化させた場合、例えば、カメラ10を上方に向けた図3、図4(A)のカメラ姿勢から図4(B)のカメラ姿勢までカメラ10を撮影光軸LO回りに回転させた場合は、撮影レンズ101の向いている方位は変化していないにも関わらず、X−Z平面に対する地磁気ベクトルの向きが変化してしまうため、3軸電子コンパス110は撮影レンズ101の向いている方位とは異なる方位を測定してしまう。   When the camera 10 calculates tracking data for performing automatic celestial tracking shooting as described in Patent Documents 4 and 5 described above, information on the direction in which the shooting lens 101 faces is required with high accuracy. However, in a state where the elevation angle h exceeds 45 °, that is, in a state where the three-axis electronic compass 110 is switched to the two-axis geomagnetic sensor constituting the XZ plane, the camera 10 is rotated about the photographing optical axis LO. When the posture is changed, for example, when the camera 10 is rotated about the photographing optical axis LO from the camera posture in FIGS. 3 and 4A with the camera 10 facing upward to the camera posture in FIG. 4B. Since the orientation of the geomagnetic vector with respect to the XZ plane changes even though the orientation of the photographing lens 101 is not changed, the three-axis electronic compass 110 is directed to the photographing lens 101. Will measure a different direction.

そこで、X−Z平面を構成する2軸地磁気センサに切り換えられた3軸電子コンパス110から測定データ(地磁気線の方向、磁北方向のデータ)を得た際に、カメラ10の姿勢を測定する加速度センサ(3軸加速度センサ)120(図7)から、仰角h(撮影光軸LOと水平面の成す角度)と撮影光軸LO回りの回転角θを得て、3軸電子コンパス110の測定データを撮影光軸LOが向いている方位に補正する。加速度センサ120は、仰角hと撮影光軸LO回りの回転角θを検出する傾斜センサとして機能する。   Therefore, the acceleration for measuring the attitude of the camera 10 when the measurement data (the direction of the magnetic field, the data of the magnetic north direction) is obtained from the three-axis electronic compass 110 switched to the two-axis geomagnetic sensor constituting the XZ plane. An elevation angle h (an angle formed by the photographic optical axis LO and a horizontal plane) and a rotation angle θ around the photographic optical axis LO are obtained from the sensor (three-axis acceleration sensor) 120 (FIG. 7), and measurement data of the three-axis electronic compass 110 is obtained. Correction is made so that the photographic optical axis LO is oriented. The acceleration sensor 120 functions as an inclination sensor that detects an elevation angle h and a rotation angle θ around the photographing optical axis LO.

より具体的には、例えばカメラ10を水平に構えた状態(撮影光軸LO及びカメラ10の底面が水平面と平行な状態)を回転角θが0°の状態とし、X−Y平面を構成する2軸地磁気センサによって、撮影光軸LOの方位が「北」(N)と検出されているとする。そしてカメラ10をそのまま撮影光軸LO回りに回転させずに仰角hを変化させた場合に、3軸電子コンパス110の地磁気センサがX−Z平面を構成する地磁気センサに切り換わっても、3軸電子コンパス110が測定する撮影光軸LOの方位は「北」のまま変動しないように設定(プログラム)しているとする。さてカメラ10を水平に構えた状態で撮影光軸LO回りに回転角θ=90°回転させてカメラ10を縦撮りの姿勢とした場合は、この時、既にY−Z平面を構成する2軸地磁気センサに切り換わっているので、カメラ10をこの縦撮り姿勢から、撮影光軸LO回りに回転させずに仰角hを変化させると、X−Z平面を構成する地磁気センサに切り換わった時点で、3軸電子コンパス10の指す撮影光軸LOの方位は、先の場合の方位(「北」)に対して90°(または−90°)ずれてしまい、「西」(または「東」)が検出されてしまうので、縦撮りの姿勢(θ=90°)が検出された場合には検出値(方位)を−90°(または+90°)して補正すれば良い。しかし、回転角θが、0°と90°の途中の角度(0°<θ<90°)の場合には、3軸電子コンパス110の検出値(方位)から、回転角と同じ値のθを差し引いただけでは正確な方位が求められない。   More specifically, for example, a state in which the camera 10 is held horizontally (a state in which the photographing optical axis LO and the bottom surface of the camera 10 are parallel to the horizontal plane) is a state in which the rotation angle θ is 0 °, and an XY plane is configured. It is assumed that the orientation of the photographing optical axis LO is detected as “north” (N) by the biaxial geomagnetic sensor. If the elevation angle h is changed without rotating the camera 10 around the photographing optical axis LO as it is, the three-axis electronic compass 110 is switched to the geomagnetic sensor constituting the XZ plane, even if the geomagnetic sensor is switched to the three-axis. It is assumed that the orientation of the photographing optical axis LO measured by the electronic compass 110 is set (programmed) so as not to fluctuate as “north”. Now, when the camera 10 is rotated horizontally by the rotation angle θ = 90 ° around the photographing optical axis LO in a state where the camera 10 is held horizontally, the camera 10 is in the vertical shooting posture, and at this time, the two axes that already constitute the YZ plane. Since the camera 10 is switched to the geomagnetic sensor, when the elevation angle h is changed without rotating the camera 10 around the photographing optical axis LO from the vertical shooting posture, the camera 10 is switched to the geomagnetic sensor constituting the XZ plane. The direction of the photographing optical axis LO indicated by the three-axis electronic compass 10 is shifted by 90 ° (or −90 °) with respect to the previous direction (“north”), and “west” (or “east”). Therefore, when the vertical shooting posture (θ = 90 °) is detected, the detection value (azimuth) may be corrected by −90 ° (or + 90 °). However, when the rotation angle θ is an angle between 0 ° and 90 ° (0 ° <θ <90 °), the detected value (azimuth) of the three-axis electronic compass 110 indicates θ equal to the rotation angle. Just deducting can not get an accurate bearing.

カメラ10が仰角h傾いて3軸電子コンパス110の2軸地磁気センサが切り換わった状態で撮影光軸LOの正確な方位角を測定する方法を一般化するには、仰角h(45°<h<90°)に応じて傾いたX−Z平面が、地磁気を検出していることを考慮する。すなわち、仰角hが45°の場合と90°の場合において3軸電子コンパス110が同じ方位0°を指し示していても、仰角hが45°の場合と90°の場合ではX−Z平面上に投影された地磁気ベクトルの大きさが異なる。この地磁気ベクトルの大きさの変化は、水平に構えた円を仰角方向に傾けたときに、上から見た様子は楕円となる様子で説明できる。2軸地磁気センサを水平面で回転させたときに地磁気ベクトルによって得られる点を2軸平面上にプロットしていくと円(以下「磁気円」と呼ぶ)を描く(図5、図6参照)。   In order to generalize the method of measuring the accurate azimuth angle of the imaging optical axis LO in a state where the camera 10 is inclined at the elevation angle h and the two-axis geomagnetic sensor of the three-axis electronic compass 110 is switched, the elevation angle h (45 ° <h Consider that the XZ plane tilted according to <90 °) detects geomagnetism. That is, even when the elevation angle h is 45 ° and 90 °, the three-axis electronic compass 110 indicates the same azimuth 0 °, but the elevation angle h is 45 ° and 90 ° on the XZ plane. The magnitude of the projected geomagnetic vector is different. This change in the magnitude of the geomagnetic vector can be explained by the fact that when viewed from the top, when the horizontally held circle is tilted in the elevation direction, it becomes an ellipse. When the points obtained by the geomagnetic vector when the biaxial geomagnetic sensor is rotated on the horizontal plane are plotted on the biaxial plane, a circle (hereinafter referred to as “magnetic circle”) is drawn (see FIGS. 5 and 6).

図5で具体的に説明すると、カメラ10を水平線に向けた初期状態から撮影光軸LO回りに回転させず(θ=0°)に仰角hが90°になるまで上向きに傾けて撮影光軸LOが天頂を向いた状態で、カメラ10を撮影光軸LO回りに回転させると、(X−Z平面は水平面と平行なので)X−Z平面に描かれる磁気円(地磁気ベクトルの軌跡)は円軌道となり、X−Z平面は地磁気ベクトルに対して、撮影光軸LO回りに回転させた角度(回転角θ)だけ回転する。この磁気円を単位円として描いたのが図5の軌跡(2)の円弧であり、カメラ10を撮影光軸LO回りに45°回転させた場合(θ=45°)の磁気ベクトルがZ軸の方位を表す方位線(4)となる。縦軸は、初期状態では撮影光軸LO(Y軸)方向であり、撮影光軸LOが天頂を向いた状態ではZ軸の方向である。Z軸の方位線(4)は、撮影光軸LOの初期方向から45°ずれている(回転している)のがわかる。   More specifically, referring to FIG. 5, the camera 10 is tilted upward until the elevation angle h reaches 90 ° without rotating the camera 10 around the photographic optical axis LO from the initial state where the camera 10 is directed to the horizontal line (θ = 0 °). When the camera 10 is rotated around the optical axis LO with the LO facing the zenith, the magnetic circle drawn on the XZ plane (the locus of the geomagnetic vector) is a circle (since the XZ plane is parallel to the horizontal plane). The XZ plane rotates with respect to the geomagnetic vector by an angle (rotation angle θ) rotated around the photographing optical axis LO. This magnetic circle is drawn as a unit circle in the arc of the locus (2) in FIG. 5, and the magnetic vector when the camera 10 is rotated 45 ° around the imaging optical axis LO (θ = 45 °) is the Z axis. The azimuth line (4) representing the azimuth of The vertical axis is the direction of the photographing optical axis LO (Y axis) in the initial state, and the direction of the Z axis when the photographing optical axis LO faces the zenith. It can be seen that the azimuth line (4) of the Z axis is deviated (rotated) by 45 ° from the initial direction of the photographing optical axis LO.

一方、カメラ10を初期状態から、撮影光軸LO回りに回転させずに仰角hが45°になるまでチルトさせると(撮影光軸LOの仰角hを45°にすると)、X−Z平面は水平面に対して45°を成すので、X−Z平面に投影される磁気円が軌跡(1)のように楕円となる。この状態でカメラ10を撮影光軸LO回りに45°回転させると、Z軸の方位は方位線(3)のように撮影光軸LOからもZ軸の方位線(4)のデータからもずれた方位を指すことが分かる。これは、図6の軌跡(2)の撮影光軸LO側の円の直径だけが軌跡(1)のように縮小した形となり、撮影光軸LOと垂直の方向では軌跡(2)も(1)も直径は等しいことに原因がある。つまり、図6に示したように、Z軸の方位線(3)と(4)を直交方向のベクトルα、βとベクトルβ、γに成分分解すると、仰角90°と45°の場合において、ベクトルγの大きさは同一であるが、ベクトルαに対してベクトルβが縮小するため、合成するとZ軸の方位線(3)と(4)のようなずれが生じる。そこで本カメラ10は、このように仰角hの変化により生じる撮影光軸LOの方位と3軸電子コンパス110が測定した方位とのずれを、以下の通り補正する。   On the other hand, when the camera 10 is tilted from the initial state until the elevation angle h is 45 ° without rotating around the imaging optical axis LO (when the elevation angle h of the imaging optical axis LO is 45 °), the XZ plane is Since the angle is 45 ° with respect to the horizontal plane, the magnetic circle projected onto the XZ plane becomes an ellipse as shown in the locus (1). In this state, when the camera 10 is rotated 45 ° around the photographic optical axis LO, the Z-axis orientation is shifted from the photographic optical axis LO and the Z-axis azimuth line (4) data as indicated by the azimuth line (3). It can be seen that it points to a different direction. This is a form in which only the diameter of the circle on the photographic optical axis LO side of the locus (2) in FIG. 6 is reduced as the locus (1), and the locus (2) is also (1) in the direction perpendicular to the photographic optical axis LO. ) Also has the same diameter. That is, as shown in FIG. 6, when the Z axis azimuth lines (3) and (4) are decomposed into orthogonal vectors α, β and vectors β, γ, in the case of elevation angles 90 ° and 45 °, Although the magnitude of the vector γ is the same, the vector β is reduced with respect to the vector α. Therefore, when combined, a shift such as Z-axis azimuth lines (3) and (4) occurs. Therefore, the present camera 10 corrects the deviation between the azimuth of the photographing optical axis LO and the azimuth measured by the three-axis electronic compass 110 caused by the change in the elevation angle h as follows.

撮影光軸LOとZ軸の方位線(3)の成す角をΔηとすると、
Δη= ArcTan(ベクトルαの大きさ/ベクトルγの大きさ) ・・・式1
となる。
ベクトルγの大きさは、撮影光軸LO回りの回転角をθとして cos(θ)となる。
ベクトルαの大きさは、楕円の式
(X2)/(a2)+(Y2)/(b2)=1 ・・・式2
において変数Yをベクトルαの大きさと考えると、仰角をhとして、a = 1とおくと、X = cos(θ)、b = sin(h)となるので、ずれ角Δηは、
Δη= ArcTan(((1−(cos(θ)2/a2)1/2)×sin(h))/cos(θ))
=ArcTan(Tan(θ)/sin(h)) ・・・式3
により算出できる。
よって、3軸電子コンパス110から得られている方位Aとずれ角Δηから、2軸地磁気センサの切り換えをおこなった場合の撮影光軸LOの実際の方位A′は、
A′=A + Δη ・・・式4
により算出できる。
If the angle formed by the photographic optical axis LO and the azimuth line (3) of the Z axis is Δη,
Δη = ArcTan (size of vector α / size of vector γ) Equation 1
It becomes.
The magnitude of the vector γ is cos (θ), where θ is the rotation angle around the photographing optical axis LO.
The magnitude of the vector α is the ellipse formula
(X 2 ) / (a 2 ) + (Y 2 ) / (b 2 ) = 1 ・ ・ ・ Equation 2
If the variable Y is considered to be the magnitude of the vector α, the elevation angle is h and if a = 1, then X = cos (θ) and b = sin (h), so the deviation angle Δη is
Δη = ArcTan (((1− (cos (θ) 2 / a 2 ) 1/2 ) × sin (h)) / cos (θ))
= ArcTan (Tan (θ) / sin (h)) Equation 3
Can be calculated.
Therefore, the actual azimuth A ′ of the imaging optical axis LO when the biaxial geomagnetic sensor is switched from the azimuth A obtained from the triaxial electronic compass 110 and the deviation angle Δη is:
A '= A + Δη (4)
Can be calculated.

本発明の3軸電子コンパスを用いた方位測定装置をデジタルカメラに搭載した実施形態について、図7を参照して説明する。本実施形態のカメラ10は、カメラボディ11と撮影レンズ101(撮影光学系L)を備えている。カメラボディ11内には、撮影光学系Lの後方に撮像手段として撮像センサ13が配設されている。撮影光学系Lの撮影光軸LOと撮像センサ13の撮像面14とは直交している。この撮像センサ13は、撮像センサ駆動ユニット(移動手段)15に搭載されている。撮像センサ駆動ユニット15は、固定ステージと、この固定ステージに対して可動な可動ステージと、該固定ステージに対して可動ステージを移動させる電磁回路とを有しており、可動ステージに撮像センサ13が保持されている。撮像センサ13(可動ステージ)は、撮影光軸LOと直交する所望の方向に所望の移動速度で平行移動制御され、さらに撮影光軸LOと平行な軸(光軸と直交する面内の何処かに位置する瞬間中心)を中心として所望の回転速度で回転制御される。このような撮像センサ駆動ユニット15はカメラの像ブレ補正装置の防振ユニットとして公知である。   An embodiment in which the azimuth measuring apparatus using the three-axis electronic compass of the present invention is mounted on a digital camera will be described with reference to FIG. The camera 10 of this embodiment includes a camera body 11 and a photographing lens 101 (photographing optical system L). In the camera body 11, an imaging sensor 13 is disposed behind the imaging optical system L as imaging means. The imaging optical axis LO of the imaging optical system L and the imaging surface 14 of the imaging sensor 13 are orthogonal to each other. This image sensor 13 is mounted on an image sensor drive unit (moving means) 15. The imaging sensor drive unit 15 includes a fixed stage, a movable stage movable with respect to the fixed stage, and an electromagnetic circuit that moves the movable stage with respect to the fixed stage. The imaging sensor 13 is mounted on the movable stage. Is retained. The imaging sensor 13 (movable stage) is controlled to move in a desired direction orthogonal to the photographing optical axis LO at a desired moving speed, and further, an axis parallel to the photographing optical axis LO (somewhere in a plane perpendicular to the optical axis). Rotation is controlled at a desired rotational speed with the instantaneous center) located at the center. Such an image sensor driving unit 15 is known as an image stabilization unit for a camera image blur correction device.

カメラボディ11には、カメラ全体の機能を制御するCPU(切換手段、方位取得手段、回転角取得手段、ずれ角算出手段、補正手段、演算制御手段)21が搭載されている。CPU21は、撮像センサ13を駆動制御し、撮像センサ13が撮影した画像信号を処理してLCDモニタ23に表示するとともに、メモリーカード25に書き込む。(CPU21には、撮像センサ駆動ユニット15を防振ユニットとして用いる際にカメラに加わる振れを検出するために、X方向ジャイロセンサGSX、Y方向ジャイロセンサGSY、及び回転検出ジャイロセンサGSRが検出した信号が入力される。   The camera body 11 is equipped with a CPU (switching means, azimuth acquisition means, rotation angle acquisition means, deviation angle calculation means, correction means, calculation control means) 21 that controls the functions of the entire camera. The CPU 21 controls the drive of the image sensor 13, processes the image signal captured by the image sensor 13, displays it on the LCD monitor 23, and writes it in the memory card 25. (The CPU 21 detects signals detected by the X-direction gyro sensor GSX, the Y-direction gyro sensor GSY, and the rotation detection gyro sensor GSR in order to detect the shake applied to the camera when the image sensor driving unit 15 is used as the image stabilization unit. Is entered.

カメラボディ11は、スイッチ類として、電源スイッチ27、レリーズスイッチ28、設定スイッチ29を備えている。CPU21は、これらのスイッチ27、28、29のオン/オフ状態に応じた制御を実行する。例えば、電源スイッチ27の操作を受けて、図示しないバッテリからの電力供給をオン/オフし、レリーズスイッチ28の操作を受けて焦点調節処理、測光処理及び撮影処理を実行する。設定スイッチ29は、撮影モードなどを選択し、設定するスイッチである。   The camera body 11 includes a power switch 27, a release switch 28, and a setting switch 29 as switches. The CPU 21 executes control according to the on / off states of these switches 27, 28 and 29. For example, in response to the operation of the power switch 27, the power supply from a battery (not shown) is turned on / off, and in response to the operation of the release switch 28, focus adjustment processing, photometry processing, and photographing processing are executed. The setting switch 29 is a switch for selecting and setting a shooting mode or the like.

カメラボディ11内には、緯度情報入力手段としてのGPSユニット130、方位情報入力手段としての3軸電子コンパス110、及び仰角、傾斜情報入力手段としての加速度センサ(3軸加速度センサ)120が内蔵されている。CPU21には、GPSユニット130から緯度及び経度情報、3軸電子コンパス110から方位A情報、及び加速度センサ120は、撮影光軸LO回りの回転角θ(カメラボディ11の左右傾斜角)及び仰角h情報が入力される。   In the camera body 11, a GPS unit 130 as latitude information input means, a three-axis electronic compass 110 as direction information input means, and an acceleration sensor (three-axis acceleration sensor) 120 as elevation angle and inclination information input means are incorporated. ing. The CPU 21 includes latitude and longitude information from the GPS unit 130, azimuth A information from the three-axis electronic compass 110, and an acceleration sensor 120 that includes a rotation angle θ (left-right tilt angle of the camera body 11) and an elevation angle h about the photographing optical axis LO. Information is entered.

カメラ姿勢は、カメラボディ11(撮像センサ13)の基準位置からの撮影光軸LOを中心とする回転角θに関する情報と、撮影レンズ101(撮影光軸LO)の仰角hに関する情報である。カメラボディ11(撮像センサ13)の基準位置は、例えば、撮影光軸LOと平行な方向をY軸、矩形の撮像センサ13の長辺方向と平行な方向(普通はカメラボディ11の底面と平行な方向)で撮影光軸LOと直交する方向をX軸としたときに、Y−X平面が水平面となる位置である。そして、カメラボディ11の撮影光軸LO回りの回転角θ(カメラボディ11が基準位置から撮影光軸LO回りに回転したときの回転角)、カメラボディ11が上方または下方に向けられたときに撮影光軸LO(Y軸)と水平面の成す角度が仰角hである。なお、カメラボディ11の基準位置では回転角(左右傾斜角)θは0°、仰角hは0°である。   The camera posture is information related to the rotation angle θ around the photographing optical axis LO from the reference position of the camera body 11 (imaging sensor 13) and information related to the elevation angle h of the photographing lens 101 (photographing optical axis LO). The reference position of the camera body 11 (imaging sensor 13) is, for example, a direction parallel to the photographing optical axis LO in the Y axis and a direction parallel to the long side direction of the rectangular imaging sensor 13 (usually parallel to the bottom surface of the camera body 11). The YX plane is the horizontal plane when the direction orthogonal to the photographing optical axis LO is the X axis. When the camera body 11 is directed upward or downward, the rotational angle θ around the imaging optical axis LO of the camera body 11 (rotation angle when the camera body 11 rotates around the imaging optical axis LO from the reference position). The angle formed by the photographic optical axis LO (Y axis) and the horizontal plane is the elevation angle h. At the reference position of the camera body 11, the rotation angle (left-right tilt angle) θ is 0 ° and the elevation angle h is 0 °.

3軸電子コンパス110は、Y軸が撮影光軸LOと平行、X軸がカメラボディ11の撮像センサ13の長手方向と平行、Z軸がX軸及びY軸と直交する方向(撮像センサ13の短手方向と平行)に設定されている。そしてCPU21は3軸電子コンパス110を使って撮影光軸LOの方位(撮影方位)を、カメラボディ11の姿勢にかかわらず測定(算出)する。   In the three-axis electronic compass 110, the Y axis is parallel to the photographing optical axis LO, the X axis is parallel to the longitudinal direction of the image sensor 13 of the camera body 11, and the Z axis is perpendicular to the X axis and Y axis (of the image sensor 13). Parallel to the short direction). The CPU 21 measures (calculates) the azimuth (photographing azimuth) of the photographic optical axis LO using the three-axis electronic compass 110 regardless of the posture of the camera body 11.

以上のGPSユニット130、3軸電子コンパス110及び加速度センサ120は、カメラボディ11に内蔵する他、いずれか又は全てをカメラボディ11に対する外付けタイプとしてもよい。具体的には、アクセサリーシュー、又は底板に装着されるブラケットにこれらセンサを装備し、アクセサリーシューの接点を介して、又はUSB等のコネクタを介してCPU21に入力する構成とすることができる。   The GPS unit 130, the three-axis electronic compass 110, and the acceleration sensor 120 may be externally attached to the camera body 11 in addition to being built in the camera body 11. Specifically, these sensors can be mounted on an accessory shoe or a bracket attached to the bottom plate, and input to the CPU 21 via a contact of the accessory shoe or a connector such as a USB.

CPU21は、GPSユニット130から入力した緯度経度情報、3軸電子コンパス110から入力した方位A、加速度センサ120から入力した仰角h及び回転角(カメラ姿勢)θ、並びに前述の焦点距離検出装置105から入力した焦点距離情報fを、LCDモニタ23に表示し、撮影情報またはログ情報としてメモリーカード25に記録する。   The CPU 21 receives the latitude / longitude information input from the GPS unit 130, the azimuth A input from the three-axis electronic compass 110, the elevation angle h and the rotation angle (camera posture) θ input from the acceleration sensor 120, and the focal length detection device 105 described above. The input focal length information f is displayed on the LCD monitor 23 and recorded in the memory card 25 as shooting information or log information.

カメラ10による撮影光軸LOの方位測定動作について、図8に示したフローチャートを参照して説明する。このフローチャートに入ると、先ず、CPU21は、加速度センサ120から仰角hを取得する(S11)。次に、CPU21は、取得した仰角hが45°より大きいか−45°より小さいかチェックする(S13)。CPU21は、仰角hが45°より大きくなく、かつ−45°より小さくない場合(−45°≦h≦45°、S13:NO)は、3軸電子コンパス110から方位Aを取得して(S15)終了する。この場合、3軸電子コンパス110は、X−Y軸平面を構成する2軸地磁気センサを使用しているので、3軸電子コンパス110から入力した方位Aが撮影光軸LOの撮影方位と一致している。   The azimuth measuring operation of the photographing optical axis LO by the camera 10 will be described with reference to the flowchart shown in FIG. In the flowchart, first, the CPU 21 acquires the elevation angle h from the acceleration sensor 120 (S11). Next, the CPU 21 checks whether the acquired elevation angle h is larger than 45 ° or smaller than −45 ° (S13). When the elevation angle h is not larger than 45 ° and not smaller than −45 ° (−45 ° ≦ h ≦ 45 °, S13: NO), the CPU 21 acquires the azimuth A from the triaxial electronic compass 110 (S15). )finish. In this case, since the triaxial electronic compass 110 uses a biaxial geomagnetic sensor constituting an XY axis plane, the azimuth A input from the triaxial electronic compass 110 coincides with the photographing azimuth of the photographing optical axis LO. ing.

仰角hが45°より大きいか、−45°より小さい場合(45°<h≦90°または−90°≦h<−45°、S13:YES)は、CPU21は、3軸電子コンパス110に、X−Z軸平面を構成する2軸地磁気センサに切り換える切り換え信号を送る。この切り換え信号を受けた3軸電子コンパス110は、X−Z軸平面を構成する2軸地磁気センサに切り換えて(S17)、切り換えた2軸地磁気センサにより地磁気を測定し、方位Aを出力する。CPU21は、3軸電子コンパス110からこの方位Aを取得する(S19)。続いてCPU21は、加速度センサ120から回転角θを取得する(S21)。3軸電子コンパス110から方位Aを取得するステップ(S19)と加速度センサ120から回転角θを取得するステップ(S21)は、その順序を問わない。つまり、加速度センサ120から回転角θを取得した後に、3軸電子コンパス110から方位Aを取得してもよい。   When the elevation angle h is larger than 45 ° or smaller than −45 ° (45 ° <h ≦ 90 ° or −90 ° ≦ h <−45 °, S13: YES), the CPU 21 changes the three-axis electronic compass 110 to A switching signal for switching to the biaxial geomagnetic sensor constituting the XZ axis plane is sent. Upon receiving this switching signal, the 3-axis electronic compass 110 switches to the 2-axis geomagnetic sensor constituting the XZ-axis plane (S17), measures the geomagnetism with the switched 2-axis geomagnetic sensor, and outputs the azimuth A. The CPU 21 acquires this orientation A from the three-axis electronic compass 110 (S19). Subsequently, the CPU 21 acquires the rotation angle θ from the acceleration sensor 120 (S21). The order of acquiring the azimuth A from the three-axis electronic compass 110 (S19) and the step of acquiring the rotation angle θ from the acceleration sensor 120 (S21) do not matter. That is, after obtaining the rotation angle θ from the acceleration sensor 120, the azimuth A may be obtained from the three-axis electronic compass 110.

次にCPU21は、仰角hが90°または−90°かどうかを判断する(S22)。仰角hが90°または−90°の場合(S22:YES)は、撮影光軸LOは鉛直上向きまたは鉛直下向きであり、撮影光軸LOの方位は定義できない。また回転角θは取得できない。そこで、方位AはS19で取得した方位のままとし、θ=0°を代入する(S24)。このときLCDモニタ23には「鉛直」等と表示してもよい。仰角hが90°または−90°でない場合(45°<h<90°または−90°<h<−45°、S22:NO)、CPU21は、取得した仰角h、回転角θを式3に代入して、ずれ角Δηを算出する(S23)。さらにCPU21は、取得した方位Aと算出したずれ角Δηを式4に代入して、撮影光軸LOの撮影方位である方位A′を算出する(S25)。   Next, the CPU 21 determines whether the elevation angle h is 90 ° or −90 ° (S22). When the elevation angle h is 90 ° or −90 ° (S22: YES), the photographing optical axis LO is vertically upward or vertically downward, and the orientation of the photographing optical axis LO cannot be defined. Also, the rotation angle θ cannot be acquired. Therefore, the azimuth A remains the azimuth acquired in S19, and θ = 0 ° is substituted (S24). At this time, “vertical” or the like may be displayed on the LCD monitor 23. When the elevation angle h is not 90 ° or −90 ° (45 ° <h <90 ° or −90 ° <h <−45 °, S22: NO), the CPU 21 sets the acquired elevation angle h and rotation angle θ to Equation 3. The displacement angle Δη is calculated by substituting (S23). Further, the CPU 21 substitutes the acquired azimuth A and the calculated shift angle Δη into the equation 4 to calculate the azimuth A ′ that is the photographic azimuth of the photographic optical axis LO (S25).

以上の処理によりCPU21は、カメラボディ11が天頂等を向いていても、撮影光軸LOの正確な撮影方位である方位A′を算出できる。算出した方位A′は、LCDモニタ23に表示され、また撮影データとしてメモリーカード25に書き込まれる。   With the above processing, the CPU 21 can calculate the azimuth A ′, which is an accurate photographing azimuth of the photographing optical axis LO, even when the camera body 11 faces the zenith or the like. The calculated azimuth A ′ is displayed on the LCD monitor 23 and written to the memory card 25 as photographing data.

本発明の3軸電子コンパスを用いた方位測定装置を搭載したカメラ10は、GPSユニット130も搭載しているので、撮影地点の位置情報(緯度、経度情報)とともに、撮影方位、撮影仰角も記録することができる。また以上で得られた情報を特許文献4、5のような天体自動追尾撮影に用いることで、カメラボディ11の仰角によらず、カメラ(撮影装置)10の撮影レンズ(撮影光学系)101が向いている撮影方位を正確に求めることができ、天体自動追尾撮影用の追尾データを正確に算出することができる。   Since the camera 10 equipped with the azimuth measuring apparatus using the three-axis electronic compass of the present invention is also equipped with the GPS unit 130, the photographing azimuth and photographing elevation angle are recorded together with the photographing point position information (latitude and longitude information). can do. Further, by using the information obtained in the above for astronomical automatic tracking shooting as in Patent Documents 4 and 5, the shooting lens (shooting optical system) 101 of the camera (shooting apparatus) 10 can be used regardless of the elevation angle of the camera body 11. It is possible to accurately determine the shooting direction in which the camera is facing, and to accurately calculate tracking data for celestial automatic tracking shooting.

以上の実施形態では、取得した撮影仰角が45°または−45°を超えたときに、2軸地磁気センサをX−Y軸平面からX−Z平面に切り換えている。しかし、2軸地磁気センサを切り換える仰角hの境界値は45°または−45°に限定されず、例えば、30°から60°の範囲内または−30°から−60°の範囲内で適宜設定することができる。   In the above embodiment, when the acquired imaging elevation angle exceeds 45 ° or −45 °, the biaxial geomagnetic sensor is switched from the XY plane to the XZ plane. However, the boundary value of the elevation angle h for switching the biaxial geomagnetic sensor is not limited to 45 ° or −45 °, and is appropriately set within a range of 30 ° to 60 ° or within a range of −30 ° to −60 °, for example. be able to.

以上、本発明の3軸電子コンパスを用いた方位測定方法及び方位測定装置をカメラ10に適用した実施形態について説明したが、本発明は他の機器、例えば、天体望遠鏡、望遠鏡、双眼鏡、カメラ付き携帯電話などの機器に適用できる。   As described above, the embodiment in which the azimuth measuring method and the azimuth measuring apparatus using the three-axis electronic compass of the present invention are applied to the camera 10 has been described. However, the present invention includes other devices such as an astronomical telescope, a telescope, binoculars, and a camera. Applicable to devices such as mobile phones.

10 カメラ
11 カメラボディ
13 撮像センサ
15 撮像センサ駆動ユニット
21 CPU(切換手段、方位取得手段、回転角取得手段、ずれ角算出手段、補正手段、演算制御手段)
23 LCDモニタ(表示手段)
25 メモリーカード
28 レリーズスイッチ
29 設定スイッチ
101 撮影レンズ(撮影光学系)
110 3軸電子コンパス
120 加速度センサ(傾斜センサ)
130 GPSユニット(緯度経度情報入力手段)
GSX X方向ジャイロセンサ
GSY Y方向ジャイロセンサ
GSR 回転検出ジャイロセンサ
LO 撮影光軸(特定方向、Y方向)
DESCRIPTION OF SYMBOLS 10 Camera 11 Camera body 13 Image sensor 15 Image sensor drive unit 21 CPU (switching means, direction acquisition means, rotation angle acquisition means, deviation angle calculation means, correction means, calculation control means)
23 LCD monitor (display means)
25 Memory card 28 Release switch 29 Setting switch 101 Shooting lens (shooting optical system)
110 3-axis electronic compass 120 Acceleration sensor (tilt sensor)
130 GPS unit (latitude and longitude information input means)
GSX X direction gyro sensor GSY Y direction gyro sensor GSR Rotation detection gyro sensor LO Shooting optical axis (specific direction, Y direction)

本発明は、搭載された撮影装置(デジタルカメラ)の姿勢にかかわらず、常に撮影装置の特定方向の方位(例えば撮影装置の撮影光学系の撮影光軸の方位)を正確に測定できる電子方位計(例えば3軸電子コンパス)を用いた方位測定方法および方位測定装置に関する。   The present invention is an electronic azimuth meter that can always accurately measure the azimuth in a specific direction of the photographic device (eg, the azimuth of the photographic optical axis of the photographic optical system of the photographic device) regardless of the orientation of the mounted photographing device (digital camera). The present invention relates to an azimuth measuring method and an azimuth measuring apparatus using (for example, a three-axis electronic compass).

また近年、互いに直交する3軸の地磁気センサを備えた電子方位計としての3軸電子コンパスが開発されている。この種の3軸電子コンパスが搭載された携帯電話などの機器は、互いに直交する3軸の地磁気センサが地磁気を検出し、さらに重力方向(機器の前後方向の傾き)を検出して、携帯電話のユーザーが向いている方位を求めている(特許文献3)。   In recent years, a three-axis electronic compass has been developed as an electronic azimuth meter equipped with three-axis geomagnetic sensors orthogonal to each other. A device such as a mobile phone equipped with this type of three-axis electronic compass detects a geomagnetism by a three-axis geomagnetic sensor orthogonal to each other, and further detects the direction of gravity (tilt in the front-rear direction of the device). The direction in which the user is facing is calculated (Patent Document 3).

しかしながら、特許文献3のような従来の3軸電子コンパスを特許文献4、5のような天体自動追尾撮影に適用して、撮影装置を天頂方向(またはそれに近い方向)に向けた状態で、撮影装置の撮影光学系が向いている撮影方位を測定しようとすると、全く異なる方位が撮影装置の撮影光学系が向いている方位として測定される場合がある。本発明は、このような問題意識に基づき、特定方向の方位を正確に測定できる方位測定方法および方位測定装置を得ることを目的とする。   However, a conventional three-axis electronic compass such as Patent Document 3 is applied to astronomical auto-tracking photographing such as Patent Documents 4 and 5, and the photographing device is directed in the zenith direction (or a direction close thereto). If an attempt is made to measure the shooting direction in which the photographing optical system of the apparatus is directed, a completely different direction may be measured as the direction in which the photographing optical system of the photographing apparatus is directed. An object of the present invention is to provide an azimuth measuring method and an azimuth measuring device capable of accurately measuring the azimuth in a specific direction based on such problem awareness.

本発明の方位測定方法は、複数の磁気検出器を含む電子方位計と、傾斜検出器とを用いて、該電子方位計に対する特定方向の方位を測定する方位測定方法であって、上記特定方向と水平面の成す仰角を上記傾斜検出器から取得して、取得した仰角に応じて、上記複数の磁気検出器から得られる複数の磁気に関する出力値のうち、一部の出力値を選択する段階と、上記選択された出力値により地磁気の方位を取得する段階と、上記傾斜検出器から上記特定方向回りの回転角を取得する段階と、上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記出力値の選択の変更によって発生する上記特定方向の方位の誤差を補正する段階と、を有することを特徴としている。   An azimuth measuring method of the present invention is an azimuth measuring method for measuring an azimuth in a specific direction with respect to the electronic azimuth meter using an electronic azimuth meter including a plurality of magnetic detectors and an inclination detector. And selecting an output value of a plurality of magnetism output values obtained from the plurality of magnetic detectors according to the acquired elevation angle, and obtaining an elevation angle formed by the horizontal plane from the tilt detector. Obtaining a geomagnetic azimuth from the selected output value, obtaining a rotation angle around the specific direction from the tilt detector, and based on the acquired elevation angle, geomagnetic azimuth, and rotation angle. And a step of correcting an error in the azimuth in the specific direction caused by changing the selection of the output value.

本発明の方位測定方法は、取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する出力値を変更する段階をさらに有していてもよい。   The azimuth measuring method of the present invention changes the selected output value when the acquired elevation angle exceeds a predetermined boundary value in the range of 30 ° to 60 ° or in the range of −30 ° to −60 °. There may be further stages.

上記複数の磁気検出器からは、互いに直交する3方向に対応する3つの磁気に関する出力値が得られ、上記3つの出力値のうち、2つの出力値が選択されてもよい。   The plurality of magnetic detectors may obtain output values related to three magnetisms corresponding to three directions orthogonal to each other, and two output values may be selected from the three output values.

本発明の方位測定装置は、複数の磁気検出器を含む電子方位計と、傾斜検出器とを有し、該電子方位計に対する特定方向の方位を測定する方位測定装置であって、上記特定方向と水平面の成す仰角を上記傾斜検出器から取得して、取得した仰角に応じて、上記複数の磁気検出器から得られる複数の磁気に関する出力値のうち、一部の出力値を選択する選択手段と、上記選択された出力値により地磁気の方位を取得する方位取得手段と、上記傾斜検出器から上記特定方向回りの回転角を取得する回転角取得手段と、上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記選択手段による出力値の選択の変更によって発生する上記特定方向の方位の誤差を補正する補正手段と、を有することを特徴としている。   An azimuth measuring apparatus of the present invention is an azimuth measuring apparatus that has an electronic azimuth meter including a plurality of magnetic detectors and an inclination detector, and measures the azimuth in a specific direction with respect to the electronic azimuth meter. And an elevation angle formed by the horizontal plane from the inclination detector, and a selection means for selecting a part of the output values related to the plurality of magnetisms obtained from the plurality of magnetic detectors according to the acquired elevation angle Azimuth obtaining means for obtaining a geomagnetic azimuth from the selected output value, rotation angle obtaining means for obtaining a rotation angle around the specific direction from the tilt detector, the obtained elevation angle, geomagnetic azimuth, And correction means for correcting an error in the azimuth in the specific direction caused by the change in the selection of the output value by the selection means based on the rotation angle.

本発明の方位測定装置は、取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する出力値を変更する変更手段をさらに有していてもよい。   The azimuth measuring apparatus of the present invention changes the output value to be selected when the acquired elevation angle exceeds a predetermined boundary value in the range of 30 ° to 60 ° or in the range of −30 ° to −60 °. You may have a change means further.

上記複数の磁気検出器からは、互いに直交する3方向に対応する3つの磁気に関する出力値が得られ、上記選択手段は、上記3つの出力値のうち、2つの出力値を選択してもよい。   From the plurality of magnetic detectors, output values related to three magnetisms corresponding to three directions orthogonal to each other can be obtained, and the selection means may select two output values among the three output values. .

該方位測定装置はデジタルカメラに搭載されており、上記特定方向は搭載されたデジタルカメラの撮影レンズの撮影光軸と平行に設定されていてもよい。   The azimuth measuring device may be mounted on a digital camera, and the specific direction may be set in parallel with the shooting optical axis of the shooting lens of the mounted digital camera.

該方位測定装置は、測定した上記撮影レンズの撮影光軸の方位を表示する表示手段を備えていてもよい。   The azimuth measuring apparatus may include display means for displaying the measured azimuth of the photographing optical axis of the photographing lens.

本発明によれば、特定方向の方位を正確に測定できる方位測定方法および方位測定装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the azimuth | direction measuring method and azimuth | direction measuring apparatus which can measure the azimuth | direction of a specific direction correctly are obtained.

図1は、直交3軸の3軸電子コンパス(複数の磁気検出器、電子方位計)110を搭載したカメラ(方位測定装置)10の姿勢と、3軸電子コンパス110の3軸(各地磁気センサの最大感度方向軸)との関係を示した斜視図である。この3軸電子コンパス110は、各地磁気センサによって検出される3つの出力値(電圧値など)のうちの2つの出力値を選択して演算し、地磁気(地磁気線)の方位を検出する構成である。3軸電子コンパス110の3軸は、互いに直交するX軸、Y軸及びZ軸で定義される。図1では、3軸電子コンパス110の3軸地磁気センサの一つが、カメラ10の撮影レンズ101の撮影光軸LOと平行に設定されたY軸と一致している。他の2軸地磁気センサは、カメラ10の底面と平行に設定されたX軸、及びカメラ10の上下方向に設定されたZ軸と一致している。   FIG. 1 shows a posture of a camera (azimuth measuring device) 10 equipped with a three-axis electronic compass (multiple magnetic detectors, electronic azimuth meter) 110 having three orthogonal axes, and three axes (local magnetic sensors of the three-axis electronic compass 110). It is the perspective view which showed the relationship with the maximum sensitivity direction axis | shaft). The three-axis electronic compass 110 is configured to select and calculate two output values of three output values (voltage values, etc.) detected by the various magnetic sensors and detect the direction of the geomagnetism (geomagnetic line). is there. The three axes of the three-axis electronic compass 110 are defined by an X axis, a Y axis, and a Z axis that are orthogonal to each other. In FIG. 1, one of the three-axis geomagnetic sensors of the three-axis electronic compass 110 is coincident with the Y axis set in parallel with the photographing optical axis LO of the photographing lens 101 of the camera 10. The other two-axis geomagnetic sensors coincide with the X axis set in parallel with the bottom surface of the camera 10 and the Z axis set in the vertical direction of the camera 10.

地磁気は大きさと方向を持つベクトルなので、X−Y平面に投影される地磁気ベクトルの大きさが大きいほど、つまりX−Y平面と水平面の成す角度(絶対値)が0°に近いほど、地磁気ベクトルの方向(磁北(S極)方向、方位)を精度良く正確に算出可能である。一方、カメラ10を上向きもしくは下向きに傾けると(チルトさせると)、X−Y平面と地磁気の成す角度(絶対値)が大きくなって、X−Y平面に投影される地磁気ベクトルが小さくなって精度が下がり、最大角90°では投影した地磁気ベクトルの大きさが0となるため、3軸電子コンパス110の精度、正確さが極端に下がってしまう。そのため、カメラ10をX−Y平面と地磁気の成す角度45°より上向きもしくは下向きに傾けた場合は、X−Y平面ではなく、X−Z平面で地磁気を測定した方が精度が良い。そこで、本実施形態では、カメラ10に加速度センサ(3軸加速度センサ、傾斜センサ、傾斜検出器)120(図7)を搭載し、加速度センサ120によりカメラ姿勢、例えば撮影レンズ101の撮影光軸LOと水平面が成す仰角(仰角及び俯角を含む)hを測定して、仰角hの絶対値45°を境に、3軸地磁気センサが出力する3つの出力値のうちの2つの出力値の選択を切り換える。つまり、地磁気ベクトルが水平の場合、仰角hの絶対値が45°未満になるX−Y平面またはX−Z平面を構成する地磁気センサの出力値に切り換える。以下、特定の2軸の出力値を切り換えることを「2軸地磁気センサに切り換える」、特定の2軸の出力値を使って演算することを「2軸地磁気センサで測定する」と言う。   Since the geomagnetism is a vector having a magnitude and direction, the greater the magnitude of the geomagnetic vector projected onto the XY plane, that is, the closer the angle (absolute value) between the XY plane and the horizontal plane is to 0 °, the geomagnetic vector. The direction (magnetic north (S pole) direction, orientation) can be calculated accurately and accurately. On the other hand, when the camera 10 is tilted upward or downward (tilted), the angle (absolute value) formed by the XY plane and the geomagnetism increases, and the geomagnetic vector projected on the XY plane decreases, resulting in accuracy. Since the magnitude of the projected geomagnetic vector is 0 at a maximum angle of 90 °, the accuracy and accuracy of the three-axis electronic compass 110 are extremely lowered. Therefore, when the camera 10 is tilted upward or downward from an angle of 45 ° formed by the XY plane and the geomagnetism, it is better to measure the geomagnetism in the XZ plane rather than the XY plane. Therefore, in the present embodiment, an acceleration sensor (three-axis acceleration sensor, tilt sensor, tilt detector) 120 (FIG. 7) is mounted on the camera 10, and the camera attitude, for example, the shooting optical axis LO of the shooting lens 101 is measured by the acceleration sensor 120. The elevation angle (including elevation angle and depression angle) formed by the horizontal plane is measured, and two output values are selected from the three output values output by the triaxial geomagnetic sensor with the absolute value 45 ° of the elevation angle h as a boundary. Switch. That is, when the geomagnetic vector is horizontal, the output value is switched to the output value of the geomagnetic sensor constituting the XY plane or the XZ plane where the absolute value of the elevation angle h is less than 45 °. Hereinafter, switching a specific 2-axis output value is referred to as “switching to a 2-axis geomagnetic sensor”, and calculating using a specific 2-axis output value is referred to as “measuring with a 2-axis geomagnetic sensor”.

カメラボディ11には、カメラ全体の機能を制御するCPU(切換手段、方位取得手段、回転角取得手段、ずれ角算出手段、補正手段、演算制御手段、選択手段、変更手段)21が搭載されている。CPU21は、撮像センサ13を駆動制御し、撮像センサ13が撮影した画像信号を処理してLCDモニタ23に表示するとともに、メモリーカード25に書き込む。(CPU21には、撮像センサ駆動ユニット15を防振ユニットとして用いる際にカメラに加わる振れを検出するために、X方向ジャイロセンサGSX、Y方向ジャイロセンサGSY、及び回転検出ジャイロセンサGSRが検出した信号が入力される。   The camera body 11 is equipped with a CPU (switching means, azimuth acquisition means, rotation angle acquisition means, deviation angle calculation means, correction means, calculation control means, selection means, change means) 21 that controls the functions of the entire camera. Yes. The CPU 21 controls the drive of the image sensor 13, processes the image signal captured by the image sensor 13, displays it on the LCD monitor 23, and writes it in the memory card 25. (The CPU 21 detects signals detected by the X-direction gyro sensor GSX, the Y-direction gyro sensor GSY, and the rotation detection gyro sensor GSR in order to detect the shake applied to the camera when the image sensor driving unit 15 is used as the image stabilization unit. Is entered.

10 カメラ(方位測定装置)
11 カメラボディ
13 撮像センサ
15 撮像センサ駆動ユニット
21 CPU(切換手段、方位取得手段、回転角取得手段、ずれ角算出手段、補正手段、演算制御手段、選択手段、変更手段)
23 LCDモニタ(表示手段)
25 メモリーカード
28 レリーズスイッチ
29 設定スイッチ
101 撮影レンズ(撮影光学系)
110 3軸電子コンパス(複数の磁気検出器、電子方位計)
120 加速度センサ(傾斜センサ、傾斜検出器)
130 GPSユニット(緯度経度情報入力手段)
GSX X方向ジャイロセンサ
GSY Y方向ジャイロセンサ
GSR 回転検出ジャイロセンサ
LO 撮影光軸(特定方向、Y方向)
10 Camera (azimuth measuring device)
11 Camera body 13 Image sensor 15 Image sensor drive unit 21 CPU (switching means, azimuth acquisition means, rotation angle acquisition means, deviation angle calculation means, correction means, calculation control means, selection means, change means)
23 LCD monitor (display means)
25 Memory card 28 Release switch 29 Setting switch 101 Shooting lens (shooting optical system)
110 3-axis electronic compass (multiple magnetic detectors, electronic compass)
120 Acceleration sensor (tilt sensor, tilt detector)
130 GPS unit (latitude and longitude information input means)
GSX X direction gyro sensor GSY Y direction gyro sensor GSR Rotation detection gyro sensor LO Shooting optical axis (specific direction, Y direction)

Claims (10)

直交3軸地磁気センサを有し該センサから得られる各軸の3つの出力値のうち2つを選択して使用する3軸電子コンパスと、この3軸電子コンパスの傾斜を検出する傾斜センサとを用いて、3軸電子コンパスに対する特定方向の方位を測定する方位測定方法であって、
上記特定方向と水平面の成す仰角を上記傾斜センサから取得して、取得した仰角に応じて、上記3軸電子コンパスから得られる3つの出力値のうち、選択する2つの出力値を切り換える段階と、
上記切り換えられた2つの出力値により地磁気の方位を取得する段階と、
上記傾斜センサから上記特定方向回りの回転角を取得する段階と、
上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記切り換えによって発生する上記特定方向の方位のずれ角を算出する段階と、
上記算出したずれ角により上記特定方向の方位を補正する段階と、
を有することを特徴とする3軸電子コンパスを用いた方位測定方法。
A three-axis electronic compass having an orthogonal three-axis geomagnetic sensor and selecting and using two of three output values of each axis obtained from the sensor, and an inclination sensor for detecting the inclination of the three-axis electronic compass Using an orientation measurement method for measuring an orientation in a specific direction with respect to a three-axis electronic compass,
Acquiring an elevation angle formed by the specific direction and the horizontal plane from the tilt sensor, and switching two output values to be selected from among the three output values obtained from the three-axis electronic compass according to the acquired elevation angle;
Obtaining a geomagnetic orientation from the two switched output values;
Obtaining a rotation angle around the specific direction from the tilt sensor;
Calculating a deviation angle of the azimuth of the specific direction generated by the switching based on the acquired elevation angle, geomagnetic azimuth, and rotation angle;
Correcting the direction of the specific direction based on the calculated deviation angle;
A direction measuring method using a three-axis electronic compass characterized by comprising:
請求項1記載の3軸電子コンパスを用いた方位測定方法において、
取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する2つの出力値を切り換える3軸電子コンパスを用いた方位測定方法。
In the azimuth measuring method using the three-axis electronic compass according to claim 1,
When the acquired elevation angle exceeded a predetermined boundary value in the range of 30 ° to 60 ° or in the range of −30 ° to −60 °, a three-axis electronic compass that switches between the two output values to be selected was used. Orientation measurement method.
請求項1または2記載の3軸電子コンパスを用いた方位測定方法において、
上記ずれ角を算出する段階は、上記仰角をh、上記回転角をθ、上記ずれ角をΔηとしたとき、ずれ角Δηを下記式3によって算出する段階を含む3軸電子コンパスを用いた方位測定方法。
Δη=ArcTan(Tan(θ)/sin(h)) ・・・式3
In the direction measuring method using the three-axis electronic compass according to claim 1 or 2,
The step of calculating the deviation angle includes an orientation using a three-axis electronic compass including a step of calculating the deviation angle Δη by the following equation 3 where the elevation angle is h, the rotation angle is θ, and the deviation angle is Δη. Measuring method.
Δη = ArcTan (Tan (θ) / sin (h)) Equation 3
請求項3記載の3軸電子コンパスを用いた方位測定方法において、
上記特定方向の方位を補正する段階では、上記切り換え後の3軸電子コンパスから取得した方位をA、上記切り換え後の特定方向の実際の方位をA′としたとき、実際の方位A′を下記式4によって算出する段階を含む3軸電子コンパスを用いた方位測定方法。
A′=A + Δη ・・・式4
In the azimuth measuring method using the three-axis electronic compass according to claim 3,
In the step of correcting the azimuth in the specific direction, when the azimuth obtained from the three-axis electronic compass after the switching is A and the actual azimuth in the specific direction after the switching is A ′, the actual azimuth A ′ is An azimuth measuring method using a three-axis electronic compass including the step of calculating by Equation 4.
A '= A + Δη (4)
直交3軸地磁気センサを有し該センサから得られる各軸の3つの出力値のうち2つを選択して使用する3軸電子コンパスと、この3軸電子コンパスの傾斜を検出する傾斜センサとを有し、3軸電子コンパスに対する特定方向の方位を測定する方位測定装置であって、
上記特定方向と水平面の成す仰角を上記傾斜センサから取得して、取得した仰角に応じて、上記3軸電子コンパスから得られる3つの出力値のうち、選択する2つの出力値を切り換える切換手段と、
上記切り換えられた2つの出力値により地磁気の方位を取得する方位取得手段と、
上記傾斜センサから上記特定方向回りの回転角を取得する回転角取得手段と、
上記取得した仰角、地磁気の方位、及び回転角に基づいて、上記切換手段による切り換えによって発生する上記特定方向の方位のずれ角を算出するずれ角算出手段と、
上記ずれ角算出手段が算出したずれ角により上記特定方向の方位を補正する補正手段と、
を有することを特徴とする3軸電子コンパスを用いた方位測定装置。
A three-axis electronic compass having an orthogonal three-axis geomagnetic sensor and selecting and using two of three output values of each axis obtained from the sensor, and an inclination sensor for detecting the inclination of the three-axis electronic compass Having an orientation measuring device for measuring the orientation of a specific direction with respect to the three-axis electronic compass,
Switching means for acquiring an elevation angle formed by the specific direction and a horizontal plane from the tilt sensor, and switching two output values to be selected among the three output values obtained from the three-axis electronic compass according to the acquired elevation angle; ,
Direction acquisition means for acquiring the direction of geomagnetism from the two output values switched;
Rotation angle acquisition means for acquiring a rotation angle around the specific direction from the tilt sensor;
A deviation angle calculating means for calculating a deviation angle of the azimuth in the specific direction generated by the switching by the switching means based on the acquired elevation angle, geomagnetic azimuth, and rotation angle;
Correction means for correcting the azimuth in the specific direction based on the deviation angle calculated by the deviation angle calculation means;
An azimuth measuring apparatus using a three-axis electronic compass.
請求項5記載の3軸電子コンパスを用いた方位測定装置において、
上記切換手段は、取得した仰角が、30°から60°の範囲又は−30°から−60°の範囲にある所定の境界値を超えたときに、上記選択する2つの出力値を切り換える3軸電子コンパスを用いた方位測定装置。
In the azimuth measuring apparatus using the three-axis electronic compass according to claim 5,
The switching means is configured to switch the two selected output values when the acquired elevation angle exceeds a predetermined boundary value in the range of 30 ° to 60 ° or in the range of −30 ° to −60 °. Orientation measurement device using an electronic compass.
請求項5または6記載の3軸電子コンパスを用いた方位測定装置において、
上記ずれ角算出手段は、上記仰角をh、上記回転角をθ、上記ずれ角をΔηとしたとき、ずれ角Δηを下記式3によって算出する3軸電子コンパスを用いた方位測定装置。
Δη=ArcTan(Tan(θ)/sin(h)) ・・・式3
In the direction measuring device using the three-axis electronic compass according to claim 5 or 6,
The azimuth measuring apparatus using a three-axis electronic compass that calculates the deviation angle Δη by the following equation 3 when the elevation angle is h, the rotation angle is θ, and the deviation angle is Δη.
Δη = ArcTan (Tan (θ) / sin (h)) Equation 3
請求項7記載の3軸電子コンパスを用いた方位測定装置において、
上記補正手段は、上記切り換え後の3軸電子コンパスから取得した方位をA、上記切り換え後の特定方向の実際の方位をA′としたとき、実際の方位A′を下記式4によって算出する3軸電子コンパスを用いた方位測定装置。
A′=A + Δη ・・・式4
In the direction measuring device using the three-axis electronic compass according to claim 7,
The correction means calculates the actual azimuth A ′ by the following equation 4 when the azimuth obtained from the three-axis electronic compass after the switching is A and the actual azimuth in the specific direction after the switching is A ′. Orientation measurement device using an axial electronic compass.
A '= A + Δη (4)
請求項5ないし8のいずれか1項記載の3軸電子コンパスを用いた方位測定装置において、
該方位測定装置はデジタルカメラに搭載されており、上記特定方向は搭載されたデジタルカメラの撮影レンズの撮影光軸と平行に設定されている3軸電子コンパスを用いた方位測定装置。
In the azimuth measuring apparatus using the three-axis electronic compass according to any one of claims 5 to 8,
The azimuth measuring apparatus is mounted on a digital camera, and the azimuth measuring apparatus uses a three-axis electronic compass in which the specific direction is set parallel to the photographing optical axis of the photographing lens of the mounted digital camera.
請求項9記載の3軸電子コンパスを用いた方位測定装置において、
該方位測定装置は、測定した上記撮影レンズの撮影光軸の方位を表示する表示手段を備えている3軸電子コンパスを用いた方位測定装置。
In the azimuth measuring apparatus using the three-axis electronic compass according to claim 9,
The azimuth measuring apparatus is an azimuth measuring apparatus using a three-axis electronic compass provided with display means for displaying the measured azimuth of the photographing optical axis of the photographing lens.
JP2015237112A 2015-12-04 2015-12-04 Direction measuring method and direction measuring apparatus Active JP6137286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015237112A JP6137286B2 (en) 2015-12-04 2015-12-04 Direction measuring method and direction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015237112A JP6137286B2 (en) 2015-12-04 2015-12-04 Direction measuring method and direction measuring apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011132364A Division JP5849448B2 (en) 2011-06-14 2011-06-14 Direction measuring method and direction measuring apparatus using a three-axis electronic compass

Publications (2)

Publication Number Publication Date
JP2016095310A true JP2016095310A (en) 2016-05-26
JP6137286B2 JP6137286B2 (en) 2017-05-31

Family

ID=56071659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015237112A Active JP6137286B2 (en) 2015-12-04 2015-12-04 Direction measuring method and direction measuring apparatus

Country Status (1)

Country Link
JP (1) JP6137286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002126A1 (en) * 2019-07-02 2021-01-07 キヤノン株式会社 Control device, optical system, control method, and program
CN112923905A (en) * 2021-01-28 2021-06-08 安徽省交通规划设计研究总院股份有限公司 Method for collecting position information of bridge diseases

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139536A (en) * 2001-11-05 2003-05-14 Japan Aviation Electronics Industry Ltd Declinometer and azimuth measuring method
JP2003240553A (en) * 2002-02-19 2003-08-27 Casio Comput Co Ltd Electronic azimuth meter
JP2005294931A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Radio portable terminal and position information system
JP2006053081A (en) * 2004-08-12 2006-02-23 Asahi Kasei Electronics Co Ltd Azimuth measuring device and azimuth measuring method
JP2008020296A (en) * 2006-07-12 2008-01-31 Citizen Holdings Co Ltd Azimuth sensor
JP2010199971A (en) * 2009-02-25 2010-09-09 Casio Computer Co Ltd Image pickup apparatus, imaging method, and program
WO2010109536A1 (en) * 2009-03-27 2010-09-30 三菱電機株式会社 Numerical control device and method of controlling the numerical control device
US20100312510A1 (en) * 2009-06-05 2010-12-09 Apple Inc. Dynamic compass calibration in a portable device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139536A (en) * 2001-11-05 2003-05-14 Japan Aviation Electronics Industry Ltd Declinometer and azimuth measuring method
JP2003240553A (en) * 2002-02-19 2003-08-27 Casio Comput Co Ltd Electronic azimuth meter
JP2005294931A (en) * 2004-03-31 2005-10-20 Matsushita Electric Ind Co Ltd Radio portable terminal and position information system
JP2006053081A (en) * 2004-08-12 2006-02-23 Asahi Kasei Electronics Co Ltd Azimuth measuring device and azimuth measuring method
JP2008020296A (en) * 2006-07-12 2008-01-31 Citizen Holdings Co Ltd Azimuth sensor
JP2010199971A (en) * 2009-02-25 2010-09-09 Casio Computer Co Ltd Image pickup apparatus, imaging method, and program
WO2010109536A1 (en) * 2009-03-27 2010-09-30 三菱電機株式会社 Numerical control device and method of controlling the numerical control device
US20100312510A1 (en) * 2009-06-05 2010-12-09 Apple Inc. Dynamic compass calibration in a portable device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002126A1 (en) * 2019-07-02 2021-01-07 キヤノン株式会社 Control device, optical system, control method, and program
CN112923905A (en) * 2021-01-28 2021-06-08 安徽省交通规划设计研究总院股份有限公司 Method for collecting position information of bridge diseases

Also Published As

Publication number Publication date
JP6137286B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5849448B2 (en) Direction measuring method and direction measuring apparatus using a three-axis electronic compass
JP5812120B2 (en) Imaging device
US9749522B2 (en) Tracking device for portable astrophotography of the night sky
US8860801B2 (en) Electronic device and image pickup apparatus
US9509920B2 (en) Method of automatically tracking and photographing celestial objects, and camera employing this method
US8761460B2 (en) Method of automatically tracking and photographing celestial objects, and celestial-object auto-tracking photographing apparatus
US20140085717A1 (en) Systems and methods for closed-loop telescope control
JP6257439B2 (en) Imaging apparatus and imaging method
JP2013005244A6 (en) Astronomical auto tracking imaging method and astronomical auto tracking imaging device
JP2013005214A (en) Astronomical automatic tracking photographing method and astronomical automatic tracking photographing device
JP6137286B2 (en) Direction measuring method and direction measuring apparatus
JP5886241B2 (en) Portable imaging device
JP2021141468A (en) Shake correction device, imaging device, shooting system, shake correction method, shooting method, and program
KR101525224B1 (en) A portable terminal of having the auto photographing mode
JP2012089960A (en) Camera equipped with camera shake preventing mechanism
JP7017961B2 (en) Blur correction device and blur correction method
JP6402640B2 (en) Shooting system
US11375127B2 (en) Image-capturing device, image capturing method, image-capturing system, and electronic device
JP6373046B2 (en) Portable photographing apparatus and photographing program
JP5373140B2 (en) Portable photographing apparatus and photographing program
WO2023028989A1 (en) Imaging device, image processing method, and program
JP2015132772A (en) Blurring correction device
CN117941367A (en) Imaging apparatus, image processing method, and program
JP2016029336A (en) Electronic apparatus
JP2005274150A (en) Mobile information terminal and azimuth information utilizing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6137286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250