JP2016095138A - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP2016095138A
JP2016095138A JP2014229378A JP2014229378A JP2016095138A JP 2016095138 A JP2016095138 A JP 2016095138A JP 2014229378 A JP2014229378 A JP 2014229378A JP 2014229378 A JP2014229378 A JP 2014229378A JP 2016095138 A JP2016095138 A JP 2016095138A
Authority
JP
Japan
Prior art keywords
detection type
direction detection
type magnetoresistive
magnetoresistive effect
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014229378A
Other languages
Japanese (ja)
Inventor
亮祐 青木
Ryosuke Aoki
亮祐 青木
誠二 福岡
Seiji Fukuoka
誠二 福岡
利尚 木戸
Toshinao Kido
利尚 木戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014229378A priority Critical patent/JP2016095138A/en
Publication of JP2016095138A publication Critical patent/JP2016095138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor capable of reducing output variation due to variation in passing position of media.SOLUTION: A magnetic sensor 1 includes a permanent magnet 10 and spin-valve magnetoresistance effect elements MR1-MR4. For each channel, a pair of spin-valve magnetoresistance effect elements MR1, MR2 and a pair of spin-valve magnetoresistance effect elements MR3, MR4 are symmetrically arranged about the center of a channel width, with an empty region 13 located therebetween having no direction-detecting magnetoresistance effect elements for identifying a medium 30 disposed therein.SELECTED DRAWING: Figure 1

Description

本発明は、磁性粉又は磁性膜の付着した媒体、例えば紙幣を識別する磁気センサに関する。   The present invention relates to a magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached, for example, a bill.

ATMや自動販売機等には、投入された紙幣を識別する紙幣識別装置が設けられる。紙幣識別装置は、紙幣に印刷された磁気インクを読み取る磁気センサを備える。磁気センサは、例えば、磁石と、当該磁石の磁極面の上方に設けられた磁気検出素子とを有し、紙幣の通過に伴う磁気変動を検出する。下記特許文献1は、一対のスピンバルブ型磁気抵抗効果素子を識別対象の媒体の相対移動方向に対して略垂直に配置し、かつ当該一対のスピンバルブ型磁気抵抗効果素子に前記媒体の相対移動方向と略垂直なバイアス磁界を印加する構成を開示している。   ATMs, vending machines, and the like are provided with banknote identification devices that identify inserted banknotes. A banknote identification apparatus is provided with the magnetic sensor which reads the magnetic ink printed on the banknote. A magnetic sensor has a magnet and the magnetic detection element provided above the magnetic pole surface of the said magnet, for example, and detects the magnetic fluctuation accompanying the passage of a banknote. In Patent Document 1 below, a pair of spin-valve magnetoresistive elements are arranged substantially perpendicular to the relative movement direction of a medium to be identified, and the medium is moved relative to the pair of spin-valve magnetoresistive elements. A configuration for applying a bias magnetic field substantially perpendicular to the direction is disclosed.

特開2006−266862号公報JP 2006-266862 A

例えば紙幣識別装置において、投入された紙幣を短手方向に移動させながら識別する場合、毎回の投入の度に紙幣の長手方向位置が若干ではあるが変化する。そうすると、磁気センサ上を通過する紙幣の磁気パターンの位置も変化し、磁気センサの出力に影響を与える。識別精度を向上させるには、そうした影響は極力小さいことが望ましい。   For example, in the banknote identification device, when the inserted banknote is identified while being moved in the short direction, the longitudinal position of the banknote changes slightly each time it is inserted. If it does so, the position of the magnetic pattern of the bill which passes on a magnetic sensor will also change, and will affect the output of a magnetic sensor. In order to improve identification accuracy, it is desirable that such influence be as small as possible.

本発明はこうした状況を認識してなされたものであり、その目的は、媒体の通過位置変動による出力変動を小さくすることの可能な磁気センサを提供することにある。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a magnetic sensor capable of reducing the output fluctuation due to the passage position fluctuation of the medium.

本発明のある態様は、磁気センサである。この磁気センサは、
磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央を境界とした両側の各々において、前記境界の付近では、前記境界の付近以外と比較して、方向検知型磁気抵抗効果素子が疎に配列されている。
One embodiment of the present invention is a magnetic sensor. This magnetic sensor
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
The direction detection type magnetoresistive effect element in the vicinity of the boundary on each of both sides with the center of the length range of the arrangement of the plurality of direction detection type magnetoresistive effect elements as compared with other than the vicinity of the boundary. Are sparsely arranged.

本発明のもう1つの態様は、磁気センサである。この磁気センサは、
磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央に、媒体識別用の方向検知型磁気抵抗効果素子が配置されない非配置領域が存在する。
Another aspect of the present invention is a magnetic sensor. This magnetic sensor
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
There is a non-arrangement area in which the direction identification type magnetoresistive element for medium identification is not arranged at the center of the length range of the arrangement of the plurality of direction detection type magnetoresistive elements.

本発明のもう1つの態様は、磁気センサである。この磁気センサは、
磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
点状の磁気パターンを前記媒体の相対移動方向と同じ方向に相対移動させて前記複数の方向検知型磁気抵抗効果素子の近傍を通過させた場合における、前記配列方向に関する前記点状の磁気パターンの位置に対する前記複数の方向検知型磁気抵抗効果素子から得られる出力の特性の変動幅が、前記配列方向に関する前記点状の磁気パターンの位置が前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央と一致するときの出力を基準として、前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲のうち中央を含む少なくとも60%の連続する範囲において10%以内である。
Another aspect of the present invention is a magnetic sensor. This magnetic sensor
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
The point-like magnetic pattern in the arrangement direction when the point-like magnetic pattern is relatively moved in the same direction as the relative movement direction of the medium and passed through the vicinity of the plurality of direction-sensitive magnetoresistive elements. The variation width of the output characteristics obtained from the plurality of direction detection type magnetoresistive effect elements with respect to the position is the length of the arrangement of the plurality of direction detection type magnetoresistive effect elements is the position of the dotted magnetic pattern with respect to the arrangement direction. With reference to the output when it coincides with the center of the range, it is within 10% in the continuous range of at least 60% including the center in the length range of the arrangement of the plurality of direction detecting magnetoresistive elements.

前記複数の方向検知型磁気抵抗効果素子は、自身の配列の長さ範囲の中央を境界として両側にそれぞれ同数ずつ分かれて存在してもよい。   The plurality of direction detection type magnetoresistive effect elements may be present in the same number on both sides with the center of the length range of the array as a boundary.

前記第1及び第2の方向検知型磁気抵抗効果素子群は、前記境界を挟んで互いに反対側に位置してもよい。   The first and second direction-sensitive magnetoresistive element groups may be located on opposite sides of the boundary.

前記複数の方向検知型磁気抵抗効果素子は、前記境界を挟んで互いに対称となる配置であってもよい。   The plurality of direction-sensitive magnetoresistive elements may be arranged symmetrically with respect to each other with the boundary therebetween.

前記第1及び第2の方向検知型磁気抵抗効果素子群が相互に高電圧側及び低電圧側に分かれるように前記複数の方向検知型磁気抵抗効果素子が直列接続され、前記第1及び第2の方向検知型磁気抵抗効果素子群の相互接続点からセンサ出力が取り出されてもよい。   The plurality of direction detection type magnetoresistive effect elements are connected in series so that the first and second direction detection type magnetoresistive effect element groups are separated from each other on the high voltage side and the low voltage side, and the first and second The sensor output may be taken out from the interconnection point of the direction detection type magnetoresistive element group.

前記複数の方向検知型磁気抵抗効果素子の各々が、スピンバルブ型磁気抵抗効果素子であってもよい。   Each of the plurality of direction detection type magnetoresistive effect elements may be a spin valve type magnetoresistive effect element.

前記複数の方向検知型磁気抵抗効果素子が1つのチャンネルを構成し、さらに同構成のチャンネルを少なくとも1つ備え、複数のチャンネルが前記媒体の相対移動方向と略垂直に配列されていてもよい。   The plurality of direction detection type magnetoresistive effect elements may constitute one channel, further include at least one channel having the same structure, and the plurality of channels may be arranged substantially perpendicular to the relative movement direction of the medium.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、媒体の通過位置変動による出力変動を小さくすることの可能な磁気センサを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic sensor which can make the output fluctuation | variation by the passage position fluctuation | variation of a medium small can be provided.

本発明の実施の形態に係る磁気センサ1の概略斜視図。1 is a schematic perspective view of a magnetic sensor 1 according to an embodiment of the present invention. 磁気センサ1の簡易的な回路図。1 is a simple circuit diagram of a magnetic sensor 1. FIG. 図1に示す媒体30が磁気センサ1の上方を通過した場合の、図2に示すセンサ出力Voutの波形図。FIG. 3 is a waveform diagram of the sensor output Vout shown in FIG. 2 when the medium 30 shown in FIG. 1 passes over the magnetic sensor 1. 実施例1に係る磁気センサ1の平面図。1 is a plan view of a magnetic sensor 1 according to Embodiment 1. FIG. 実施例1における、磁気センサ1の長手方向特性図。FIG. 3 is a longitudinal characteristic diagram of the magnetic sensor 1 in the first embodiment. 実施例2に係る磁気センサ2の平面図。FIG. 6 is a plan view of a magnetic sensor 2 according to a second embodiment. 実施例2における、磁気センサ2の長手方向特性図。FIG. 10 is a longitudinal characteristic diagram of the magnetic sensor 2 in the second embodiment. 比較例1に係る磁気センサの平面図。The top view of the magnetic sensor which concerns on the comparative example 1. FIG. 比較例1における、磁気センサの長手方向特性図。The longitudinal direction characteristic view of the magnetic sensor in the comparative example 1. 比較例2に係る磁気センサの平面図。The top view of the magnetic sensor which concerns on the comparative example 2. FIG. 比較例2における、磁気センサの長手方向特性図。The longitudinal direction characteristic view of the magnetic sensor in the comparative example 2. 実施例3に係る磁気センサ3の平面図。FIG. 6 is a plan view of a magnetic sensor 3 according to a third embodiment. 実施例3における、磁気センサ3の長手方向特性図。FIG. 10 is a longitudinal characteristic diagram of the magnetic sensor 3 in the third embodiment. 実施例4に係る磁気センサ4の平面図。FIG. 6 is a plan view of a magnetic sensor 4 according to a fourth embodiment. 実施例4における、磁気センサ4の長手方向特性図。FIG. 10 is a longitudinal characteristic diagram of the magnetic sensor 4 in the fourth embodiment.

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are examples, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態に係る磁気センサ1の概略斜視図である。本図において、直交3軸であるXYZ軸を定義する。磁気センサ1は、磁性粉又は磁性膜の付着した媒体30を識別するものであり、例えば紙幣識別装置に組み込まれる。媒体30は、XY平面と略平行であり、不図示の搬送系によりX方向に搬送されて、磁気センサ1の上方を通過する。なお、図1に示す媒体30の磁気パターン31は、例示用の簡易的なものであり、媒体30が紙幣であれば、紙幣の種類に応じた複雑な磁気パターンが媒体30に形成されている。   FIG. 1 is a schematic perspective view of a magnetic sensor 1 according to an embodiment of the present invention. In the figure, XYZ axes that are three orthogonal axes are defined. The magnetic sensor 1 identifies a medium 30 to which magnetic powder or a magnetic film is attached, and is incorporated in, for example, a bill identifying device. The medium 30 is substantially parallel to the XY plane, is transported in the X direction by a transport system (not shown), and passes above the magnetic sensor 1. The magnetic pattern 31 of the medium 30 shown in FIG. 1 is a simple example for illustration, and if the medium 30 is a banknote, a complicated magnetic pattern corresponding to the type of banknote is formed on the medium 30. .

磁気センサ1は、磁界発生手段としての永久磁石10と、方向検知型磁気抵抗効果素子としてのスピンバルブ型磁気抵抗効果素子MR1〜MR4とを備える。なお、図1では、媒体30の大きさとの関係でスピンバルブ型磁気抵抗効果素子MR1〜MR4を大きめに描いているが、実際にはスピンバルブ型磁気抵抗効果素子MR1〜MR4は媒体30に対して微小寸法である。スピンバルブ型磁気抵抗効果素子MR1〜MR4は、スピンバルブ型巨大磁気抵抗効果素子あるいはスピンバルブ型トンネル磁気抵抗効果素子のいずれでもよい。   The magnetic sensor 1 includes a permanent magnet 10 as a magnetic field generating unit and spin valve magnetoresistive elements MR1 to MR4 as direction detecting magnetoresistive elements. In FIG. 1, the spin valve magnetoresistive elements MR1 to MR4 are drawn larger in relation to the size of the medium 30, but actually the spin valve magnetoresistive elements MR1 to MR4 are in relation to the medium 30. The dimensions are very small. The spin valve magnetoresistive elements MR1 to MR4 may be either spin valve giant magnetoresistive elements or spin valve tunnel magnetoresistive elements.

スピンバルブ型磁気抵抗効果素子MR1〜MR4は、永久磁石10の、XY平面と略平行なN極面の上方に設けられる。スピンバルブ型磁気抵抗効果素子MR1〜MR4の感磁面は、XY平面と略平行である。媒体30の相対移動方向がX方向であるのに対し、スピンバルブ型磁気抵抗効果素子MR1〜MR4の配列方向はY方向である。磁気センサ1は、多チャンネル型であり、1つのチャンネルを構成するスピンバルブ型磁気抵抗効果素子MR1〜MR4の組を、チャンネル数の分だけ備えている。チャンネルの配列方向はY方向である。換言すれば、磁気センサ1は、Y方向に配列された複数のチャンネルを備え、各チャンネルがスピンバルブ型磁気抵抗効果素子MR1〜MR4を備えている。   The spin valve magnetoresistive elements MR1 to MR4 are provided above the N pole surface of the permanent magnet 10 substantially parallel to the XY plane. The magnetosensitive surfaces of the spin valve magnetoresistive elements MR1 to MR4 are substantially parallel to the XY plane. While the relative movement direction of the medium 30 is the X direction, the arrangement direction of the spin valve magnetoresistive elements MR1 to MR4 is the Y direction. The magnetic sensor 1 is a multi-channel type, and includes a set of spin valve magnetoresistive elements MR1 to MR4 constituting one channel for the number of channels. The channel arrangement direction is the Y direction. In other words, the magnetic sensor 1 includes a plurality of channels arranged in the Y direction, and each channel includes the spin valve magnetoresistive elements MR1 to MR4.

各チャンネルにおいて、スピンバルブ型磁気抵抗効果素子MR1,MR2は第1の方向検知型磁気抵抗効果素子群11を構成し、スピンバルブ型磁気抵抗効果素子MR3,MR4は第2の方向検知型磁気抵抗効果素子群12を構成する。第1の方向検知型磁気抵抗効果素子群11と第2の方向検知型磁気抵抗効果素子群12は、チャンネル幅(スピンバルブ型磁気抵抗効果素子MR1〜MR4の配列の長さ範囲)の中央を境界として互いに反対側に位置し、好ましくは前記境界を挟んで互いに対称となる配置である。第1の方向検知型磁気抵抗効果素子群11と第2の方向検知型磁気抵抗効果素子群12との間には、媒体30の識別用の方向検知型磁気抵抗効果素子が配置されない非配置領域13が存在する。但し、1チャンネル当たりのスピンバルブ型磁気抵抗効果素子の数を増やした場合には、非配置領域13を設けなくてもよい。非配置領域13の有無に関わらず、各チャンネル内の境界の両側の各々において、境界の付近では、境界の付近以外と比較して、スピンバルブ型磁気抵抗効果素子を疎に配列する。なお、疎は、ここでは配列密度が0の場合も含む概念とする。   In each channel, the spin valve magnetoresistive elements MR1 and MR2 constitute a first direction sensing magnetoresistive element group 11, and the spin valve magnetoresistive elements MR3 and MR4 comprise a second direction sensing magnetoresistive element. The effect element group 12 is configured. The first direction detection type magnetoresistive effect element group 11 and the second direction detection type magnetoresistive effect element group 12 have the center of the channel width (the length range of the arrangement of the spin valve type magnetoresistive effect elements MR1 to MR4). They are positioned on opposite sides as the boundary, and preferably arranged symmetrically with respect to the boundary. A non-arranged region in which no direction-detecting magnetoresistive element for identifying the medium 30 is disposed between the first direction-sensitive magnetoresistive element group 11 and the second direction-sensitive magnetoresistive element group 12 13 exists. However, when the number of spin-valve magnetoresistive elements per channel is increased, the non-arrangement region 13 may not be provided. Regardless of the presence / absence of the non-arrangement region 13, the spin valve magnetoresistive elements are arranged sparsely in the vicinity of the boundary on both sides of the boundary in each channel as compared with other than the vicinity of the boundary. Note that sparse is a concept including a case where the arrangement density is zero.

第1の方向検知型磁気抵抗効果素子群11を構成するスピンバルブ型磁気抵抗効果素子MR1,MR2は、ピン層磁化方向が−X方向を向いている。第2の方向検知型磁気抵抗効果素子群12を構成するスピンバルブ型磁気抵抗効果素子MR3,MR4は、ピン層磁化方向が+X方向を向いている。スピンバルブ型磁気抵抗効果素子は、自身に印加される磁界(外部磁界)とピン層磁化方向との関係で抵抗値が変わる素子であり、外部磁界がピン層磁化方向成分を持つときは低抵抗、外部磁界が反ピン層磁化方向成分を持つときは高抵抗となる。   In the spin valve magnetoresistive elements MR1 and MR2 constituting the first direction detection type magnetoresistive element group 11, the pinned layer magnetization direction is in the −X direction. In the spin valve magnetoresistive elements MR3 and MR4 constituting the second direction detection type magnetoresistive element group 12, the pinned layer magnetization direction is the + X direction. A spin valve magnetoresistive element is an element whose resistance value changes depending on the relationship between the magnetic field applied to itself (external magnetic field) and the pinned layer magnetization direction, and has low resistance when the external magnetic field has a pinned layer magnetization direction component. When the external magnetic field has an anti-pin layer magnetization direction component, the resistance is high.

図2は、磁気センサ1の簡易的な回路図である。各チャンネルを構成するスピンバルブ型磁気抵抗効果素子MR1〜MR4は、直流電源Eの出力端子とグランドとの間に直列接続される。各チャンネルにおいて、センサ出力Voutは、スピンバルブ型磁気抵抗効果素子MR2,MR3の相互接続点(第1及び第2の方向検知型磁気抵抗効果素子群11,12の相互接続点)から取り出される。センサ出力Voutは、下記式1で示される。

Figure 2016095138
式1において、R(MR1,MR2)は、スピンバルブ型磁気抵抗効果素子MR1,MR2の合成抵抗値であり、R(MR3,MR4)は、スピンバルブ型磁気抵抗効果素子MR3,MR4の合成抵抗値である。 FIG. 2 is a simple circuit diagram of the magnetic sensor 1. The spin valve magnetoresistive elements MR1 to MR4 constituting each channel are connected in series between the output terminal of the DC power supply E and the ground. In each channel, the sensor output Vout is taken out from the interconnection point of the spin valve magnetoresistive elements MR2 and MR3 (interconnection point of the first and second direction detection type magnetoresistive element groups 11 and 12). The sensor output Vout is expressed by the following formula 1.
Figure 2016095138
In Equation 1, R (MR1, MR2) is a combined resistance value of the spin valve magnetoresistive elements MR1, MR2, and R (MR3, MR4) is a combined resistance of the spin valve magnetoresistive elements MR3, MR4. Value.

図3は、図1に示す媒体30が磁気センサ1の上方を通過した場合の、図2に示すセンサ出力Voutの波形図である。媒体30の磁気パターン31が磁気センサ1から遠い段階では、永久磁石10の発生する磁界は磁気パターン31の影響を受けずにスピンバルブ型磁気抵抗効果素子MR1〜MR4の感磁面を垂直に通過するため、スピンバルブ型磁気抵抗効果素子MR1〜MR4は共に中抵抗状態で抵抗値が相互に等しく、センサ出力Voutは中間値で変動しない。その後、媒体30が+X方向に移動して磁気パターン31がスピンバルブ型磁気抵抗効果素子MR1〜MR4の上方手前側(−X方向側)に近接してくると、永久磁石10の発生する磁界はスピンバルブ型磁気抵抗効果素子MR1〜MR4の感磁面において−X方向に引き寄せられ、スピンバルブ型磁気抵抗効果素子MR1,MR2は低抵抗状態となり、スピンバルブ型磁気抵抗効果素子MR3,MR4は高抵抗状態となり、センサ出力Voutは中間値から上昇する。その後、磁気パターン31がスピンバルブ型磁気抵抗効果素子MR1〜MR4の直上を通過すると、永久磁石10の発生する磁界はスピンバルブ型磁気抵抗効果素子MR1〜MR4の感磁面において−X方向から+X方向に転換し、スピンバルブ型磁気抵抗効果素子MR1,MR2は高抵抗状態となり、スピンバルブ型磁気抵抗効果素子MR3,MR4は低抵抗状態となり、センサ出力Voutは中間値から低下する。以上が磁気パターン31の本数分、ここでは4回繰り返される。   FIG. 3 is a waveform diagram of the sensor output Vout shown in FIG. 2 when the medium 30 shown in FIG. 1 passes above the magnetic sensor 1. When the magnetic pattern 31 of the medium 30 is far from the magnetic sensor 1, the magnetic field generated by the permanent magnet 10 passes through the magnetic sensitive surfaces of the spin valve magnetoresistive effect elements MR 1 to MR 4 vertically without being affected by the magnetic pattern 31. Therefore, the spin valve magnetoresistive elements MR1 to MR4 are both in the middle resistance state and have the same resistance value, and the sensor output Vout does not vary at the intermediate value. Thereafter, when the medium 30 moves in the + X direction and the magnetic pattern 31 comes close to the upper front side (−X direction side) of the spin valve magnetoresistive elements MR1 to MR4, the magnetic field generated by the permanent magnet 10 is The spin valve magnetoresistive elements MR1 to MR4 are attracted in the -X direction on the magnetosensitive surfaces, the spin valve magnetoresistive elements MR1 and MR2 are in a low resistance state, and the spin valve magnetoresistive elements MR3 and MR4 are high. The resistance state is reached, and the sensor output Vout increases from the intermediate value. Thereafter, when the magnetic pattern 31 passes immediately above the spin valve magnetoresistive elements MR1 to MR4, the magnetic field generated by the permanent magnet 10 is + X from the −X direction on the magnetosensitive surface of the spin valve magnetoresistive elements MR1 to MR4. As a result, the spin valve magnetoresistive elements MR1 and MR2 enter a high resistance state, the spin valve magnetoresistive elements MR3 and MR4 enter a low resistance state, and the sensor output Vout decreases from an intermediate value. The above is repeated four times for the number of the magnetic patterns 31 here.

X方向に搬送される媒体30のY方向位置は、媒体30の投入の度に若干ではあるが変化し、磁気センサ1上を通過する媒体30の磁気パターン31のY方向位置も変化する。媒体30に形成される磁気パターンが図1に示す磁気パターン31と異なり微細である場合、その微細な磁気パターンのY方向通過位置が変化すると、磁気センサ1のセンサ出力Voutにも影響が及ぶ。一方、磁気パターンの磁気の強さの強弱もセンサ出力Voutに影響する。このため、磁気パターンのY方向通過位置によってセンサ出力Voutが大きく変動する構成であると、センサ出力Voutの変動が、磁気パターンのY方向通過位置の変動を示すのか、磁気パターンの磁気の強さの変化を示すのかが分からなくなってしまう。したがって、識別精度を向上させるには、磁気パターンのY方向通過位置の変動によるセンサ出力Voutの変動は極力小さいことが望ましい。   The position in the Y direction of the medium 30 transported in the X direction changes slightly each time the medium 30 is loaded, and the position in the Y direction of the magnetic pattern 31 of the medium 30 passing over the magnetic sensor 1 also changes. When the magnetic pattern formed on the medium 30 is fine unlike the magnetic pattern 31 shown in FIG. 1, if the passing position of the fine magnetic pattern in the Y direction changes, the sensor output Vout of the magnetic sensor 1 is also affected. On the other hand, the magnetic strength of the magnetic pattern also affects the sensor output Vout. For this reason, if the sensor output Vout varies greatly depending on the Y-direction passing position of the magnetic pattern, whether the fluctuation of the sensor output Vout indicates the fluctuation of the Y-direction passing position of the magnetic pattern or the magnetic strength of the magnetic pattern. I don't know if it shows any change. Therefore, in order to improve the identification accuracy, it is desirable that the fluctuation of the sensor output Vout due to the fluctuation of the passing position of the magnetic pattern in the Y direction is as small as possible.

上記式1より、センサ出力Voutのピークピーク値(最大値と最小値の差)は、スピンバルブ型磁気抵抗効果素子MR1〜MR4の抵抗変化が大きいほど大きくなる。抵抗変化は、磁気パターンの通過位置がY方向に離れるほど小さくなり、近づくほど大きくなる。本実施の形態のように、各チャンネル内の境界の両側の各々において、境界の付近では境界の付近以外と比較してスピンバルブ型磁気抵抗効果素子を疎に配列する構成の場合、磁気パターンの通過位置が境界から左右にずれると、第1及び第2の方向検知型磁気抵抗効果素子群11,12の一方は抵抗変化が大きくなり、他方は抵抗変化が小さくなり、センサ出力Voutに関しては、両群の抵抗変化の影響が好適に相殺される。したがって、本実施の形態では、磁気パターンのY方向通過位置が変動しても、センサ出力Voutの変動を小さくすることができる。なお、後述の比較例のようにスピンバルブ型磁気抵抗効果素子をチャンネル幅内で敷き詰めた場合(配列密度が一定の場合)も、磁気パターンの通過位置が境界から左右にずれると、第1及び第2の方向検知型磁気抵抗効果素子群11,12は実施の形態と同じ傾向の抵抗変化を示すものの、センサ出力Voutに関し、一方の群の抵抗変化の影響が、他方の群の抵抗変化の影響を相殺しきれず、磁気パターンのY方向通過位置が変動すると、センサ出力Voutが比較的大きく変動してしまう。以下、実施例と比較例により、本実施の形態の効果について具体的に説明する。   From the above equation 1, the peak peak value (difference between the maximum value and the minimum value) of the sensor output Vout increases as the resistance change of the spin valve magnetoresistive elements MR1 to MR4 increases. The resistance change decreases as the passing position of the magnetic pattern moves away in the Y direction, and increases as it approaches. In the case of a configuration in which spin valve magnetoresistive elements are arranged sparsely on the both sides of the boundary in each channel as in the present embodiment, in the vicinity of the boundary, compared to other than the vicinity of the boundary, When the passing position is shifted left and right from the boundary, one of the first and second direction detection type magnetoresistive element groups 11 and 12 has a large resistance change, and the other has a small resistance change. The effects of resistance changes in both groups are preferably offset. Therefore, in this embodiment, even if the passing position of the magnetic pattern in the Y direction varies, the variation in the sensor output Vout can be reduced. Even when the spin valve magnetoresistive effect elements are spread within the channel width as in the comparative example described later (when the arrangement density is constant), the first and Although the second direction detection type magnetoresistive effect element groups 11 and 12 exhibit the resistance change having the same tendency as the embodiment, the influence of the resistance change of one group is related to the resistance change of the other group with respect to the sensor output Vout. If the influence cannot be completely offset and the passing position of the magnetic pattern in the Y direction fluctuates, the sensor output Vout fluctuates relatively greatly. Hereinafter, the effects of the present embodiment will be specifically described with reference to examples and comparative examples.

実施例1
図4は、実施例1に係る磁気センサ1の平面図である。本実施例は、図1と同構成でスピンバルブ型磁気抵抗効果素子を4チップ用いた例である。第1及び第2の方向検知型磁気抵抗効果素子群11,12の各々において隣り合うスピンバルブ型磁気抵抗効果素子同士は、ほぼ隙間が無いように近接配置した。非配置領域13の幅は、概ね4個のスピンバルブ型磁気抵抗効果素子に対応する幅とした。第1及び第2の方向検知型磁気抵抗効果素子群11,12の配列長(チャンネル幅)は、5.2mmとした。
Example 1
FIG. 4 is a plan view of the magnetic sensor 1 according to the first embodiment. This example is an example in which four chips of spin valve type magnetoresistive effect elements are used in the same configuration as in FIG. In each of the first and second direction detection type magnetoresistive effect element groups 11 and 12, the adjacent spin valve type magnetoresistive effect elements are arranged close to each other so that there is almost no gap. The width of the non-arrangement region 13 was set to a width corresponding to approximately four spin valve magnetoresistive elements. The arrangement length (channel width) of the first and second direction detection type magnetoresistive element groups 11 and 12 was set to 5.2 mm.

図5は、実施例1における、磁気センサ1の長手方向特性図である。なお、長手方向特性とは、図4に示すような点状磁気パターン32をX方向に移動させて磁気センサ1の上方を通過させた場合における、点状磁気パターン32のY方向通過位置に対するセンサ出力Vout(ピークピーク値)の特性であり、後述の実施例及び比較例においても同様とする。なお、縦軸のセンサ出力は、点状磁気パターン32のY方向通過位置がチャンネル幅の中央(横軸0mmに対応)である場合を基準とするパーセント表示としている。図5に示すように、実施例1の構成では、長手方向特性の変動幅が、チャンネル幅内の中央を含む概ね75%程度(長さ4mm程度)の連続する範囲において上下に合計10%以内となっており、点状磁気パターンのY方向通過位置が変動しても安定したセンサ出力が得られた。   FIG. 5 is a longitudinal characteristic diagram of the magnetic sensor 1 according to the first embodiment. The longitudinal characteristic is a sensor with respect to the Y-direction passing position of the point-like magnetic pattern 32 when the point-like magnetic pattern 32 as shown in FIG. 4 is moved in the X-direction and passed over the magnetic sensor 1. This is a characteristic of the output Vout (peak peak value), and the same applies to Examples and Comparative Examples described later. The sensor output on the vertical axis is expressed as a percentage based on the case where the Y-direction passing position of the dotted magnetic pattern 32 is the center of the channel width (corresponding to the horizontal axis of 0 mm). As shown in FIG. 5, in the configuration of Example 1, the fluctuation range of the longitudinal characteristics is within 10% in total up and down in a continuous range of about 75% (about 4 mm in length) including the center in the channel width. Thus, a stable sensor output was obtained even when the Y-direction passing position of the dotted magnetic pattern fluctuated.

実施例2
図6は、実施例2に係る磁気センサ2の平面図である。本実施例は、実施例1のチャンネルの両端にスピンバルブ型磁気抵抗効果素子をそれぞれ1つ、ほぼ隙間が無いように追加したものに相当する。第1及び第2の方向検知型磁気抵抗効果素子群11,12を構成するスピンバルブ型磁気抵抗効果素子はそれぞれ3チップ(1チャンネルの合計は6チップ)とした。非配置領域13の幅は、実施例1と同じとした。チャンネル幅は6.4mmとした。
Example 2
FIG. 6 is a plan view of the magnetic sensor 2 according to the second embodiment. The present embodiment corresponds to one in which one spin valve magnetoresistive effect element is added to both ends of the channel of the first embodiment so that there is almost no gap. Each of the spin valve magnetoresistive effect elements constituting the first and second direction detection type magnetoresistive effect element groups 11 and 12 is 3 chips (the total of one channel is 6 chips). The width of the non-arrangement region 13 was the same as that in Example 1. The channel width was 6.4 mm.

図7は、実施例2における、磁気センサ2の長手方向特性図である。実施例2の構成では、長手方向特性の変動幅が、チャンネル幅内の中央を含む概ね80%程度(長さ5mm程度)の連続する範囲において上下に合計10%以内となっており、点状磁気パターンのY方向通過位置が変動しても安定したセンサ出力が得られた。また、実施例1との比較では、チャンネル内で安定したセンサ出力を得られる範囲を広げることができた。   FIG. 7 is a characteristic diagram in the longitudinal direction of the magnetic sensor 2 in the second embodiment. In the configuration of Example 2, the fluctuation range of the longitudinal characteristics is within a total of 10% vertically in a continuous range of about 80% (about 5 mm in length) including the center in the channel width. Stable sensor output was obtained even when the passing position of the magnetic pattern in the Y direction fluctuated. Further, in comparison with Example 1, it was possible to widen the range in which stable sensor output can be obtained in the channel.

比較例1
図8は、比較例1に係る磁気センサの平面図である。比較例1は、実施例1において非配置領域13を無くし、第1及び第2の方向検知型磁気抵抗効果素子群11,12を、ほぼ隙間が無いように配置した例である。チャンネル幅は2.8mmとした。
Comparative Example 1
FIG. 8 is a plan view of the magnetic sensor according to the first comparative example. The comparative example 1 is an example in which the non-arrangement region 13 is eliminated in the first embodiment, and the first and second direction detection type magnetoresistive effect element groups 11 and 12 are arranged so that there is almost no gap. The channel width was 2.8 mm.

図9は、比較例1における、磁気センサの長手方向特性図である。比較例1の構成においても、長手方向特性の変動幅は、チャンネル幅内の中央を含む65%程度の連続する範囲において上下に合計10%以内となった。しかし、長手方向特性の変動幅が上下に合計10%以内となる範囲の絶対的な長さが2mmに満たず、実施例1の4mm程度と比較して小さかった。このように、比較例1の構成では、安定したセンサ出力が得られる範囲を十分に確保できなかった。換言すれば、実施例1では、比較例1に対して、1チャンネル当たりのスピンバルブ型磁気抵抗効果素子の数を増やすことなく、安定したセンサ出力が得られる範囲を広げることが可能になった。   FIG. 9 is a longitudinal characteristic diagram of the magnetic sensor in the first comparative example. Also in the configuration of Comparative Example 1, the fluctuation range of the longitudinal characteristics was within 10% in total in the vertical direction in a continuous range of about 65% including the center in the channel width. However, the absolute length of the range in which the fluctuation range of the longitudinal characteristics is within 10% in total up and down is less than 2 mm, which is smaller than about 4 mm in Example 1. Thus, in the configuration of Comparative Example 1, it was not possible to sufficiently secure a range in which stable sensor output was obtained. In other words, in Example 1, the range in which a stable sensor output can be obtained can be expanded without increasing the number of spin-valve magnetoresistive elements per channel compared to Comparative Example 1. .

比較例2
図10は、比較例2に係る磁気センサの平面図である。比較例2では、第1及び第2の方向検知型磁気抵抗効果素子群11,12を構成するスピンバルブ型磁気抵抗効果素子をそれぞれ7チップ(1チャンネルの合計は14チップ)とし、比較例1と同様に非配置領域13を設けなかった。チャンネル幅は8.8mmとした。
Comparative Example 2
FIG. 10 is a plan view of the magnetic sensor according to the second comparative example. In Comparative Example 2, each of the spin valve magnetoresistive effect elements constituting the first and second direction sensing type magnetoresistive effect element groups 11 and 12 is 7 chips (total of one channel is 14 chips). The non-arrangement region 13 was not provided in the same manner as in FIG. The channel width was 8.8 mm.

図11は、比較例2における、磁気センサの長手方向特性図である。比較例2の構成では、長手方向特性の変動幅が上下に合計10%以内となる範囲の絶対的な長さは4mm以上となったものの、その範囲はチャンネル幅内の中央を含む50%程度の連続する範囲に限られた。これでは、隣接チャンネル間に、長手方向特性の谷が大きく出来てしまう。すなわち、隣接チャンネル間の隙間を無くしても、センサ出力Voutが大きく低下した範囲が1チャンネルの幅と同程度存在してしまう。このように、比較例2の構成では、チャンネル幅内で安定したセンサ出力が得られる範囲を十分な割合で確保できなかった。長手方向特性の変動幅が上下に合計10%以内となる範囲は、求められる仕様にもよるが、チャンネル幅内の中央を含む60%以上は確保されることが望ましい。   FIG. 11 is a longitudinal characteristic diagram of the magnetic sensor in Comparative Example 2. In the configuration of Comparative Example 2, although the absolute length of the range in which the fluctuation range of the longitudinal characteristics is within 10% in total is 4 mm or more, the range is about 50% including the center in the channel width. Limited to a continuous range of This creates a large trough in the longitudinal direction between adjacent channels. In other words, even if there is no gap between adjacent channels, a range in which the sensor output Vout is greatly reduced exists as much as the width of one channel. As described above, in the configuration of Comparative Example 2, it was not possible to secure a sufficient range for obtaining a stable sensor output within the channel width. The range in which the fluctuation width of the longitudinal characteristics is within 10% in total up and down depends on the required specifications, but it is desirable to secure 60% or more including the center in the channel width.

実施例3
図12は、実施例3に係る磁気センサ3の平面図である。本実施例では、第1及び第2の方向検知型磁気抵抗効果素子群11,12を構成するスピンバルブ型磁気抵抗効果素子はそれぞれ4チップ(1チャンネルの合計は8チップ)とし、境界(チャンネル幅の中央)から1つ目と2つ目のスピンバルブ型磁気抵抗効果素子の間、並びに3つ目と4つ目のスピンバルブ型磁気抵抗効果素子の間には、概ね1個のスピンバルブ型磁気抵抗効果素子に対応する幅の隙間を設けた。非配置領域13の幅は、概ね2個のスピンバルブ型磁気抵抗効果素子に対応する幅とした。チャンネル幅は8.8mmとした。
Example 3
FIG. 12 is a plan view of the magnetic sensor 3 according to the third embodiment. In this embodiment, the spin valve type magnetoresistive effect elements constituting the first and second direction detection type magnetoresistive effect element groups 11 and 12 are each composed of 4 chips (total of 1 channel is 8 chips), and the boundary (channel Between the first and second spin-valve magnetoresistive elements from the center of the width, and between the third and fourth spin-valve magnetoresistive elements, approximately one spin valve A gap having a width corresponding to the type magnetoresistive effect element was provided. The width of the non-arrangement region 13 was set to a width corresponding to approximately two spin valve magnetoresistive elements. The channel width was 8.8 mm.

図13は、実施例3における、磁気センサ3の長手方向特性図である。実施例3の構成では、長手方向特性の変動幅が、チャンネル幅内の中央を含む65%程度(長さ5.7mm程度)以上の連続する範囲において上下に合計10%以内となっており、点状磁気パターンのY方向通過位置が変動しても安定したセンサ出力が得られた。また、比較例2に対しては、同じチャンネル幅でありながら、また1チャンネル当たりのスピンバルブ型磁気抵抗効果素子の数を減らした安価な構成としながら、長手方向特性の変動幅が上下に合計10%以内となる範囲を40%以上広げることができた。   FIG. 13 is a longitudinal characteristic diagram of the magnetic sensor 3 according to the third embodiment. In the configuration of Example 3, the fluctuation range of the longitudinal characteristics is within 10% in total in the vertical direction in a continuous range of about 65% (about 5.7 mm in length) including the center in the channel width, Stable sensor output was obtained even if the Y-direction passing position of the dotted magnetic pattern fluctuated. Further, in comparison example 2, while having the same channel width and an inexpensive configuration in which the number of spin-valve magnetoresistive effect elements per channel is reduced, the fluctuation width of the longitudinal characteristics is totaled vertically. The range within 10% could be expanded by 40% or more.

実施例4
図14は、実施例4に係る磁気センサ4の平面図である。本実施例では、第1及び第2の方向検知型磁気抵抗効果素子群11,12を構成するスピンバルブ型磁気抵抗効果素子はそれぞれ5チップ(1チャンネルの合計は10チップ)とし、境界(チャンネル幅の中央)から1つ目と2つ目のスピンバルブ型磁気抵抗効果素子の間、並びに2つ目と3つ目のスピンバルブ型磁気抵抗効果素子の間には、概ね1個のスピンバルブ型磁気抵抗効果素子に対応する幅の隙間を設けた。また、非配置領域13は設けなかった(第1及び第2の方向検知型磁気抵抗効果素子群11,12を、ほぼ隙間が無いように配置した)。チャンネル幅は8.8mmとした。
Example 4
FIG. 14 is a plan view of the magnetic sensor 4 according to the fourth embodiment. In this embodiment, the spin valve type magnetoresistive effect elements constituting the first and second direction sensing type magnetoresistive effect element groups 11 and 12 are each 5 chips (the total of one channel is 10 chips), and the boundary (channel Between the first and second spin-valve magnetoresistive elements from the center of the width) and between the second and third spin-valve magnetoresistive elements, approximately one spin valve A gap having a width corresponding to the type magnetoresistive effect element was provided. Further, the non-arrangement region 13 was not provided (the first and second direction detection type magnetoresistive effect element groups 11 and 12 were arranged so as to have almost no gap). The channel width was 8.8 mm.

図15は、実施例4における、磁気センサ4の長手方向特性図である。実施例4の構成では、長手方向特性の変動幅が、チャンネル幅内の中央を含む70%程度(長さ6.1mm程度)の連続する範囲において上下に合計10%以内となっており、点状磁気パターンのY方向通過位置が変動しても安定したセンサ出力が得られた。また、比較例2に対しては、同じチャンネル幅でありながら、また1チャンネル当たりのスピンバルブ型磁気抵抗効果素子の数を減らした安価な構成としながら、長手方向特性の変動幅が上下に合計10%以内となる範囲を50%以上広げることができた。   FIG. 15 is a longitudinal characteristic diagram of the magnetic sensor 4 according to the fourth embodiment. In the configuration of Example 4, the fluctuation range of the longitudinal characteristics is within 10% in total in the vertical direction in a continuous range of about 70% (length: about 6.1 mm) including the center in the channel width. Stable sensor output was obtained even if the Y-direction passing position of the magnetic pattern fluctuated. Further, in comparison example 2, while having the same channel width and an inexpensive configuration in which the number of spin-valve magnetoresistive effect elements per channel is reduced, the fluctuation width of the longitudinal characteristics is totaled vertically. The range within 10% could be expanded by 50% or more.

本実施の形態によれば、下記の効果を奏することができる。   According to the present embodiment, the following effects can be achieved.

(1) 第1の方向検知型磁気抵抗効果素子群11と第2の方向検知型磁気抵抗効果素子群12との間に、媒体30の識別用の方向検知型磁気抵抗効果素子が配置されない非配置領域13を設ける等により、各チャンネル内の境界の両側の各々において、境界の付近では境界の付近以外と比較してスピンバルブ型磁気抵抗効果素子を疎に配列しているため、識別対象となる媒体30の磁気パターンのY方向通過位置変動によるセンサ出力Voutの変動を小さくすることができる。 (1) No direction detection type magnetoresistive effect element for identifying the medium 30 is disposed between the first direction detection type magnetoresistive effect element group 11 and the second direction detection type magnetoresistive effect element group 12. By providing the arrangement region 13 or the like, the spin valve magnetoresistive effect elements are arranged more sparsely in the vicinity of the boundary than in the vicinity of the boundary on both sides of the boundary in each channel. The fluctuation of the sensor output Vout due to the fluctuation of the passing position of the magnetic pattern of the medium 30 in the Y direction can be reduced.

(2) 1チャンネル当たりのスピンバルブ型磁気抵抗効果素子を従来と比較して増やしているため、磁気センサ1の消費電流が低下し、消費電力を低減できる。また、消費電流が低下することで、下記式2で示されるショットノイズInを小さくなるというメリットもある。

Figure 2016095138
(2) Since the spin valve magnetoresistive effect element per channel is increased as compared with the conventional one, the current consumption of the magnetic sensor 1 is reduced, and the power consumption can be reduced. Further, there is an advantage that the shot noise In expressed by the following formula 2 is reduced by reducing the current consumption.
Figure 2016095138

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.

磁気センサ1における、1チャンネル当たりのスピンバルブ型磁気抵抗効果素子の数、非配置領域13の幅、各チャンネルのスピンバルブ型磁気抵抗効果素子の配列形態等は、実施の形態で示した具体例に限定されず、必要なチャンネル数やチャンネル幅等の仕様に合わせて任意に設定することができる。また、磁気センサ1は多チャンネル型に限定されず、1チャンネル型であってもよい。   In the magnetic sensor 1, the number of spin-valve magnetoresistive elements per channel, the width of the non-arrangement region 13, the arrangement form of the spin-valve magnetoresistive elements in each channel, etc. are the specific examples shown in the embodiment. However, it can be arbitrarily set according to specifications such as the required number of channels and channel width. The magnetic sensor 1 is not limited to the multi-channel type, and may be a single-channel type.

第1の方向検知型磁気抵抗効果素子群11を構成する複数のスピンバルブ型磁気抵抗効果素子は、チャンネル幅の中央の両側に分かれて存在してもよい。第2の方向検知型磁気抵抗効果素子群12を構成する複数のスピンバルブ型磁気抵抗効果素子についても同様である。また、方向検知型磁気抵抗効果素子は、スピンバルブ型磁気抵抗効果素子以外の磁気抵抗効果素子であってもよい。   The plurality of spin-valve magnetoresistive elements constituting the first direction-sensitive magnetoresistive element group 11 may exist separately on both sides of the center of the channel width. The same applies to the plurality of spin-valve magnetoresistive elements that constitute the second direction detection type magnetoresistive element group 12. Further, the direction detection type magnetoresistive effect element may be a magnetoresistive effect element other than the spin valve type magnetoresistive effect element.

1〜4 磁気センサ、10 永久磁石、11 第1の方向検知型磁気抵抗効果素子群、12 第2の方向検知型磁気抵抗効果素子群、13 非配置領域、30 媒体、31 磁気パターン、32 点状磁気パターン 1 to 4 magnetic sensors, 10 permanent magnets, 11 first direction detection type magnetoresistive effect element group, 12 second direction detection type magnetoresistive effect element group, 13 non-arrangement region, 30 medium, 31 magnetic pattern, 32 points Magnetic pattern

Claims (9)

磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央を境界とした両側の各々において、前記境界の付近では、前記境界の付近以外と比較して、方向検知型磁気抵抗効果素子が疎に配列されている、磁気センサ。
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
The direction detection type magnetoresistive effect element in the vicinity of the boundary on each of both sides with the center of the length range of the arrangement of the plurality of direction detection type magnetoresistive effect elements as compared with other than the vicinity of the boundary. Magnetic sensors are arranged sparsely.
磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央に、媒体識別用の方向検知型磁気抵抗効果素子が配置されない非配置領域が存在する、磁気センサ。
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
A magnetic sensor, wherein a non-arrangement region in which a direction identification type magnetoresistive effect element for identifying a medium is not present exists in the center of a length range of the arrangement of the plurality of direction detection type magnetoresistive effect elements.
磁性粉又は磁性膜の付着した媒体を識別する磁気センサであって、
前記媒体の相対移動方向と略垂直に配列された複数の方向検知型磁気抵抗効果素子と、
前記複数の方向検知型磁気抵抗効果素子にバイアス磁界を印加する磁界発生手段と、を備え、
前記複数の方向検知型磁気抵抗効果素子は、前記媒体の相対移動に伴い、一方が高抵抗状態のときは他方が低抵抗状態となる関係にある第1及び第2の方向検知型磁気抵抗効果素子群を含み、
点状の磁気パターンを前記媒体の相対移動方向と同じ方向に相対移動させて前記複数の方向検知型磁気抵抗効果素子の近傍を通過させた場合における、前記配列方向に関する前記点状の磁気パターンの位置に対する前記複数の方向検知型磁気抵抗効果素子から得られる出力の特性の変動幅が、前記配列方向に関する前記点状の磁気パターンの位置が前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲の中央と一致するときの出力を基準として、前記複数の方向検知型磁気抵抗効果素子の配列の長さ範囲のうち中央を含む少なくとも60%の連続する範囲において10%以内である、磁気センサ。
A magnetic sensor for identifying a medium to which magnetic powder or a magnetic film is attached,
A plurality of direction-sensing magnetoresistive elements arranged substantially perpendicular to the relative movement direction of the medium;
Magnetic field generating means for applying a bias magnetic field to the plurality of direction detection type magnetoresistive effect elements,
The plurality of direction detection type magnetoresistive effect elements have first and second direction detection type magnetoresistive effects that have a relationship in which when one of the plurality of direction detection type magnetoresistive effect elements is in a high resistance state, the other is in a low resistance state. Including element groups,
The point-like magnetic pattern in the arrangement direction when the point-like magnetic pattern is relatively moved in the same direction as the relative movement direction of the medium and passed through the vicinity of the plurality of direction-sensitive magnetoresistive elements. The variation width of the output characteristics obtained from the plurality of direction detection type magnetoresistive effect elements with respect to the position is the length of the arrangement of the plurality of direction detection type magnetoresistive effect elements is the position of the dotted magnetic pattern with respect to the arrangement direction. A magnetic field that is within 10% in a continuous range of at least 60% including the center of the length range of the array of the plurality of direction-sensitive magnetoresistive elements, with reference to the output at the same time as the center of the range. Sensor.
前記複数の方向検知型磁気抵抗効果素子は、自身の配列の長さ範囲の中央を境界として両側にそれぞれ同数ずつ分かれて存在する、請求項1から3のいずれか一項に記載の磁気センサ。   4. The magnetic sensor according to claim 1, wherein the plurality of direction detection type magnetoresistive elements are divided into the same number on both sides with the center of the length range of the array as a boundary. 5. 前記第1及び第2の方向検知型磁気抵抗効果素子群は、前記境界を挟んで互いに反対側に位置する、請求項4に記載の磁気センサ。   5. The magnetic sensor according to claim 4, wherein the first and second direction detection type magnetoresistive element groups are located on opposite sides of the boundary. 前記複数の方向検知型磁気抵抗効果素子は、前記境界を挟んで互いに対称となる配置である、請求項4又は5に記載の磁気センサ。   6. The magnetic sensor according to claim 4, wherein the plurality of direction detection type magnetoresistive elements are symmetrically arranged with respect to the boundary. 前記第1及び第2の方向検知型磁気抵抗効果素子群が相互に高電圧側及び低電圧側に分かれるように前記複数の方向検知型磁気抵抗効果素子が直列接続され、前記第1及び第2の方向検知型磁気抵抗効果素子群の相互接続点からセンサ出力が取り出される、請求項1から6のいずれか一項に記載の磁気センサ。   The plurality of direction detection type magnetoresistive effect elements are connected in series so that the first and second direction detection type magnetoresistive effect element groups are separated from each other on the high voltage side and the low voltage side, and the first and second The magnetic sensor as described in any one of Claim 1 to 6 from which a sensor output is taken out from the interconnection point of the direction detection type | mold magnetoresistive effect element group. 前記複数の方向検知型磁気抵抗効果素子の各々が、スピンバルブ型磁気抵抗効果素子である、請求項1から7のいずれか一項に記載の磁気センサ。   The magnetic sensor according to any one of claims 1 to 7, wherein each of the plurality of direction detection type magnetoresistive effect elements is a spin valve type magnetoresistive effect element. 前記複数の方向検知型磁気抵抗効果素子が1つのチャンネルを構成し、さらに同構成のチャンネルを少なくとも1つ備え、複数のチャンネルが前記媒体の相対移動方向と略垂直に配列されている、請求項1から8のいずれか一項に記載の磁気センサ。   The plurality of direction-sensitive magnetoresistive elements constitute one channel, and further include at least one channel having the same configuration, and the plurality of channels are arranged substantially perpendicular to the relative movement direction of the medium. The magnetic sensor according to any one of 1 to 8.
JP2014229378A 2014-11-12 2014-11-12 Magnetic sensor Pending JP2016095138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229378A JP2016095138A (en) 2014-11-12 2014-11-12 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229378A JP2016095138A (en) 2014-11-12 2014-11-12 Magnetic sensor

Publications (1)

Publication Number Publication Date
JP2016095138A true JP2016095138A (en) 2016-05-26

Family

ID=56071685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229378A Pending JP2016095138A (en) 2014-11-12 2014-11-12 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP2016095138A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194548A1 (en) * 2017-04-17 2018-10-25 Intel Corporation Sensing of magnetic domains in magnetic materials
JP7023428B1 (en) * 2021-03-31 2022-02-21 三菱電機株式会社 Magnetic sensor element, magnetic sensor and magnetic sensor device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228485A (en) * 2001-02-01 2002-08-14 Hitachi Metals Ltd Magnetic encoder and its manufacturing method
JP2005257434A (en) * 2004-03-11 2005-09-22 Tdk Corp Moving object detection device
JP2006266862A (en) * 2005-03-24 2006-10-05 Tdk Corp Magnetic powder adhered medium or magnetic film adhered medium detector
JP2008107266A (en) * 2006-10-27 2008-05-08 Tdk Corp Device for detecting moving object
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2012093342A (en) * 2010-09-28 2012-05-17 Murata Mfg Co Ltd Long type magnetic sensor
JP2012146225A (en) * 2011-01-14 2012-08-02 Hitachi Omron Terminal Solutions Corp Paper sheet discrimination device
US20130119980A1 (en) * 2010-07-30 2013-05-16 Mitsubishi Electric Corporation Magnetic sensor device
JP2013217768A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
WO2014161668A1 (en) * 2013-04-03 2014-10-09 Giesecke & Devrient Gmbh Inspection of a security element provided with magnetic materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228485A (en) * 2001-02-01 2002-08-14 Hitachi Metals Ltd Magnetic encoder and its manufacturing method
JP2005257434A (en) * 2004-03-11 2005-09-22 Tdk Corp Moving object detection device
JP2006266862A (en) * 2005-03-24 2006-10-05 Tdk Corp Magnetic powder adhered medium or magnetic film adhered medium detector
JP2008107266A (en) * 2006-10-27 2008-05-08 Tdk Corp Device for detecting moving object
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
US20130119980A1 (en) * 2010-07-30 2013-05-16 Mitsubishi Electric Corporation Magnetic sensor device
JP2012093342A (en) * 2010-09-28 2012-05-17 Murata Mfg Co Ltd Long type magnetic sensor
JP2012146225A (en) * 2011-01-14 2012-08-02 Hitachi Omron Terminal Solutions Corp Paper sheet discrimination device
JP2013217768A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Magnetic sensor device
WO2014161668A1 (en) * 2013-04-03 2014-10-09 Giesecke & Devrient Gmbh Inspection of a security element provided with magnetic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194548A1 (en) * 2017-04-17 2018-10-25 Intel Corporation Sensing of magnetic domains in magnetic materials
JP7023428B1 (en) * 2021-03-31 2022-02-21 三菱電機株式会社 Magnetic sensor element, magnetic sensor and magnetic sensor device
WO2022208771A1 (en) * 2021-03-31 2022-10-06 三菱電機株式会社 Magnetic sensor element, magnetic sensor, and magnetic sensor device

Similar Documents

Publication Publication Date Title
US10109131B2 (en) Sensor device including magnetoresistive sensor element and pre-magnetization device
JP5867235B2 (en) Magnetic sensor device
US9595152B2 (en) Magnetic property detection apparatus
US9279866B2 (en) Magnetic sensor
JP6300908B2 (en) Magnetic sensor device
JP5979214B2 (en) Magnetic sensor device
JP6359858B2 (en) Magnetic field detection device and magnetic identification device
JP6377882B1 (en) Magnetoresistive element device and magnetoresistive element device
JP6149542B2 (en) Magnetic inspection apparatus and magnetic inspection method
JP5799882B2 (en) Magnetic sensor device
JP2016206069A (en) Magnetic sensor device
JP5858248B2 (en) Magnetic sensor
RU2648010C2 (en) Metering device for measuring the magnetic properties of environment of the metering device
JP2016095138A (en) Magnetic sensor
US10222431B2 (en) Measuring device with pre-magnetizing magnet
JP2012215405A (en) Magnetic sensor device
JP6660191B2 (en) Magnetic sensor device
CN203350427U (en) Magneto-resistive imaging sensor array
JP6964830B2 (en) Magnetic sensor device
WO2015146640A1 (en) Current sensor
JP5417968B2 (en) Method for detecting the object to be detected
JP2020016555A (en) Magnetic substance detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181107