JP2016095109A - High speed cutoff electronic linear expansion valve - Google Patents

High speed cutoff electronic linear expansion valve Download PDF

Info

Publication number
JP2016095109A
JP2016095109A JP2014232408A JP2014232408A JP2016095109A JP 2016095109 A JP2016095109 A JP 2016095109A JP 2014232408 A JP2014232408 A JP 2014232408A JP 2014232408 A JP2014232408 A JP 2014232408A JP 2016095109 A JP2016095109 A JP 2016095109A
Authority
JP
Japan
Prior art keywords
valve
expansion valve
speed
fully closed
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014232408A
Other languages
Japanese (ja)
Inventor
松岡文雄
Fumio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heat Pump Kenkyusho kk
Original Assignee
Heat Pump Kenkyusho kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heat Pump Kenkyusho kk filed Critical Heat Pump Kenkyusho kk
Priority to JP2014232408A priority Critical patent/JP2016095109A/en
Publication of JP2016095109A publication Critical patent/JP2016095109A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To provide a high speed cutoff electronic linear expansion valve for eliminating occurrence of energy loss in reference to the prior art defects that the energy loss is generated during an intermittent operation of a refrigeration cycle and as one cause for it, when the compressor is stopped, high pressure liquid refrigerant and low pressure refrigerant are mixed to each other and so the mixed substance must be separated into the high pressure refrigerant and the low pressure refrigerant when the compressor is started to operate.SOLUTION: A high speed cutoff type linear expansion valve 1 is constituted by two stage closing elements, i.e. a rotary needle valve 8 by a gear type electric valve mechanical element, low input position setting operating unit input means and a high speed cutoff valve 14 of electromagnetic driving element, and also has means for controlling a low input, liquid sealing prevention and a fast warming characteristic.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気圧縮式冷凍サイクルの冷媒制御用電子膨張弁に関するものである。 The present invention relates to an electronic expansion valve for refrigerant control of a vapor compression refrigeration cycle.

従来の冷媒制御用電子膨張弁には、電動弁などのギヤ方式と電磁弁などの直動式駆動方式がある。電動弁ギヤ方式は、例えば特許文献1や特許文献2に記載の膨張弁では、コイルに通電しロータと雄ネジとニードルを回転させて、ニードルの上下運動により弁座上部の開口端面積を可変して、冷媒通過開口面積を可変して、流量を制御するものであった。一方電磁弁などの直動式駆動方式を取る膨張弁には、特許文献3に記載の膨張弁では、コイル部に通電する時間比率ヂューテイー比を変えることによって、冷媒循環量の制御を行っていた。 Conventional electronic control valves for refrigerant control include a gear system such as an electric valve and a direct drive system such as an electromagnetic valve. For example, in the expansion valve described in Patent Document 1 and Patent Document 2, the motorized valve gear system energizes the coil to rotate the rotor, male screw, and needle, and the opening end area of the upper part of the valve seat is variable by the vertical movement of the needle. Thus, the flow rate is controlled by varying the refrigerant passage opening area. On the other hand, in an expansion valve that employs a direct drive system such as a solenoid valve, in the expansion valve described in Patent Document 3, the refrigerant circulation amount is controlled by changing the time ratio duty ratio for energizing the coil section. .

特開2009−264530号公報JP 2009-264530 A 特開2013−160331号公報JP 2013-160331 A 特許出願公告 平3−40309Patent application notice 3-40309 特開2012−42081号公報JP 2012-42081 A

冷凍サイクルの動特性と制御、日本冷凍空調学会編、平成21年、pp34Dynamic characteristics and control of refrigeration cycle, Japan Society of Refrigeration and Air Conditioning, 2009, pp34 改定3版 冷凍用自動制御機器、日本冷凍空調学会編、平成25年、pp34Revision 3 Automatic refrigeration equipment, Refrigeration and Air Conditioning Society of Japan, 2013, pp34

従来の冷凍サイクル機器である空調機や冷凍機では、固定周波数運転機はもちろんインバータ圧縮機搭載機でも部分負荷運転時には、冷凍サイクルのON/OFF発停が伴う。ON/OFFの断続運転によりエネルギーロスが発生し、運転効率(APF)が悪化するという課題があった。このON/OFF断続運転時のエネルギーロスの原因は、OFF時に高圧の液冷媒が膨張弁を通過して低圧・低温の二相冷媒と混合して平均的な均一冷媒にエントロピー上昇することにあり、再起動のONと共に、この均一な冷媒を再び高圧液冷媒と低圧低温の二相冷媒に分離しなければならない。この分離仕事がエネルギーロスとなっている。 In conventional refrigeration cycle equipment such as air conditioners and refrigerators, not only fixed frequency operation machines but also inverter compressor-equipped machines are accompanied by ON / OFF switching of the refrigeration cycle during partial load operation. There was a problem that energy loss occurred due to intermittent operation of ON / OFF, and operating efficiency (APF) deteriorated. The cause of energy loss during this ON / OFF intermittent operation is that the high-pressure liquid refrigerant passes through the expansion valve and mixes with the low-pressure / low-temperature two-phase refrigerant at the time of OFF to increase the entropy to an average uniform refrigerant. When the restart is turned on, this uniform refrigerant must be separated again into a high-pressure liquid refrigerant and a low-pressure low-temperature two-phase refrigerant. This separation work is an energy loss.

本発明は、上記従来技術の問題点に鑑み成されたものであって、圧縮機がOFF(停止)と同時に、膨張弁を高速遮断全閉にして、高圧液冷媒が低圧二相冷媒の存在する蒸発器に流入することを、防止させる。更に膨張弁駆動入力が小さく省エネルギー性に優れた、安価で、信頼性のある高速遮断型電子リニアー膨張弁を提供することを目的としている。 The present invention has been made in view of the above-mentioned problems of the prior art, and at the same time that the compressor is turned off (stopped), the expansion valve is shut off at high speed and the high pressure liquid refrigerant is present in the low pressure two-phase refrigerant. It is prevented from flowing into the evaporator. It is another object of the present invention to provide an inexpensive and reliable high-speed shut-off type electronic linear expansion valve that has a small expansion valve drive input and is excellent in energy saving.

特許文献1に記載のギヤ式電動弁において、冷媒流量制御中の状態から、圧縮機停止と同時に電動弁全閉状態までネジ部を回転して弁座を全閉状態にするまでに数十秒かかり、高圧液冷媒はほとんど低圧の蒸発器に流出してします。特許文献2に記載の全閉方式にしても、同じくギヤ式電動弁によるものであり、ニードルの弁座への食い込みは防止できても高速遮断はできないので、これも全閉までに数十秒かかる。 In the gear type motor operated valve described in Patent Document 1, it takes several tens of seconds to rotate the screw part from the state in which the refrigerant flow rate is controlled to the fully closed state of the motorized valve at the same time as the compressor is stopped to fully close the valve seat. The high-pressure liquid refrigerant flows out to the low-pressure evaporator. Even with the fully closed system described in Patent Document 2, it is also based on a gear-type motorized valve, and even if it can prevent the needle from biting into the valve seat, it cannot be shut off at high speed. Take it.

一方、特許文献3に示す電磁駆動式膨張弁は高速で高圧と低圧間を遮断できるが、通常の冷媒制御時は常時電磁コイルに電流を流し続けなければならない。上記ギヤ式電動弁が位置決めさえすれば電気入力が0であうのとは異なる。省エネという観点からは電磁駆動式はギヤ型駆動式に劣る。 On the other hand, the electromagnetically driven expansion valve shown in Patent Document 3 can shut off the high pressure and the low pressure at high speed, but current must always flow through the electromagnetic coil during normal refrigerant control. As long as the gear type motor operated valve is positioned, the electric input is different from zero. From the viewpoint of energy saving, the electromagnetic drive type is inferior to the gear type drive type.

そこで、電磁弁一体型膨張弁が特許文献4にある。これは車のフロントサイドの冷房とリアサイドの冷房において、リアサイドの冷房をON/OFFする為の膨張弁であり、蒸発器の出口冷媒の過熱度を検知する温度式自動膨張弁との合体した膨張弁であり、電磁弁に通電中は電磁弁が開状態であり、非通電中は閉状態である。つまり、リアサイドの冷房を使用中は電磁弁にづっと通電が必要であり、省エネルギーとは言えない。さらに1台冷房か2台冷房かによる、運転を想定しかつ蒸発器の過熱度による冷媒流量制御にしか適用できない。暖房用に高圧の液冷媒の過冷却度による暖房能力冷媒流量制御は考慮されていない。という欠点を有している。特に冬季の暖房運転時冷媒回路が閉回路になっており液封爆発の危険がある。 Therefore, Patent Document 4 discloses an electromagnetic valve-integrated expansion valve. This is an expansion valve for turning on and off the rear side cooling in the front side cooling and rear side cooling of the car, and combined with a temperature type automatic expansion valve that detects the degree of superheat of the outlet refrigerant of the evaporator The solenoid valve is open when the solenoid valve is energized and closed when the solenoid valve is not energized. That is, while using the rear side cooling, it is necessary to energize the solenoid valve, which is not energy saving. Furthermore, it can be applied only to refrigerant flow control based on the degree of superheat of the evaporator, assuming operation with one or two cooling units. Heating capacity refrigerant flow control based on the degree of supercooling of high-pressure liquid refrigerant for heating is not considered. Has the disadvantages. In particular, the refrigerant circuit is closed during heating operation in winter, and there is a risk of liquid ring explosion.

上記目的の高速遮断型電子リニアー膨張弁を低電気入力で省エネで、安価で、信頼性があり、冷房にもヒートポンプ暖房にも適用可能な汎用性のあるものにするため、本発明の膨張弁は、ギヤ式電動弁機械要素の位置決め機能を有し、かつ高速遮断電磁駆動要素に分かれており、ギヤ式電動弁機械要素はロータマグネットと雄ネジ部と雌ネジ部とロータリニードル弁とからなり、高速遮断電磁駆動要素はプランジャーとスプリングと固定鉄心(キュウインシ)と高速遮断ニードルと高速遮断弁ととから成り、共通要素は第1の冷媒流路と第2の冷媒流路とコイルと二重弁座を備えたことを特徴とする。 In order to make the high-speed shut-off type electronic linear expansion valve for the above purpose low energy input, energy saving, inexpensive, reliable, and versatile applicable to both cooling and heat pump heating, the expansion valve of the present invention Has a positioning function for gear type electric valve machine elements and is divided into high-speed shut-off electromagnetic drive elements. The gear type electric valve machine elements are composed of a rotor magnet, male screw part, female screw part and rotary needle valve. The high-speed cutoff electromagnetic drive element is composed of a plunger, a spring, a fixed iron core, a high-speed cutoff needle, and a high-speed cutoff valve. Common elements are a first refrigerant flow path, a second refrigerant flow path, a coil, A double valve seat is provided.

さらに本発明の高速遮断電子リニアー膨張弁は、ギヤ式電動駆動要素のロータリー二―ドル弁の中を同軸で高速遮断ニードルが独立してすべりやすく貫通している。ロータリーニードル弁はロータマグネットと雄ネジ部と一体となって回転し、電磁駆動部はプランジャーと高速遮断ニードルと高速遮断弁が上下に一体となって移動することを特徴とする。さらに本発明の高速遮断型電子リニアー膨張弁は、二重弁座の頂部弁座をロータリーニードル弁が開度調整を行い、底部弁座を高速遮断弁が開閉を担う事を特徴とする。さらに本発明の高速遮断型電子リニアー膨張弁はコイルへの励磁方式が、回転磁界を生成してギヤ式電動駆動させるモードと磁界を回転させないで固定磁界で固定鉄心(キュウインシ)を磁化させて高速遮断弁を閉にするモードを有することを特徴とする。 Furthermore, in the high-speed cutoff electronic linear expansion valve of the present invention, the high-speed cutoff needle passes through the rotary needle valve of the gear-type electric drive element independently and easily slips. The rotary needle valve rotates integrally with a rotor magnet and a male screw part, and the electromagnetic drive part is characterized in that a plunger, a high-speed cutoff needle, and a high-speed cutoff valve move integrally up and down. Furthermore, the high-speed cutoff electronic linear expansion valve of the present invention is characterized in that the rotary needle valve adjusts the opening of the top valve seat of the double valve seat and the high-speed cutoff valve opens and closes the bottom valve seat. Furthermore, the high-speed interrupting type electronic linear expansion valve of the present invention has a mode of exciting a coil by generating a rotating magnetic field and a gear-type electric drive mode, and magnetizing a fixed iron core with a fixed magnetic field without rotating the magnetic field. It has a mode for closing the shut-off valve.

本発明の高速遮断型電子リニアー膨張弁は、冷凍サイクル運転中はギヤ式電動式膨張弁が冷媒流量制御を受け持ち、電気入力はロータリニードル弁の位置決めにのみ必要であり、かつゆっくりと回転するためトルクが少なく省エネルギーである。かつ、本冷媒流量制御信号は冷房用に蒸発器出口冷媒の過熱度でもよいし、暖房時の凝縮器出口冷媒の過冷却度でもよいし、圧縮機出口冷媒の温度あるいは吐出冷媒の過熱度でも良い。更に部分負荷運転時のサーモOFF/ON時の圧縮機停止と同時にコイルの磁界を回転磁界から固定磁界にして固定鉄心の磁化による吸引力により高速遮断弁を一瞬にして全閉に出来て、高圧過冷却液冷媒を遮断して、低圧の蒸発器に流入することを防ぎ、ON/OFFロスを無くすことが出来る。 In the high-speed cutoff electronic linear expansion valve of the present invention, the gear type electric expansion valve is in charge of refrigerant flow rate control during refrigeration cycle operation, and the electric input is necessary only for positioning of the rotary needle valve and rotates slowly. Less torque and energy saving. The refrigerant flow control signal may be the degree of superheat of the refrigerant at the outlet of the evaporator for cooling, the degree of supercooling of the refrigerant at the outlet of the condenser during heating, the temperature of the refrigerant at the outlet of the compressor, or the degree of superheat of the discharged refrigerant. good. Furthermore, at the same time that the compressor is stopped when the thermo is turned OFF / ON during partial load operation, the high-speed shut-off valve can be instantly fully closed by the suction force generated by the magnetization of the fixed iron core by changing the magnetic field of the coil from a rotating magnetic field to a fixed magnetic field. By shutting off the supercooled liquid refrigerant, it can be prevented from flowing into the low-pressure evaporator, and ON / OFF loss can be eliminated.

本発明の高速遮断型電子リニアー膨張弁の流量制御状態を示した説明図である。It is explanatory drawing which showed the flow control state of the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention. 本発明の高速遮断型電子リニアー膨張弁の一段(高速遮断弁)全閉状態を示した説明図である。It is explanatory drawing which showed the 1st stage (high-speed cutoff valve) fully closed state of the high-speed cutoff electronic linear expansion valve of this invention. 本発明の高速遮断型電子リニアー膨張弁の一段(ロータリ電動弁)全閉状態を示した説明図である。It is explanatory drawing which showed the 1st stage (rotary motor operated valve) fully closed state of the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention. 本発明の高速遮断型電子リニアー膨張弁の二段全閉状態を示す説明図である。It is explanatory drawing which shows the two-stage fully closed state of the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention. 本発明の高速遮断型電子リニアー膨張弁を含む一般的な冷媒回路図を示す説明図である。It is explanatory drawing which shows the general refrigerant circuit figure containing the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention. 文献5に記載の冷媒の時系列分布を示す説明図である。6 is an explanatory diagram showing a time series distribution of a refrigerant described in Document 5. FIG. 本発明の高速遮断型電子リニアー膨張弁をヒートポンプに組み込んだ時の冷媒回路の説明図である。It is explanatory drawing of a refrigerant circuit when the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention is integrated in a heat pump. 文献6に記載のコイルへの回転磁界の説明図である。10 is an explanatory diagram of a rotating magnetic field applied to a coil described in Document 6. FIG. 本発明の高速遮断型電子リニアー膨張弁の運転モード一覧を示す説明図である。It is explanatory drawing which shows the operation mode list | wrist of the high-speed interruption | blocking type | mold electronic linear expansion valve of this invention. 本発明の高速遮断型電子リニアー膨張弁の二重弁座とコイルの別の様態例Another embodiment of the double valve seat and coil of the high-speed cutoff electronic linear expansion valve of the present invention

以下、本発明を実施する為の最良の実施形態を説明する。 Hereinafter, the best mode for carrying out the present invention will be described.

図1は、本発明の高速遮断型電子リニアー膨張弁の流量制御状態における断面図である。図2は、本発明の高速遮断型電子リニアー膨張弁の一段(高速遮断弁)全閉状態における断面図である。図3は、本発明の高速遮断型電子リニアー膨張弁の一段(ロータリー電動弁)全閉状態における断面図である。図4は、本発明の高速遮断型電子リニアー膨張弁の二段全閉状態における断面図である。本発明の高速遮断型電子リニアー膨張弁は、第1の冷媒流路2、第2の冷媒流路3、コイル4、ロータマグネット5、雄ネジ部6、雌ネジ部7、ロータリーニードル弁8、二重弁座9、固定鉄心(キューインシ)10、スプリング11、プランジャー12、高速遮断ニードル13、高速遮断弁14、シート15を有する。 FIG. 1 is a cross-sectional view of the high-speed cutoff electronic linear expansion valve of the present invention in a flow rate control state. FIG. 2 is a cross-sectional view of the high-speed cutoff electronic linear expansion valve of the present invention in a one-stage (high-speed cutoff valve) fully closed state. FIG. 3 is a cross-sectional view of the high-speed cutoff electronic linear expansion valve according to the present invention in a single-stage (rotary electric valve) fully closed state. FIG. 4 is a cross-sectional view of the high-speed cutoff electronic linear expansion valve of the present invention in a two-stage fully closed state. The high-speed cutoff electronic linear expansion valve of the present invention includes a first refrigerant flow path 2, a second refrigerant flow path 3, a coil 4, a rotor magnet 5, a male thread part 6, a female thread part 7, a rotary needle valve 8, It has a double valve seat 9, a fixed iron core 10, a spring 11, a plunger 12, a high-speed cutoff needle 13, a high-speed cutoff valve 14, and a seat 15.

高速遮断型電子リニアー膨張弁は、ギヤ型電動弁駆動方の機構部品と高速電磁駆動直動方式の機構部品と共用する機構部品とから構成している。 The high-speed shut-off type electronic linear expansion valve is composed of a mechanical part for driving a gear-type motor-operated valve and a mechanical part shared with a mechanical part for a high-speed electromagnetic drive direct acting system.

ギヤ型電動弁駆動方式では、コイル4に発生する回転磁界を受けて、ロータマグネット5が回転し、かつ、それに結合している雄ネジ部6が回転する。一方雌ネジ部7は高速遮断型電子リニアー膨張弁1に固定されており、雄ネジ部6は回転しながらネジ山に沿って上下する。雄ネジ部6の先端にあるロータリーニードル弁8が回転しながら上下し、二重弁座9の上部開口端の開口面積を変化させて通過冷媒流量を制御する。 In the gear type electric valve drive system, the rotor magnet 5 rotates in response to the rotating magnetic field generated in the coil 4, and the male screw portion 6 coupled thereto rotates. On the other hand, the female screw portion 7 is fixed to the high-speed cutoff electronic linear expansion valve 1, and the male screw portion 6 moves up and down along the screw thread while rotating. The rotary needle valve 8 at the front end of the male screw portion 6 moves up and down while rotating, and the opening area of the upper opening end of the double valve seat 9 is changed to control the flow rate of the passing refrigerant.

一方、高速電磁駆動方式では、コイル4に回転しない大電気入力の固定磁場をかけることによって、固定鉄心(キューインシ)10の磁力により、プランジャー12がスプリング11の力に打ち勝って、吸引する。このプランジャー12に固定された高速遮断ニードル13は、固定鉄心10とロータリーニードル弁8の同軸中心を貫通しており、その先頭の高速遮断弁14がシート15に押接されて、二重弁座9の下部開口端を全閉する。 On the other hand, in the high-speed electromagnetic drive system, the plunger 12 overcomes the force of the spring 11 by the magnetic force of the fixed iron core (cue) 10 by applying a fixed magnetic field of high electrical input that does not rotate to the coil 4 and attracts it. The high-speed shut-off needle 13 fixed to the plunger 12 passes through the coaxial center of the fixed iron core 10 and the rotary needle valve 8, and the leading high-speed shut-off valve 14 is pressed against the seat 15 so that the double valve seat Fully close the lower open end of 9.

図5に一般的な冷媒回路図を示す。圧縮機20で高温高圧のガスに圧縮された冷媒は→方向に流れ、凝縮器20で高圧液に凝縮し、高速遮断型電子リニアー膨張弁に至る。本膨張弁にて低圧二相冷媒に減圧され蒸発器40で蒸発ガス化して更に圧縮機20へと循環サイクルを構成している。特に文献5に記載の圧縮機起動前から起動後安定運転時までの冷媒の分布を図6に示す。その特徴を列記する。1.起動前は、全冷媒充填量の80%が蒸発器に寝込んでいる。(t=0秒)2.起動後40秒後(0.667分後)は圧縮機に40%近くの冷媒が溶解し溜まりこんでいる。3.7分50秒後(7.833分後)は、凝縮器に約60%の冷媒が分配されている。4.安定時(20分以後)は凝縮器に55%、蒸発器に15%、圧縮機に約10%分布している。つまり、圧縮機がサーモオフ(停止する)と、凝縮器に55%あった高圧低温低エントロピーの液冷媒が、膨張弁を通過して、低圧低温の蒸発器に流入し平均的な高エントロピー冷媒になる。これを圧縮機起動時に再び高圧液冷媒と低圧冷媒に分離しなければならない。ここに圧縮機発停エネルギーロスが発生する。従って高速遮断型電子リニアー膨張弁で、圧縮機停止と同時に瞬時に(1秒以内)高圧の凝縮器と低圧の蒸発器部を遮断する必要がある。 FIG. 5 shows a general refrigerant circuit diagram. The refrigerant compressed into the high-temperature and high-pressure gas by the compressor 20 flows in the → direction, condenses into a high-pressure liquid by the condenser 20, and reaches a high-speed cutoff electronic linear expansion valve. The expansion valve reduces the pressure to a low-pressure two-phase refrigerant, evaporates and gasifies in the evaporator 40, and further forms a circulation cycle to the compressor 20. In particular, FIG. 6 shows the refrigerant distribution from the start of the compressor described in Document 5 to the stable operation after the start. The features are listed. 1. Before starting up, 80% of the total refrigerant charge lies in the evaporator. (T = 0 seconds) 2. 40 seconds after startup (0.667 minutes later), nearly 40% of the refrigerant is dissolved and accumulated in the compressor. After 3.7 minutes and 50 seconds (7.833 minutes), about 60% of the refrigerant is distributed to the condenser. 4. When stable (after 20 minutes), 55% is distributed in the condenser, 15% in the evaporator, and 10% in the compressor. In other words, when the compressor is thermo-off (stopped), the high-pressure, low-temperature, low-entropy liquid refrigerant that was 55% in the condenser passes through the expansion valve, flows into the low-pressure, low-temperature evaporator, and becomes an average high-entropy refrigerant. Become. This must be separated again into a high-pressure liquid refrigerant and a low-pressure refrigerant when the compressor is started. Here, compressor start / stop energy loss occurs. Therefore, it is necessary to shut off the high-pressure condenser and the low-pressure evaporator instantly (within 1 second) at the same time as the compressor is stopped with a high-speed shut-off type electronic linear expansion valve.

次に、高速遮断型電子リニアー膨張弁1の全体の作用と運転モードについて述べる。図1の高速遮断型電子リニアー膨張弁は、図5に示す冷媒回路図の流量制御中の状態を示している。二重弁座9はロータリーニードル弁8も高速遮断弁14も開となっており、特にロータリーニードル弁8は流量制御中の適正な開度(開口面積)になっており高速遮断弁14は全開となっている。コイル4には回転磁界を発生させて、ローターマグネット5、及びそれと同体の雄ネジ部は回転し、ロータリニードル弁8は上下しつつ、適正な弁開度に制御されている。このギヤ式電動弁駆動方式は、駆動トルクが小さくかつ位置決めが終われば非通電でもロータリーニードル弁の位置が固定するので小電気入力であり省エネルギーである。一方、本モード中は、小電気入力の為電磁駆動力不足となり、固定鉄心(キューインシ)10の電磁力が弱く、プランジャー12(高速遮断弁、高速遮断ニードルと一体化して)は、スプリング11により、開方向に(上に向けて)押接されている。 Next, the overall operation and operation mode of the high-speed cutoff electronic linear expansion valve 1 will be described. The high-speed cutoff electronic linear expansion valve in FIG. 1 shows a state during flow rate control in the refrigerant circuit diagram shown in FIG. The double valve seat 9 has both the rotary needle valve 8 and the high-speed shut-off valve 14 open. In particular, the rotary needle valve 8 has an appropriate opening degree (opening area) during flow control, and the high-speed shut-off valve 14 is fully open. It has become. A rotating magnetic field is generated in the coil 4 so that the rotor magnet 5 and the male screw portion thereof are rotated, and the rotary needle valve 8 is controlled to an appropriate valve opening while moving up and down. This gear type electric valve drive system is small in electric input and energy saving because the position of the rotary needle valve is fixed even when the energization is not performed when the driving torque is small and positioning is completed. On the other hand, during this mode, the electromagnetic driving force is insufficient due to the small electrical input, the electromagnetic force of the fixed iron core (cue-in) 10 is weak, and the plunger 12 (integrated with the high-speed cutoff valve and high-speed cutoff needle) Therefore, it is pressed in the opening direction (upward).

次に図2に基づいて一段(高速遮断弁)全閉状態の説明をする。まづ冷凍サイクルを通常の運転状態である図1の流量制御状態から、圧縮機停止と同時にコイル5の回転磁界から固定磁界にし、コイルへの電気入力をアップする。それに伴いロータマグネットは停止し、それに伴ってギヤ型電動駆動部はすべて動きを停止する。一方電磁機構駆動部の固定鉄心は磁化されキューインシの力によってプランジャーが下に向けて吸引されて、二重弁座の下部開口端が全閉になる。この場合、高速遮断弁の全閉時は、固定磁界への通電となっている。この電気入力を減らすためには、更に回転磁界通電にして、ギヤ式電動駆動方式にして、ギヤ式電動方式の全閉も実施し、図4の二段全閉状態にする。その後、コイルへの通電を0にすれば図3の一段(ロータリ電動弁)全閉状態の位置決めによりコイルへの入力0が実現できる。なお回転磁界の発生は参考文献6によれば良いので図8に示す。 Next, the one-stage (high-speed shut-off valve) fully closed state will be described with reference to FIG. First, the refrigeration cycle is changed from the flow control state shown in FIG. 1, which is a normal operation state, from the rotating magnetic field of the coil 5 to the fixed magnetic field at the same time as the compressor is stopped, and the electric input to the coil is increased. Along with this, the rotor magnet stops, and all the gear type electric drive units stop moving accordingly. On the other hand, the fixed iron core of the electromagnetic mechanism drive unit is magnetized and the plunger is attracted downward by the cue force, so that the lower opening end of the double valve seat is fully closed. In this case, the fixed magnetic field is energized when the high-speed shut-off valve is fully closed. In order to reduce this electric input, the rotating magnetic field is further energized, the gear type electric drive system is used, and the gear type electric drive system is also fully closed, resulting in the two-stage fully closed state of FIG. After that, if the current to the coil is set to 0, the input 0 to the coil can be realized by positioning in the one-stage (rotary electric valve) fully closed state in FIG. The generation of the rotating magnetic field is shown in FIG.

次に、図7に示す第2の実施例について述べる。なお同一番号は同一名を示す。図7は冷房と暖房回路を表す。一般的なヒートポンプエアコンの概略図である。図中50は四方切換え弁であり、室内熱交換器41と室外熱交換器31とでサイクルを構成している。実線の矢印は暖房運転時の冷媒の流れであり、破線の矢印は冷房運転時の冷媒の流れでもあり、リバースデフロスト運転時の冷媒の流れでもある。ここで、ここで、高速遮断型電子リニアー膨張弁の第一の冷媒流路2と第二の冷媒流路3が逆転している。図9に本高速遮断型電子リニアー膨張弁の運転制御モードとその制御目的に沿った操作手順を示す。1.冷房運転時のサーモOFF時つまり圧縮機が停止し室内送風機が運転中:本膨張弁の制御目的は1.1に高圧と低圧にある冷媒の混合ロスを防ぐ為に膨張弁全閉が必要であり1.2に室内側熱交換器(蒸発器)表面に溜まっている除湿水の再蒸発を防ぐ為に低圧冷媒温度を低いままに保つことである。その為に、膨張弁は一段(高速遮断弁)全閉が必要である。更にサーモオフの次のサーモオンに向けてロータリ電動弁側の開度は運転時の開度を保持して待たしておく。2.冷房運転時の電源OFF時つまり圧縮機もOFFし室内送風機もOFFの時:この場合はエアコンを使わない時だから2.1待機電力を0とし2.2液封防止(液冷媒を小さい空間に閉じ込めて高温にさらされると爆発する危険がある。)の為に高圧と低圧を開放しておく。このときは膨張弁は高速遮断弁は全開のままにし電気入力は0.かつロータリー電動弁も運転時の開度のまま空けておく。3.暖房運転時のサーモOFF時(圧縮機OFFかつ室内送風機もOFF):制御目的は3.1高低圧冷媒混合ロス防止と3.2高速暖房起ち上げである。このときの膨張弁の操作は一段(高速遮断弁)全閉と更にONに向けて準備のロータリー電動弁開度は安定運転時の2倍開度に空けておく。4.暖房運転時の電源OFF時の制御目的は4.1待機電力減と4.2高温が無いため液封の心配は無いが、低外気温度の為圧縮機への液冷媒の寝込みを防止する必要がある。膨張弁の操作は一段(高速遮断弁)全閉→二段全閉→一段(ロータリー電動弁)全閉にし電気入力0にする。 Next, a second embodiment shown in FIG. 7 will be described. The same numbers indicate the same names. FIG. 7 represents the cooling and heating circuit. It is the schematic of a general heat pump air conditioner. In the figure, reference numeral 50 denotes a four-way switching valve, and the indoor heat exchanger 41 and the outdoor heat exchanger 31 constitute a cycle. Solid arrows indicate the refrigerant flow during the heating operation, and broken arrows indicate the refrigerant flow during the cooling operation and the refrigerant flow during the reverse defrost operation. Here, the first refrigerant channel 2 and the second refrigerant channel 3 of the high-speed cutoff electronic linear expansion valve are reversed. FIG. 9 shows the operation control mode of the high-speed cutoff electronic linear expansion valve and the operation procedure according to the control purpose. 1. When the thermostat is turned off during cooling operation, that is, the compressor is stopped and the indoor blower is in operation: The purpose of the control of this expansion valve is to fully close the expansion valve to prevent mixing loss of refrigerant at high pressure and low pressure Yes 1.2 is to keep the low-pressure refrigerant temperature low to prevent re-evaporation of the dehumidified water accumulated on the surface of the indoor heat exchanger (evaporator). For this purpose, the expansion valve needs to be fully closed by one stage (high-speed shutoff valve). Furthermore, the opening degree on the rotary electric valve side is kept waiting for the opening degree on the rotary electric valve side toward the next thermo-on state of the thermo-off state. 2. When the power supply during cooling operation is turned off, that is, when the compressor is turned off and the indoor blower is also turned off: In this case, when the air conditioner is not used, 2.1 standby power is set to 0 and 2.2 liquid seal prevention (contains liquid refrigerant in a small space) Open high and low pressures to avoid explosion if exposed to high temperatures. At this time, the expansion valve is left open with the high-speed shut-off valve fully open, the electric input is 0, and the rotary electric valve is also left open with the opening during operation. 3. When the thermostat is OFF during heating operation (compressor OFF and indoor fan also OFF): The control objectives are 3.1 high-low pressure refrigerant mixing loss prevention and 3.2 high-speed heating startup. At this time, the operation of the expansion valve is fully closed and further turned ON, and the rotary electric valve opening degree of the preparation is set to be twice the opening degree during stable operation. 4. The control purpose when the power is turned off during heating operation is 4.1 standby power reduction and 4.2 no high temperature, so there is no worry of liquid sealing, but it is necessary to prevent liquid refrigerant from stagnating in the compressor due to low outside air temperature . The expansion valve is operated with one-stage (high-speed shut-off valve) fully closed → two-stage fully closed → first-stage (rotary motor-operated valve) fully closed and electrical input set to zero.

更に同じ効果を示す他の構成例について述べる。高速遮断型電子リニアー膨張弁のコイルを一体に図示してあるが、もちろんギヤ式ロータリー電動弁駆動用のコイルと電磁高速駆動用コイルはそれぞれ別に構成してもよい。更に二重弁座を本構成とすることもなく、高速遮断弁とシートは第2の冷媒流路に設置して図10の如くしてもよい。 Further, another configuration example showing the same effect will be described. Although the coil of the high-speed shut-off type electronic linear expansion valve is shown integrally, the gear-type rotary electric valve driving coil and the electromagnetic high-speed driving coil may be configured separately. Further, the double valve seat does not have this configuration, and the high speed shut-off valve and the seat may be installed in the second refrigerant flow path as shown in FIG.

本発明はルームエアコン、パッケージエアコン、カーエアコン、ビル用マルチエアコンなどの空調機や、冷蔵庫、冷凍冷蔵ショーケース等の冷凍サイクルに用いられ、発停を繰り返す機器のエネルギーロスを低減する膨張弁として適用することが出来る。また待機電力を削減でき冷媒分配を制御できる。 The present invention is used in an air conditioner such as a room air conditioner, a packaged air conditioner, a car air conditioner, a multi air conditioner for buildings, and a refrigeration cycle such as a refrigerator, a freezer / refrigerator showcase, etc. It can be applied. In addition, standby power can be reduced and refrigerant distribution can be controlled.

1 高速遮断型電子リニアー膨張弁
2 第一の冷媒流路
3 第二の冷媒流路
4 コイル
5 ロータマグネット
6 雄ネジ部
7 雌ネジ部
8 ロータリーニードル弁
9 二重弁座
10 固定鉄心(キューインシ)
11 スプリング
12 プランジャー
13 高速遮断ニードル
14 高速遮断弁
15 シート
20 圧縮機
30 凝縮器
31 室外熱交換器
40 蒸発器
41 室内熱交換器
50 四方切換え弁
1 High-speed cutoff electronic linear expansion valve
2 First refrigerant flow path
3 Second refrigerant flow path
4 coils
5 Rotor magnet
6 Male thread
7 Female thread
8 Rotary needle valve
9 Double valve seat
10 Fixed iron core
11 Spring
12 Plunger
13 Fast shut-off needle
14 High speed shut-off valve
15 seats
20 Compressor
30 condenser
31 Outdoor heat exchanger
40 Evaporator
41 Indoor heat exchanger
50 Four-way switching valve

Claims (6)

冷凍サイクル用膨張弁において、ギヤ式電動駆動方式と電磁直動駆動全閉方式の2重閉止機能を有する電子膨張弁であり、高圧と低圧間を0.1秒以内の高速で遮断できることを特徴とする。 The expansion valve for the refrigeration cycle is an electronic expansion valve that has a double-closing function of gear-type electric drive system and electromagnetic direct drive full-close system, and can shut off between high pressure and low pressure at high speed within 0.1 seconds. . 前記膨張弁において、流量制御状態モードは高速遮断弁は非通電で開状態を保ち、電動ロータリニードル弁は適切な開度を保ち、一段(高速遮断弁)全閉状態モードは固定磁化通電状態で二段弁座の高速遮断弁が全閉状態にあり、電動ロータリーニードル弁は位置決め決定後の非通電固定開度状態であり、一段(電動ロータリニードル弁)全閉状態モードは電動ロータリーニードル弁側が全閉締め切り状態の位置決め状態で非通電であり、高速遮断弁側コイルは非通電で弁開じょうたいであり、二重全閉状態モードは両弁とも閉止状態にあることを特徴とする。 In the expansion valve, in the flow control state mode, the high-speed shut-off valve is not energized and is kept open, the electric rotary needle valve is kept at an appropriate opening degree, and the one-stage (high-speed shut-off valve) fully closed state mode is in the fixed magnetization energized state. The high-speed shut-off valve of the two-stage valve seat is in a fully closed state, the electric rotary needle valve is in a non-energized fixed opening state after positioning is determined, and the one-stage (electric rotary needle valve) fully closed state mode is on the electric rotary needle valve side It is characterized in that it is not energized in the fully closed positioning state, the high-speed shut-off valve side coil is not energized to open the valve, and in the double fully closed mode, both valves are closed. 上記1、2項記載の膨張弁においてコイルは低電気入力の回転磁界型ロータリーマグネット駆動部分と固定磁界コイルによる高電気入力のプランジャー直動駆動のコイルを同時構成または別構成して成るコイルとその制御を特徴とする。 In the expansion valve according to the above items 1 and 2, the coil is a coil formed by simultaneously or separately configuring a rotating electric field type rotary magnet driving part of low electric input and a coil of high electric input plunger direct drive by a fixed magnetic field coil. It is characterized by its control. 上記1,2,3に記載の膨張弁において、ロータリーニードル弁の内部を同軸中心部分に高速遮断ニードルを貫通させたことを特徴とする。 In the expansion valve according to any one of the above-described items 1, 2, and 3, a high-speed shut-off needle is penetrated through the center portion of the rotary needle valve at a coaxial center portion. 上記記載の膨張弁の1,2,3,4に関わり、運転モードが冷房サーモオフ時には制御目的が高低圧冷媒混合防止と蒸発熱交換器表面の除湿水の再蒸発防止にあり、膨張弁の操作手順は一段(高速遮断弁)全閉でありかつ次の圧縮機起動に向けたロータリー電動弁は運転時の開度保持で入力0とし、冷房電源OFFモード時は、制御目的が待機電力0と液封防止にあり、高速遮断弁全開のまま入力0でありかつロータリー電動弁は運転時の開度保持のまま入力0とする。 In relation to 1, 2, 3, and 4 of the expansion valve described above, when the operation mode is the cooling thermo-off, the control purpose is to prevent high / low pressure refrigerant mixing and to prevent re-evaporation of dehumidified water on the surface of the evaporation heat exchanger. The procedure is one-stage (high-speed shut-off valve) fully closed and the rotary electric valve for starting the next compressor is set to input 0 for maintaining the opening during operation, and the control purpose is set to standby power 0 in the cooling power OFF mode. To prevent liquid sealing, the input is 0 with the high speed shut-off valve fully open, and the rotary electric valve is set to 0 with the opening maintained during operation. 上記膨張弁の請求項1,2,3,4,5に係り、運転モードが暖房時のサーモオフ時には制御目的が高低圧冷媒混合ロス防止と高速暖房起ち上げにあり、一段(高速遮断弁)全閉、圧縮起動に向けてロータリー電動弁は停止寸前の開度の2倍開度に開いておく。その位置決めが決まった後は入力0。運転モードが暖房時の電源オフ時には、制御目的が待機電力減と低外気温度下の圧縮機への液冷媒寝こみ防止にあるため、一段(高速遮断弁)全閉→二段全閉→一段(ロータリー電動弁)全閉にし両弁ともに入力0とする。ことを特徴とする。 According to claims 1, 2, 3, 4 and 5 of the above expansion valve, when the operation mode is thermo-off during heating, the control purpose is to prevent high-low pressure refrigerant mixing loss and to start up high-speed heating. The rotary motor-operated valve is opened at twice the opening just before the stop for closing and compression activation. Input 0 after positioning is determined. When power is turned off when the operation mode is heating, the control purpose is to reduce standby power and prevent liquid refrigerant from being trapped in the compressor under low outside air temperature, so one-stage (high-speed shutoff valve) fully closed → two-stage fully closed → one-stage (Rotary motor-operated valve) Fully closed and both valves are set to input 0. It is characterized by that.
JP2014232408A 2014-11-17 2014-11-17 High speed cutoff electronic linear expansion valve Pending JP2016095109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014232408A JP2016095109A (en) 2014-11-17 2014-11-17 High speed cutoff electronic linear expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014232408A JP2016095109A (en) 2014-11-17 2014-11-17 High speed cutoff electronic linear expansion valve

Publications (1)

Publication Number Publication Date
JP2016095109A true JP2016095109A (en) 2016-05-26

Family

ID=56070969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232408A Pending JP2016095109A (en) 2014-11-17 2014-11-17 High speed cutoff electronic linear expansion valve

Country Status (1)

Country Link
JP (1) JP2016095109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065548A1 (en) * 2017-09-28 2019-04-04 株式会社ヴァレオジャパン Vehicular air-conditioning device
WO2022042006A1 (en) * 2020-08-31 2022-03-03 浙江盾安人工环境股份有限公司 Electronic expansion valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065548A1 (en) * 2017-09-28 2019-04-04 株式会社ヴァレオジャパン Vehicular air-conditioning device
JP2019064325A (en) * 2017-09-28 2019-04-25 株式会社ヴァレオジャパン Vehicular air conditioner
CN111094029A (en) * 2017-09-28 2020-05-01 法雷奥日本株式会社 Air conditioner for vehicle
WO2022042006A1 (en) * 2020-08-31 2022-03-03 浙江盾安人工环境股份有限公司 Electronic expansion valve

Similar Documents

Publication Publication Date Title
TW539836B (en) A compressor control system and a cooling system
US9341393B2 (en) Refrigerating cycle apparatus having an injection circuit and operating with refrigerant in supercritical state
CN107356006B (en) Air conditioning system and air conditioner
JP4912308B2 (en) Refrigeration cycle equipment
US20150338121A1 (en) Air-conditioning apparatus
US9151525B2 (en) Method of operating an evaporator assembly with a fan controller
US20150362235A1 (en) Air-conditioning apparatus
WO1998005907A1 (en) Transfer valve, method of controlling transfer valve, freezing cycle and method of controlling freezing cycle
EP2975336B1 (en) Air conditioner
US10753658B2 (en) Air-conditioning apparatus
KR101658552B1 (en) A refrigerator and a control method thereof
CN207230987U (en) A kind of air-conditioning system and air conditioner
CN111854216B (en) Air conditioning system
WO2015060384A1 (en) Refrigeration device
JP2016095109A (en) High speed cutoff electronic linear expansion valve
JPH0861790A (en) Air conditioner
JP2017067318A (en) Air conditioner
JP5223873B2 (en) Air conditioner
JP4269476B2 (en) Refrigeration equipment
WO2013114461A1 (en) Air-conditioning unit and air-conditioning unit for railway vehicle
JP2008138979A (en) Refrigeration system
JP2013204695A (en) Three-way valve and air conditioner with the three-way valve
JP2003042583A (en) Air conditioner and controller therefor
JP6029569B2 (en) Heat pump system and heat pump type water heater
JP2011257826A (en) Automatic vending machine