JP2016094951A - Electropneumatic converter device - Google Patents

Electropneumatic converter device Download PDF

Info

Publication number
JP2016094951A
JP2016094951A JP2014229541A JP2014229541A JP2016094951A JP 2016094951 A JP2016094951 A JP 2016094951A JP 2014229541 A JP2014229541 A JP 2014229541A JP 2014229541 A JP2014229541 A JP 2014229541A JP 2016094951 A JP2016094951 A JP 2016094951A
Authority
JP
Japan
Prior art keywords
magnetic field
electropneumatic
coil
current signal
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014229541A
Other languages
Japanese (ja)
Other versions
JP6502650B2 (en
Inventor
耕一郎 村田
Koichiro Murata
耕一郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2014229541A priority Critical patent/JP6502650B2/en
Publication of JP2016094951A publication Critical patent/JP2016094951A/en
Application granted granted Critical
Publication of JP6502650B2 publication Critical patent/JP6502650B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate influence of an outer magnetic field without applying any magnetic shield against an electromagnetic coil and without arranging a correcting coil.SOLUTION: There is provided a coil 13 for detecting a composite magnetic field so as to detect an orientation and an intensity of composite magnetic field of a magnetic field (controlling magnetic field) φS generated by an electromagnetic coil 7 and a component φG in parallel with the controlling magnetic field φS of an outer magnetic field acted on the electromagnetic coil 7. A calculation part 1A is provided with a control output correction function F2 so as to correct a control output (coil driving current) Is in such a way that an orientation and an intensity of the composite magnetic field detected by the coil 13 for detecting the composite magnetic field may become the same as an orientation and an intensity of the magnetic field (an object magnetic field) corresponding to a target value to be generated by the electromagnetic coil 7.SELECTED DRAWING: Figure 3

Description

この発明は、電気信号を空気圧信号に変換する空気圧変換装置に関するものである。   The present invention relates to an air pressure conversion device that converts an electric signal into an air pressure signal.

〔従来例1:電空変換器〕
従来より、この種の電空変換装置として、図9に示すように構成された電空変換器100が知られている(例えば、特許文献1参照)。図9はこの電空変換器100の要部を示すブロック図であり、1はCPU等を備えた演算部、2は電空変換部、3は電空変換部2からのノズル背圧PNを増幅し出力空気圧Poutとするパイロットリレー、4は出力空気圧Poutを検出するフィードバックセンサである。
[Conventional example 1: Electro-pneumatic converter]
Conventionally, as this type of electropneumatic converter, an electropneumatic converter 100 configured as shown in FIG. 9 is known (see, for example, Patent Document 1). FIG. 9 is a block diagram showing a main part of the electropneumatic converter 100. Reference numeral 1 denotes a calculation unit including a CPU, 2 denotes an electropneumatic conversion unit, and 3 denotes a nozzle back pressure P N from the electropneumatic conversion unit 2. Is a pilot relay for amplifying the output air pressure Pout, and 4 is a feedback sensor for detecting the output air pressure Pout.

この電空変換器100において、電空変換部2は、図10に示すように平面視コ字状に形成された永久磁石5と、永久磁石5の上下面両端部に一端部を対向させてそれぞれ取り付けられたヨーク6と、上下のヨーク6間に配設された電磁コイル7と、ヨーク6間に適宜な隙間を保って配設されることにより電磁コイル7の中心を貫通し、その下端部が下側のヨーク6の一方に支点ばね8によって揺動自在に支持されたフラッパ(鉄片)9と、フラッパ9の下端に設けられたカウンタウェイト10とで構成され、フラッパ9の上端部にはノズル11が近接対向して配設されている。ノズル11には絞り12を介して空気圧供給源から所定圧PSの空気が供給されている。 In the electropneumatic converter 100, the electropneumatic converter 2 includes a permanent magnet 5 formed in a U shape in plan view as shown in FIG. 10 and one end portion opposed to both upper and lower end portions of the permanent magnet 5. Each of the attached yokes 6, the electromagnetic coils 7 disposed between the upper and lower yokes 6, and an appropriate gap between the yokes 6 are disposed to penetrate the center of the electromagnetic coil 7, and the lower ends thereof A flapper (iron piece) 9 is pivotally supported by one of the lower yokes 6 by a fulcrum spring 8 and a counterweight 10 provided at the lower end of the flapper 9. The nozzle 11 is disposed in close proximity to each other. The nozzle 11 is supplied with air of a predetermined pressure P S from an air pressure supply source via a throttle 12.

このように構成された電空変換器100において、入力電気信号(目標値情報を含む電流信号)Iin(4〜20mA)が入力されると、フィードバックセンサ4からフィードバックされてくる電流信号(フィードバック信号)Ifと比較され、入力電気信号Iinとフィードバック信号Ifとの差が演算部1に入力される。   In the electropneumatic converter 100 configured as described above, when an input electrical signal (current signal including target value information) Iin (4 to 20 mA) is input, a current signal fed back from the feedback sensor 4 (feedback signal). ) If and the difference between the input electric signal Iin and the feedback signal If is input to the arithmetic unit 1.

演算部1は、制御出力生成機能F1を備えており、入力電気信号Iinとフィードバック信号Ifとの差(目標値情報を含む電流信号とフィードバックされてくる電流信号との差)ΔIを入力し、この入力される信号差ΔIを零とする指令を目標値に応じた電流信号Isとして生成し、この生成した目標値に応じた電流信号Isを制御出力Isとして電空変換部2に出力する。電空変換部2において、電磁コイル7は、演算部1からの制御出力Isを磁力に変換し、フラッパ9をノズル方向もしくは反ノズル方向に揺動させる。   The calculation unit 1 includes a control output generation function F1, and inputs a difference ΔI between the input electric signal Iin and the feedback signal If (a difference between the current signal including target value information and the current signal fed back), A command for making the input signal difference ΔI zero is generated as a current signal Is corresponding to the target value, and the current signal Is corresponding to the generated target value is output to the electropneumatic converter 2 as a control output Is. In the electropneumatic converter 2, the electromagnetic coil 7 converts the control output Is from the calculator 1 into a magnetic force, and swings the flapper 9 in the nozzle direction or the counter-nozzle direction.

これにより、ノズル11とフラッパ9との離間距離xが変化し、すなわちノズル11とフラッパ9とから構成されるノズルフラッパ機構(空気圧変換部)の離間距離xが変化し、ノズル11の背圧(ノズル背圧)PNが変化する。ノズル背圧PNは、パイロットリレー3によって増幅された後、調節弁300の弁軸を駆動する操作器に出力空気圧Poutとして供給され、これによって調節弁300の弁開度が制御される。 As a result, the separation distance x between the nozzle 11 and the flapper 9 changes, that is, the separation distance x of the nozzle flapper mechanism (air pressure conversion unit) composed of the nozzle 11 and the flapper 9 changes, and the back pressure of the nozzle 11 (nozzle) Back pressure) PN changes. The nozzle back pressure P N is amplified by the pilot relay 3 and then supplied as an output air pressure Pout to an operating device that drives the valve shaft of the control valve 300, whereby the valve opening degree of the control valve 300 is controlled.

また、出力空気圧Poutはフィードバックセンサ4によって検出され、フィードバック信号Ifとして演算部1の入力側へ戻される。このため、入力電気信号Iinとフィードバック信号Ifとの偏差が零になるところで調節弁300の弁開度が安定する。   The output air pressure Pout is detected by the feedback sensor 4 and returned to the input side of the calculation unit 1 as a feedback signal If. For this reason, the valve opening degree of the control valve 300 is stabilized when the deviation between the input electric signal Iin and the feedback signal If becomes zero.

〔従来例2:電空ポジショナ〕
また、電空変換装置として、図12に示すように構成された電空ポジショナ200も知られている(例えば、特許文献2参照)。図12はこの電空ポジショナ200の要部を示すブロック図であり、21は入力信号処理部、22はCPU等を備えた演算部、23は電空変換部、24は電空変換部23からのノズル背圧PNを増幅し出力空気圧Poutとして調節弁300へ供給する空気信号増幅部、25は調節弁300のリフト位置を弁開度として検出し、その検出した弁開度に応じた電流信号をフィードバック信号Ifとして演算部22の入力側に戻す弁開度検出部である。
[Conventional example 2: Electro-pneumatic positioner]
An electropneumatic positioner 200 configured as shown in FIG. 12 is also known as an electropneumatic conversion device (see, for example, Patent Document 2). FIG. 12 is a block diagram showing the main part of the electropneumatic positioner 200, in which 21 is an input signal processing unit, 22 is an arithmetic unit provided with a CPU, 23 is an electropneumatic conversion unit, and 24 is from the electropneumatic conversion unit 23. The air signal amplifying unit 25 amplifies the nozzle back pressure P N and supplies it to the control valve 300 as the output air pressure Pout, 25 detects the lift position of the control valve 300 as the valve opening, and the current according to the detected valve opening It is a valve opening degree detection part which returns a signal to the input side of the calculating part 22 as the feedback signal If.

このように構成された電空ポジショナ200において、入力信号処理部21には、入力電気信号(目標値情報を含む電流信号)Iin(4〜20mA)が送られてくる。演算部22は、制御出力生成機能F1を備えており、入力信号処理部21からの入力電気信号Iinと弁開度検出部25からのフィードバック信号Ifとの差(目標値情報を含む電流信号とフィードバックされてくる電流信号との差)ΔIを入力し、この入力される信号差ΔIを零とする指令を目標値(設定値)に応じた電流信号Isとして生成し、この生成した目標値に応じた電流信号Isを制御出力Isとして電空変換部23に出力する。電空変換部23は、図10に示した電空変換部2と同様、電磁コイルやノズルフラッパ機構(空気圧変換部)を備えており、演算部22からの制御出力Isを磁力に変換し、この変換した磁力をノズル背圧PNに変換する。 In the electropneumatic positioner 200 configured as described above, an input electric signal (current signal including target value information) Iin (4 to 20 mA) is sent to the input signal processing unit 21. The calculation unit 22 includes a control output generation function F1, and the difference between the input electric signal Iin from the input signal processing unit 21 and the feedback signal If from the valve opening degree detection unit 25 (a current signal including target value information) A difference (ΔD from the current signal fed back) ΔI is input, and a command to make the input signal difference ΔI zero is generated as a current signal Is corresponding to the target value (set value). The corresponding current signal Is is output to the electropneumatic converter 23 as a control output Is. Similar to the electropneumatic conversion unit 2 shown in FIG. 10, the electropneumatic conversion unit 23 includes an electromagnetic coil and a nozzle flapper mechanism (pneumatic pressure conversion unit), converts the control output Is from the calculation unit 22 into a magnetic force, converting the converted force to the nozzle back pressure P N.

電空変換部23で変換されたノズル背圧PNは、空気信号増幅部24によって増幅された後、調節弁300の弁軸を駆動する操作器に出力空気圧Poutとして供給され、これによって調節弁300の弁開度が制御される。 The nozzle back pressure P N converted by the electropneumatic conversion unit 23 is amplified by the air signal amplification unit 24 and then supplied as an output air pressure Pout to an operating device that drives the valve shaft of the control valve 300. A valve opening of 300 is controlled.

また、調節弁300の弁開度が弁開度検出部25によって検出され、フィードバック信号Ifとして演算部22の入力側へ戻される。このため、入力電気信号Iinとフィードバック信号Ifとの偏差が零になるところで調節弁300の弁開度が安定する。   Further, the valve opening degree of the control valve 300 is detected by the valve opening degree detection unit 25 and returned to the input side of the calculation unit 22 as a feedback signal If. For this reason, the valve opening degree of the control valve 300 is stabilized when the deviation between the input electric signal Iin and the feedback signal If becomes zero.

特開平7−110003号公報JP 7-110003 A 特開平11−51703号公報Japanese Patent Laid-Open No. 11-51703

しかしながら、このような電空変換装置では、演算部からの制御出力を磁力に変換するために電磁コイルを用いているために、外部磁場の変動の影響を受けるという問題があった。   However, such an electropneumatic conversion device has a problem that it is affected by fluctuations in the external magnetic field because the electromagnetic coil is used to convert the control output from the calculation unit into magnetic force.

すなわち、図9に示した電空変換器100を例にとると、図10に示されるように、演算部1からの制御出力Isを磁力に変換するために電磁コイル7を用いている。このため、電磁コイル7が生成する磁場に外部磁場が作用し、この作用する外部磁場の変動の影響を受ける。   That is, taking the electropneumatic converter 100 shown in FIG. 9 as an example, as shown in FIG. 10, the electromagnetic coil 7 is used to convert the control output Is from the calculation unit 1 into a magnetic force. For this reason, an external magnetic field acts on the magnetic field generated by the electromagnetic coil 7 and is affected by the fluctuation of the acting external magnetic field.

図11に電磁コイル7が生成する磁場と電磁コイル7に作用している外部磁場との関係を例示する。同図において、φSは電磁コイル7が生成する磁場(制御用磁場)であり、φGは電磁コイル7に作用している外部磁場の制御用磁場φSと平行な方向の成分である。   FIG. 11 illustrates the relationship between the magnetic field generated by the electromagnetic coil 7 and the external magnetic field acting on the electromagnetic coil 7. In the figure, φS is a magnetic field (control magnetic field) generated by the electromagnetic coil 7, and φG is a component in a direction parallel to the control magnetic field φS of the external magnetic field acting on the electromagnetic coil 7.

なお、この例において、演算部1は、CPU1−1とコイル駆動回路1−2とを備えている。コイル駆動回路1−2は、CPU1−1からの指示を受けて、制御出力Isを目標値に応じた電流(コイル駆動電流)Isとして電磁コイル7に流す。   In this example, the calculation unit 1 includes a CPU 1-1 and a coil drive circuit 1-2. In response to the instruction from the CPU 1-1, the coil drive circuit 1-2 causes the control output Is to flow through the electromagnetic coil 7 as a current (coil drive current) Is corresponding to the target value.

この例では、電磁コイル7が生成する制御用磁場φSに対して、制御用磁場φSと平行で逆向きの磁場が外部磁場の制御用磁場φSと平行な方向の成分φGとして作用している。このため、制御用磁場φSの強さが実質的に小さくなり、フラッパ9に作用する磁力が小さくなる。   In this example, a magnetic field parallel to the control magnetic field φS and opposite to the control magnetic field φS generated by the electromagnetic coil 7 acts as a component φG in a direction parallel to the control magnetic field φS of the external magnetic field. For this reason, the strength of the control magnetic field φS is substantially reduced, and the magnetic force acting on the flapper 9 is reduced.

電磁コイル7が生成する制御用磁場φSに対して作用する外部磁場(外部磁場の制御用磁場φSと平行な方向の成分φG)は電空変換器100が置かれる環境によって異なり、この電磁コイル7が生成する制御用磁場φSに対して作用する外部磁場が変動すると、フラッパ9に作用する磁力も変動する。このため、ノズル背圧PNが変動し、調節弁300の弁開度の制御が不安定となる。 The external magnetic field acting on the control magnetic field φS generated by the electromagnetic coil 7 (component φG in the direction parallel to the external magnetic field control magnetic field φS) varies depending on the environment in which the electropneumatic transducer 100 is placed. When the external magnetic field that acts on the control magnetic field φS generated by fluctuates, the magnetic force that acts on the flapper 9 also fluctuates. For this reason, the nozzle back pressure PN fluctuates, and the control of the valve opening of the control valve 300 becomes unstable.

図12に示した電空ポジショナ200においても、電空変換部23において電磁コイルを用いているので、電空変換器100と同様の問題が生じる。電空変換器100や電空ポジショナ200では、出力空気圧Poutや調節弁300の弁開度を観測しているが、磁場を観測していないため、自身では対応できない。また、現場で不適合が発生した場合、原因特定まで時間がかかる。   Also in the electropneumatic positioner 200 shown in FIG. 12, the electromagnetic coil is used in the electropneumatic converter 23, so that the same problem as the electropneumatic converter 100 occurs. In the electropneumatic converter 100 and the electropneumatic positioner 200, the output air pressure Pout and the valve opening of the control valve 300 are observed. However, since the magnetic field is not observed, it cannot be handled by itself. Also, if a nonconformity occurs on site, it takes time to identify the cause.

なお、電磁コイルを磁気シールドすることが考えられるが、完全に外部磁界の影響をなくすことは困難である。また、調節弁の弁開度を制御する電空変換器や電空ポジショナなどの電空変換装置では、防爆構造に加え小型化が求められ、電磁コイルを磁気シールドすると、複雑かつ大型化する。すなわち、電磁コイルの周辺の小型化が難しくなり、組立構造が複雑となり、コストがアップしてしまう。また、本質安全防爆構造においては、通電部である電磁コイルを一定以上筐体から離さなければならない。   Although it is conceivable to shield the electromagnetic coil, it is difficult to completely eliminate the influence of the external magnetic field. In addition, an electropneumatic converter such as an electropneumatic converter or an electropneumatic positioner that controls the valve opening of the control valve is required to be downsized in addition to an explosion-proof structure. That is, it is difficult to reduce the size of the periphery of the electromagnetic coil, the assembly structure is complicated, and the cost is increased. Further, in the intrinsically safe explosion-proof structure, the electromagnetic coil that is the energizing part must be separated from the housing by a certain amount or more.

また、外部磁場の影響をキャンセルするめの補正用のコイルを設けることが考えられるが、すなわち補正用のコイルに電流を流して外部磁場をキャンセルするようにすることが考えられるが、補正用のコイルと合わせて、外部磁場を検出する回路、補正用のコイルを駆動する回路なども必要となり、その構成が複雑化する。   In addition, it is conceivable to provide a correction coil for canceling the influence of the external magnetic field, that is, it is possible to cancel the external magnetic field by passing a current through the correction coil. In addition, a circuit for detecting an external magnetic field, a circuit for driving a correction coil, and the like are also required, and the configuration becomes complicated.

本発明は、このような課題を解決するためになされたもので、その目的とするところは、電磁コイルを磁気シールドすることなく、また補正用のコイルを設けることなく、外部磁場の影響を排除することが可能な電空変換装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to eliminate the influence of an external magnetic field without magnetically shielding an electromagnetic coil and without providing a correction coil. It is an object of the present invention to provide an electropneumatic conversion device that can do this.

このような目的を達成するために本発明は、目標値に応じた電流信号を制御出力として出力する演算部と、この演算部からの制御出力を磁力に変換する電磁コイルと、この電磁コイルが変換した磁力を空気圧に変換する空気圧変換部とを備えた電空変換装置において、電磁コイルが生成する磁場を制御用磁場とし、この制御用磁場と電磁コイルに作用している外部磁場の制御用磁場と平行な方向の成分との合成磁場の向きと強さを検出する合成磁場検出部を備え、演算部は、合成磁場検出部によって検出される合成磁場の向きと強さが電磁コイルが生成すべき目標値に応じた磁場の向きと強さと同じとなるように制御出力を補正する制御出力補正部を備えることを特徴とする。   In order to achieve such an object, the present invention provides a calculation unit that outputs a current signal according to a target value as a control output, an electromagnetic coil that converts the control output from the calculation unit into a magnetic force, and the electromagnetic coil includes: In an electropneumatic converter having an air pressure conversion unit that converts the converted magnetic force into air pressure, the magnetic field generated by the electromagnetic coil is used as a control magnetic field, and the control magnetic field and an external magnetic field acting on the electromagnetic coil are controlled. It has a synthetic magnetic field detector that detects the direction and strength of the synthetic magnetic field with the component in the direction parallel to the magnetic field, and the arithmetic unit generates the electromagnetic coil with the direction and strength of the synthetic magnetic field detected by the synthetic magnetic field detector. A control output correction unit that corrects the control output so as to be the same as the direction and strength of the magnetic field according to the target value to be obtained is provided.

この発明によれば、「電磁コイルが生成する磁場(制御用磁場)」と「電磁コイルに作用している外部磁場の制御用磁場と平行な方向の成分」との合成磁場の向きと強さが、合成磁場検出部によって検出される。演算部は、この合成磁場検出部によって検出される合成磁場の向きと強さが電磁コイルが生成すべき目標値に応じた磁場の向きと強さと同じとなるように、電磁コイルへの制御出力を補正する。すなわち、本発明では、合成磁場の向きと強さの検出と、この検出される合成磁場に基づく電磁コイルへの制御出力の補正のみで、外部磁場の影響が排除される。   According to this invention, the direction and strength of the combined magnetic field of “the magnetic field generated by the electromagnetic coil (control magnetic field)” and “the component in the direction parallel to the control magnetic field of the external magnetic field acting on the electromagnetic coil”. Is detected by the synthetic magnetic field detector. The calculation unit outputs a control output to the electromagnetic coil so that the direction and strength of the synthetic magnetic field detected by the synthetic magnetic field detection unit are the same as the direction and strength of the magnetic field according to the target value to be generated by the electromagnetic coil. Correct. That is, in the present invention, the influence of the external magnetic field is eliminated only by detecting the direction and strength of the combined magnetic field and correcting the control output to the electromagnetic coil based on the detected combined magnetic field.

本発明において、演算部は、目標値情報を含む電流信号とフィードバックされてくる電流信号との差を入力とし、この入力される信号の差を零とする指令を目標値に応じた電流信号として生成し、この生成した目標値に応じた電流信号を制御出力として出力する。この場合、フィードバックされてくる電流信号は、空気圧変換部によって変換された空気圧に応じた電流信号であってもよく、空気圧変換部によって変換された空気圧が操作出力として与えられる調節弁の弁開度に応じた電流信号であってもよい。   In the present invention, the calculation unit inputs a difference between a current signal including target value information and a current signal fed back and inputs a command for setting the difference between the input signals to zero as a current signal corresponding to the target value. And a current signal corresponding to the generated target value is output as a control output. In this case, the feedback current signal may be a current signal corresponding to the air pressure converted by the air pressure conversion unit, and the valve opening degree of the control valve to which the air pressure converted by the air pressure conversion unit is given as an operation output It may be a current signal according to.

本発明によれば、「電磁コイルが生成する磁場(制御用磁場)」と「電磁コイルに作用している外部磁場の制御用磁場と平行な方向の成分」との合成磁場の向きと強さを検出するようにし、この検出される合成磁場の向きと強さが電磁コイルが生成すべき目標値に応じた磁場の向きと強さと同じとなるように、電磁コイルへの制御出力を補正するようにしたので、電磁コイルを磁気シールドすることなく、また補正用のコイルを設けることなく、合成磁場の向きと強さの検出と、この検出される合成磁場に基づく電磁コイルへの制御出力の補正のみで、外部磁場の影響を排除することが可能となる。   According to the present invention, the direction and strength of the combined magnetic field of “the magnetic field generated by the electromagnetic coil (control magnetic field)” and “the component in the direction parallel to the control magnetic field of the external magnetic field acting on the electromagnetic coil”. And the control output to the electromagnetic coil is corrected so that the direction and strength of the detected composite magnetic field are the same as the direction and strength of the magnetic field according to the target value to be generated by the electromagnetic coil. Since the electromagnetic coil is not magnetically shielded and no correction coil is provided, the direction and strength of the combined magnetic field can be detected, and the control output to the electromagnetic coil based on the detected combined magnetic field. It is possible to eliminate the influence of the external magnetic field only by correction.

本発明に係る電空変換装置の一実施の形態(電空変換器)の要部を示すブロック図である。It is a block diagram which shows the principal part of one Embodiment (electropneumatic converter) of the electropneumatic converter which concerns on this invention. この電空変換器における電空変換部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the electropneumatic conversion part in this electropneumatic converter. この電空変換器における演算部の要部を示す図である。It is a figure which shows the principal part of the calculating part in this electropneumatic converter. この電空変換器における演算部のCPUが実行する処理動作を示すフローチャートである。It is a flowchart which shows the processing operation which CPU of the calculating part in this electropneumatic converter performs. この電空変換器における電空変換用コイルが生成する制御用磁場φSが補正される様子を示す図である。It is a figure which shows a mode that the magnetic field for control (phi) S which the coil for electropneumatic conversion in this electropneumatic converter produces | generates is correct | amended. 本発明に係る電空変換装置の他の実施の形態(電空ポジショナ)の要部を示すブロック図である。It is a block diagram which shows the principal part of other embodiment (electropneumatic positioner) of the electropneumatic converter which concerns on this invention. この電空ポジショナにおける電空変換部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the electropneumatic conversion part in this electropneumatic positioner. この電空ポジショナにおける演算部の要部を示す図である。It is a figure which shows the principal part of the calculating part in this electropneumatic positioner. 従来の電空変換器の要部を示すブロック図である。It is a block diagram which shows the principal part of the conventional electropneumatic converter. 従来の電空変換器における電空変換部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the electropneumatic conversion part in the conventional electropneumatic converter. 従来の電空変換器における演算部の要部を示す図である。It is a figure which shows the principal part of the calculating part in the conventional electropneumatic converter. 従来の電空ポジショナの要部を示すブロック図である。It is a block diagram which shows the principal part of the conventional electropneumatic positioner.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

〔実施の形態1:電空変換器〕
図1は本発明に係る電空変換装置の一実施の形態の要部を示すブロック図である。図1には、実施の形態1として、電空変換器の要部のブロック図を示している。
[Embodiment 1: Electropneumatic converter]
FIG. 1 is a block diagram showing a main part of an embodiment of an electropneumatic converter according to the present invention. FIG. 1 shows a block diagram of a main part of an electropneumatic converter as the first embodiment.

図1において、図9と同一符号は図9を参照して説明した構成要素と同一或いは同等の構成要素を示し、その説明は省略する。この電空変換器100において、図9に示した従来の電空変換器100と異なる点は、演算部1の機能および電空変換部2の構成にある。   1, the same reference numerals as those in FIG. 9 denote the same or equivalent components as those described with reference to FIG. 9, and the description thereof will be omitted. This electropneumatic converter 100 is different from the conventional electropneumatic converter 100 shown in FIG. 9 in the function of the calculation unit 1 and the configuration of the electropneumatic conversion unit 2.

以下、従来の電空変換器100を電空変換器100B、本実施の形態の電空変換器100を電空変換器100Aとし、従来の電空変換器100Bにおける演算部1および電空変換部2を演算部1Bおよび電空変換部2B、本実施の形態の電空変換器100Aにおける演算部1および電空変換部2を演算部1Aおよび電空変換部2Aとする。   Hereinafter, the conventional electropneumatic converter 100 is referred to as an electropneumatic converter 100B, and the electropneumatic converter 100 according to the present embodiment is referred to as an electropneumatic converter 100A. 2 is an arithmetic unit 1B and an electropneumatic converter 2B, and the arithmetic unit 1 and the electropneumatic converter 2 in the electropneumatic converter 100A of this embodiment are an arithmetic unit 1A and an electropneumatic converter 2A.

本実施の形態において、電空変換部2Aは、図2に示すように、上下のヨーク6間に設けられている電磁コイル7の下部に、この電磁コイル7と同軸かつ平行に合成磁場検出用コイル13を設けている。この合成磁場検出用コイル13は、電磁コイル(以下、電空変換用コイルと呼ぶ)7が生成する磁場(制御用磁場)と電空変換用コイル7に作用している外部磁場の制御用磁場と平行な方向の成分との合成磁場の向きと強さを検出する。   In the present embodiment, as shown in FIG. 2, the electropneumatic conversion unit 2A is provided below the electromagnetic coil 7 provided between the upper and lower yokes 6 so as to detect the combined magnetic field coaxially and in parallel with the electromagnetic coil 7. A coil 13 is provided. The combined magnetic field detection coil 13 includes a magnetic field (control magnetic field) generated by an electromagnetic coil (hereinafter referred to as an electropneumatic conversion coil) 7 and a control magnetic field for an external magnetic field acting on the electropneumatic conversion coil 7. The direction and strength of the combined magnetic field with the component in the direction parallel to the direction is detected.

また、本実施の形態において、演算部1Aは、制御出力生成機能F1に加え、合成磁場検出用コイル13によって検出される合成磁場の向きと強さを入力とし、この合成磁場の向きと強さが電空変換用コイル7が生成すべき目標値に応じた磁場(目的の磁場)の向きと強さと同じとなるように、電空変換部2Aへの制御出力Isを補正する制御出力補正機能F2を備えている。この制御出力補正機能F2が本発明でいう制御出力補正部に相当し、制御出力生成機能F1が制御出力生成部に相当する。   In the present embodiment, in addition to the control output generation function F1, the calculation unit 1A receives the direction and strength of the synthesized magnetic field detected by the synthesized magnetic field detection coil 13, and the direction and strength of the synthesized magnetic field. Is a control output correction function for correcting the control output Is to the electropneumatic converter 2A so that the direction and strength of the magnetic field (target magnetic field) corresponding to the target value to be generated by the electropneumatic conversion coil 7 is the same. F2 is provided. The control output correction function F2 corresponds to the control output correction unit referred to in the present invention, and the control output generation function F1 corresponds to the control output generation unit.

図3に演算部1Aの要部を示す。演算部1Aは、CPU1−1と、コイル駆動回路1−2と、増幅器1−3と、A/D変換器1−4と、メモリ1−5とを備えている。   FIG. 3 shows a main part of the calculation unit 1A. The arithmetic unit 1A includes a CPU 1-1, a coil driving circuit 1-2, an amplifier 1-3, an A / D converter 1-4, and a memory 1-5.

演算部1Aにおいて、コイル駆動回路1−2は、CPU1−1からの指示を受けて、制御出力Isを目標値に応じた電流(コイル駆動電流)Isとして電空変換用コイル7に流す。   In the arithmetic unit 1A, the coil drive circuit 1-2 receives an instruction from the CPU 1-1 and causes the control output Is to flow through the electropneumatic conversion coil 7 as a current (coil drive current) Is corresponding to the target value.

演算部1Aにおいて、増幅器1−3とA/D変換器1−4とは合成磁場検出用コイル13とCPU1−1との間の処理回路として設けられ、合成磁場検出用コイル13が検出する合成磁場(電空変換用コイル7が生成する磁場(制御用磁場)φSと電空変換用コイル7に作用している外部磁場の制御用磁場φSと平行な方向の成分φGとの合成磁場)の向きと強さをCPU1−1へ与える。   In the arithmetic unit 1A, the amplifier 1-3 and the A / D converter 1-4 are provided as a processing circuit between the synthetic magnetic field detection coil 13 and the CPU 1-1, and the synthetic magnetic field detection coil 13 detects the synthesis. Of the magnetic field (the magnetic field generated by the electropneumatic conversion coil 7 (control magnetic field) φS and the combined magnetic field of the component φG in a direction parallel to the control magnetic field φS of the external magnetic field acting on the electropneumatic conversion coil 7). The direction and strength are given to the CPU 1-1.

この演算部1Aにおいて、制御出力生成機能F1や制御出力補正機能F2は、メモリ1−5に格納されているプログラムに従うCPU1−1の処理動作として実現される。   In the arithmetic unit 1A, the control output generation function F1 and the control output correction function F2 are realized as processing operations of the CPU 1-1 according to a program stored in the memory 1-5.

以下、図4に示すフローチャートを参照して、演算部1AにおけるCPU1−1が実行する本実施の形態特有の処理動作について説明する。   Hereinafter, with reference to the flowchart shown in FIG. 4, the processing operation unique to the present embodiment executed by the CPU 1-1 in the arithmetic unit 1A will be described.

演算部1Aにおいて、CPU1−1は、入力電気信号Iinとフィードバック信号Ifとの差(目標値情報を含む電流信号とフィードバックされてくる電流信号との差)ΔIを入力し、この入力される信号差ΔIを零とする指令を目標値に応じた電流信号(制御出力)Isとして生成する。   In the arithmetic unit 1A, the CPU 1-1 inputs a difference (difference between a current signal including target value information and a current signal fed back) ΔI between the input electric signal Iin and the feedback signal If, and this input signal A command for setting the difference ΔI to zero is generated as a current signal (control output) Is corresponding to the target value.

すなわち、CPU1−1は、目標値を入力し(ステップS101)、目標値に応じた磁場(目的の磁場)が得られるような制御出力Isを求め(ステップS102)、この求めた制御出力Isを目標値に応じた電流(コイル駆動電流)Isとして電空変換用コイル7に流す(ステップS103)。これにより、電空変換用コイル7が制御用磁場φSを生成する。   That is, the CPU 1-1 inputs a target value (step S101), obtains a control output Is that can obtain a magnetic field (target magnetic field) corresponding to the target value (step S102), and obtains the obtained control output Is. The current (coil drive current) Is corresponding to the target value is passed through the electropneumatic conversion coil 7 (step S103). As a result, the electropneumatic conversion coil 7 generates the control magnetic field φS.

一方、合成磁場検出用コイル13は、電空変換用コイル7が生成する制御用磁場φSと電空変換用コイル7に作用している外部磁場の制御用磁場φSと平行な方向の成分φGとの合成磁場の向きと強さを検出する。この合成磁場検出用コイル13によって検出された合成磁場の向きと強さは、増幅器1−3とA/D変換器1−4とから構成される処理回路を通してCPU1−1へ与えられる。   On the other hand, the combined magnetic field detection coil 13 includes a control magnetic field φS generated by the electropneumatic conversion coil 7 and a component φG in a direction parallel to the control magnetic field φS of the external magnetic field acting on the electropneumatic conversion coil 7. Detect the direction and strength of the synthetic magnetic field. The direction and strength of the combined magnetic field detected by the combined magnetic field detection coil 13 is given to the CPU 1-1 through a processing circuit including the amplifier 1-3 and the A / D converter 1-4.

CPU1−1は、合成磁場検出用コイル13によって検出された合成磁場の向きと強さを取り込み(ステップS104)、この取り込んだ合成磁場の向きと強さと電空変換用コイル7が生成すべき目標値に応じた磁場(目的の磁場)の向きと強さとを比較する(ステップS105)。なお、この時の電空変換用コイル7が生成すべき目標値に応じた磁場(目的の磁場)は、演算式やテーブルから求められる値としてメモリ1−5に記憶されている。   The CPU 1-1 takes in the direction and strength of the synthesized magnetic field detected by the synthesized magnetic field detection coil 13 (step S104), and the direction and strength of the taken synthesized magnetic field and the target that the electropneumatic conversion coil 7 should generate. The direction and strength of the magnetic field (target magnetic field) corresponding to the value are compared (step S105). The magnetic field (target magnetic field) corresponding to the target value to be generated by the electropneumatic conversion coil 7 at this time is stored in the memory 1-5 as a value obtained from an arithmetic expression or a table.

ここで、CPU1−1は、取り込んだ合成磁場の向きと強さと目的の磁場の向きと強さが一致していなければ(ステップS105のNO)、取り込んだ合成磁場の向きと強さが目的の磁場の向きと強さと同じとなるような制御出力Isを求め(ステップS106)、すなわちコイル駆動回路1−2へ指示している現在の制御出力Isを補正し、この補正した制御出力Isを目標値に応じた電流(コイル駆動電流)Isとして電空変換用コイル7に流す(ステップS107)。   Here, if the direction and strength of the captured synthetic magnetic field do not match the direction and strength of the target magnetic field (NO in step S105), the CPU 1-1 determines the direction and strength of the captured synthetic magnetic field as the target. A control output Is that is the same as the direction and strength of the magnetic field is obtained (step S106), that is, the current control output Is instructed to the coil drive circuit 1-2 is corrected, and the corrected control output Is is the target. A current (coil drive current) Is corresponding to the value is passed through the electropneumatic conversion coil 7 (step S107).

これにより、図5に示すように、電空変換用コイル7が生成する制御用磁場φSが補正される。CPU1−1は、合成磁場検出用コイル13によって検出される合成磁場の向きと強さが目的の磁場の向きと強さと一致するまで(ステップS105のYES)、ステップS104,S105,S106,S107の処理動作を繰り返す。すなわち、電空変換用コイル7が生成する制御用磁場φSの補正を繰り返す。   As a result, as shown in FIG. 5, the control magnetic field φS generated by the electropneumatic conversion coil 7 is corrected. The CPU 1-1 proceeds to steps S104, S105, S106, and S107 until the direction and strength of the combined magnetic field detected by the combined magnetic field detection coil 13 matches the direction and strength of the target magnetic field (YES in step S105). Repeat the processing operation. That is, the correction of the control magnetic field φS generated by the electropneumatic conversion coil 7 is repeated.

CPU1−1は、合成磁場検出用コイル13によって検出される合成磁場の向きと強さが目的の磁場の向きと強さと一致した後も、ステップS104,S105,S107の処理動作を繰り返す。これにより、外部磁場が変動するなどして、合成磁場検出用コイル13によって検出される合成磁場の向きと強さが目的の磁場の向きと強さとが一致しなくなった場合(ステップS105のNO)、上述と同様にして電空変換用コイル7が生成する制御用磁場φSが補正され(ステップS106,S107)、合成磁場検出用コイル13によって検出される合成磁場の向きと強さが目的の磁場の向きと強さに合わせられる。   The CPU 1-1 repeats the processing operations of steps S104, S105, and S107 even after the direction and strength of the combined magnetic field detected by the combined magnetic field detection coil 13 matches the direction and strength of the target magnetic field. As a result, the direction and strength of the synthesized magnetic field detected by the synthesized magnetic field detection coil 13 do not match the direction and strength of the target magnetic field due to fluctuations in the external magnetic field (NO in step S105). In the same manner as described above, the control magnetic field φS generated by the electropneumatic conversion coil 7 is corrected (steps S106 and S107), and the direction and strength of the composite magnetic field detected by the composite magnetic field detection coil 13 is the target magnetic field. Can be matched to the direction and strength.

このようにして、本実施の形態では、合成磁場検出用コイル13によって検出される合成磁場(電空変換用コイル7が生成する制御用磁場φSと電空変換用コイル7に作用している外部磁場の制御用磁場φSと平行な方向の成分φGとの合成磁場)の向きと強さが目的の磁場の向きと強さに常に合わせられるものとなり、電空変換用コイル7をシールドすることなく、また補正用のコイルを設けることなく、外部磁場の影響を排除することができるようになる。   In this way, in the present embodiment, the combined magnetic field detected by the combined magnetic field detection coil 13 (the control magnetic field φS generated by the electropneumatic conversion coil 7 and the external acting on the electropneumatic conversion coil 7). The direction and the strength of the magnetic field for controlling the magnetic field φS and the component φG in the direction parallel to the magnetic field are always matched to the direction and strength of the target magnetic field without shielding the electropneumatic conversion coil 7. In addition, the influence of the external magnetic field can be eliminated without providing a correction coil.

なお、図4に示した処理動作は、演算部1へ目標値が入力される毎に、すなわち入力電気信号Iinとフィードバック信号Ifとの差(目標値情報を含む電流信号とフィードバックされてくる電流信号との差)が≠0として入力される毎に、実行される。   The processing operation shown in FIG. 4 is performed every time a target value is input to the calculation unit 1, that is, the difference between the input electric signal Iin and the feedback signal If (current signal including target value information and current fed back). This is executed each time a difference from the signal is inputted as ≠ 0.

〔実施の形態2:電空ポジショナ〕
図6は本発明に係る電空変換装置の他の実施の形態の要部を示すブロック図である。図6には実施の形態2として電空ポジショナの要部のブロック図を示している。
[Embodiment 2: Electropneumatic positioner]
FIG. 6 is a block diagram showing a main part of another embodiment of the electropneumatic converter according to the present invention. FIG. 6 shows a block diagram of a main part of an electropneumatic positioner as a second embodiment.

図6において、図12と同一符号は図12を参照して説明した構成要素と同一或いは同等の構成要素を示し、その説明は省略する。この電空ポジショナ200において、図12に示した従来の電空ポジショナ200と異なる点は、演算部22の機能および電空変換部23の構成にある。   6, the same reference numerals as those in FIG. 12 denote the same or equivalent components as those described with reference to FIG. 12, and the description thereof will be omitted. The electropneumatic positioner 200 is different from the conventional electropneumatic positioner 200 shown in FIG. 12 in the function of the calculation unit 22 and the configuration of the electropneumatic conversion unit 23.

以下、従来の電空ポジショナ200を電空ポジショナ200B、本実施の形態の電空ポジショナ200を電空ポジショナ200Aとし、従来の電空ポジショナ200Bにおける演算部22および電空変換部23を演算部22Bおよび電空変換部23B、本実施の形態の電空ポジショナ200Aにおける演算部22および電空変換部23を演算部22Aおよび電空変換部23Aとする。   Hereinafter, the conventional electro-pneumatic positioner 200 is referred to as an electro-pneumatic positioner 200B, the electro-pneumatic positioner 200 according to the present embodiment is referred to as an electro-pneumatic positioner 200A, and the calculation unit 22 and the electro-pneumatic conversion unit 23 in the conventional electro-pneumatic positioner 200B are referred to as a calculation unit 22B. The calculation unit 22 and the electropneumatic conversion unit 23 in the electropneumatic conversion unit 23B and the electropneumatic positioner 200A of the present embodiment are referred to as a calculation unit 22A and an electropneumatic conversion unit 23A.

この実施の形態においても、電空変換部23Aは、図2に示した電空変換部2Aと同様、合成磁場検出用コイル13を備えている(図7参照)。また、演算部22Aは、制御出力補正機能F1に加え、合成磁場検出用コイル13によって検出される合成磁場の向きと強さを入力とし、この合成磁場の向きと強さが電空変換用コイル7が生成すべき目標値に応じた磁場(目的の磁場)の向きと強さと同じとなるように、電空変換部23Aへの制御出力Isを補正する制御出力補正機能F2を備えている。   Also in this embodiment, the electropneumatic conversion unit 23A includes the synthetic magnetic field detection coil 13 as in the electropneumatic conversion unit 2A shown in FIG. 2 (see FIG. 7). In addition to the control output correction function F1, the calculation unit 22A receives the direction and strength of the synthesized magnetic field detected by the synthesized magnetic field detection coil 13, and the direction and strength of the synthesized magnetic field is the electropneumatic conversion coil. 7 includes a control output correction function F2 that corrects the control output Is to the electropneumatic converter 23A so that the direction and strength of the magnetic field (target magnetic field) corresponding to the target value to be generated is the same.

演算部22Aの構成は図3に示した演算部1Aの構成と同じである(図8参照)。この演算部22Aにおいて、CPU22−1は、入力信号処理部21からの入力電気信号Iinと弁開度検出部25からのフィードバック信号Ifとの差(目標値情報を含む電流信号とフィードバックされてくる電流信号との差)ΔIを入力し、この入力される信号差ΔIを零とする指令を目標値に応じた電流信号(制御出力)Isとして生成する。この点が異なるのみで、演算部22AにおけるCPU22−1の処理動作は、演算部1AにおけるCPU1−1の処理動作と同じである。   The configuration of the calculation unit 22A is the same as the configuration of the calculation unit 1A shown in FIG. 3 (see FIG. 8). In this calculation unit 22A, the CPU 22-1 is fed back with the difference between the input electric signal Iin from the input signal processing unit 21 and the feedback signal If from the valve opening degree detection unit 25 (a current signal including target value information). A difference (ΔI from the current signal) ΔI is input, and a command for making the input signal difference ΔI zero is generated as a current signal (control output) Is corresponding to the target value. Only in this respect, the processing operation of the CPU 22-1 in the calculation unit 22A is the same as the processing operation of the CPU 1-1 in the calculation unit 1A.

なお、上述した実施の形態1,2では、合成磁場の検出にコイルを用いているが、合成磁場の向きと強さを検出することができればよく、コイルに限られるものではない。また、合成磁場を検出するコイルに対して増幅器とA/D変換器とから構成される処理回路を設けているが、これは一般的なセンサ出力の処理回路であり、この処理回路の種類や構成も応用は可能である。   In the first and second embodiments described above, the coil is used to detect the synthetic magnetic field. However, the coil is not limited to the coil as long as the direction and strength of the synthetic magnetic field can be detected. In addition, a processing circuit including an amplifier and an A / D converter is provided for a coil for detecting a synthetic magnetic field. This is a general sensor output processing circuit. The configuration can also be applied.

〔実施の形態の拡張〕
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。
[Extension of the embodiment]
The present invention has been described above with reference to the embodiment. However, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the technical idea of the present invention.

1…演算部、1−1…CPU、1−2…コイル駆動回路、1−3…増幅器、1−4…A/D変換器、1−5…メモリ、2…電空変換部、3…パイロットリレー、4…フィードバックセンサ、7…電磁コイル(電空変換用コイル)、9…フラッパ、11…ノズル、13…合成磁場検出用コイル、21…入力信号処理部、22…演算部、22−1…CPU、22−2…コイル駆動回路、22−3…増幅器、22−4…A/D変換器、22−5…メモリ、23…電空変換部、24…空気信号増幅部、25…弁開度検出器、100…電空変換器、200…電空ポジショナ、300…調節弁。   DESCRIPTION OF SYMBOLS 1 ... Operation part, 1-1 ... CPU, 1-2 ... Coil drive circuit, 1-3 ... Amplifier, 1-4 ... A / D converter, 1-5 ... Memory, 2 ... Electropneumatic conversion part, 3 ... Pilot relay, 4 ... feedback sensor, 7 ... electromagnetic coil (electro-pneumatic conversion coil), 9 ... flapper, 11 ... nozzle, 13 ... synthetic magnetic field detection coil, 21 ... input signal processing unit, 22 ... calculation unit, 22- DESCRIPTION OF SYMBOLS 1 ... CPU, 22-2 ... Coil drive circuit, 22-3 ... Amplifier, 22-4 ... A / D converter, 22-5 ... Memory, 23 ... Electropneumatic conversion part, 24 ... Air signal amplification part, 25 ... Valve opening detector, 100 ... electro-pneumatic converter, 200 ... electro-pneumatic positioner, 300 ... control valve.

Claims (4)

目標値に応じた電流信号を制御出力として出力する演算部と、この演算部からの制御出力を磁力に変換する電磁コイルと、この電磁コイルが変換した磁力を空気圧に変換する空気圧変換部とを備えた電空変換装置において、
前記電磁コイルが生成する磁場を制御用磁場とし、この制御用磁場と前記電磁コイルに作用している外部磁場の前記制御用磁場と平行な方向の成分との合成磁場の向きと強さを検出する合成磁場検出部を備え、
前記演算部は、
前記合成磁場検出部によって検出される合成磁場の向きと強さが前記電磁コイルが生成すべき前記目標値に応じた磁場の向きと強さと同じとなるように前記制御出力を補正する制御出力補正部
を備えることを特徴とする電空変換装置。
A calculation unit that outputs a current signal according to a target value as a control output, an electromagnetic coil that converts the control output from the calculation unit into a magnetic force, and a pneumatic conversion unit that converts the magnetic force converted by the electromagnetic coil into air pressure In the electropneumatic converter provided,
The magnetic field generated by the electromagnetic coil is used as a control magnetic field, and the direction and strength of the combined magnetic field of this control magnetic field and a component of the external magnetic field acting on the electromagnetic coil in a direction parallel to the control magnetic field is detected. A synthetic magnetic field detector
The computing unit is
Control output correction for correcting the control output so that the direction and strength of the synthetic magnetic field detected by the synthetic magnetic field detection unit is the same as the direction and strength of the magnetic field corresponding to the target value to be generated by the electromagnetic coil An electropneumatic conversion device comprising: a unit.
請求項1に記載された電空変換装置において、
前記演算部は、
目標値情報を含む電流信号とフィードバックされてくる電流信号との差を入力とし、この入力される信号の差を零とする指令を前記目標値に応じた電流信号として生成し、この生成した目標値に応じた電流信号を前記制御出力として出力する制御出力生成部
を備えることを特徴とする電空変換装置。
In the electropneumatic conversion device according to claim 1,
The computing unit is
The difference between the current signal including target value information and the current signal fed back is input, and a command for setting the difference between the input signals to zero is generated as a current signal corresponding to the target value. An electropneumatic conversion device comprising: a control output generation unit that outputs a current signal according to a value as the control output.
請求項2に記載された電空変換装置において、
前記フィードバックされてくる電流信号は、
前記空気圧変換部によって変換された空気圧に応じた電流信号である
ことを特徴とする電空変換装置。
In the electropneumatic conversion device according to claim 2,
The feedback current signal is
An electropneumatic conversion device, characterized in that it is a current signal corresponding to the air pressure converted by the air pressure conversion unit.
請求項2に記載された電空変換装置において、
前記フィードバックされてくる電流信号は、
前記空気圧変換部によって変換された空気圧が操作出力として与えられる調節弁の弁開度に応じた電流信号である
ことを特徴とする電空変換装置。
In the electropneumatic conversion device according to claim 2,
The feedback current signal is
The electropneumatic conversion device, wherein the air pressure converted by the air pressure conversion unit is a current signal corresponding to a valve opening degree of a control valve provided as an operation output.
JP2014229541A 2014-11-12 2014-11-12 Electro-pneumatic converter Expired - Fee Related JP6502650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229541A JP6502650B2 (en) 2014-11-12 2014-11-12 Electro-pneumatic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229541A JP6502650B2 (en) 2014-11-12 2014-11-12 Electro-pneumatic converter

Publications (2)

Publication Number Publication Date
JP2016094951A true JP2016094951A (en) 2016-05-26
JP6502650B2 JP6502650B2 (en) 2019-04-17

Family

ID=56070879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229541A Expired - Fee Related JP6502650B2 (en) 2014-11-12 2014-11-12 Electro-pneumatic converter

Country Status (1)

Country Link
JP (1) JP6502650B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005997A (en) 2018-07-09 2020-01-17 아즈빌주식회사 Nozzle flapper mechanism and valve positioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313740A (en) * 1992-05-11 1993-11-26 Yamatake Honeywell Co Ltd Electropneumatic transducer
JPH07141002A (en) * 1993-11-16 1995-06-02 Yamatake Honeywell Co Ltd Positioner
JPH10154316A (en) * 1996-11-22 1998-06-09 Fujitsu Ltd Magnetic field generating method and magnetic characteristic measuring method using the same
JP2001356016A (en) * 2000-06-14 2001-12-26 Asahi Optical Co Ltd Surveying instrument mounting magnetic encoder
JP2007255447A (en) * 2006-03-20 2007-10-04 Yokogawa Electric Corp Electro-pneumatic conversion device and method for controlling electro-pneumatic conversion device
JP2010230548A (en) * 2009-03-27 2010-10-14 Tdk Corp Displacement detecting device
JP2013130236A (en) * 2011-12-21 2013-07-04 Azbil Corp Method and device for detecting fixation of rotary shaft of angle sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05313740A (en) * 1992-05-11 1993-11-26 Yamatake Honeywell Co Ltd Electropneumatic transducer
JPH07141002A (en) * 1993-11-16 1995-06-02 Yamatake Honeywell Co Ltd Positioner
JPH10154316A (en) * 1996-11-22 1998-06-09 Fujitsu Ltd Magnetic field generating method and magnetic characteristic measuring method using the same
JP2001356016A (en) * 2000-06-14 2001-12-26 Asahi Optical Co Ltd Surveying instrument mounting magnetic encoder
JP2007255447A (en) * 2006-03-20 2007-10-04 Yokogawa Electric Corp Electro-pneumatic conversion device and method for controlling electro-pneumatic conversion device
JP2010230548A (en) * 2009-03-27 2010-10-14 Tdk Corp Displacement detecting device
JP2013130236A (en) * 2011-12-21 2013-07-04 Azbil Corp Method and device for detecting fixation of rotary shaft of angle sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200005997A (en) 2018-07-09 2020-01-17 아즈빌주식회사 Nozzle flapper mechanism and valve positioner

Also Published As

Publication number Publication date
JP6502650B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US8661918B2 (en) Force sensor, robot apparatus, robot hand, and detecting device
US9448262B2 (en) Current sensor having at least one cancel coil
JP6088455B2 (en) Positioner
US8644996B2 (en) Positioner
TWI671614B (en) Motor control unit
JP6502650B2 (en) Electro-pneumatic converter
US20130106319A1 (en) Linear actuator driving device
JP6499821B2 (en) Current sensor
JP5256903B2 (en) Magnetic levitation system
US6644332B1 (en) Method and apparatus for multiple-input-multiple-output control of a valve/actuator plant
JP2013254448A (en) Positioner
JP2007255447A (en) Electro-pneumatic conversion device and method for controlling electro-pneumatic conversion device
JP6088456B2 (en) Positioner
JP2007040758A (en) Current sensor
JP2018021846A (en) Magnetic sensor
JP2013189997A (en) Device and method for acquiring parameter
CN210799584U (en) Triple redundancy control device of servo valve
JP2013254447A (en) Positioner
JP5110378B2 (en) Pressure amplifying device and electropneumatic converter equipped with the pressure amplifying device
ITMI972879A1 (en) DEVICE FOR ADJUSTING THE TAPE INPUT GUIDES IN A ROLLING MILL
JP2010020010A (en) Active silencer
JP2009071930A (en) Current drive type actuator drive control unit
JP2019002767A (en) Current sensor
JP2014146244A (en) Electropneumatic regulator
JP2001221201A (en) Electric-pneumatic positioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees