JP2016094662A - Stainless foil for resistance heating element and stainless wire - Google Patents

Stainless foil for resistance heating element and stainless wire Download PDF

Info

Publication number
JP2016094662A
JP2016094662A JP2015216474A JP2015216474A JP2016094662A JP 2016094662 A JP2016094662 A JP 2016094662A JP 2015216474 A JP2015216474 A JP 2015216474A JP 2015216474 A JP2015216474 A JP 2015216474A JP 2016094662 A JP2016094662 A JP 2016094662A
Authority
JP
Japan
Prior art keywords
less
volume resistivity
resistance heating
stainless
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015216474A
Other languages
Japanese (ja)
Other versions
JP6180490B2 (en
Inventor
学 奥
Manabu Oku
学 奥
尚仁 熊野
Naohito Kumano
尚仁 熊野
冨村 宏紀
Hiroki Tomimura
宏紀 冨村
敬夫 小田
Takao Oda
敬夫 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015216474A priority Critical patent/JP6180490B2/en
Publication of JP2016094662A publication Critical patent/JP2016094662A/en
Application granted granted Critical
Publication of JP6180490B2 publication Critical patent/JP6180490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive material for resistance heating element for an electric heating heater such as seeds heater and planar heating element, excellent in various properties and more excellent in manufacturability than a nickel chromium alloy.SOLUTION: There is provided a stainless foil for resistance heating material or a stainless wire having a chemical composition containing, by mass%, C:0.080% or less, Si:1.5 to 5.0%, Mn:5% or less, P:0.050% or less, S:0.003% or less, Ni:10 to 15%, Cr:15 to 22%, Mo:3% or less, Cu:3.5% or less, N:0.2% or less, O:0.01% or less, Ti:0.05% or less with percentage of Ni/Si in a range of 3 to 7 and the balance Fe with inevitable impurities, and having average temperature coefficient of volume resistance at 20 to 600°C of 0.00100/°C or less, cold workability dependency index of the volume resistance defined by β(c)/β(A) in a range of 0.970 to 1.030 and small cold workability dependency index of the volume resistance.SELECTED DRAWING: None

Description

本発明は、シーズヒーターや面状発熱体等で使用される電熱ヒーターの抵抗発熱体材料に関する。 The present invention relates to a resistance heating element material for an electric heater used in a sheathed heater, a planar heating element, or the like.

抵抗発熱体は、各種金属に電気を流して発熱させるものであり、金属の発熱体には、薄板、箔、線などが使用される。主に箔材を使用する面状発熱体は、薄く柔らかいことが特徴であり、曲面や狭いスペースヘの加熱に適していることから、ガラスの曇り止め、便座ヒーター、暖房床材、暖房カーペット、OA機器等において幅広く使用されている。一方、主に線材を使用する棒状発熱体は、大電流により加熱できることが特徴であり、シーズヒーターやホットプレートなどの各種加熱部品において幅広く使用されている。抵抗発熱体用の材料としては、一般には電気抵抗が高いものが望ましい。 The resistance heating element generates heat by supplying electricity to various metals, and a thin plate, foil, wire, or the like is used as the metal heating element. The sheet heating element mainly using foil material is characterized by being thin and soft and suitable for heating to curved surfaces and narrow spaces. Therefore, it is suitable for heating to curved surfaces and narrow spaces. Widely used in equipment. On the other hand, a rod-shaped heating element mainly using a wire is characterized in that it can be heated by a large current, and is widely used in various heating parts such as a sheathed heater and a hot plate. As a material for the resistance heating element, generally a material having a high electric resistance is desirable.

従来の抵抗発熱用材料には、種々の高電気抵抗材が用いられてきた。汎用的な材料として特開2004−149885号公報(特許文献1)や特開2004−79247号公報(特許文献2)に開示されているSUS301やSUS304などのオーステナイト系ステンレス鋼が挙げられる。これらの鋼は、成形性に優れ加熱による脆化感受性が低いという特徴に加え、Crを17〜18質量%含んでいることから、体積抵抗率が0.76μΩ・mと普通鋼に比較して高い。しかし、後述する従来の電気抵抗発熱体の専用材料とされてきた材料と比較すると体積抵抗率が小さく、体積抵抗率の温度依存性が大きい。 Various high electrical resistance materials have been used for conventional resistance heating materials. Examples of general-purpose materials include austenitic stainless steels such as SUS301 and SUS304 disclosed in Japanese Patent Application Laid-Open No. 2004-149885 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2004-79247 (Patent Document 2). These steels have excellent formability and low embrittlement susceptibility to heating, and contain 17 to 18% by mass of Cr. Therefore, the volume resistivity is 0.76 μΩ · m compared to ordinary steel. high. However, the volume resistivity is small and the temperature dependence of the volume resistivity is large compared to a material that has been used as a dedicated material for a conventional electric resistance heating element described later.

電気抵抗発熱体の専用材料として、JlS C2520「電熱用合金線および帯」に規定された、鉄クロム系材料とニッケルクロム系材料が挙げられる。鉄クロム系は、線材としてFCH1、FCH2等のFe−Cr−Al合金が規定されており、また箔用としても例えば特開平7−153556号公報(特許文献3)には同様な成分系の合金が開示されている。これらの合金は、17〜26%のCr、2〜6%のAlを含んでいるため体積抵抗率が高く、体積抵抗率の温度依存性が小さいという特徴を有する。しかし、この合金系はフェライト単相組織であるため、脆化という欠点を本質的に回避することが困難である。すなわち、使用温度が500℃前後になると475℃脆化、700℃程度ではσ脆化、900℃以上では結晶粒粗大化による脆化がそれぞれ懸念されるため、繰り返し曲げて使用される一部の抵抗発熱体には適用困難であった。 Examples of the dedicated material for the electric resistance heating element include iron-chromium-based materials and nickel-chromium-based materials defined in JlS C2520 “Alloy wire and strip for electric heating”. For iron-chromium, Fe-Cr-Al alloys such as FCH1 and FCH2 are defined as wires, and for foils, for example, Japanese Patent Application Laid-Open No. 7-153556 (Patent Document 3) has similar component-based alloys. Is disclosed. Since these alloys contain 17 to 26% Cr and 2 to 6% Al, they have a feature of high volume resistivity and low temperature dependency of volume resistivity. However, since this alloy system has a ferrite single phase structure, it is difficult to essentially avoid the disadvantage of embrittlement. That is, when the use temperature is around 500 ° C., 475 ° C. embrittlement, σ embrittlement at about 700 ° C., and embrittlement due to crystal grain coarsening at 900 ° C. or higher are concerned. It was difficult to apply to resistance heating elements.

ニッケルクロム系には線材としてNCH1、NCH2等のニクロム合金がある。この合金は、オーステナイト系ステンレス鋼のように加工性が優れ、なおかつ体積抵抗率の温度依存性が比較的小さいことから、抵抗発熱体用の材料としては最も幅広く使用されてきた。しかし、これらの合金は、製造性に劣るため製造コストが高いという課題を有している。すなわち、NCH1、NCH2は、高温での変形抵抗が高く、また熱間変形能にも劣るため、板における熱間圧延や線における熱間引抜加工といった、製造における熱間変形工程において、耳切れ、表面割れ、表面疵などの表面欠陥を生じやすい。これらの疵が残存すると、次工程の冷間加工工程で板の破断や断線といった問題を起こす可能性があり、とくに箔や細線の製造工程においては、疵の除去の多大な負荷を要することがあった。さらにこれらの合金は、NiをNCH1で80%、NCH2で60%と多量に含むため、非常に高価な材料でもある。 Nickel-chromium alloys include nichrome alloys such as NCH1 and NCH2 as wires. This alloy has been used most widely as a material for resistance heating elements because it has excellent workability like austenitic stainless steel and has a relatively small volume resistivity temperature dependency. However, these alloys have the problem of high production costs due to poor manufacturability. That is, since NCH1 and NCH2 have high deformation resistance at high temperature and are inferior in hot deformability, in the hot deformation process in manufacturing such as hot rolling in a plate or hot drawing in a wire, Surface defects such as surface cracks and surface defects are likely to occur. If these wrinkles remain, there is a possibility of causing problems such as breakage or disconnection of the plate in the next cold working process. In particular, in the manufacturing process of foils and thin wires, a great load of wrinkle removal may be required. there were. Furthermore, these alloys are also very expensive materials because they contain Ni in a large amount of 80% for NCH1 and 60% for NCH2.

これらの課題を解決し得る手段として、オーステナイト系ステンレス鋼の電気抵抗値を向上させるという手段がある。その手法としては、本用途とは異なるが、特開2003−41349号公報(特許文献4)に記載の電力用抵抗器、抵抗制御車の主抵抗器、車両用抵抗器などに用いられる材料や、特開2011−214154公報(特許文献5)に記載の電波時計用部材および電波受信機器に用いられる材料であり、これらに使用される材料は、Siを多量に添加し電気抵抗値を向上させることが開示されている。この成分系は、ニッケルクロム系の材料と同様の性能を有し、なおかつ安価となる可能性があるため、抵抗発熱体への適用も有望である。しかし、これらの材料であっても、製造工程における表面欠陥の形成を抑制することは困難であるとともに、抵抗発熱体で要求される温度域、すなわち400℃を超える温度での体積抵抗率の温度依存性については十分な検討が行われているとは言い難い。 As means for solving these problems, there is means for improving the electric resistance value of austenitic stainless steel. Although the method is different from this application, the materials used for the power resistor, the main resistor of the resistance control vehicle, the vehicle resistor, and the like described in JP-A-2003-41349 (Patent Document 4) , A material used for a radio wave watch member and a radio wave receiver described in Japanese Patent Application Laid-Open No. 2011-214154 (Patent Document 5), and the material used for these materials adds a large amount of Si to improve the electrical resistance value. It is disclosed. Since this component system has the same performance as a nickel-chromium-based material and may be inexpensive, it is promising to be applied to a resistance heating element. However, even with these materials, it is difficult to suppress the formation of surface defects in the manufacturing process, and the temperature of the volume resistivity in the temperature range required for the resistance heating element, that is, the temperature exceeding 400 ° C. It is hard to say that sufficient consideration has been given to dependencies.

以上の課題に加え、抵抗発熱体として使用する場合には、冷間加工まま、または線材引抜加工ままで使用することがあり、この場合、使用中にこれらの加工ひずみが徐々に回復されるため、加工によって体積抵抗率が大幅に変動しないことも必要である。例えば、ニッケルクロム系のNCH1は、冷間圧延率が高くなると体積抵抗率が小さくなり、逆にSUS304は冷間圧延率とともに体積抵抗率が大きくなる。これは、製品形態が箔材ならびに線材である場合のいずれも、焼鈍材か加工材で特性が異なることを意味しており、加工ままの材料を用いた場合には使用中に加工ひずみが開放されることによる体積抵抗率の変動を、また焼鈍材を用いたとしても加工が負荷されることで部位により体積抵抗率が異なることを、それぞれ製品の設計に反映させる必要を生じることとなる。なお、特開2003−41349号公報(特許文献4)には加工率20%程度のツヅラ折りを想定し、透磁率の安定性を検討した結果が開示されているが、抵抗発熱体の加工ままの状態は、−般には加工率20%を超える強加工を施すことが多い。 In addition to the above problems, when used as a resistance heating element, it may be used as it is cold-worked or as it is drawn, and in this case, these strains are gradually recovered during use. It is also necessary that the volume resistivity does not vary greatly by processing. For example, the volume resistivity of nickel chrome-based NCH1 decreases as the cold rolling rate increases, and conversely, the volume resistivity of SUS304 increases along with the cold rolling rate. This means that in both cases where the product form is a foil material and a wire material, the characteristics differ depending on whether the material is annealed or processed. If the raw material is used, the processing strain is released during use. Therefore, it is necessary to reflect the variation in volume resistivity due to the fact that the volume resistivity varies depending on the part due to processing being applied even if an annealed material is used in the design of the product. In addition, JP 2003-41349 A (Patent Document 4) discloses a result of studying the stability of the magnetic permeability assuming a wrapping around a processing rate of about 20%, but the resistance heating element is still processed. In general, in many cases, strong processing exceeding a processing rate of 20% is often applied.

特開2004−149885号JP 2004-149885 A 特開2004−79247号JP 2004-79247 A 特開平7−153556号JP-A-7-153556 特開2003−41349号JP 2003-41349 A 特開2011−214154JP2011-214154A

このようにいずれの上記知見技術も抵抗発熱体材料として、体積抵抗率の温度依存性ならびに加工ひずみ依存性、箔や線としての製造性、素材費を含む製造コストのいずれかの課題を有しており、これらを同時に高い水準で満足する材料とは言い難いという問題を抱えている。 As described above, any of the above knowledge technologies has a problem of any one of the temperature dependency of the volume resistivity and the processing strain dependency, the manufacturability as a foil or a wire, and the manufacturing cost including the material cost as a resistance heating element material. However, it is difficult to say that these are materials that satisfy these requirements at the same time.

本発明は、このような問題を解消すべく案出されたものであり、400℃を超える温度域での体積抵抗率を上昇させると同時にこの温度域での体積抵抗率の温度依存性を小さくする合金設計、さらに熱間加工中に発生する表面欠陥の低減に有効な手法を明確化し、ニッケルクロム合金よりも製造性に優れ、安価な抵抗発熱体用材料を提供することを目的とする。 The present invention has been devised to solve such a problem. The volume resistivity in the temperature range exceeding 400 ° C. is increased, and at the same time, the temperature dependence of the volume resistivity in this temperature range is reduced. It is an object of the present invention to clarify an effective design method for reducing the surface defects generated during hot working, and to provide a resistance heating element material that is more manufacturable and less expensive than a nickel chromium alloy.

本発明の抵抗発熱体用材料は、その目的を達成するため、質量%で、C:0.080%以下、Si:1.5〜5.0%、Mn:2%以下、P:0.050%以下、S:0.003%以下、Ni:10〜15%、Cr:15〜22%、Mo:3%以下、Cu:3.5%以下、N:0.2%以下、0:0.01%以下、Ti:0.05%以下、Ni/Siの比率が3〜7の範囲であり、必要に応じ、Nb:0.04〜0.25%、V、WおよびAlの1種以上を合計4%以下、BおよびREMの1種以上を合計で0.1%以下の範囲で含有し、残部がFeおよび不可避的不純物からなる化学組成を有し、20〜600℃での体積抵抗率の平均温度係数が0.00100/℃以下、β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数が0.970以上1.030以下の範囲であることを特徴とする。 ここでβ(c)は圧延率または減面率が50%の加工材における200℃での体積抵抗率、β(A)は焼鈍材の200℃での体積抵抗率をそれぞれ示す。 In order to achieve the object, the material for a resistance heating element of the present invention is, in mass%, C: 0.080% or less, Si: 1.5 to 5.0%, Mn: 2% or less, P: 0.00. 050% or less, S: 0.003% or less, Ni: 10-15%, Cr: 15-22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, 0: 0.01% or less, Ti: 0.05% or less, and the ratio of Ni / Si is in the range of 3-7. If necessary, Nb: 0.04 to 0.25%, V, W and Al 1 4% or less in total, and one or more of B and REM in a total range of 0.1% or less, with the balance being Fe and inevitable impurities, and having a chemical composition of 20 to 600 ° C. The average temperature coefficient of volume resistivity is 0.00100 / ° C. or less, and the volume resistivity defined by β (c) / β (A) is a cold working rate dependency index. Is in the range of 0.970 to 1.030. Here, β (c) represents the volume resistivity at 200 ° C. of the processed material having a rolling rate or area reduction of 50%, and β (A) represents the volume resistivity of the annealed material at 200 ° C.

本発明に係る抵抗発熱体用ステンレス箔ならびにステンレス線材によれば、400℃を超える温度域での体積抵抗率を上昇させると同時にこの温度域での体積抵抗率の温度依存性を小さくでき、さらに熱間加工中に発生する表面欠陥の低減、ニッケルクロム合金よりも製造性に優れた安価な抵抗発熱体用材料を提供できる。 According to the stainless steel foil for resistance heating elements and the stainless wire according to the present invention, the volume resistivity in the temperature range exceeding 400 ° C. can be increased and the temperature dependency of the volume resistivity in this temperature range can be reduced. It is possible to provide a low-cost material for a resistance heating element that is excellent in manufacturability as compared with nickel chrome alloy, reducing surface defects generated during hot working.

本発明者らは、ニッケルクロム合金からの大幅なコストダウンが可能なオーステナイト系のFe−Cr−Ni合金を出発材に、電気抵抗の上昇に有効なSiを添加した成分系で、600℃までの体積抵抗率の温度係数低減と、20%を超える加工ひずみを付与した際の体積抵抗率の変動低減に有効な合金元素の含有量を検討した。その結果、NiとSiの添加量を適正化することが重要であることを知見した。すなわち、Niは主に加工ひずみによる体積抵抗率の低下を促進するため過剰添加はその変動量が大きくなりすぎること、Siは高温域における体積抵抗率の温度依存性を低減させるとともに、加工ひずみによる体積抵抗率の低下をある程度抑制する効果があることを明らかにした。また、これらを考慮すると、Ni/Si比率を3〜7の範囲とし、その他の合金元素含有量を適正化すれば、20〜600℃での体積抵抗率の温度係数が0.00100/℃以下、β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数が50%の加工ひずみにおいて0.970以上1.030以下の範囲となることを知見した。 The present inventors have a component system in which Si, which is effective for increasing electric resistance, is added up to 600 ° C., starting from an austenitic Fe—Cr—Ni alloy capable of significantly reducing costs from a nickel chromium alloy. The content of alloy elements effective for reducing the temperature coefficient of the volume resistivity and reducing the fluctuation of the volume resistivity when a working strain exceeding 20% was applied was examined. As a result, it was found that it is important to optimize the addition amounts of Ni and Si. That is, Ni mainly promotes a decrease in volume resistivity due to processing strain, so excessive addition causes the amount of fluctuation to be too large, and Si reduces the temperature dependence of volume resistivity in a high temperature region and also due to processing strain. It was clarified that there is an effect of suppressing the decrease in volume resistivity to some extent. Also, considering these, if the Ni / Si ratio is in the range of 3 to 7 and the content of other alloy elements is optimized, the temperature coefficient of volume resistivity at 20 to 600 ° C. is 0.00100 / ° C. or less. , Β (c) / β (A) was found to have a cold working rate dependency index of volume resistivity in the range of 0.970 to 1.030 at a working strain of 50%.

一方、熱間加工中に発生する表面欠陥を低減するには素材の熱間加工中にδフェライトを生成させることが有効であることが広く知られているが、本成分系ではTi、S、Oが非常に有害であることが明らかとなった。その結果を元に、これらの合金元素の上限を厳密に規定することにより、オーステナイト系ステンレス鋼の表面欠陥レベルを確保することが可能となることを知見し本発明に至った。 On the other hand, in order to reduce surface defects generated during hot working, it is widely known that it is effective to generate δ ferrite during hot working of a material, but in this component system, Ti, S, O was found to be very harmful. Based on the results, the inventors have found that it is possible to ensure the surface defect level of austenitic stainless steel by strictly defining the upper limit of these alloy elements, and have reached the present invention.

以下に、本発明の体積抵抗率の温度依存性および加工ひずみ依存性が小さい抵抗発熱体用ステンレス箔ならびにステンレス線材を構成する各合金元素および定義された限定式について、その範囲選定理由を説明する。 Hereinafter, the reason for selecting the range will be described for each of the alloy elements constituting the stainless steel foil for resistance heating elements and the stainless steel wire and the defined limiting formulas, which have low temperature dependency and processing strain dependency of the volume resistivity of the present invention. .

Cは強力なオーステナイト形成元素であり、かつ強度の向上に有効な元素であるが、過度の添加は再結晶処理で粗大なCr炭化物が析出し、耐粒界腐食や溶接性低下の原因となるので、Cは0.080質量%以下(0%を含まず)が望ましい。 C is a strong austenite-forming element and is an element effective for improving the strength. However, excessive addition causes coarse Cr carbide to precipitate by recrystallization treatment, causing intergranular corrosion resistance and weldability deterioration. Therefore, C is preferably 0.080% by mass or less (excluding 0%).

Siは体積抵抗率の上昇に有効な合金成分であり、600℃までの体積抵抗率の温度依存性を小さくするのにも有効な重要な元素であるため、1.5質量%以上の添加を必要とする。しかし、5質量%を超える過剰量のシリコンが含まれると硬質化によって曲げ加工性が低下する。理由は明確でないが、上述したように、SiはNiとの複合添加によって、体積抵抗率の加工ひずみ依存性の低減に寄与しており、Si含有量を1.5〜5.0質量%の範囲とした場合には、Ni/Siが3〜7であれば、温度依存性と加工ひずみ依存性のいずれも低いレベルで安定化し得る
。より好ましいNi/Siの範囲は、3〜5であり、さらに好ましい範囲は、3.5〜4.5である。
Si is an alloy component effective for increasing the volume resistivity, and is an important element effective for reducing the temperature dependence of the volume resistivity up to 600 ° C. Therefore, addition of 1.5% by mass or more is necessary. I need. However, if an excessive amount of silicon exceeding 5% by mass is contained, bending workability deteriorates due to hardening. Although the reason is not clear, as described above, Si contributes to the reduction of the processing strain dependence of the volume resistivity by the combined addition with Ni, and the Si content is 1.5 to 5.0% by mass. In the range, if Ni / Si is 3 to 7, both temperature dependency and processing strain dependency can be stabilized at a low level. A more preferable range of Ni / Si is 3 to 5, and a further preferable range is 3.5 to 4.5.

Mnはオーステナイト形成元素であり、Niと同様な効果が期待できるものの、多量の添加は窒素加圧溶解をしてもブローホール発生に起因した表面欠陥を誘発するため、箔や細線の製造に大きな支障をきたす可能性がある。また、箔や細線の製造においては、冷間加工後の焼きなまし後の酸洗が困難となる場合が多いため、光輝焼鈍を採用することが多い。この際、Mnを多量に含むと、鋼に着色を発生することがあり、この場合、その後の製造工程において品質欠陥をもたらす可能性が高くなる。このためMn含有量は、5質量%以下(0%を含まず)が望ましい。 Although Mn is an austenite forming element and can be expected to have the same effect as Ni, adding a large amount induces surface defects caused by the generation of blowholes even when dissolved under nitrogen pressure. It may cause trouble. In the production of foils and fine wires, bright annealing is often employed because pickling after annealing after cold working is often difficult. At this time, if Mn is contained in a large amount, the steel may be colored, and in this case, there is a high possibility of causing a quality defect in the subsequent manufacturing process. For this reason, the Mn content is desirably 5% by mass or less (not including 0%).

Pは、母材の熱間加工性を損なうので低い方が望ましい。ただし、含Cr鋼の溶製において精錬による脱Pは困難であることから、P含有量を極低化するには原料の厳選などに過剰なコスト増を伴う。したがって本発明では一般的なオーステナイト系ステンレス鋼と同様に、0.050質量%までのP含有を許容する。 P is preferably low because it impairs the hot workability of the base material. However, since it is difficult to remove P by refining in the production of Cr-containing steel, excessively increasing the cost for selecting raw materials or the like is accompanied by extremely low P content. Therefore, in the present invention, the P content up to 0.050% by mass is allowed, as in the general austenitic stainless steel.

SはMnSの形成を助長する元素であり、本発明の対象である箔や線材ではMnS起因の表面欠陥があれば、製造コストの大幅な上昇を招くとともに、表面欠陥が残存する可能性を否定できず、欠陥起因の耐久低下が懸念される。このためS含有量は可能な限り低減することが好ましく、0.003質量%以下に規定する。 S is an element that promotes the formation of MnS. If there is a surface defect caused by MnS in the foil or wire that is the object of the present invention, the manufacturing cost is significantly increased and the possibility that the surface defect remains is denied. This is not possible, and there is a concern that durability will be reduced due to defects. For this reason, it is preferable to reduce S content as much as possible, and prescribe | regulate to 0.003 mass% or less.

NiはMnと同様に焼鈍後にオーステナイトを維持するために必要な元素である。本発明の特徴である体積抵抗率の冷間加工率依存性に対して大きな影響がある元素である。 Ni量が10質量%未満になると冷間圧延によるひずみ起因で体積抵抗率が大きくなる。Ni量が多くなると体積抵抗率の冷間圧延率依存性が小さくなるが、過剰に添加すると変動量は逆に大きくなる。この問題を解消するには前述したようにNi/Si比率を3〜7の範囲に保てばよいが、Niは高価な元素であることから、その上限を15質量%とした。 Ni, like Mn, is an element necessary for maintaining austenite after annealing. It is an element that has a great influence on the cold working rate dependency of volume resistivity, which is a feature of the present invention. When the amount of Ni is less than 10% by mass, the volume resistivity increases due to strain caused by cold rolling. When the amount of Ni increases, the cold rolling rate dependency of the volume resistivity decreases. In order to solve this problem, the Ni / Si ratio may be kept in the range of 3 to 7 as described above. However, since Ni is an expensive element, the upper limit is set to 15% by mass.

Crは体積抵抗率を若干上昇させるとともに不動態皮膜の主要構成元素であり、耐食性や高温での耐酸化性を向上させる元素である。本願の用途を考慮すると、耐食性は少なくとも大気中で容易に発錆しないこと、耐熱性は800℃程度の加熱で異常酸化しないことが必要となる。本成分系では、Siが1.5質量%以上添加されていることを加味すると、意図する耐食性・耐酸化性を賦与するのには少なくとも15質量%のCrを必要とする。一方、Crはフェライト形成元素でもあるので、過剰に添加すると高温でδフェライト相が多量に生成してしまう。そこでδフェライト相抑制のためにオーステナイト形成元素(C、N、Ni、Mn、Cu等)を添加しなければならず、コスト高となる。このためCr含有量の上限は22質量%とした。 Cr is a main constituent element of the passive film while slightly increasing the volume resistivity, and is an element improving corrosion resistance and oxidation resistance at high temperatures. Considering the application of the present application, it is necessary that the corrosion resistance is not easily rusted in the atmosphere, and the heat resistance is not abnormally oxidized by heating at about 800 ° C. In this component system, considering that Si is added in an amount of 1.5% by mass or more, at least 15% by mass of Cr is required to impart intended corrosion resistance and oxidation resistance. On the other hand, since Cr is also a ferrite forming element, if it is added excessively, a large amount of δ ferrite phase is generated at a high temperature. Therefore, an austenite forming element (C, N, Ni, Mn, Cu, etc.) must be added to suppress the δ ferrite phase, resulting in an increase in cost. For this reason, the upper limit of Cr content was 22 mass%.

Moは、Crとともに耐食性レベルを向上させるための有効な元素であり、その耐食性向上作用は高Crになるほど大きくなることが知られている。ただ、Moを多量に添加すると高温でδフェライトが形成されてしまうのでMoの成分範囲は3質量%以下がよく、さらには経済性から2質量%以下が望ましい。 Mo is an effective element for improving the corrosion resistance level together with Cr, and it is known that the effect of improving the corrosion resistance increases as the Cr content increases. However, if a large amount of Mo is added, δ ferrite is formed at a high temperature, so the Mo component range is preferably 3% by mass or less, and more preferably 2% by mass or less from the viewpoint of economy.

Cuはオーステナイト相の積層欠陥エネルギーを上昇させ、変形時の交差すべり間隔を小さくすることで加工硬化を小さくするので箔圧延負荷や線引き加工負荷を低減する有効な元素である。ただ、過度の添加は耐孔食性や熱間加工性を阻害するのでCuの成分範囲は3.5質量%以下が望ましい。 Cu is an effective element for reducing the foil rolling load and the drawing work load because it raises the stacking fault energy of the austenite phase and reduces the work hardening by reducing the cross slip interval at the time of deformation. However, excessive addition inhibits pitting corrosion resistance and hot workability, so the Cu component range is preferably 3.5% by mass or less.

Nはオーステナイト生成元素で非磁性を維持し、かつ高強度を得るための有効な元素である。ただ、Nの過剰添加は鋳造時のブローホールの原因となりそれに起因した表面欠陥は箔や線材では問題が大きくなる。それを考慮して上限は0.2質量%以下が望ましい。 N is an austenite-forming element and is an effective element for maintaining non-magnetism and obtaining high strength. However, excessive addition of N causes blowholes at the time of casting, and surface defects caused by the addition become serious in foils and wires. Considering this, the upper limit is preferably 0.2% by mass or less.

Tiは析出硬化に有効な元素であり、時効処理時の強度上昇に有効であるが、製鋼スラブの表面キズが生成しやすくなり、製造面で問題がある。またTiNの大型介在物を生しやすい。本発明の対象である箔や線材ではTiSやTiN起因の表面欠陥があれば製造時の除去が必要となり、製造コストが上昇するとともに、欠陥が残存すれば耐久性において問題になるため、Ti含有量は厳密に規定する必要があり、その上限は0.05質量%とする。 Ti is an element effective for precipitation hardening, and is effective for increasing the strength during aging treatment. However, surface flaws of the steelmaking slab are likely to be generated, and there is a problem in manufacturing. Moreover, it is easy to produce a large inclusion of TiN. In the foil or wire that is the subject of the present invention, if there is a surface defect caused by TiS or TiN, it is necessary to remove it at the time of manufacturing, and the manufacturing cost rises. The amount must be strictly defined, and the upper limit is 0.05% by mass.

Oは製鋼吹錬時に脱炭のため使用されるガスであるが、金属や非金属と結合することによって介在物として鋼中に残存することがある。介在物の生成量が多くなると、TiやSなどのように表面疵が生成しやすくなり、箔や線材の製造工程において表面欠陥を形成し製造歩留を著しく低下させる。このためO含有量は厳密に規定する必要があり、その上限は0.01質量%とする。 O is a gas used for decarburization at the time of steelmaking blowing, but may remain in steel as inclusions by combining with metal or nonmetal. When the amount of inclusions increases, surface defects such as Ti and S are likely to be generated, and surface defects are formed in the manufacturing process of foils and wires, thereby significantly reducing the manufacturing yield. For this reason, it is necessary to specify | regulate O content exactly | strictly, The upper limit shall be 0.01 mass%.

Nbは高温強度上昇に有効であるが、逆に高温強度上昇による熱間加工性の低下をもたらすため適正範囲を0.04〜0.25質量%とした。 Nb is effective for increasing the high-temperature strength, but conversely causes a decrease in hot workability due to an increase in high-temperature strength, so the appropriate range was set to 0.04 to 0.25% by mass.

V、Wは高強度化に有効な元素である。しかし、これらの元素を過剰に添加すると熱間加工性に悪影響を及ぼすようになる。Alは体積抵抗率の上昇に有効な元素であるが、VやWと同様に過剰な添加は熱間加工性に悪影響を及ぼす。また、これらの元素は、フェライト形成元素であるため、製造時にはδフェライトの形成による熱間加工性の低下、使用時にはσ相の生成による脆化に留意して添加する必要がある。これらの要因を考慮すると、V、WならびにAlの1種以上を添加する場合は、その合計含有量を4質量%以下に抑える必要がある。 V and W are effective elements for increasing the strength. However, when these elements are added excessively, the hot workability is adversely affected. Al is an effective element for increasing the volume resistivity, but excessive addition like V and W adversely affects hot workability. In addition, since these elements are ferrite forming elements, it is necessary to add them while paying attention to the deterioration of hot workability due to the formation of δ ferrite during manufacture and to embrittlement due to the formation of σ phase during use. Considering these factors, when adding one or more of V, W, and Al, it is necessary to suppress the total content to 4% by mass or less.

Bは熱間圧延温度域でのδフェライト相とオーステナイト相の変形抵抗の差異により生じる熱延鋼帯でのエッジクラックの発生防止に有効な元素である。また、REMは鋼中のSを固定しオーステナイト相の結晶粒界の変形能を高め、熱延鋼帯でのエッジクラックの発生防止に有効な元素である。しかし、Bの過度の添加は低融点ホウ化物を形成しやすくなり、またREMの過剰添加は介在物の生成が多くなり、逆に熱間加工性を劣化させるので、これらの元素を1種以上添加する場合には、その合計含有量を0.1質量%以下とした。なお、REMと同様の効果が期待できる元素としてY、Ca、Mgなどがあり、これらの元素の含有量はとくに規定しないが、必要に応じREMに準じて適宜添加できるものとする。 B is an element effective in preventing the occurrence of edge cracks in the hot-rolled steel strip caused by the difference in deformation resistance between the δ ferrite phase and the austenite phase in the hot rolling temperature range. REM is an element that fixes S in steel and enhances the deformability of the austenite phase grain boundaries, and is effective in preventing the occurrence of edge cracks in the hot-rolled steel strip. However, excessive addition of B tends to form a low melting point boride, and excessive addition of REM increases the formation of inclusions and conversely degrades hot workability. When adding, the total content was made into 0.1 mass% or less. In addition, there exist Y, Ca, Mg etc. as an element which can anticipate the effect similar to REM, Although content of these elements is not prescribed | regulated in particular, it shall add suitably according to REM as needed.

抵抗発熱体用材料は、工業加熱炉を除き、600℃程度まで加熱されることがある。体積抵抗率の平均温度係数は、上述したように各種合金元素の添加量により変動する因子であり、その値は低いほど好ましい。しかし、上限を厳密に規定すると、それを満足する合金は、FCH2などのFe−Cr−Al合金に限られることになり、その他の要求特性を満足しなくなる。そこで、平均温度係数は、ニッケルクロム合金と同程度の0.00100/℃以下とした。なお、この係数は、600℃と20℃での体積抵抗率の差を温度差580および20℃での体積抵抗率で除した値としている。 The resistance heating material may be heated to about 600 ° C. except for an industrial heating furnace. The average temperature coefficient of volume resistivity is a factor that varies depending on the amount of each alloy element added as described above, and the lower the value, the better. However, if the upper limit is strictly defined, an alloy that satisfies the upper limit is limited to an Fe—Cr—Al alloy such as FCH 2 and does not satisfy other required characteristics. Therefore, the average temperature coefficient is set to 0.00100 / ° C. or less which is the same as that of the nickel chromium alloy. This coefficient is a value obtained by dividing the volume resistivity difference between 600 ° C. and 20 ° C. by the temperature difference 580 and the volume resistivity at 20 ° C.

β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数も、上述したように各種合金元素の添加量により変動する因子であり、平均温度係数を加味すると、主にNi/Siの値に依存している。この値も低い方が好ましく、体積抵抗率の測定誤差範囲が3%以内であることから、この指数の範囲は、それと同等の0.970以上1.030以下とした。本定義式に用いる圧延率や減面率は、−般的な製造条件に近い50%を設定しているが、特殊な製造条件に沿った加工率を個別に設定しても構わない。 The cold work rate dependency index of the volume resistivity defined by β (c) / β (A) is also a factor that varies depending on the amount of each alloy element added as described above, and taking into account the average temperature coefficient, It depends mainly on the value of Ni / Si. This value is also preferably low, and the measurement error range of the volume resistivity is within 3%. Therefore, the range of this index is set to 0.970 or more and 1.030 or less equivalent to it. The rolling rate and the area reduction rate used in this definition formula are set to 50% close to general manufacturing conditions, but the processing rate according to special manufacturing conditions may be set individually.

以上の組成を有するステンレス鋼は、体積抵抗率が高く、体積抵抗率の温度依存性ならびに加工ひずみ依存性が小さい発熱体・電気抵抗用箔にならびに線材が実現される。 The stainless steel having the above composition has a high volume resistivity, and a wire rod is realized as a heating element / electric resistance foil having a small volume resistivity temperature dependency and processing strain dependency.

表1に示す化学組成を有するステンレス鋼を溶製し、熱間圧延にて板厚3mmの熱延板を作製した。その後、焼鈍と冷間圧延を繰り返して板厚0.1mmとし、水素100%の還元雰囲気の焼鈍を950〜1000℃で行い焼鈍した箔を製造した。この箔材を0.050mmまで圧延して50%圧延材を製造した。一方、線材については表1の同一成分の1.2mm冷延焼鈍板から本発明鋼C、Dならびに比較鋼Hのスリット材をつくり、つづいて線引き加工し、焼鈍した直径0.836mmの線材を製造した。さらにこの直径0.836mm線材を直径0.59mmまで線引き加工して減面率(断面減少率)50%の冷延線材を製造した。以下、圧延率50%の板材および減面率50%の線材を「50%加工材」と称する。なお、50%加工材を製造する過程において、目視にて総表面積の3%を超える欠陥を検出した鋼については、製造性に課題ありと判定した。 Stainless steel having the chemical composition shown in Table 1 was melted, and a hot-rolled sheet having a thickness of 3 mm was produced by hot rolling. Thereafter, annealing and cold rolling were repeated to obtain a sheet thickness of 0.1 mm, and annealing was performed in a reducing atmosphere of 100% hydrogen at 950 to 1000 ° C. to produce an annealed foil. This foil material was rolled to 0.050 mm to produce a 50% rolled material. On the other hand, for the wire rods, the slit members of the steels C and D of the present invention and the comparative steel H are made from the 1.2 mm cold-rolled annealed plates having the same components shown in Table 1, followed by drawing and annealing the wire rods having a diameter of 0.836 mm. Manufactured. Further, this 0.836 mm diameter wire rod was drawn to a diameter of 0.59 mm to produce a cold-rolled wire rod having a surface reduction rate (cross-sectional reduction rate) of 50%. Hereinafter, a sheet material having a rolling rate of 50% and a wire material having a surface reduction rate of 50% are referred to as “50% processed material”. In addition, in the process of manufacturing 50% processed material, about the steel which detected the defect exceeding 3% of a total surface area visually, it determined with there being a problem in manufacturability.

Figure 2016094662
Figure 2016094662

各焼鈍材と各圧延材から試験片を切り出し、体積抵抗率、体積抵抗率の温度依存性ならび加工ひずみ依存性を次のように測定した。体積抵抗率の測定にはJlSC2526に規定されている電気抵抗一温度特性試験方法を採用し、各温度での各試験片の体積抵抗率を測定した。測定値から、20〜600℃の温度域における平均温度係数を求めた。冷間加工率依存性の指標として、試験温度200℃での50%加工材の体積抵抗率を200℃での焼鈍材の体積抵抗率で除したものを用いた。これらの結果を表2に示す。 A test piece was cut out from each annealed material and each rolled material, and the volume resistivity, the temperature dependency of the volume resistivity and the processing strain dependency were measured as follows. For measuring the volume resistivity, an electrical resistance-one-temperature characteristic test method defined in JlSC 2526 was adopted, and the volume resistivity of each test piece at each temperature was measured. The average temperature coefficient in the temperature range of 20 to 600 ° C. was determined from the measured value. As an index of the cold working rate dependency, a value obtained by dividing the volume resistivity of the 50% processed material at the test temperature of 200 ° C. by the volume resistivity of the annealed material at 200 ° C. was used. These results are shown in Table 2.

Figure 2016094662
Figure 2016094662

表2の測定結果にみられるように、本発明鋼のA〜Jは、20℃での体積抵抗率が0.9μΩ・m以上で、20〜600℃の温度域における平均温度係数は0.00100/℃以下である。さらに試験温度200℃での50%加工材の体積抵抗率を200℃での焼鈍材体積抵抗率で除した値から加工ひずみが導入されたときの値変化は±3%未満である。一方、比較鋼KとLはSiとNiがそれぞれ本発明範囲から外れるため20℃での体積抵抗率が0.9μΩ・m未満であり、20〜600℃の温度域における平均温度係数も0.00400/℃を越えている。比較鋼Lは試験温度200℃での50%加工材の体積抵抗率を200℃での焼鈍材体積抵抗率で除した値変化が5%を超えている。比較鋼MとNの体積抵抗率に関与した特性は本発明鋼と同等であるが、それぞれTiとS量の製造範囲が外れており、Sが本発明範囲を外れているKを含め、箔への製造過程で介在物に起因した表面欠陥のため製造上の課題がある。比較鋼0はニッケルクロム合金のNCH−1に相当する合金であるが、本発明鋼に比べ、試験温度200℃での50%加工材の体積抵抗率を200℃での焼鈍材体積抵抗率で除した値が大きい。 As seen in the measurement results of Table 2, A to J of the steel of the present invention has a volume resistivity of 0.9 μΩ · m or more at 20 ° C., and an average temperature coefficient in the temperature range of 20 to 600 ° C. is 0.00. 10000 / ° C. or less. Furthermore, the value change when processing strain is introduced from the value obtained by dividing the volume resistivity of the 50% processed material at the test temperature of 200 ° C. by the volume resistivity of the annealed material at 200 ° C. is less than ± 3%. On the other hand, in Comparative Steels K and L, since Si and Ni are out of the scope of the present invention, the volume resistivity at 20 ° C. is less than 0.9 μΩ · m, and the average temperature coefficient in the temperature range of 20 to 600 ° C. is also 0. It is over 40400 / ° C. In Comparative Steel L, the value change obtained by dividing the volume resistivity of the 50% processed material at the test temperature of 200 ° C. by the volume resistivity of the annealed material at 200 ° C. exceeds 5%. The characteristics related to the volume resistivity of the comparative steels M and N are the same as those of the steel of the present invention, but the production ranges of the Ti and S amounts are out of the foil, respectively, There is a manufacturing problem due to surface defects caused by inclusions in the manufacturing process. Comparative steel 0 is an alloy corresponding to nickel-chromium alloy NCH-1, but compared to the steel of the present invention, the volume resistivity of the 50% processed material at the test temperature of 200 ° C is the volume resistivity of the annealed material at 200 ° C. The divided value is large.

以上に説明したように、本発明の抵抗発熱体用材料は、体積抵抗率が高く、体積抵抗率の温度依存性が小さくかつ体積抵抗率の冷間加工率依存性が小さい。また、冷間加工性や熱間加工性に優れ、高価なNiの含有量が少ないため、これまでNCH1やNCH2のニッケルクロム系合金が使用されていた各種分野の抵抗発熱体用材料として、箔および線のいずれの形態でも適用範囲の拡大が期待される。 As described above, the resistance heating element material of the present invention has a high volume resistivity, a low volume resistivity temperature dependency, and a small volume resistivity cold work rate dependency. In addition, since it is excellent in cold workability and hot workability and has a low content of expensive Ni, a foil as a resistance heating element material in various fields where NCH1 or NCH2 nickel-chromium alloys have been used so far The expansion of the application range is expected in both forms of lines and lines.

Claims (4)

質量%で、C:0.080%以下、Si:1.5〜5.0%、Mn:5%以下、P:0.050%以下、S:0.003%以下、Ni:10〜15%、Cr:15〜22%、Mo:3%以下、Cu:3.5%以下、N:0.2%以下、O:0.01%以下、Ti:0.05%以下、Ni/Siの比率が3〜7の範囲であり、残部がFeおよび不可避的不純物からなる化学組成
を有し、20〜600℃での体積抵抗率の平均温度係数が0.00100/℃以下、β(c)/β(A)で定義される体積抵抗率の冷間加工率依存性指数が0.970以上1.030以下の範囲であることを特徴とする、体積抵抗率の冷間加工率依存性が小さい抵抗発熱体用ステンレス箔又はステンレス線材。 ここでβ(c)は箔の圧延率または線の減面率が50%の加工材における200℃での体積抵抗率、β(A)は焼鈍材の200℃での体積抵抗率をそれぞれ示す。
C: 0.080% or less, Si: 1.5-5.0%, Mn: 5% or less, P: 0.050% or less, S: 0.003% or less, Ni: 10-15 %, Cr: 15-22%, Mo: 3% or less, Cu: 3.5% or less, N: 0.2% or less, O: 0.01% or less, Ti: 0.05% or less, Ni / Si The ratio is 3 to 7 and the balance has a chemical composition composed of Fe and inevitable impurities, the average temperature coefficient of volume resistivity at 20 to 600 ° C. is 0.00100 / ° C. or less, β (c ) / Β (A) defined by the cold working rate dependence of the volume resistivity, wherein the volume working resistivity dependence index of the volume resistivity is 0.970 or more and 1.030 or less. Stainless steel foil or stainless wire for resistance heating elements Here, β (c) represents the volume resistivity at 200 ° C. in the processed material having a foil rolling ratio or 50% area reduction, and β (A) represents the volume resistivity at 200 ° C. of the annealed material. .
さらに、Nbを0.04〜0.25%の範囲で含有する請求項1に記載の体積抵抗率の冷間加工率依存性が小さい抵抗発熱体用ステンレス箔又はステンレス線材。 Furthermore, the stainless steel foil or stainless steel wire for resistance heating elements according to claim 1, wherein Nb is contained in the range of 0.04 to 0.25%, and the volume resistivity is less dependent on the cold working rate. さらに、V、WおよびAlの1種以上を合計4%以下の範囲で含有する請求項1または請求項2に記載の体積抵抗率の冷間加工率依存性が小さい抵抗発熱体用ステンレス箔又はステンレス線材。 Furthermore, the stainless steel foil for resistance heating elements according to claim 1 or 2, wherein one or more of V, W, and Al are contained within a total range of 4% or less, and the volume resistivity has a low cold work rate dependency. Stainless wire. さらに、BおよびREMの1種以上を合計で0.1%以下の範囲で含有する請求項1〜3項に記載の体積抵抗率の冷間加工率依存性が小さい抵抗発熱体用ステンレス箔又はステンレス線材。 Furthermore, the stainless steel foil for resistance heating elements with small dependence on the cold work rate of the volume resistivity of Claim 1-3 which contains 1 or more types of B and REM in the range of 0.1% or less in total or Stainless wire.
JP2015216474A 2015-11-04 2015-11-04 Stainless steel foil or wire for resistance heating element Active JP6180490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015216474A JP6180490B2 (en) 2015-11-04 2015-11-04 Stainless steel foil or wire for resistance heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015216474A JP6180490B2 (en) 2015-11-04 2015-11-04 Stainless steel foil or wire for resistance heating element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012024362A Division JP2013159837A (en) 2012-02-07 2012-02-07 Stainless steel foil for resistance heating element and stainless steel wire

Publications (2)

Publication Number Publication Date
JP2016094662A true JP2016094662A (en) 2016-05-26
JP6180490B2 JP6180490B2 (en) 2017-08-16

Family

ID=56071446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015216474A Active JP6180490B2 (en) 2015-11-04 2015-11-04 Stainless steel foil or wire for resistance heating element

Country Status (1)

Country Link
JP (1) JP6180490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066182A1 (en) * 2016-10-04 2018-04-12 日本冶金工業株式会社 Fe-Cr-Ni ALLOY AND METHOD FOR PRODUCING SAME
WO2019150762A1 (en) 2018-01-30 2019-08-08 Jfeスチール株式会社 Fe-Cr ALLOY, METHOD FOR PRODUCING SAME, AND RESISTANCE HEATING ELEMENT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138709A (en) * 1993-11-18 1995-05-30 Nippon Yakin Kogyo Co Ltd Stainless steel for wire rod horizontal continuous casting excellent in long time castability
JP2004043902A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in steam oxidation resistance
JP2011102424A (en) * 2009-11-11 2011-05-26 Nisshin Steel Co Ltd Austenitic stainless steel foil for laminate type lithium ion secondary battery case

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138709A (en) * 1993-11-18 1995-05-30 Nippon Yakin Kogyo Co Ltd Stainless steel for wire rod horizontal continuous casting excellent in long time castability
JP2004043902A (en) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd Austenitic stainless steel superior in steam oxidation resistance
JP2011102424A (en) * 2009-11-11 2011-05-26 Nisshin Steel Co Ltd Austenitic stainless steel foil for laminate type lithium ion secondary battery case

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066182A1 (en) * 2016-10-04 2018-04-12 日本冶金工業株式会社 Fe-Cr-Ni ALLOY AND METHOD FOR PRODUCING SAME
JP2018059148A (en) * 2016-10-04 2018-04-12 日本冶金工業株式会社 Fe-Cr-Ni ALLOY AND MANUFACTURING METHOD THEREFOR
CN109790608A (en) * 2016-10-04 2019-05-21 日本冶金工业株式会社 Fe-Cr-Ni alloy and its manufacturing method
CN109790608B (en) * 2016-10-04 2021-05-07 日本冶金工业株式会社 Fe-Cr-Ni alloy and method for producing same
US11118250B2 (en) 2016-10-04 2021-09-14 Nippon Yakin Kogyo Co., Ltd. Fe—Cr—Ni alloy and method for production thereof
WO2019150762A1 (en) 2018-01-30 2019-08-08 Jfeスチール株式会社 Fe-Cr ALLOY, METHOD FOR PRODUCING SAME, AND RESISTANCE HEATING ELEMENT
KR20200100828A (en) 2018-01-30 2020-08-26 제이에프이 스틸 가부시키가이샤 Fe-Cr alloy and its manufacturing method, and resistance heating element
US11497085B2 (en) 2018-01-30 2022-11-08 Jfe Steel Corporation Fe—Cr alloy, method for producing same, and resistance heating element

Also Published As

Publication number Publication date
JP6180490B2 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
JP6223351B2 (en) Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
EP2677055B1 (en) High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7221474B2 (en) Non-magnetic austenitic stainless steel and its manufacturing method
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP6294972B2 (en) Duplex stainless steel
JP6037882B2 (en) Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP2015096648A (en) Ferritic stainless steel
WO2014157576A1 (en) Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
JP2013227659A (en) Ferritic stainless steel sheet excellent in scale peeling resistance and method for producing the same
JP2017206735A (en) Multi phase-based stainless steel excellent in steam oxidation resistance
JP6180490B2 (en) Stainless steel foil or wire for resistance heating element
JP6025362B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP2013159837A (en) Stainless steel foil for resistance heating element and stainless steel wire
KR101940427B1 (en) Ferritic stainless steel sheet
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP4331731B2 (en) Austenitic stainless steel and springs made of that steel
JP2019112696A (en) Ferritic stainless steel sheet and manufacturing method therefor
JP5958412B2 (en) Ferritic stainless steel with excellent thermal fatigue properties
JP4701687B2 (en) Steel pipe with excellent electromagnetic characteristics and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170718

R150 Certificate of patent or registration of utility model

Ref document number: 6180490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250