JP2016094334A - Heat resistant aluminum hydroxide particle and manufacturing method therefor, resin composition, prepreg and laminate - Google Patents

Heat resistant aluminum hydroxide particle and manufacturing method therefor, resin composition, prepreg and laminate Download PDF

Info

Publication number
JP2016094334A
JP2016094334A JP2015217731A JP2015217731A JP2016094334A JP 2016094334 A JP2016094334 A JP 2016094334A JP 2015217731 A JP2015217731 A JP 2015217731A JP 2015217731 A JP2015217731 A JP 2015217731A JP 2016094334 A JP2016094334 A JP 2016094334A
Authority
JP
Japan
Prior art keywords
aluminum hydroxide
hydroxide particles
fluorine
heat
resistant aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015217731A
Other languages
Japanese (ja)
Other versions
JP6052369B2 (en
Inventor
上方 康雄
Yasuo Kamigata
康雄 上方
佳弘 高橋
Yoshihiro Takahashi
佳弘 高橋
正人 宮武
Masato Miyatake
正人 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015217731A priority Critical patent/JP6052369B2/en
Publication of JP2016094334A publication Critical patent/JP2016094334A/en
Application granted granted Critical
Publication of JP6052369B2 publication Critical patent/JP6052369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant aluminum hydroxide particle having high dehydration initiation temperature and sufficient dehydration amount.SOLUTION: There are provided a heat resistant aluminum hydroxide particle having percentage of fluorine existing on a surface of 3 to 20 at%, thermal decomposition start temperature of 271°C or more and dehydration amount of 32 mass% or more by treating an aluminum hydroxide particle with gas atmosphere containing fluorine or a solution containing a fluorine ion, replacing a part of a hydroxyl group of the aluminum hydroxide particle with fluorine and conducting a heating treatment at 200°C to 270°C and a manufacturing method therefor.SELECTED DRAWING: None

Description

本発明は、主に、プリント配線板基材を作製する際に用いられる耐熱性水酸化アルミニウム粒子及びその製造方法、樹脂組成物、プリプレグ、積層板に関する。   The present invention mainly relates to heat-resistant aluminum hydroxide particles used for producing a printed wiring board substrate, a method for producing the same, a resin composition, a prepreg, and a laminate.

プリント配線板用基材等の樹脂組成物の難燃性を確保するために、従来はハロゲン系の難燃材が使用されていた。しかし、近年、環境問題への関心の高まりとともにダイオキシン等の有害物質を発生しない水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物を難燃性フィラーとして充填したものが増えている。   Conventionally, halogen-based flame retardants have been used in order to ensure the flame retardancy of resin compositions such as printed wiring board substrates. However, in recent years, with increasing interest in environmental problems, there has been an increase in those filled with metal hydroxides such as aluminum hydroxide and magnesium hydroxide that do not generate harmful substances such as dioxins as flame retardant fillers.

特に水酸化アルミニウムは含水量が多く、難燃効果が大きいだけでなく、耐酸性や耐アルカリ性等の耐薬品性に優れるため、難燃性フィラーとして広く使用されている。この水酸化アルミニウムは200℃以上で吸熱を伴って脱水反応を起こし、χ−アルミナに変化する。この吸熱反応により樹脂組成物の温度上昇を抑制し、発生した水蒸気により可燃性のガスを希釈することにより燃焼が抑制される。   In particular, aluminum hydroxide is widely used as a flame retardant filler because it has a high water content and a large flame retardant effect, as well as excellent chemical resistance such as acid resistance and alkali resistance. This aluminum hydroxide undergoes a dehydration reaction with endotherm at 200 ° C. or higher, and changes to χ-alumina. By this endothermic reaction, the temperature rise of the resin composition is suppressed, and combustion is suppressed by diluting the combustible gas with the generated water vapor.

一方、プリント配線板用基材には、はんだにより電子部品が実装されるために、はんだ溶融温度以上の耐熱性が要求される。はんだには従来Sn−Pb系はんだが使用されていたが、鉛の毒性の問題からSn−Cu系、Sn−Ag−Cu系等の鉛フリーはんだへの転換が進んでいる。これらの材料の融点は、従来のSn−Pb系はんだの183℃に対してSn−Cu系、Sn−Ag−Cu系等の鉛フリーはんだでは220℃付近であり、約40℃上昇している。このため従来の水酸化アルミニウム使用すると、実装時の加熱により水酸化アルミニウムが脱水反応を起こし、生じた水蒸気により基材に膨れが生じるという問題が生じる。
このような問題を解決するために、種々の熱分解温度を向上させた耐熱性水酸化アルミニウムの製造方法が提案されている。(例えば、特許文献1〜3参照)
On the other hand, the printed wiring board base material is required to have heat resistance equal to or higher than the solder melting temperature because electronic components are mounted by solder. Conventionally, Sn—Pb solder has been used as the solder, but due to the toxicity of lead, conversion to lead-free solders such as Sn—Cu and Sn—Ag—Cu is progressing. The melting point of these materials is about 220 ° C. for lead-free solders such as Sn—Cu type and Sn—Ag—Cu type, which is about 40 ° C., higher than 183 ° C. of conventional Sn—Pb type solder. . Therefore, when conventional aluminum hydroxide is used, there arises a problem that the aluminum hydroxide causes a dehydration reaction due to heating during mounting, and the base material is swollen by the generated water vapor.
In order to solve such problems, methods for producing heat-resistant aluminum hydroxide with various pyrolysis temperatures improved have been proposed. (For example, see Patent Documents 1 to 3)

特開2002−211918号公報Japanese Patent Laid-Open No. 2002-219918 特開2003−292819号公報JP 2003-292919 A WO2004/080897A1WO2004 / 08080897A1

しかしながら、特許文献1のように水酸化アルミニウム粒子を大気下で加熱処理し、水酸化アルミニウムを化学式Al・3HOで表したときに、含水量の3モルを1.8〜2.7モルまで減らした場合には、放出可能な水分量が減るため難燃性が低下するという問題が生じる。 However, when aluminum hydroxide particles are heat-treated in the atmosphere as in Patent Document 1 and the aluminum hydroxide is represented by the chemical formula Al 2 O 3 .3H 2 O, 3 mol of water content is 1.8-2. When the amount is reduced to 7 mol, the amount of water that can be released decreases, resulting in a problem that flame retardancy is reduced.

特許文献2のように水酸化アルミニウム粒子を170℃程度で水熱処理し、一部をベーマイトに転換した場合には、ベーマイトに転換する温度が低いため、未反応の水酸化アルミニウムには170℃程度の熱履歴しか付与されておらず、充分な高耐熱化ができない。   When the aluminum hydroxide particles are hydrothermally treated at about 170 ° C. and partially converted to boehmite as in Patent Document 2, the temperature of conversion to boehmite is low, so unreacted aluminum hydroxide is about 170 ° C. Only a heat history is given, and sufficient heat resistance cannot be achieved.

特許文献3のように水酸化アルミニウム粒子にベーマイト化を遅延させる反応遅延剤を混合し、水熱処理した場合には250℃程度までの熱処理が可能になり、高耐熱化が可能になる。しかし、高耐圧の反応設備が必要になる他、樹脂と混合した場合に添加した反応遅延剤による特性低下が発生する可能性がある。   When a reaction retarder that delays the formation of boehmite is mixed with aluminum hydroxide particles as in Patent Document 3, heat treatment up to about 250 ° C. is possible, and heat resistance can be increased. However, in addition to the need for a high pressure resistant reaction facility, there is a possibility that characteristic deterioration due to a reaction retarder added when mixed with a resin may occur.

以上のように、鉛フリーはんだに対応可能なプリント配線板基材には耐熱性と難燃性、即ち高い脱水開始温度と充分な脱水量を示す水酸化アルミニウム粒子が求められていた。
本発明の目的は、従来の水酸化アルミニウムでは達成が困難な高い脱水開始温度と充分な脱水量を併せ持つ耐熱性水酸化アルミニウム粒子及びその製造方法、並びに当該耐熱性水酸化アルミニウム粒子を含有する樹脂組成物、プリプレグ、積層板を提供するものである。
As described above, printed wiring board substrates that can be used for lead-free solder have been required to have aluminum hydroxide particles exhibiting heat resistance and flame retardancy, that is, a high dehydration start temperature and a sufficient dehydration amount.
An object of the present invention is to provide a heat-resistant aluminum hydroxide particle having a high dehydration start temperature and a sufficient amount of dehydration, which are difficult to achieve with conventional aluminum hydroxide, a method for producing the same, and a resin containing the heat-resistant aluminum hydroxide particles A composition, a prepreg, and a laminate are provided.

上記目的は、下記本発明により達成される。すなわち、本発明は下記の通りである。
[1] 水酸化アルミニウム粒子を、フッ素を含有するガス雰囲気で200℃〜270℃の加熱処理を行い、前記水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した耐熱性水酸化アルミニウム粒子。
[2] 水酸化アルミニウム粒子を、フッ素イオンを含む溶液で処理し、前記水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した後、200℃〜270℃の加熱処理を施した耐熱性水酸化アルミニウム粒子。
The above object is achieved by the present invention described below. That is, the present invention is as follows.
[1] Heat-resistant aluminum hydroxide particles obtained by subjecting aluminum hydroxide particles to a heat treatment at 200 ° C. to 270 ° C. in a gas atmosphere containing fluorine, and substituting some of the hydroxyl groups of the aluminum hydroxide particles with fluorine.
[2] Heat-resistant hydroxylation in which aluminum hydroxide particles are treated with a solution containing fluorine ions, and a part of the hydroxyl groups of the aluminum hydroxide particles are replaced with fluorine, followed by heat treatment at 200 ° C to 270 ° C. Aluminum particles.

[3] 水酸化アルミニウム粒子表面に存在するフッ素の比率が1〜20at%であり、熱分解開始温度が260℃以上、脱水量が32質量%以上である[1]又は[2]に記載の耐熱性水酸化アルミニウム粒子。
[4] NaO濃度が0.3質量%以下であり、平均粒径が0.5〜5μmである[1]〜[3]のいずれかに記載の耐熱性水酸化アルミニウム粒子。
[3] The ratio of fluorine present on the surface of the aluminum hydroxide particles is 1 to 20 at%, the thermal decomposition starting temperature is 260 ° C. or higher, and the dehydration amount is 32 mass% or higher. Heat resistant aluminum hydroxide particles.
[4] The heat-resistant aluminum hydroxide particles according to any one of [1] to [3], wherein the Na 2 O concentration is 0.3% by mass or less and the average particle size is 0.5 to 5 μm.

[5] 水酸化アルミニウム粒子を、フッ素含有ガスの存在下で200℃〜270℃の加熱処理を行い、水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した耐熱性水酸化アルミニウム粒子の製造方法。
[6] 水酸化アルミニウム粒子を、フッ素イオンを含む溶液で処理し、水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した後、200℃〜270℃の加熱処理を施す耐熱性水酸化アルミニウム粒子の製造方法。
[5] A method for producing heat-resistant aluminum hydroxide particles, wherein the aluminum hydroxide particles are subjected to a heat treatment at 200 ° C. to 270 ° C. in the presence of a fluorine-containing gas, and a part of the hydroxyl groups of the aluminum hydroxide particles are replaced with fluorine. .
[6] Heat-resistant aluminum hydroxide particles in which aluminum hydroxide particles are treated with a solution containing fluorine ions, and a portion of the hydroxyl groups of the aluminum hydroxide particles are replaced with fluorine, followed by heat treatment at 200 ° C to 270 ° C. Manufacturing method.

[7] 前記フッ素含有ガスのフッ素源がフッ化アンモニウムであり、200℃〜270℃の加熱処理前に、水酸化アルミニウム粒子とフッ化アンモニウムとを混合する[5]又は[6]に記載の耐熱性水酸化アルミニウム粒子の製造方法。 [7] The fluorine source of the fluorine-containing gas is ammonium fluoride, and aluminum hydroxide particles and ammonium fluoride are mixed before heat treatment at 200 ° C. to 270 ° C. [5] or [6] A method for producing heat-resistant aluminum hydroxide particles.

[8] 上記[1]〜[4]のいずれかに記載の耐熱性水酸化アルミニウム粒子を含む樹脂組成物。
[9] 基材に上記[8]に記載の樹脂組成物が含浸、乾燥されてなるプリプレグ。
[10] 上記[9]に記載のプリプレグの硬化物の少なくとも一方の面に導体層を有する積層板。
[8] A resin composition comprising the heat-resistant aluminum hydroxide particles according to any one of [1] to [4].
[9] A prepreg obtained by impregnating the substrate with the resin composition according to [8] and drying.
[10] A laminate having a conductor layer on at least one surface of the cured product of the prepreg according to [9].

本発明によれば、従来の水酸化アルミニウムでは達成が困難な高い脱水開始温度と充分な脱水量を併せ持つ耐熱性水酸化アルミニウム粒子及びその製造方法、並びに当該耐熱性水酸化アルミニウム粒子を含有する樹脂組成物、プリプレグ、積層板を提供することができる。
当該本発明により、耐熱性が高く、製造プロセスマージンが広く、難燃特性に優れるプリント配線板用基材の製造が可能になる。
According to the present invention, heat-resistant aluminum hydroxide particles having a high dehydration start temperature and a sufficient amount of dehydration that are difficult to achieve with conventional aluminum hydroxide, a method for producing the same, and a resin containing the heat-resistant aluminum hydroxide particles Compositions, prepregs, and laminates can be provided.
According to the present invention, it is possible to manufacture a substrate for a printed wiring board having high heat resistance, a wide manufacturing process margin, and excellent flame retardancy.

[耐熱性水酸化アルミニウム粒子及びその製造方法]
以下、本発明を詳細に説明する。
無機物の熱分解は一般に活性化エネルギーの低い表面や、粒界の結晶転移やその他の欠陥部分から始まるとされる。そこで耐熱性を向上させるためには活性化エネルギーの低い箇所を、より安定な他の材料に変えることや、予め熱分解させ安定化することが有効である。水酸化アルミニウム粒子においては大気下での熱分解によりχ−アルミナに変化させる。活性化エネルギーの低い箇所を安定な脱水物に変えることにより、熱分解開始温度が上昇する。
[Heat-resistant aluminum hydroxide particles and production method thereof]
Hereinafter, the present invention will be described in detail.
In general, thermal decomposition of inorganic substances is considered to start from a surface with a low activation energy, a crystal transition at a grain boundary, and other defective portions. Therefore, in order to improve the heat resistance, it is effective to change the portion having a low activation energy to another more stable material, or to thermally decompose and stabilize in advance. Aluminum hydroxide particles are converted to χ-alumina by thermal decomposition in the atmosphere. By changing the portion with low activation energy into a stable dehydrated product, the thermal decomposition starting temperature increases.

一方、熱分解により生じるχ−アルミナは別名活性アルミナと呼ばれ、比表面積が大きく、吸湿性の大きい材料である。このためプリント配線板基材用フィラーとして充填した場合、吸着により表面に保持している水分量が増加するため、リフロー温度である260℃付近までの加熱によって生じる水分量を増やす作用がある。   On the other hand, χ-alumina produced by thermal decomposition is also called activated alumina, which is a material having a large specific surface area and a high hygroscopic property. For this reason, when it fills as a filler for printed wiring board base materials, since the moisture content currently hold | maintained on the surface by adsorption | suction increases, there exists an effect | action which increases the moisture content produced by the heating to 260 degreeC which is reflow temperature.

本発明はこの問題点に鑑みなされた。すなわち、水酸化アルミニウム粒子の耐熱性を向上させるために水酸化アルミニウムの表面の水酸基を、より熱分解温度の高いフッ素と置換するために、所定の加熱処理を行う(本発明の第1の態様)又は所定の液相での処理及び加熱処理を行う(本発明の第2の態様)ことによって、耐熱性に優れ吸湿性の低い水酸化アルミニウム粒子の提供を可能とするものである。以下、本発明の第1の態様及び第2の態様について説明する。なお、第1の態様及び第2の態様を合わせて「本発明」ということがある。   The present invention has been made in view of this problem. That is, in order to improve the heat resistance of the aluminum hydroxide particles, a predetermined heat treatment is performed in order to replace the hydroxyl group on the surface of the aluminum hydroxide with fluorine having a higher thermal decomposition temperature (first aspect of the present invention). Or by performing a treatment in a predetermined liquid phase and a heat treatment (second aspect of the present invention), it is possible to provide aluminum hydroxide particles having excellent heat resistance and low hygroscopicity. Hereinafter, the first aspect and the second aspect of the present invention will be described. The first aspect and the second aspect may be collectively referred to as “the present invention”.

(本発明の第1の態様)
本発明の第1の態様は、水酸化アルミニウム粒子を、フッ素を含有するガス雰囲気で200℃〜270℃の加熱処理を行い、前記水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した耐熱性水酸化アルミニウム粒子である。
(First aspect of the present invention)
The first aspect of the present invention is a heat resistance in which aluminum hydroxide particles are subjected to a heat treatment at 200 ° C. to 270 ° C. in a fluorine-containing gas atmosphere, and a part of the hydroxyl groups of the aluminum hydroxide particles are substituted with fluorine. Aluminum hydroxide particles.

フッ素を含有するガス雰囲気(気相)で処理を行う場合には、フッ化水素酸ガス、フッ素ガス、又はフッ化アンモニウムの加熱分解ガス等のフッ素を含むガス雰囲気で加熱処理を施すことにより、水酸化アルミニウムの水酸基をフッ素と置換する。   When the treatment is performed in a gas atmosphere (vapor phase) containing fluorine, by performing the heat treatment in a gas atmosphere containing fluorine such as hydrofluoric acid gas, fluorine gas, or heat decomposition gas of ammonium fluoride, The hydroxyl group of aluminum hydroxide is replaced with fluorine.

気相での処理ではフッ素との置換処理と熱処理とを同時に行うことができる。フッ化水素酸ガス又はフッ素ガスを使用する場合には加熱雰囲気中にこれらのガスを導入することにより、また、フッ化アンモニウムを使用する場合には、水酸化アルミニウム粒子にフッ化アンモニウムを添加した容器を加熱することにより、フッ化アンモニウムが分解、昇華してフッ素を含むガス雰囲気を作ることができる。   In the treatment in the gas phase, the substitution treatment with fluorine and the heat treatment can be performed simultaneously. When hydrofluoric acid gas or fluorine gas is used, these gases are introduced into the heating atmosphere. When ammonium fluoride is used, ammonium fluoride is added to the aluminum hydroxide particles. By heating the container, the ammonium fluoride can be decomposed and sublimated to create a gas atmosphere containing fluorine.

処理温度が270℃以下であるとχ−アルミナの生成速度が大きくなるのを防ぎ、脱水量の制御を容易にすることができる。また、200℃以上であると実用的な処理時間では熱分解開始温度の上昇させることができる。処理温度は、210℃〜260℃であることが好ましい。
処理時間は例えば0.1〜10時間であることが好ましく、0.5〜5時間であることがより好ましい。
When the treatment temperature is 270 ° C. or less, the generation rate of χ-alumina can be prevented from increasing, and the amount of dehydration can be easily controlled. Moreover, if it is 200 ° C. or higher, the thermal decomposition starting temperature can be increased in a practical treatment time. The treatment temperature is preferably 210 ° C to 260 ° C.
The treatment time is preferably 0.1 to 10 hours, for example, and more preferably 0.5 to 5 hours.

(本発明の第2の態様)
本発明の第2の態様は、水酸化アルミニウム粒子を、フッ素イオンを含む溶液で処理し、前記水酸化アルミニウム粒子の水酸基の一部をフッ素に置換した後、200℃〜270℃の加熱処理を施した耐熱性水酸化アルミニウム粒子である。
(Second aspect of the present invention)
In the second aspect of the present invention, the aluminum hydroxide particles are treated with a solution containing fluorine ions, and a part of the hydroxyl groups of the aluminum hydroxide particles are replaced with fluorine, and then heat treatment is performed at 200 ° C. to 270 ° C. Heat-resistant aluminum hydroxide particles applied.

フッ素イオンを含む溶液で処理(液相での処理)を行う場合には、フッ素イオンを含む溶液に水酸化アルミニウムを浸漬・攪拌すればよい。フッ素を含む溶液はフッ酸又はフッ化ナトリウム、フッ化カリウム等のフッ素のアルカリ金属塩、フッ化マグネシウム、フッ化カルシウム等のフッ素のアルカリ土類金属塩、フッ化アンモニウム、フッ化アルミニウム等のフッ化物塩を1種又は複数含む溶液が使用できる。なかでも水への溶解度が大きく、300℃以下の焼成で揮発し、不純物イオンを増加させることのないフッ酸、フッ化アンモニウムが好ましい。   When processing with a solution containing fluorine ions (processing in a liquid phase), aluminum hydroxide may be immersed and stirred in a solution containing fluorine ions. Fluorine-containing solutions include fluorine alkali metal salts such as hydrofluoric acid, sodium fluoride, and potassium fluoride, fluorine alkaline earth metal salts such as magnesium fluoride and calcium fluoride, ammonium fluoride, aluminum fluoride, and other fluorides. Solutions containing one or more chloride salts can be used. Of these, hydrofluoric acid and ammonium fluoride, which have a high solubility in water, volatilize by firing at 300 ° C. or lower and do not increase impurity ions, are preferable.

浸漬する時間は10分から1時間程度であり、浸漬する温度は室温付近から水の沸騰する100未満で行うことが好ましいが特に制限はない。フッ化物イオンの濃度は水酸化アルミニウムの処理量と溶液の量とから適宜選定するが、実用的な範囲は0.01mol/リットルから10mol/リットルである。   The immersion time is about 10 minutes to 1 hour, and the immersion temperature is preferably less than 100 where water is boiled from around room temperature, but there is no particular limitation. The concentration of fluoride ions is appropriately selected from the amount of aluminum hydroxide treated and the amount of solution, but the practical range is 0.01 mol / liter to 10 mol / liter.

液相で置換処理を行った後、水酸化アルミニウム粒子はろ過や遠心分離により水を除去し、ついで乾燥処理を行い、続いて加熱処理を行う。加熱処理は200℃〜270℃の温度範囲で行うことが好ましく、210℃〜260℃温度範囲で行うことがより好ましい。
処理温度が270℃以下であるとχ−アルミナの生成速度が大きくなるのを防ぎ、脱水量の制御を容易にすることができる。また、200℃以上であると実用的な処理時間では熱分解開始温度の上昇させることができる。
処理時間は例えば0.1〜10時間であることが好ましく、0.2〜5時間である。処理雰囲気は大気雰囲気、窒素雰囲気等、特に制限はないが、大気雰囲気で行うことが実用的である。
After the substitution treatment is performed in the liquid phase, the aluminum hydroxide particles are removed by filtration or centrifugation, followed by a drying treatment, followed by a heating treatment. The heat treatment is preferably performed in a temperature range of 200 ° C. to 270 ° C., and more preferably performed in a temperature range of 210 ° C. to 260 ° C.
When the treatment temperature is 270 ° C. or less, the generation rate of χ-alumina can be prevented from increasing, and the amount of dehydration can be easily controlled. Moreover, if it is 200 ° C. or higher, the thermal decomposition starting temperature can be increased in a practical treatment time.
The treatment time is preferably 0.1 to 10 hours, for example, and 0.2 to 5 hours. The treatment atmosphere is not particularly limited, such as an air atmosphere or a nitrogen atmosphere, but it is practical to carry out the treatment in an air atmosphere.

本発明において加熱処理を行うことで、水酸化アルミニウムの表面活性化エネルギーの低い表面や、粒界の結晶転移やその他の欠陥部分から分解脱水反応が起こり、水酸化アルミニウムからχ−アルミナに変化する。熱分解開始温度の低い部分が予め除去されることにより、熱分解開始温度が上昇する。本発明でのフッ素の作用は明確ではないが、フッ化アルミニウムは水酸化アルミニウムに比べて熱分解温度が高いことから、粒子表面に存在するフッ素が、χ−アルミナへの変化速度を遅くしているものと推定される。   By performing the heat treatment in the present invention, the decomposition and dehydration reaction occurs from the surface of aluminum hydroxide having a low surface activation energy, crystal transition at the grain boundary, and other defective portions, and changes from aluminum hydroxide to χ-alumina. . By removing a part having a low thermal decomposition start temperature in advance, the thermal decomposition start temperature is increased. Although the action of fluorine in the present invention is not clear, since aluminum fluoride has a higher thermal decomposition temperature than aluminum hydroxide, fluorine present on the particle surface slows the rate of change to χ-alumina. It is estimated that

フッ素の置換量は水酸化アルミニウム粒子表面に存在するフッ素の比率が1〜20at%であり、3〜15at%であることが好ましい。置換量が1at%より少ないと熱分解開始温度上昇効果が小さく、20at%を超えると分解放出される水の量が減るので難燃作用が低下する。フッ素置換量の定量にはXPS(X−ray Photoelectron Spectroscopy X線光電子分光装置)で行う。XPSは一般に物質の表層10nm以内の極表層の元素分析が可能であり、検出されるアルミニウム、酸素、フッ素、炭素の分光スペクトルから元素の存在比率を算出できる。   The fluorine substitution amount is such that the ratio of fluorine present on the surface of the aluminum hydroxide particles is 1 to 20 at%, and preferably 3 to 15 at%. When the amount of substitution is less than 1 at%, the effect of increasing the thermal decomposition start temperature is small, and when it exceeds 20 at%, the amount of water decomposed and released is reduced and the flame retarding action is lowered. Quantification of the fluorine substitution amount is performed by XPS (X-ray Photoelectron Spectroscopy X-ray photoelectron spectrometer). XPS generally enables elemental analysis of the extreme surface layer within 10 nm of the surface layer of a substance, and the element abundance ratio can be calculated from the detected spectrum of aluminum, oxygen, fluorine, and carbon.

また、熱分解開始温度は260℃以上であることが好ましく、265〜300℃であることがより好ましい。また、800℃まで加熱した後の脱水量が32質量%以上であることが好ましく、32.5〜34.6質量%であることがより好ましい。熱分解開始温度は260℃以上であるとLSIの実装工程などの熱処理時に、熱分解による水蒸気の発生が無い、安定な樹脂組成物を提供することができる。脱水量が32質量%以上であると熱分解時に発生する水蒸気量が多く、難燃効果を高めることができる。   Moreover, it is preferable that thermal decomposition start temperature is 260 degreeC or more, and it is more preferable that it is 265-300 degreeC. Moreover, it is preferable that the dehydration amount after heating to 800 degreeC is 32 mass% or more, and it is more preferable that it is 32.5-34.6 mass%. When the thermal decomposition starting temperature is 260 ° C. or higher, it is possible to provide a stable resin composition that does not generate water vapor due to thermal decomposition during heat treatment such as an LSI mounting process. When the amount of dehydration is 32% by mass or more, the amount of water vapor generated during thermal decomposition is large, and the flame retarding effect can be enhanced.

本発明に使用される水酸化アルミニウム粒子は、工業的に量産されているギブサイト型の水酸化アルミニウム粒子である。化学式はAl(OH)又はAl・3HOで表され、理論値で34.64質量%の水を含有する。 The aluminum hydroxide particles used in the present invention are gibbsite type aluminum hydroxide particles that are mass-produced industrially. The chemical formula is represented by Al (OH) 3 or Al 2 O 3 .3H 2 O, and contains 34.64% by mass of water in theory.

水酸化アルミニウム粒子は一般に、高温のアルミン酸ナトリウム溶液に種結晶を添加した後、液温を低下させて過飽和溶液にすることにより、種結晶上に水酸化アルミニウム粒子として析出させることにより製造される。このため、一定量のナトリウムを不純物として含む。熱分解開始温度は不純物濃度の影響を受け、NaO濃度が低いほど高くなることが知られている。このため本発明に使用される水酸化アルミニウム粒子にはNaO濃度が0.3wt%以下、好ましくは0.1wt%以下のものを使用する。 Aluminum hydroxide particles are generally produced by adding seed crystals to a hot sodium aluminate solution and then precipitating them as aluminum hydroxide particles on the seed crystals by lowering the liquid temperature to form a supersaturated solution. . For this reason, a certain amount of sodium is contained as an impurity. It is known that the thermal decomposition start temperature is affected by the impurity concentration and becomes higher as the Na 2 O concentration is lower. For this reason, the aluminum hydroxide particles used in the present invention have a Na 2 O concentration of 0.3 wt% or less, preferably 0.1 wt% or less.

また、本発明に使用される水酸化アルミニウム粒子の平均粒径は0.3μm〜5μmであることが好ましく、1〜4μmであることがより好ましい。
平均粒径が0.3μm以上であると凝集を防止することができ、樹脂組成物中へ均一に混合分散すること容易になる。また、平均粒径が5μm以下であると樹脂組成物の電気的な特性を良好な状態に維持することができる。
Moreover, it is preferable that the average particle diameter of the aluminum hydroxide particle used for this invention is 0.3 micrometer-5 micrometers, and it is more preferable that it is 1-4 micrometers.
Aggregation can be prevented when the average particle size is 0.3 μm or more, and uniform mixing and dispersion in the resin composition is facilitated. Further, when the average particle size is 5 μm or less, the electrical characteristics of the resin composition can be maintained in a good state.

[樹脂組成物]
本発明の樹脂組成物は、耐熱性水酸化アルミニウム粒子を含む。水酸化アルミニウムの粒子を添加することにより、樹脂組成物の難燃性を向上させることができる。従って本発明による耐熱性水酸化アルミニウム粒子を樹脂に添加することにより、耐熱性および難燃性の高い樹脂組成物を得ることができる。耐熱性水酸化アルミニウム粒子は、樹脂成分100質量部に対し、5〜60質量部とすることが好ましく、10〜50質量部とすることがより好ましい。
[Resin composition]
The resin composition of the present invention contains heat-resistant aluminum hydroxide particles. By adding aluminum hydroxide particles, the flame retardancy of the resin composition can be improved. Therefore, a resin composition having high heat resistance and flame retardancy can be obtained by adding the heat-resistant aluminum hydroxide particles according to the present invention to the resin. The heat-resistant aluminum hydroxide particles are preferably 5 to 60 parts by mass, and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the resin component.

本発明に用いる樹脂は特に限定されず、例えばエポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂、フェノール樹脂、メラミン樹脂、これら樹脂の変性物等が用いられる。また、これらの樹脂は2種類以上を併用してもよく、必要に応じて各種硬化剤、硬化促進剤等を使用し、これらを溶剤溶液として配合してもかまわない。   The resin used in the present invention is not particularly limited, and for example, epoxy resin, polyimide resin, bismaleimide-triazine resin, phenol resin, melamine resin, modified products of these resins, and the like are used. Two or more kinds of these resins may be used in combination, and various curing agents, curing accelerators and the like may be used as necessary, and these may be blended as a solvent solution.

[プリプレグ]
本発明のプリプレグは、本発明の樹脂組成物が含浸、乾燥されてなる。具体的には、本発明の樹脂組成物を含むワニスを基材に含浸させ、例えば80℃〜200℃の範囲で乾燥させてなるものである。基材としては、金属箔張り積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されないが、織布や不織布等の繊維基材が用いられる。
[Prepreg]
The prepreg of the present invention is formed by impregnating and drying the resin composition of the present invention. Specifically, the substrate is impregnated with a varnish containing the resin composition of the present invention and dried, for example, in the range of 80 ° C to 200 ° C. Although it will not restrict | limit especially if it is used when manufacturing a metal foil clad laminated board and a multilayer printed wiring board as a base material, Fiber base materials, such as a woven fabric and a nonwoven fabric, are used.

繊維基材としては、例えばガラス、アルミナ、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系が挙げられる。これらのなかでも、ガラス繊維の織布が好ましく用いられる。ガラス織布の種類は特に指定はなく、厚さ20μm〜200μmまでのものを、目的のプリプレグ又は積層板の厚さに合わせて使用することができる。   Examples of the fiber substrate include inorganic fibers such as glass, alumina, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyetheretherketone, polyetherimide, polyethersulfone, carbon, Examples thereof include organic fibers such as cellulose and mixed papers thereof. Among these, a glass fiber woven fabric is preferably used. The type of the glass woven fabric is not particularly specified, and those having a thickness of 20 μm to 200 μm can be used according to the thickness of the target prepreg or laminate.

樹脂にワニスを含浸させる方法としては、特に制限されず、例えば、ウェット方式やドライ方式等の樹脂液に基材を含浸させる方法、基材に樹脂組成物を塗布する方法等が挙げられる。   The method of impregnating the resin with the varnish is not particularly limited, and examples thereof include a method of impregnating the substrate with a resin liquid such as a wet method and a dry method, a method of applying a resin composition to the substrate, and the like.

[積層板]
上記により得られたプリプレグを少なくとも1枚以上重ね、加熱加圧成形することにより積層板が得られる。加熱温度は150℃〜250℃であることが好ましく、170℃〜200℃であることがより好ましい。圧力は1.0MPa〜8.0MPaであることが好ましく、2.0MPa〜6.0MPaであることが好ましい。加熱加圧条件は、プリプレグ特性や、プレス機の能力、目的積層板の厚み等により適宜決定する。
[Laminated board]
A laminated board can be obtained by stacking at least one prepreg obtained as described above and heating and pressing. The heating temperature is preferably 150 ° C. to 250 ° C., and more preferably 170 ° C. to 200 ° C. The pressure is preferably 1.0 MPa to 8.0 MPa, and preferably 2.0 MPa to 6.0 MPa. The heating and pressing conditions are appropriately determined depending on the prepreg characteristics, the capacity of the press, the thickness of the target laminate, and the like.

また、プリプレグを少なくとも1枚以上重ねて、その片側又は両側に金属箔を配して、加熱加圧成形してプリント配線板用基材を製造することができる。金属箔としては主に銅箔やアルミ箔を用いるが、他の金属箔を用いてもよい。金属箔の厚みは通常3〜200μmである。これらのプリント配線板用基材を使用し、回路加工してプリント配線板が得られる。   Moreover, the base material for printed wiring boards can be manufactured by stacking at least one prepreg, placing a metal foil on one side or both sides thereof, and heating and pressing. As the metal foil, copper foil or aluminum foil is mainly used, but other metal foil may be used. The thickness of the metal foil is usually 3 to 200 μm. Using these printed wiring board base materials, a printed wiring board can be obtained by circuit processing.

以下、本発明の実施例について説明する。本発明は、これらの実施例によって限定されるものではない。
なお、本発明の実施例および比較例の水酸化アルミニウム粒子の平均粒径、加熱重量減少量、熱分解開始温度、表面フッ素含有量は以下の方法で測定した。
Examples of the present invention will be described below. The present invention is not limited by these examples.
In addition, the average particle diameter of the aluminum hydroxide particle of the Example and comparative example of this invention, the amount of heating weight reduction | decrease, the thermal decomposition start temperature, and surface fluorine content were measured with the following method.

平均粒径:
水酸化アルミニウム粒子の平均粒径は日機装株式会社製レーザー散乱粒度分布計MT3000で水を分散液にして測定した。
Average particle size:
The average particle size of the aluminum hydroxide particles was measured using Nikkiso Co., Ltd. Laser Scattering Particle Size Distribution Meter MT3000 as a dispersion.

加熱重量減少量:
水酸化アルミニウム粒子の加熱重量減少量は、マックサイエンス株式会社製の示差熱−重量分析装置(TG−DTA2000)で昇温速度10℃/分、空気流量50ml/分で800℃まで測定し、110℃を基準に800℃までにおける重量減少量から算出した。
Heat weight loss:
The amount of heating weight reduction of the aluminum hydroxide particles was measured up to 800 ° C. at a heating rate of 10 ° C./min and an air flow rate of 50 ml / min with a differential heat-gravimetric analyzer (TG-DTA2000) manufactured by Mac Science Co., Ltd. It calculated from the weight loss amount up to 800 ° C. based on ° C.

熱分解開始温度:
水酸化アルミニウム粒子の熱分解開始温度はマックサイエンス株式会社製の示差熱−重量分析装置(TG−DTA2000)で昇温速度10℃/分、空気流量50ml/分で800℃まで測定し、200℃を基準に重量減少率が0.5質量%になる温度を測定した。
Thermal decomposition start temperature:
The thermal decomposition start temperature of the aluminum hydroxide particles was measured up to 800 ° C. at a heating rate of 10 ° C./min and an air flow rate of 50 ml / min with a differential thermal-gravimetric analyzer (TG-DTA2000) manufactured by Mac Science Co., Ltd. The temperature at which the weight loss rate became 0.5% by mass was measured.

表面フッ素含有量:
水酸化アルミニウム粒子の表面に存在するフッ素の存在量は、アルバック・ファイ株式会社製のX線光電子分光分析装置5400型でフッ素の1s軌動、アルミニウムの2p軌動、酸素の1s軌動、炭素の1s軌動のピーク面積を測定し、面積比から算出した。
Surface fluorine content:
The amount of fluorine present on the surface of the aluminum hydroxide particles is as follows: 1s trajectory of fluorine, 2p trajectory of aluminum, 1s trajectory of oxygen, carbon using X-ray photoelectron spectrometer 5400 manufactured by ULVAC-PHI The 1s trajectory peak area was measured and calculated from the area ratio.

(実施例1)
原料となる水酸化アルミニウム粒子として昭和電工株式会社製のHP−360(平均粒径3.2μm、比表面積1.3m/g、熱分解開始温度248℃、脱水量34.4質量%)を使用した。
水酸化アルミニウム粒子25gとフッ化アンモニウム(和光純薬試薬特級)0.71gとを良く混合した。その後、容量50mlの磁性坩堝に充填し、熱風循環タイプのボックス炉(ヤマト科学製ファインオーブンDH42)中、240℃で3時間加熱処理し耐熱性水酸化アルミニウム粒子を作製した。
Example 1
HP-360 (average particle size: 3.2 μm, specific surface area: 1.3 m 2 / g, thermal decomposition start temperature: 248 ° C., dehydration amount: 34.4% by mass) manufactured by Showa Denko KK as aluminum hydroxide particles as a raw material used.
25 g of aluminum hydroxide particles and 0.71 g of ammonium fluoride (special grade of Wako Pure Chemical Industries, Ltd.) were mixed well. Then, the magnetic crucible with a capacity of 50 ml was filled and heat-treated at 240 ° C. for 3 hours in a hot air circulation type box furnace (Fine Oven DH42 manufactured by Yamato Kagaku) to produce heat-resistant aluminum hydroxide particles.

示差熱−重量分析装置による評価では熱分解開始温度は281℃、脱水量33.5wt%であった。X線光電子分光分析装置による評価では水酸化アルミニウム粒子表面の原子パーセントは炭素16.2at%、酸素52.1at%、アルミニウム22.1at%、フッ素9.6at%であり、フッ素が粒子表面に存在していることが確認できた。   In the evaluation by the differential thermal-gravimetric analyzer, the thermal decomposition starting temperature was 281 ° C. and the dehydration amount was 33.5 wt%. According to the evaluation by the X-ray photoelectron spectrometer, the atomic percentage of the aluminum hydroxide particle surface is 16.2 at% carbon, 52.1 at% oxygen, 22.1 at% aluminum, and 9.6 at% fluorine, and fluorine exists on the particle surface. I was able to confirm.

(実施例2)
フッ化アンモニウムの添加量を0.035gとしたこと以外は実施例2と同様に耐熱性水酸化アルミニウム粒子を作製した。
示差熱−重量分析装置による評価では熱分解開始温度は271℃、脱水量33.6wt%であった。X線光電子分光分析装置による評価では水酸化アルミニウム粒子表面のフッ素含有量が2.2at%であり、フッ素が粒子表面に存在していることが確認できた。
(Example 2)
Heat-resistant aluminum hydroxide particles were produced in the same manner as in Example 2 except that the amount of ammonium fluoride added was 0.035 g.
In the evaluation by the differential thermal-gravimetric analyzer, the thermal decomposition starting temperature was 271 ° C. and the dehydration amount was 33.6 wt%. In the evaluation by the X-ray photoelectron spectrometer, the fluorine content on the aluminum hydroxide particle surface was 2.2 at%, and it was confirmed that fluorine was present on the particle surface.

(実施例3)
原料となる水酸化アルミニウム粒子として住友化学株式会社製CL−303(平均粒径4.1μm、熱分解開始温度は242℃、脱水量34.4wt%))を使用した以外は実施例1と同様に耐熱性水酸化アルミニウム粒子を作製した。
示差熱−重量分析装置による評価では熱分解開始温度は278℃、脱水量32.7wt%であった。X線光電子分光分析装置による評価では水酸化アルミニウム粒子表面のフッ素含有量が10.1at%であり、フッ素が粒子表面に存在していることが確認できた。
(Example 3)
The same as Example 1 except that Sumitomo Chemical Co., Ltd. CL-303 (average particle size 4.1 μm, thermal decomposition start temperature is 242 ° C., dehydration amount 34.4 wt%) was used as aluminum hydroxide particles as a raw material. Heat-resistant aluminum hydroxide particles were prepared.
In the evaluation by the differential thermal-gravimetric analyzer, the thermal decomposition starting temperature was 278 ° C., and the dehydration amount was 32.7 wt%. In the evaluation by the X-ray photoelectron spectrometer, the fluorine content on the aluminum hydroxide particle surface was 10.1 at%, and it was confirmed that fluorine was present on the particle surface.

(実施例4)
原料となる水酸化アルミニウム粒子として昭和電工株式会社製HP−360(平均粒径3.2μm、熱分解開始温度は248℃、脱水量34.4wt%)を使用した。500mlのプラスチックス容器に水酸化アルミニウム粒子50gと純水150gとを添加し攪拌した。その後、55質量%フッ酸(和光純薬化学用)を2.8gを添加し室温で1時間攪拌した。続いてろ過、150℃での乾燥を行い、フッ素置換水酸化アルミニウム粒子を得た。続いて容量50mlの磁性坩堝に充填し、熱風循環タイプのボックス炉(ヤマト科学製ファインオーブンDH42)中、220℃で3時間加熱処理し耐熱性水酸化アルミニウム粒子を作製した。
示差熱−重量分析装置による評価では熱分解開始温度は269℃、脱水量33.1wt%であった。X線光電子分光分析装置による評価では水酸化アルミニウム粒子表面のフッ素含有量が11.8at%であり、フッ素が粒子表面に存在していることが確認できた。
Example 4
As an aluminum hydroxide particle used as a raw material, HP-360 (average particle diameter: 3.2 μm, thermal decomposition start temperature: 248 ° C., dehydration amount: 34.4 wt%) manufactured by Showa Denko KK was used. In a 500 ml plastic container, 50 g of aluminum hydroxide particles and 150 g of pure water were added and stirred. Thereafter, 2.8 g of 55% by mass hydrofluoric acid (for Wako Pure Chemical) was added and stirred at room temperature for 1 hour. Subsequently, filtration and drying at 150 ° C. were performed to obtain fluorine-substituted aluminum hydroxide particles. Subsequently, a magnetic crucible with a capacity of 50 ml was filled and heat-treated at 220 ° C. for 3 hours in a hot air circulation type box furnace (Fine Oven DH42 manufactured by Yamato Kagaku) to produce heat-resistant aluminum hydroxide particles.
In the evaluation by the differential thermal-gravimetric analyzer, the thermal decomposition starting temperature was 269 ° C. and the dehydration amount was 33.1 wt%. In the evaluation by the X-ray photoelectron spectrometer, the fluorine content on the surface of the aluminum hydroxide particles was 11.8 at%, and it was confirmed that fluorine was present on the particle surface.

(比較例1)
フッ化アンモニウムを添加しないこと以外は実施例1と同様に水酸化アルミニウム粒子を作製した。示差熱−重量分析装置による評価では熱分解開始温度は252℃、脱水量30.2wt%であった。
(Comparative Example 1)
Aluminum hydroxide particles were prepared in the same manner as in Example 1 except that ammonium fluoride was not added. In the evaluation by the differential thermal-gravimetric analyzer, the thermal decomposition starting temperature was 252 ° C. and the dehydration amount was 30.2 wt%.

上記実施例1〜4及び比較例1の水酸化アルミニウム粒子65部をそれぞれエポキシ樹脂として、ビスフェノールAノボラック型エポキシ樹脂(大日本インキ化学工業株式会社製EPICLON N865、エポキシ当量:205)を65.4部、硬化剤として、フェノールノボラック樹脂(明和化成株式会社製HF−4、水酸基当量:108)を34.6部、硬化促進剤として、2−エチル−4−メチルイミダゾール(四国化成株式会社製2E4MZ)を0.2部、平均粒径0.5μmの球状溶融シリカ30部、難燃助剤として、モリブデン酸亜鉛担持タルク(シャーウインウイリアムズ社製Kemgard 911C)を5部、メチルエチルケトン85.8部と配合し、固形分70重量%のワニスを調製した。   Using 65 parts of the aluminum hydroxide particles of Examples 1 to 4 and Comparative Example 1 as an epoxy resin, 65.4 bisphenol A novolac type epoxy resin (EPICLON N865 manufactured by Dainippon Ink & Chemicals, Inc., epoxy equivalent: 205). Part, 34.6 parts phenol novolac resin (HF-4, hydroxyl equivalent: 108 manufactured by Meiwa Kasei Co., Ltd.) as a curing agent, 2-ethyl-4-methylimidazole (2E4MZ manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator ) 0.2 parts, 30 parts of spherical fused silica having an average particle diameter of 0.5 μm, 5 parts of zinc molybdate-supported talc (Keggard 911C manufactured by Sherwin Williams) as a flame retardant aid, and 85.8 parts of methyl ethyl ketone A varnish having a solid content of 70% by weight was prepared.

実施例1〜4及び比較例1の水酸化アルミニウム粒子を含む上記ワニスを厚さ約0.1mmのガラス布(#2116,E−ガラス)に含浸後、160℃で3〜10分加熱乾燥して樹脂分48重量%のプリプレグを得た。これらプリプレグ4枚を重ね、その両側に厚みが18μmの銅箔を重ね、180℃、90分、3.0MPaのプレス条件で両面銅張積層板を作製した。この基材を使用して吸湿耐熱性評価と燃燃性の評価を行った。   After impregnating the glass cloth (# 2116, E-glass) with a thickness of about 0.1 mm with the varnish containing the aluminum hydroxide particles of Examples 1 to 4 and Comparative Example 1, it was dried by heating at 160 ° C. for 3 to 10 minutes. Thus, a prepreg having a resin content of 48% by weight was obtained. Four of these prepregs were stacked, and a copper foil having a thickness of 18 μm was stacked on both sides thereof, and a double-sided copper-clad laminate was produced under press conditions of 180 ° C., 90 minutes, 3.0 MPa. Using this substrate, moisture absorption heat resistance evaluation and flame retardant evaluation were performed.

吸湿対熱性評価は作製した基材を2cm四角に裁断したサンプルをそれぞれ3個作製し、125℃のプレッシャークッカー装置で5時間吸湿処理を行い、重量変化から吸湿量を測定し、288℃のはんだバスに20秒浸漬し、膨れの発生状況を観察した。
難燃性評価は作製した基材の銅箔をエッチングで除去し、1.3cm×10cmに裁断したサンプルをそれぞれ5個作製し、縦型の燃焼試験を行い、5サンプルの平均燃焼時間と最大燃焼時間を測定した。また、UL−94垂直法に準拠した難燃性(平均燃焼時間(n=5))の評価結果も求めた。下記表1に結果を示す。
The hygroscopicity vs. thermal evaluation was made by making three samples each of the produced substrate cut into 2 cm squares, performing a moisture absorption treatment with a 125 ° C pressure cooker for 5 hours, measuring the amount of moisture absorption from the weight change, and soldering at 288 ° C. It was immersed in a bath for 20 seconds, and the occurrence of swelling was observed.
For the evaluation of flame retardancy, the copper foil of the prepared substrate was removed by etching, 5 samples each cut to 1.3 cm × 10 cm were prepared, a vertical combustion test was performed, and the average burning time and maximum of 5 samples were measured. The burning time was measured. Moreover, the evaluation result of the flame retardance (average burning time (n = 5)) based on the UL-94 vertical method was also obtained. The results are shown in Table 1 below.

Figure 2016094334
Figure 2016094334

実施例1〜4で得られた高耐熱水酸化アルミニウム粒子を用いた積層板は吸湿低熱性および難燃性にいずれも良好な特性を示した。これに対して、フッ化アンモニウムを添加せずに加熱処理した加熱処理した比較例1の水酸化アルミニウム粒子を用いた積層板は多孔質のχ−アルミナの含有量が多いため吸湿量が大きく、吸湿耐熱性に劣り、含水量が減るため難燃性に劣った。
以上から、本発明によれば、合成樹脂に難燃材として添加するのに適した熱分解開始温度が高く、脱水量の多い耐熱性水酸化アルミニウム粒子を提供することができるといえる。
The laminates using the high heat-resistant aluminum hydroxide particles obtained in Examples 1 to 4 showed good characteristics in both moisture absorption and low heat resistance and flame retardancy. On the other hand, the laminate using the aluminum hydroxide particles of Comparative Example 1 that was heat-treated without adding ammonium fluoride has a large amount of moisture absorption because of the high content of porous χ-alumina, It was inferior in moisture absorption heat resistance and inferior in flame retardancy due to a decrease in water content.
From the above, it can be said that according to the present invention, it is possible to provide heat-resistant aluminum hydroxide particles having a high thermal decomposition starting temperature suitable for addition as a flame retardant to a synthetic resin and a large amount of dehydration.

Claims (8)

表面に存在するフッ素の比率が3〜20at%であり、熱分解開始温度が271℃以上、脱水量が32質量%以上である耐熱性水酸化アルミニウム粒子。   Heat-resistant aluminum hydroxide particles having a ratio of fluorine present on the surface of 3 to 20 at%, a thermal decomposition starting temperature of 271 ° C. or higher, and a dehydration amount of 32 mass% or higher. NaO濃度が0.3質量%以下である、請求項1に記載の耐熱性水酸化アルミニウム粒子。 The heat-resistant aluminum hydroxide particles according to claim 1, wherein the Na 2 O concentration is 0.3% by mass or less. 平均粒径が0.3〜5μmである、請求請1又は2に記載の耐熱性水酸化アルミニウム粒子。   The heat-resistant aluminum hydroxide particles according to claim 1 or 2, wherein the average particle size is 0.3 to 5 µm. 請求項1〜3のいずれか1項に記載の耐熱性水酸化アルミニウム粒子を含む、樹脂組成物。   The resin composition containing the heat resistant aluminum hydroxide particle of any one of Claims 1-3. 基材に請求項4に記載の樹脂組成物が含浸されてなるプリプレグ。   A prepreg obtained by impregnating a resin composition according to claim 4 on a base material. 請求項5に記載のプリプレグを積層成形することにより得られる積層板。   A laminate obtained by laminate-molding the prepreg according to claim 5. 請求項5に記載のプリプレグと金属箔とを積層成形してなるプリント配線板用基材。   A printed wiring board substrate obtained by laminating the prepreg according to claim 5 and a metal foil. 請求項7に記載のプリント配線板用基材を使用して得られたプリント配線板。   The printed wiring board obtained using the base material for printed wiring boards of Claim 7.
JP2015217731A 2015-11-05 2015-11-05 Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate Active JP6052369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217731A JP6052369B2 (en) 2015-11-05 2015-11-05 Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217731A JP6052369B2 (en) 2015-11-05 2015-11-05 Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011144342A Division JP5834540B2 (en) 2011-06-29 2011-06-29 Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate

Publications (2)

Publication Number Publication Date
JP2016094334A true JP2016094334A (en) 2016-05-26
JP6052369B2 JP6052369B2 (en) 2016-12-27

Family

ID=56070551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217731A Active JP6052369B2 (en) 2015-11-05 2015-11-05 Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate

Country Status (1)

Country Link
JP (1) JP6052369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212341B1 (en) * 2020-11-19 2021-02-04 주식회사 백승 Heating Appliance Assembly for Experiments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328121A (en) * 1989-06-23 1991-02-06 Showa Denko Kk Heat-resistant and fine-granular aluminum hydroxide and its production
JPH11292520A (en) * 1998-04-14 1999-10-26 Showa Denko Kk Metal oxide sol with fluorinated surface and its production
WO2004080897A1 (en) * 2003-03-10 2004-09-23 Kawai-Lime Ind. Co., Ltd. Heat-resistant aluminum hydroxide and method for preparation thereof
JP2011084431A (en) * 2009-10-15 2011-04-28 Hitachi Chem Co Ltd High heat-resistant aluminum hydroxide particle, method for producing the same, resin composition containing the particle, and printed wiring board using the resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328121A (en) * 1989-06-23 1991-02-06 Showa Denko Kk Heat-resistant and fine-granular aluminum hydroxide and its production
JPH11292520A (en) * 1998-04-14 1999-10-26 Showa Denko Kk Metal oxide sol with fluorinated surface and its production
WO2004080897A1 (en) * 2003-03-10 2004-09-23 Kawai-Lime Ind. Co., Ltd. Heat-resistant aluminum hydroxide and method for preparation thereof
JP2011084431A (en) * 2009-10-15 2011-04-28 Hitachi Chem Co Ltd High heat-resistant aluminum hydroxide particle, method for producing the same, resin composition containing the particle, and printed wiring board using the resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212341B1 (en) * 2020-11-19 2021-02-04 주식회사 백승 Heating Appliance Assembly for Experiments

Also Published As

Publication number Publication date
JP6052369B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
EP3219757B1 (en) Halogen-free resin composition and prepreg and laminate prepared therefrom
JP5830718B2 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
EP3219758B1 (en) Thermosetting resin composition and prepreg and laminated board prepared therefrom
CN109476862B (en) Prepreg, metal-clad laminate, and printed wiring board
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
JP5310472B2 (en) High heat-resistant aluminum hydroxide particles, production method thereof, resin composition containing the particles, and printed wiring board using the resin composition
JP5834540B2 (en) Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate
JP2008214427A (en) Flame-retardant epoxy resin composition, and prepreg, laminated plate and printed wiring board
JP6052369B2 (en) Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate
JP6011673B2 (en) Heat resistant aluminum hydroxide particles and production method thereof, resin composition, prepreg, laminate
JP3888254B2 (en) Multilayer printed wiring board
JP5310471B2 (en) High heat-resistant aluminum hydroxide particles, production method thereof, resin composition containing the particles, and printed wiring board using the resin composition
JP2009206326A (en) Multi-layer printed wiring board and semiconductor device
JP2004175895A (en) Resin composition for laminate, electrical prepreg, metal foil with electrical resin, electrical laminate, printed wiring board and multilayer printed wiring board
JP5448414B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
GB2123748A (en) Flame-retardant laminates
JP2003136620A (en) Composite laminate
JP4568937B2 (en) Flame retardant resin composition, prepreg and laminate using the same
JP2005206707A (en) Resin composition, prepreg and laminated sheet
JP3937676B2 (en) Epoxy resin composition, and prepreg and printed wiring board using the same
JP4017801B2 (en) Flame retardant composite laminate
JP2004115745A (en) Epoxy resin composition for impregnating organic fabric base material, prepreg using the same, laminated sheet and printed wiring board
JP2924966B2 (en) Printed circuit laminate
JP3799862B2 (en) Flame-retardant resin composition and insulating substrate and printed circuit board using flame-retardant resin composition
JP2002212394A (en) Prepreg for printed circuit board and metal-clad laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R151 Written notification of patent or utility model registration

Ref document number: 6052369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350