JP2016093016A - Operation plan generating device, operation plan generation device and program - Google Patents

Operation plan generating device, operation plan generation device and program Download PDF

Info

Publication number
JP2016093016A
JP2016093016A JP2014226413A JP2014226413A JP2016093016A JP 2016093016 A JP2016093016 A JP 2016093016A JP 2014226413 A JP2014226413 A JP 2014226413A JP 2014226413 A JP2014226413 A JP 2014226413A JP 2016093016 A JP2016093016 A JP 2016093016A
Authority
JP
Japan
Prior art keywords
power generation
power
amount
operation plan
adjustment amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014226413A
Other languages
Japanese (ja)
Inventor
浩一郎 吉見
Koichiro Yoshimi
浩一郎 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014226413A priority Critical patent/JP2016093016A/en
Publication of JP2016093016A publication Critical patent/JP2016093016A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate an operation plan even if the request reserve force of power generating unit cannot be ensured.SOLUTION: An operation plan generating device for generating a plurality of power generating units includes a target function acquisition unit for acquiring a target function for calculating the power generation cost or the generation rate of greenhouse effect gas and constraint conditions of power generating units, a power generation amount calculation unit for calculating a request power generation amount, i.e., an adjustment amount from the request power generation amount that must be ensured in preparation for the case where the demand prediction deviates from the request power generation amount, i.e., the amount of power that must be generated every predetermined time, on the basis of the demand prediction value of power every predetermined time and the error during the object period of operation plan, a penalty acquisition unit for acquiring a penalty function for calculating a value depending on the deficiency for the request adjustment value, when the adjustment amount of power generation amount, that can be secured, is smaller than the request adjustment amount, and an operation plan generation unit for generating an operation plan so that the value of an expansion target function, obtained by adding a penalty function to a target function while satisfying the constraint conditions is minimized.SELECTED DRAWING: Figure 2

Description

本発明は、運転計画生成装置、運転計画生成方法及びプログラムに関する。   The present invention relates to an operation plan generation device, an operation plan generation method, and a program.

電力需要は、季節や時間帯、曜日等の様々な要因によって時々刻々と変化するが、電力の需要と供給のバランスが崩れると電力系統の周波数や電圧の変化、停電などが発生し、安定的な電力の供給に支障が生じる。   Electricity demand changes from moment to moment depending on various factors such as the season, time of day, day of the week, etc., but if the balance between electricity demand and supply is disrupted, power system frequency and voltage changes, power outages, etc. occur and are stable. Troubles in the supply of power.

そのため発電事業を行う電力会社は、日々電力需要の予測を行い、需要と供給のバランスを維持するように、各発電所を運営している。   For this reason, the power company that operates the power generation business predicts the power demand every day and operates each power plant so as to maintain a balance between supply and demand.

例えば、電力会社は、過去の電力需要の実績や気象情報などの様々な情報を元に将来の電力需要の予測を行い、各発電所内の発電機の運転計画を立てたうえで、発電量を制御している。   For example, an electric power company predicts future power demand based on various information such as past power demand results and weather information, and formulates an operation plan for the generators in each power plant. I have control.

このような運転計画を立てる際には、電力需要や発電コスト、発電機の発電特性、点検スケジュールなど相互に関連する様々な制約条件を考慮する必要があるため、これらの制約条件や発電コストを数式で表現し、最適解を求めることで発電機の運転計画を求めることができるような数式モデルも開発されている。例えば、電力需要の予測や気象予測等に含まれている誤差も考慮した数式モデルを用いて運転計画を立てるような技術も開発されている(例えば特許文献1、特許文献2参照)。   When planning such an operation plan, it is necessary to consider various interrelated constraints such as power demand, power generation cost, generator power generation characteristics, inspection schedule, and so on. A mathematical model that can express a generator operation plan by expressing a mathematical formula and finding an optimal solution has also been developed. For example, a technique has been developed in which an operation plan is made using a mathematical model that takes into account errors included in power demand prediction, weather prediction, and the like (see, for example, Patent Document 1 and Patent Document 2).

特許文献1には、太陽光や風力等の自然エネルギーを利用した発電を行う自然エネルギー利用発電設備の発電出力の予測値及び実績値、及び、電力需要の予測値及び実績値から算出した予測誤差を用いて複数の電力供給シナリオを作成し、コスト削減優先の需給計画や電力需給バランス優先の電力需給計画を作成することが記載されている。そして電力需給バランス優先の電力需給計画を作成する際には、予備力不足時に可制御発電設備の起動台数を増やすことで予備力を確保し、予測に誤差が生じた場合でも運用可能な需給計画を立案可能にすることが記載されている。   Patent Document 1 discloses a predicted value and actual value of a power generation output of a natural energy-based power generation facility that generates power using natural energy such as sunlight and wind power, and a prediction error calculated from a predicted value and actual value of power demand. Is used to create a plurality of power supply scenarios, and to create a power supply / demand plan that prioritizes cost reduction and a power supply / demand plan that prioritizes power supply / demand balance. When creating a power supply and demand plan that prioritizes power supply and demand balance, reserve capacity is ensured by increasing the number of controllable power generation equipment when the reserve capacity is insufficient, and the supply and demand plan can be operated even if an error occurs in the forecast. It is described that it is possible to plan.

また特許文献2には、実現可能性のある負荷予測結果、および負荷予測結果に基づく需給計画を複数作成し、確率的な重みを持った負荷予測結果を求めることで需給計画時の修正量を評価し、需給計画群の中から最適な計画を選択することで、需給計画の頑強性を向上させることが記載されている。   Further, in Patent Literature 2, a plurality of load forecast results based on feasible load prediction results and load forecast results are created, and the amount of correction at the time of supply and demand planning is obtained by obtaining load forecast results with probabilistic weights. It is described that the robustness of the supply and demand plan is improved by evaluating and selecting the optimum plan from the supply and demand plan group.

一方で近年、環境問題やエネルギーセキュリティー問題への対応のため、太陽光発電や風力発電に代表される自然エネルギー利用発電設備などの様々な分散型電源の導入が急速に進んでおり、電力供給源としての比重も増している。   On the other hand, in recent years, in order to cope with environmental problems and energy security problems, various distributed power sources such as solar power generation and wind power generation have been rapidly introduced. The specific gravity is also increasing.

そのため、自然エネルギーを利用した発電設備からの出力や負荷を予測し、その予測誤差の推定幅を求める技術も様々に開発されている(例えば、非特許文献1〜非特許文献3参照)。   For this reason, various techniques for predicting the output and load from the power generation facility using natural energy and obtaining the estimated width of the prediction error have been developed (for example, see Non-Patent Documents 1 to 3).

非特許文献1及び非特許文献2には、自然エネルギーを利用した発電設備からの出力の予測値とその推定幅を求めることが記載されている。また非特許文献3には、負荷の予測値と気象予報が外れた場合の推定幅を求めることが記載されている。   Non-Patent Document 1 and Non-Patent Document 2 describe obtaining a predicted value of an output from a power generation facility using natural energy and its estimated width. Non-Patent Document 3 describes obtaining an estimated width when a predicted load value and a weather forecast are different.

特開2011−130584号公報JP 2011-130484 A 特許第5248372号Patent No. 5248372

石橋直人、外3名、「部分的最小二乗法を用いた日射量予測とその信頼区間の推定方法」、電気学会論文誌B、2012年、Vol.133、No.1、64−71頁Naoto Ishibashi, 3 others, “Prediction of solar radiation using partial least square method and estimation method of its confidence interval”, IEEJ Transactions B, 2012, Vol. 133, no. 1, pp. 64-71 飯坂達也、外5名、「風力発電方法とその信頼区間の推定手法」、電気学会論文誌C、2011年、Vol.131、No.10、1672−1678頁Tatsuya Iizaka and five others, “Wind power generation method and estimation method of its confidence interval”, IEEJ Transactions C, 2011, Vol. 131, no. 10, pp. 1672-1678 近江正太郎、外1名「ガウシアンプロセスによる不確定性を表現した短期電力負荷予測」、電気学会論文誌B、2002年、Vol.126、No.2、202−208頁Shotaro Omi, 1 other "Short-term power load prediction expressing uncertainty by Gaussian process", IEEJ Transactions B, 2002, Vol. 126, no. 2, pages 202-208

このように、近年、様々な分散型電源の導入が急速に進み、電力系統に対してこれらの分散型電源から供給される電力が増大しているため、既存の水力発電所や火力発電所、原子力発電所等の集中型電源の運転計画を立案する際には、これらの分散型電源からの発電量も考慮に入れる必要がある。   Thus, in recent years, the introduction of various distributed power sources has rapidly progressed, and the power supplied from these distributed power sources to the power system has increased, so existing hydropower plants and thermal power plants, When formulating an operation plan for a centralized power source such as a nuclear power plant, it is necessary to take into account the amount of power generated from these distributed power sources.

しかしながら分散型電源の発電量は、天候や時間帯等によって大きく変動し、予測値の誤差も大きいため、電力の需要予測の誤差と相まって全体の需給予測の誤差が大きくなり、数式モデルを用いて各発電所の運転計画を立てる場合に、各発電機の制約条件を満たしつつ、需給予測が外れた場合の発電量の変動にも対応できるような解が求められないケースも生じている。   However, the amount of power generated by the distributed power source greatly fluctuates depending on the weather and time of day, and the error in the forecast value is large. When making an operation plan for each power plant, there is a case where a solution that satisfies the constraints of each generator and cannot cope with fluctuations in the amount of power generated when the supply-demand forecast is lost has occurred.

本発明はこのような課題を鑑みてなされたものであり、電力系統に連系する複数の発電設備の運転計画を立てる場合に、各発電設備の制約条件を満たしつつ、電力の需給予測が外れた場合の発電量の変動にも対応できるような解を得ることが可能な運転計画生成装置、運転計画生成方法およびプログラムを提供することを一つの目的とする。   The present invention has been made in view of such a problem, and when making an operation plan for a plurality of power generation facilities linked to an electric power system, power supply and demand predictions are not satisfied while satisfying the constraint conditions of each power generation facility. Another object is to provide an operation plan generation device, an operation plan generation method, and a program capable of obtaining a solution that can cope with fluctuations in the amount of power generated.

上記課題を解決するための手段の一つは、電力系統に連系する複数の発電設備の運転計画を生成する運転計画生成装置であって、前記複数の発電設備の発電コストまたは温室効果ガスの発生量を算出するための目的関数、及び前記複数の発電設備の運転時の制約条件を取得する目的関数取得部と、前記運転計画の対象期間中における所定時間毎の電力の需給予測値及び当該需給予測値の誤差に基づいて、前記所定時間毎に前記複数の発電設備が発電すべき発電量である要求発電量と、前記需給予測が外れた場合に備えて前記複数の発電設備が確保しておくべき前記要求発電量からの調整量である要求調整量と、を算出する発電量算出部と、前記複数の発電設備が確保可能な発電量の調整量が前記要求調整量よりも小さい場合に前記要求調整量に対する不足分に応じた値を算出するペナルティ関数を取得するペナルティ関数取得部と、前記制約条件を満たしつつ、前記ペナルティ関数を前記目的関数に加えて得られる拡張目的関数の値が最小になるように、前記対象期間中の前記複数の発電設備の運転計画を生成する運転計画生成部と、を備える。   One of means for solving the above problem is an operation plan generation device for generating an operation plan of a plurality of power generation facilities linked to an electric power system, wherein the power generation cost or greenhouse gas of the plurality of power generation facilities is generated. An objective function for calculating the generation amount, an objective function acquisition unit for acquiring a constraint condition at the time of operation of the plurality of power generation facilities, a power supply / demand prediction value for each predetermined time during the target period of the operation plan, and Based on the error in the predicted supply and demand value, the plurality of power generation facilities secure the required power generation amount that is the power generation amount that should be generated by the plurality of power generation facilities every predetermined time and the case where the demand and supply prediction is out of order. A power generation amount calculation unit that calculates a required adjustment amount that is an adjustment amount from the required power generation amount to be kept, and a power generation amount adjustment amount that can be secured by the plurality of power generation facilities is smaller than the required adjustment amount To the required adjustment amount A penalty function obtaining unit for obtaining a penalty function for calculating a value corresponding to the shortage to the shortage, and the value of the extended objective function obtained by adding the penalty function to the objective function while satisfying the constraint condition is minimized And an operation plan generator for generating operation plans for the plurality of power generation facilities during the target period.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description in the column of the embodiment for carrying out the invention and the description of the drawings.

本発明によれば、電力系統に連系する複数の発電設備の運転計画を立てる場合に、各発電設備の制約条件を満たしつつ、電力の需給予測が外れた場合の発電量の変動にも対応できるような解を得ることが可能になる。   According to the present invention, when an operation plan of a plurality of power generation facilities connected to the power system is made, the variation in the amount of power generated when the power supply and demand prediction is deviated while satisfying the constraint condition of each power generation facility is also supported. It is possible to obtain a solution that can be used.

電力制御システムの全体構成を示す図である。It is a figure which shows the whole structure of an electric power control system. 運転計画生成装置の構成を示す図である。It is a figure which shows the structure of an operation plan production | generation apparatus. 運転計画生成装置の制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control of an operation plan production | generation apparatus. 分散型電源発電量予測例を示す図である。It is a figure which shows the example of a distributed power generation amount prediction. 電力需要予測例を示す図である。It is a figure which shows the example of electric power demand prediction. 供給電力の例を示す図である。It is a figure which shows the example of supplied electric power. 供給電力と要求予備力の例を示す図である。It is a figure which shows the example of supplied electric power and request | requirement reserve power.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

本発明の実施形態に係る電力システム1000の全体構成を図1に示す。   FIG. 1 shows an overall configuration of a power system 1000 according to an embodiment of the present invention.

電力システム1000は、複数の電力供給源600及び複数の電力負荷装置700が電力ケーブル510を介して電力系統500に連系するとともに、通信ネットワーク400を介して上記複数の電力供給源600及び複数の電力負荷装置700、さらに、監視制御システム200及び運転計画生成装置100が通信可能に接続されて構成される。   In the power system 1000, a plurality of power supply sources 600 and a plurality of power load devices 700 are connected to the power system 500 via the power cable 510, and the plurality of power supply sources 600 and the plurality of power supply devices 700 are connected via the communication network 400. The power load device 700, and the monitoring control system 200 and the operation plan generation device 100 are connected to be communicable.

通信ネットワーク400は、例えばインターネットや電話回線網を含む公衆網や、LAN(Local Area Network)等の専用網により構成され、通信ケーブル410を介して各電力供給源600、各電力負荷装置700、監視制御システム200及び運転計画生成装置100を相互に接続している。   The communication network 400 is configured by, for example, a public network including the Internet and a telephone line network, and a dedicated network such as a LAN (Local Area Network), etc., and each power supply source 600, each power load device 700, and monitoring via a communication cable 410. The control system 200 and the operation plan generation device 100 are connected to each other.

電力負荷装置700は、電力系統500を介して供給される電力を消費する家庭や工場等における電気機器である。   The power load device 700 is an electrical device in a home or factory that consumes the power supplied via the power system 500.

電力供給源600は、エネルギー源から電力エネルギーを取り出して電力系統500に供給する電力源であり、水力発電所や原子力発電所、火力発電所のように、事前の発電計画に従って発電量を制御可能な発電設備である可制御発電設備610と、事前の発電計画に従って発電量を制御困難な発電設備である自然エネルギー利用発電設備620と、を含む。   The power supply source 600 is a power source that extracts power energy from the energy source and supplies it to the power system 500. Like a hydroelectric power plant, a nuclear power plant, or a thermal power plant, the power generation amount can be controlled according to a prior power generation plan. A controllable power generation facility 610 that is a simple power generation facility, and a natural energy utilization power generation facility 620 that is a power generation facility whose power generation amount is difficult to control according to a prior power generation plan.

可制御発電設備610には、例えば火力発電所、水力発電所、原子力発電所、燃料電池、バイオマス発電、電池などの電力貯蔵設備などが含まれる。   Controllable power generation facilities 610 include, for example, thermal power plants, hydroelectric power plants, nuclear power plants, fuel cells, biomass power generation, power storage facilities such as batteries, and the like.

また自然エネルギー利用発電設備620には、例えば太陽光発電や風力発電を行う発電所などが含まれる。   The natural energy generation power generation facility 620 includes, for example, a power plant that performs solar power generation or wind power generation.

運転計画生成装置100は、複数の可制御発電設備610の運転計画を生成する情報処理装置である。詳細は後述するが、本実施形態に係る運転計画生成装置100は、電力系統500に連系する複数の可制御発電設備610の運転計画を立てる場合に、各可制御発電設備610の制約条件を満たしつつ、電力の需給予測が外れた場合の発電量の変動にも対応できるような解を得ることが可能である。   The operation plan generation device 100 is an information processing device that generates operation plans for a plurality of controllable power generation facilities 610. Although the details will be described later, the operation plan generation device 100 according to the present embodiment sets the constraint condition of each controllable power generation facility 610 when making an operation plan of the plurality of controllable power generation facilities 610 connected to the power system 500. While satisfying this, it is possible to obtain a solution that can cope with fluctuations in the amount of power generated when the power supply and demand forecasts deviate.

なお本実施形態では、複数の可制御発電設備610の運転計画を運転計画生成装置100が生成する場合について説明する。   In addition, this embodiment demonstrates the case where the driving plan production | generation apparatus 100 produces | generates the driving plan of several controllable power generation equipment 610. FIG.

監視制御システム200は、電力供給源600や電力負荷装置700、運転計画生成装置100と通信可能に接続され、様々な情報を授受する。例えば監視制御システム200は、各電力供給源600及び各電力負荷装置700から、定期的に発電量や消費電力の実績値を取得し、運転計画生成装置100に送信する。また監視制御システム200は、運転計画生成装置100によって生成された運転計画に基づき、より短周期の制御コマンドを生成し、各可制御発電設備610に対して制御コマンドを送信することで各可制御発電設備610のリアルタイム制御を行う。   The monitoring control system 200 is communicably connected to the power supply source 600, the power load device 700, and the operation plan generation device 100, and exchanges various information. For example, the monitoring control system 200 periodically acquires the actual power generation amount and the actual power consumption value from each power supply source 600 and each power load device 700 and transmits it to the operation plan generation device 100. The monitoring control system 200 generates a control command with a shorter cycle based on the operation plan generated by the operation plan generation device 100 and transmits the control command to each controllable power generation facility 610 to control each controllability. Real-time control of the power generation facility 610 is performed.

次に運転計画生成装置100の構成について、図2を参照しながら説明する。   Next, the configuration of the operation plan generation device 100 will be described with reference to FIG.

運転計画生成装置100は、可制御発電設備610、自然エネルギー利用発電設備620、及び電力負荷装置700の電力計測値(実績値)を監視制御システム200より取得する。また運転計画生成装置100は、これらの実績値と、各種気象データと、を用いて、自然エネルギー利用発電設備620で発生する発電量の予測値及び誤差と、電力負荷装置700で消費される電力である電力需要の予測値及び誤差を求める。そして運転計画生成装置100は、上記予測値及び誤差を用いて可制御発電設備610の運転計画を作成する。   The operation plan generation device 100 acquires the power measurement values (actual values) of the controllable power generation facility 610, the natural energy utilization power generation facility 620, and the power load device 700 from the monitoring control system 200. Further, the operation plan generation device 100 uses these actual values and various types of weather data to predict the power generation amount predicted by the natural energy generation power generation facility 620 and the error, and the power consumed by the power load device 700. Calculate the predicted value and error of the electricity demand. And the operation plan production | generation apparatus 100 produces the operation plan of the controllable power generation equipment 610 using the said predicted value and error.

なお、運転計画を作成する時間間隔(所定時間)は通常30分おき、或いは1時間おきとなるが、この時間間隔は任意に設定することが可能である。また、運転計画を作成する時間範囲(運転計画の対象期間)は、通常1日分、或いは1週間分であるが、運転計画を作成する時間範囲についても任意に設定することが可能である。さらに作成された運転計画は、監視制御システム200を介して各可制御発電設備610へ送信される。   The time interval (predetermined time) for creating an operation plan is usually every 30 minutes or every hour, but this time interval can be set arbitrarily. In addition, the time range for creating the operation plan (target period of the operation plan) is usually one day or one week, but the time range for creating the operation plan can be arbitrarily set. Further, the created operation plan is transmitted to each controllable power generation facility 610 via the monitoring control system 200.

運転計画生成装置100は、図示しないCPU(Central Processing Unit)やメモリ、ハードディスク等の不揮発性記憶装置、キーボード、モニタ、マウス、通信装置、記録媒体読み取り装置等を備えるコンピュータであり、CPUが、本実施形態に係る各種の動作を行うためのコードから構成される運転計画生成装置制御プログラム810を不揮発性記憶装置からメモリに読み出して実行することにより、運転計画生成装置100としての各種機能を実現する。   The operation plan generation device 100 is a computer including a CPU (Central Processing Unit) (not shown), a nonvolatile storage device such as a memory and a hard disk, a keyboard, a monitor, a mouse, a communication device, a recording medium reader, and the like. Various functions as the operation plan generation device 100 are realized by reading the operation plan generation device control program 810 composed of codes for performing various operations according to the embodiment from the nonvolatile storage device and executing the program. .

例えば、詳細は後述するが、CPUにより運転計画生成装置制御プログラム810が実行され、メモリや通信装置、不揮発性記憶装置等のハードウェア機器と協働することにより、目的関数取得部、発電量算出部、ペナルティ関数取得部、運転計画生成部などが実現される。   For example, although the details will be described later, the operation plan generation device control program 810 is executed by the CPU, and by cooperating with hardware devices such as a memory, a communication device, and a nonvolatile storage device, an objective function acquisition unit and a power generation amount calculation are performed. Part, penalty function acquisition part, operation plan generation part, etc. are realized.

また運転計画生成装置100は、運転計画生成装置制御プログラム810を、CDやDVD等の各種記録媒体800から読み出して不揮発性記憶装置に格納する。あるいは運転計画生成装置100は、通信ネットワーク400に接続された他のコンピュータから運転計画生成装置制御プログラム810を受信して不揮発性記憶装置に格納する。   Further, the operation plan generation device 100 reads the operation plan generation device control program 810 from various recording media 800 such as a CD and a DVD and stores it in the nonvolatile storage device. Or the operation plan production | generation apparatus 100 receives the operation plan production | generation apparatus control program 810 from the other computer connected to the communication network 400, and stores it in a non-volatile storage device.

さらに運転計画生成装置100は、不揮発性記憶装置を備えずに、通信ネットワーク400に接続された他のコンピュータに記憶されている運転計画生成装置制御プログラム810をメモリに読み出して実行するような形態も可能である。   Furthermore, the operation plan generation device 100 does not include a nonvolatile storage device, and the operation plan generation device control program 810 stored in another computer connected to the communication network 400 is read into the memory and executed. Is possible.

図2に示すように、本実施形態に係る運転計画生成装置100は、電力需要予測部101、自然エネルギー利用発電設備発電量予測部102、要求電力算出部103、運転計画算出部104、運転計画出力部105、電力消費量DB(データベース)110、気象DB(データベース)111、自然エネルギー利用発電設備発電量DB(データベース)112、発電設備DB(データベース)113、を有する。   As illustrated in FIG. 2, the operation plan generation apparatus 100 according to the present embodiment includes a power demand prediction unit 101, a natural energy generation power generation facility power generation amount prediction unit 102, a required power calculation unit 103, an operation plan calculation unit 104, and an operation plan. An output unit 105, a power consumption DB (database) 110, a weather DB (database) 111, a natural energy utilization power generation facility power generation amount DB (database) 112, and a power generation facility DB (database) 113 are included.

これらのうち、運転計画算出部104には、上述した目的関数取得部、ペナルティ関数取得部、運転計画生成部が含まれる。また要求電力算出部103には、上述した発電量算出部が含まれる。また電力消費量DB110、気象DB111、自然エネルギー利用発電設備発電量DB112、発電設備DB113は、ハードディスクを用いて実現される。   Among these, the operation plan calculation unit 104 includes the above-described objective function acquisition unit, penalty function acquisition unit, and operation plan generation unit. The required power calculation unit 103 includes the above-described power generation amount calculation unit. The power consumption DB 110, the weather DB 111, the natural energy utilization power generation facility power generation amount DB 112, and the power generation facility DB 113 are realized using a hard disk.

なお、電力消費量DB110、気象DB111、自然エネルギー利用発電設備発電量DB112、発電設備DB113は、運転計画生成装置100が内蔵するハードディスク上に実現される形態でもよいし、クラウドのように、通信可能に接続される他のコンピュータにより制御されるハードディスク上に実現される形態でもよい。   The power consumption DB 110, the weather DB 111, the natural energy utilization power generation facility power generation amount DB 112, and the power generation facility DB 113 may be realized on a hard disk built in the operation plan generation device 100, or may be communicated like a cloud. It may be realized on a hard disk controlled by another computer connected to the computer.

電力消費量DB110には、各電力負荷装置700に設置されている不図示の電力計測装置から通信ネットワーク400を介して送信されてくる電力消費量が蓄積される。   The power consumption DB 110 stores the power consumption transmitted from the power measurement device (not shown) installed in each power load device 700 via the communication network 400.

また、気象DB111には、不図示の気象サーバから通信ネットワーク400を介して送信されてくる様々な気象データの実績値や予報値が蓄積される。   In the weather DB 111, actual values and forecast values of various weather data transmitted from a weather server (not shown) via the communication network 400 are accumulated.

自然エネルギー利用発電設備発電量DB112には、自然エネルギー利用発電設備620に設置されている不図示の電力計測装置から通信ネットワーク400を介して送信されてくる発電量の実績値が蓄積される。   In the natural energy generation power generation facility power generation amount DB 112, the actual value of the power generation amount transmitted from the power measurement device (not shown) installed in the natural energy generation power generation facility 620 via the communication network 400 is accumulated.

発電設備DB113には、後述する本実施形態に係る目的関数やペナルティ関数、拡張目的関数、各可制御発電設備610の様々な制約条件などが記憶されている。   The power generation facility DB 113 stores an objective function, a penalty function, an extended objective function, various constraint conditions for each controllable power generation facility 610, and the like according to the present embodiment described later.

自然エネルギー利用発電設備発電量予測部102は、自然エネルギー利用発電設備発電量DB112に蓄積されている自然エネルギー利用発電設備620の発電量の過去の実績値、および気象DB111に蓄積されている過去の気象実績や気象予報を用いて、自然エネルギー利用発電設備620の発電量の予測値及び誤差を算出する。予測値の誤差は、予測値の上限値と下限値とを含む。   The natural energy utilization power generation facility power generation amount prediction unit 102 stores the past actual value of the power generation amount of the natural energy utilization power generation facility 620 accumulated in the natural energy utilization power generation facility power generation amount DB 112 and the past accumulated in the weather DB 111. The predicted value and error of the power generation amount of the natural energy utilizing power generation facility 620 are calculated using the weather results and the weather forecast. The error of the predicted value includes an upper limit value and a lower limit value of the predicted value.

自然エネルギー利用発電設備620の発電量の予測は、例えば非特許文献1や非特許文献2などに記載されているような様々な技術を利用して行うことが可能である。   Prediction of the power generation amount of the natural energy utilization power generation facility 620 can be performed using various techniques as described in Non-Patent Document 1, Non-Patent Document 2, and the like.

本実施形態では、一例として、自然エネルギー利用発電設備620の発電量の予測値は、過去の実績値の平均値と、上限値と、下限値と、により求める。   In the present embodiment, as an example, the predicted value of the power generation amount of the natural energy utilizing power generation facility 620 is obtained from the average value of the past actual values, the upper limit value, and the lower limit value.

自然エネルギー利用発電設備発電量予測部102は、自然エネルギー利用発電設備620の発電量の予測値、予測上限値、予測下限値を、自然エネルギー利用発電設備発電量DB112に蓄積する。   The natural energy utilization power generation facility power generation amount prediction unit 102 accumulates the predicted value, the prediction upper limit value, and the prediction lower limit value of the power generation amount of the natural energy utilization power generation facility 620 in the natural energy utilization power generation facility power generation amount DB 112.

電力需要予測部101は、電力消費量DB110に蓄積されている電力負荷装置700の過去の電力消費量(電力需要とも記す)の実績値および気象DB111に蓄積されている過去の気象実績、気象予報を参照して、電力需要の予測値、及び想定誤差を算出する。予測値の想定誤差は、予測値の上限値と下限値とを含む。   The power demand forecasting unit 101 includes past performance values of past power consumption (also referred to as power demand) stored in the power consumption DB 110 and past weather results and weather forecasts accumulated in the weather DB 111. Referring to Fig. 4, the predicted value of electric power demand and the assumed error are calculated. The expected error of the predicted value includes an upper limit value and a lower limit value of the predicted value.

電力需要の予測は、非特許文献3に記載された方法などを用いて行うことができる。   The prediction of power demand can be performed using the method described in Non-Patent Document 3.

本実施形態では、一例として、電力需要の予測値は、過去の電力需要の平均値と、上限値と、下限値と、によりを求める。   In the present embodiment, as an example, the predicted value of power demand is obtained from an average value, an upper limit value, and a lower limit value of past power demand.

電力需要予測部101は、電力需要の予測値、予測上限値、予測下限値を、電力消費量DB110に蓄積する。   The power demand prediction unit 101 accumulates the power demand prediction value, the prediction upper limit value, and the prediction lower limit value in the power consumption DB 110.

要求電力算出部103は、電力負荷装置700の電力消費量の予測値及び誤差と、自然エネルギー利用発電設備620の発電量の予測値及び誤差と、を用いて、供給電力(要求発電量)と要求予備力(要求調整量)とを算出する。   The required power calculation unit 103 uses the predicted value and error of the power consumption of the power load device 700 and the predicted value and error of the power generation amount of the natural energy generation power generation facility 620 to calculate the supplied power (required power generation amount). Calculate the required reserve (required adjustment amount).

なお本実施形態において、供給電力とは、電力の需給予測に基づいて求められる複数の可制御発電設備610が発電すべき所定時間毎の発電量である。また本実施形態において、要求予備力とは、電力の需給予測が外れた場合においても需給バランスを維持するために複数の可制御発電設備610が確保しておくべき要求発電量からの調整量である。また、可制御発電設備610の稼働台数を変化させずとも確保可能な発電量の調整量を供給予備力とも記す。   In the present embodiment, the supplied power is the amount of power generated per predetermined time that should be generated by the plurality of controllable power generation facilities 610 determined based on power supply and demand prediction. Further, in the present embodiment, the required reserve capacity is an adjustment amount from the required power generation amount that should be secured by the plurality of controllable power generation facilities 610 in order to maintain the supply / demand balance even when the power supply / demand prediction of power is off. is there. Further, the adjustment amount of the power generation amount that can be secured without changing the number of operating controllable power generation facilities 610 is also referred to as supply reserve capacity.

また、要求予備力には上げ側要求予備力と下げ側要求予備力の2つが存在する。上げ側要求予備力は、供給電力よりも発電量の増加が必要な場合の増加分である。下げ側要求予備力は、供給電力よりも発電量の減少が必要な場合の減少分である。つまり、上げ側要求予備力は、可制御発電設備610の発電出力を上昇させる方向に必要とされる発電量の調整量(予備力)であり、下げ側要求予備力は、可制御発電設備610の発電出力を低減させる方向に必要とされる発電量の調整量(予備力)である。   In addition, there are two required reserve forces: an increase request reserve and a decrease request reserve. The required reserve capacity on the raising side is an increase when the amount of power generation needs to be increased rather than the supplied power. The lower-side required reserve capacity is a decrease when the power generation amount needs to be reduced rather than the supplied power. In other words, the increase-side required reserve capacity is an adjustment amount (reserve capacity) of the power generation amount required to increase the power generation output of the controllable power generation facility 610, and the decrease-side required reserve capacity is the controllable power generation facility 610. The amount of power generation adjustment (reserved power) required to reduce the power generation output.

運転計画算出部104は、要求電力算出部103が算出した供給電力、要求予備力、及び発電設備DB113に記憶されている可制御発電設備610の制約条件などの様々なデータを用いて、可制御発電設備610の起動停止状態および発電出力の運転計画を作成する。   The operation plan calculation unit 104 uses a variety of data such as the supply power calculated by the required power calculation unit 103, the required reserve power, and the constraint conditions of the controllable power generation facility 610 stored in the power generation facility DB 113. The operation plan of the start / stop state of the power generation facility 610 and the power generation output is created.

このとき、運転計画算出部104は、発電設備DB113から、複数の可制御発電設備610の発電コストを算出するための目的関数と、複数の可制御発電設備610が確保可能な発電量の調整量が要求予備力よりも小さい場合に要求予備力に対する不足分に応じた値を算出するペナルティ関数と、を取得する。そして運転計画算出部104は、ペナルティ関数を目的関数に加えることで拡張目的関数を取得する。   At this time, the operation plan calculation unit 104 uses the objective function for calculating the power generation cost of the plurality of controllable power generation facilities 610 from the power generation facility DB 113 and the adjustment amount of the power generation amount that can be secured by the plurality of controllable power generation facilities 610. And a penalty function for calculating a value corresponding to a shortage with respect to the required reserve when the required reserve is smaller than the required reserve. Then, the operation plan calculation unit 104 acquires the extended objective function by adding the penalty function to the objective function.

そして運転計画算出部104は、発電設備DB113から複数の可制御発電設備610の運転時の制約条件を取得し、この制約条件を満たしつつ、拡張目的関数の値が最小になるように、運転計画の対象期間中における複数の可制御発電設備610の運転計画を生成する。なお、目的関数は、温室効果ガスの発生量を算出するものであってもよい。   And the operation plan calculation part 104 acquires the constraint conditions at the time of the driving | operation of several controllable power generation equipment 610 from power generation equipment DB113, and satisfy | fills this restriction condition, An operation plan is set so that the value of an extended objective function may become the minimum. The operation plan of the plurality of controllable power generation facilities 610 during the target period is generated. The objective function may calculate the amount of greenhouse gas generated.

運転計画出力部105は、運転計画算出部104にて算出された運転計画を、通信ネットワーク400を介して各可制御発電設備610の制御部に送信するとともに、監視制御システム200にも送信する。監視制御システム200はこの運転計画をベースにして、各可制御発電設備610のリアルタイム制御を行う。   The operation plan output unit 105 transmits the operation plan calculated by the operation plan calculation unit 104 to the control unit of each controllable power generation facility 610 via the communication network 400 and also to the monitoring control system 200. The supervisory control system 200 performs real-time control of each controllable power generation facility 610 based on this operation plan.

次に、本実施形態に係る運転計画作成装置100の処理の流れを、図3に示すフローチャートを参照しながら説明する。   Next, the process flow of the operation plan creation apparatus 100 according to the present embodiment will be described with reference to the flowchart shown in FIG.

まず、自然エネルギー利用発電設備発電量予測部102は、自然エネルギー利用発電装置620の発電量の予測を行う(S1000)。自然エネルギー利用発電設備発電量予測部102は、通信ネットワーク400に接続される気象サーバ(不図示)から送信される気象予報、自然エネルギー利用発電設備発電量DB112に蓄積されている分散型電源発電設備620の発電量の過去の実績値、気象DB111に蓄積されている過去の気象実績を用いて、自然エネルギー利用発電設備620の発電量の予測を行う。   First, the natural energy utilization power generation facility power generation amount prediction unit 102 predicts the power generation amount of the natural energy utilization power generation apparatus 620 (S1000). The natural energy generation power generation facility power generation amount prediction unit 102 is a distributed power generation facility that is stored in the weather forecast transmitted from a weather server (not shown) connected to the communication network 400 and the natural energy generation power generation facility power generation amount DB 112. The power generation amount of the natural energy generation power generation facility 620 is predicted using the past actual performance value of the power generation amount 620 and the past weather performance accumulated in the weather DB 111.

自然エネルギー利用発電設備発電量予測部102は、自然エネルギー利用発電設備620の発電量の予測を行う際には、例えば非特許文献1、非特許文献2などに記載されているような手法を用いて、自然エネルギー利用発電設備620の発電量の予測値、予測上限値及び予測下限値を出力する。   The natural energy utilization power generation facility power generation amount prediction unit 102 uses, for example, a method described in Non-Patent Document 1, Non-Patent Document 2, and the like when predicting the power generation amount of the natural energy utilization power generation facility 620. Then, the predicted value, predicted upper limit value, and predicted lower limit value of the power generation amount of the natural energy generation power generation facility 620 are output.

なお、自然エネルギー利用発電設備発電量予測部102は、後述する負荷予測値(電力消費量の予測値)と同じ時間範囲(例えば1日)、時間間隔(例えば30分)にて自然エネルギー利用発電設備620の発電量の予測値の算出を行う。時間範囲を1日、時間間隔を30分とした場合の再生可能利用発電設備620の発電量の予測例を図4に示す。   The natural energy utilization power generation facility power generation amount prediction unit 102 uses natural energy generation power generation in the same time range (for example, one day) and time interval (for example, 30 minutes) as a load prediction value (predicted value of power consumption) described later. The predicted value of the power generation amount of the facility 620 is calculated. FIG. 4 shows a prediction example of the power generation amount of the renewable utilization power generation facility 620 when the time range is one day and the time interval is 30 minutes.

次に電力需要予測部101は、負荷の予測、すなわち電力負荷装置700による電力消費量の予測を行う(S1010)。電力需要予測部101は、通信ネットワーク400に接続される気象サーバ(不図示)から送信される気象予報、電力消費量DB110に蓄積されている電力負荷装置700による過去の電力消費量の実績値、気象DB111に蓄積されている過去の気象実績を用いて負荷の予測を行う。   Next, the power demand prediction unit 101 performs load prediction, that is, prediction of power consumption by the power load device 700 (S1010). The power demand prediction unit 101 includes a weather forecast transmitted from a weather server (not shown) connected to the communication network 400, a past power consumption actual value by the power load device 700 stored in the power consumption DB 110, The load is predicted using the past weather record accumulated in the weather DB 111.

電力需要予測部101は、負荷の予測を行う際には、非特許文献3に記載されているような手法などを用いて、負荷予測値および負荷予測上限値、負荷予測下限値を出力する。   The power demand prediction unit 101 outputs a load prediction value, a load prediction upper limit value, and a load prediction lower limit value using a method as described in Non-Patent Document 3 when performing load prediction.

なお、電力需要予測部101は、運転計画を作成する任意の時間範囲(例えば1日)の任意の時間間隔(例えば30分)にて負荷予測値の予測を行う。時間範囲を1日、時間間隔を30分とした場合の負荷の予測例を図5に示す。   The power demand prediction unit 101 predicts a load predicted value at an arbitrary time interval (for example, 30 minutes) in an arbitrary time range (for example, one day) for creating an operation plan. FIG. 5 shows an example of load prediction when the time range is 1 day and the time interval is 30 minutes.

次に要求電力算出部103は、電力消費量DB110および自然エネルギー利用発電設備発電量DB112に蓄積されている、電力負荷装置700による電力消費量の予測値(負荷予測値)、および自然エネルギー利用発電設備620による発電量の予測値を用いて、可制御発電設備610にて供給すべき供給電力を算出する(S1020)。   Next, the required power calculation unit 103 stores the predicted power consumption amount (load predicted value) by the power load device 700 and the natural energy-based power generation stored in the power consumption DB 110 and the natural energy-based power generation facility power generation amount DB 112. The power supply to be supplied by the controllable power generation facility 610 is calculated using the predicted value of the power generation amount by the facility 620 (S1020).

要求電力算出部103は、式(1)に示すように、電力消費量の予測値から自然エネルギー利用発電設備620による発電量の予測値を減算することにより、供給電力を求める。   The required power calculation unit 103 obtains the supplied power by subtracting the predicted value of the amount of power generated by the natural energy utilizing power generation facility 620 from the predicted value of the power consumption, as shown in Expression (1).

Figure 2016093016
但し、St :時刻tにおける供給電力
Lt :時刻tにおける負荷予測値
Et :時刻tにおける自然エネルギー利用発電設備の発電量の予測値
図4および図5の例から算出される供給電力を図6に示す。
Figure 2016093016
Where St : Power supplied at time t
L t : Load predicted value at time t
E t : Predicted value of power generation amount of natural energy utilization power generation facility at time t FIG. 6 shows the power supply calculated from the examples of FIGS. 4 and 5.

次に要求電力算出部103は、電力消費量DB110および自然エネルギー利用発電設備発電量DB112に蓄積されている、電力負荷装置700による電力消費量の予測上限値及び予測下限値、自然エネルギー利用発電設備620の発電量の予測上限値および予測下限値を用いて、可制御発電設備610に要求される要求予備力を算出する。   Next, the required power calculation unit 103 stores the predicted upper limit value and the predicted lower limit value of the power consumption by the power load device 700 stored in the power consumption DB 110 and the natural energy utilizing power generation facility power generation DB 112, and the natural energy utilizing power generation facility. The required reserve capacity required for the controllable power generation facility 610 is calculated using the predicted upper limit value and predicted lower limit value of the power generation amount 620.

要求予備力には上げ側要求予備力と下げ側要求予備力の2つが存在し、上げ側要求予備力は可制御発電設備610の発電出力上昇、下げ側要求予備力は可制御発電設備610の発電出力低減の方向に予測誤差が発生することを想定した時に必要とされる予備力である。   There are two required reserve forces: an increase request reserve and a decrease request reserve. The increase request reserve is an increase in the power output of the controllable power generation facility 610, and the decrease request reserve is the control reserve of the controllable power generation facility 610. This reserve force is required when it is assumed that a prediction error occurs in the direction of power generation output reduction.

要求電力算出部103は、式(2)により上げ側要求予備力を求め、式(3)により下げ側要求予備力を求める。また、図4および図5の例から算出される要求予備力と供給電力を図7に示す。   The required power calculation unit 103 obtains the increase-side required reserve force by Equation (2) and obtains the decrease-side requirement reserve force by Equation (3). FIG. 7 shows the required reserve power and the supplied power calculated from the examples of FIGS.

Figure 2016093016
但し、Rt up :時刻tにおける上げ側要求予備力
Lt up :時刻tにおける電力消費量の予測上限値
Et down :時刻tにおける自然エネルギー利用発電設備の発電量の予測下限値
Figure 2016093016
However, R t up : Increase required reserve at time t
L t up : Predicted upper limit value of power consumption at time t
E t down : Lower limit of prediction of power generation amount of power generation facility using natural energy at time t

Figure 2016093016
但し、Rt down :時刻tにおける下げ側要求予備力
Lt down :時刻tにおける電力消費量の予測下限値
Et up :時刻tにおける自然エネルギー利用発電設備の発電量の予測上限値
次に運転計画算出部104は、要求電力算出部103によって算出された供給電力、上げ側要求予備力、下げ側要求予備力、さらに発電設備DB113に格納されている目的関数、ペナルティ関数、制約条件を用いて、複数の可制御発電設備610の運転計画を作成する(S1040)。
Figure 2016093016
However, R t down : Lower side required reserve at time t
L t down : Forecast lower limit value of power consumption at time t
E t up : Prediction upper limit value of power generation amount of natural energy generation power generation facility at time t Next, the operation plan calculation unit 104 supplies the power supply calculated by the required power calculation unit 103, the required increase reserve capacity, and the required decrease reserve capacity The operation plan of the plurality of controllable power generation facilities 610 is created using the power, the objective function, penalty function, and constraint conditions stored in the power generation facility DB 113 (S1040).

運転計画算出部104は、いわゆる需給計画問題を解くことで運転計画を作成する。一般的に需給計画問題は、発電コストを算出するための目的関数を、別途設定される制約条件を満たす範囲で最小化するような最適解(各可制御発電設備610の起動停止状態と発電出力量の最適な組み合わせ)を求める最適化問題である。   The operation plan calculation unit 104 creates an operation plan by solving a so-called supply and demand plan problem. Generally, the supply and demand planning problem is an optimal solution that minimizes the objective function for calculating the power generation cost within a range that satisfies a separately set constraint condition (the start / stop state of each controllable power generation facility 610 and the power generation output). This is an optimization problem for finding an optimal combination of competence.

本実施形態に係る運転計画算出部104は、複数の可制御発電設備610の発電コストを算出するための目的関数に、複数の可制御発電設備610が確保可能な発電量の調整量が要求予備力よりも小さい場合に要求予備力に対する不足分に応じた値を算出するペナルティ関数を加えることで、拡張目的関数を生成し、各可制御発電設備610の運転時の制約条件を満たしつつ、拡張目的関数の値が最小になるような解(つまり、各可制御発電設備610の起動停止状態と発電出力量の最適な組み合わせ)を求めることにより、運転計画を生成する。   The operation plan calculation unit 104 according to the present embodiment includes an adjustment amount of the power generation amount that can be secured by the plurality of controllable power generation facilities 610 in the objective function for calculating the power generation cost of the plurality of controllable power generation facilities 610. An extended objective function is generated by adding a penalty function that calculates a value corresponding to a shortage with respect to the required reserve when the force is smaller than the force, and the expansion is performed while satisfying the constraint conditions during operation of each controllable power generation facility 610 An operation plan is generated by obtaining a solution that minimizes the value of the objective function (that is, an optimal combination of the start / stop state of each controllable power generation facility 610 and the power generation output amount).

以下に、本実施形態に係る運転計画算出部104が対象とする需給計画問題の例を記載する。なお、需給計画問題を定式化する際には、線形で表示する方法と非線形で表示する方法があるが、本実施形態では非線形で表示する方法を例示する。   Below, the example of the supply-and-demand plan problem which the operation plan calculation part 104 which concerns on this embodiment makes object is described. In formulating the supply and demand planning problem, there are a linear display method and a non-linear display method. In this embodiment, a non-linear display method is exemplified.

本実施形態の拡張目的関数は、式(4)のように示される。   The extended objective function of the present embodiment is expressed as shown in Equation (4).

Figure 2016093016
但し、Git out :可制御発電設備iの時刻tにおける発電出力
af、bf、cf:可制御発電設備iの燃料消費特性係数
uit :可制御発電設備iの時刻tにおける起動停止状態(起動=1,停止=0)
FCi :可制御発電設備iの燃料従量料金単価
SUCi,t :可制御発電設備iの時刻tにおける起動費
P :総ペナルティ(ペナルティ関数。詳細は後述する)
なお可制御発電設備610の発電出力Gは固定値とし、最適化変数から除くこともできる。
Figure 2016093016
However, G i , t out : Power generation output of controllable power generation facility i at time t
a f , b f , c f : Fuel consumption characteristic coefficient of controllable power generation facility i
u i , t : Start / stop state of controllable power generation facility i at time t (start = 1, stop = 0)
FC i : Unit price of fuel charge for controllable power generation facility i
SUC i, t : Startup cost of controllable power generation facility i at time t
P : Total penalty (penalty function; details will be described later)
The power generation output G of the controllable power generation facility 610 can be a fixed value and can be excluded from the optimization variable.

一方、本実施形態の制約条件は、式(5)〜式(9)のように示される。   On the other hand, the constraint conditions of the present embodiment are expressed as in Expression (5) to Expression (9).

式(5)は、需給バランス制約を示す。   Equation (5) shows the supply and demand balance constraint.

Figure 2016093016
式(6)は、可制御発電設備610の出力上下限制約を示す。
Figure 2016093016
Formula (6) shows the output upper and lower limit constraints of the controllable power generation facility 610.

Figure 2016093016
但し、Gi min :可制御発電設備iの出力下限値(発電量の最小値)
Gi max :可制御発電設備iの出力上限値(発電量の最大値)
式(7)は、可制御発電設備610の出力変化率上下限制約を示す。
Figure 2016093016
However, G i min : Output lower limit value of controllable power generation facility i (minimum value of power generation)
G i max : Output upper limit value of controllable power generation facility i (maximum value of power generation)
Formula (7) shows the upper and lower limit constraints on the output change rate of the controllable power generation facility 610.

Figure 2016093016
但し、ΔGi downmax:可制御発電設備iの下降側最大変化率
ΔGi upmax :可制御発電設備iの上昇側最大変化率
Δt :t-(t-1)=1
式(8)は、可制御発電設備の最小連続停止時間制約を示す。
Figure 2016093016
Where ΔG i downmax is the maximum rate of change on the descending side of the controllable power generation facility i ΔG i upmax is the maximum rate of change on the upside of the controllable power generation facility i Δt: t- (t-1) = 1
Formula (8) shows the minimum continuous stop time constraint of the controllable power generation facility.

Figure 2016093016
但し、minti :可制御発電設備iの最小連続停止時間
式(9)は、可制御発電設備の最小連続運転時間制約を示す。
Figure 2016093016
However, mint i : Minimum continuous stop time of controllable power generation facility i Equation (9) shows the minimum continuous operation time constraint of the controllable power generation facility.

Figure 2016093016
但し、minri :可制御発電設備iの最小連続運転時間
また、本実施形態のペナルティ関数は、式(10)に示すように示される。
Figure 2016093016
However, minr i : Minimum continuous operation time of the controllable power generation facility i Further, the penalty function of the present embodiment is expressed as shown in Expression (10).

本実施形態のペナルティ関数は、上げ側予備力ペナルティ(上昇側ペナルティ関数)と、下げ側予備力ペナルティ(下降側ペナルティ関数)と、の和により求められる。   The penalty function of the present embodiment is obtained by the sum of the upside reserve force penalty (upward penalty function) and the downside reserve force penalty (downward penalty function).

上げ側予備力ペナルティは、複数の可制御発電設備610が発電量を増加する方向に調整可能な調整量が上げ側要求予備力に対して不足する場合に、不足分に応じた値を算出する関数である。同様に、下げ側予備力ペナルティは、複数の可制御発電設備610が発電量を減少する方向に調整可能な調整量が下げ側要求予備力に対して不足する場合に、不足分に応じた値を算出する関数である。   The increase side reserve capacity penalty calculates a value corresponding to the shortage when the adjustment amount that can be adjusted in the direction in which the plurality of controllable power generation facilities 610 increase the generation amount is insufficient with respect to the increase side required reserve capacity. It is a function. Similarly, the reduction side reserve penalty is a value corresponding to the shortage when the adjustment amount that can be adjusted in the direction in which the plurality of controllable power generation facilities 610 decrease the generation amount is insufficient with respect to the reduction side reserve reserve. Is a function for calculating

Figure 2016093016
但し、Pt rsvup :時刻tにおける上げ側予備力ペナルティ
Pt rsvdown :時刻tにおける下げ側予備力ペナルティ
ここで、上げ側予備力ペナルティは、式(11)及び式(12)により示される。また下げ側予備力ペナルティは、式(13)及び式(14)により示される。
Figure 2016093016
Where P t rsvup : Upside reserve penalty at time t
P t rsvdown : Lower side reserve penalty at time t Here, the higher side reserve penalty is expressed by Equation (11) and Equation (12). Further, the lower side reserve penalty is expressed by the equations (13) and (14).

Figure 2016093016
Figure 2016093016

Figure 2016093016
Figure 2016093016

Figure 2016093016
Figure 2016093016

Figure 2016093016
但し、Pt rsvup :時刻tにおける上げ側予備力ペナルティ
Pt rsvdown :時刻tにおける下げ側予備力ペナルティ
rt up :時刻tにおける上昇側予備力
rt down :時刻tにおける下降側予備力
Git rsvup :可制御発電設備iの時刻tにおける上昇側予備力
Git rsvdown :可制御発電設備iの時刻tにおける下降側予備力
arsv、brsv :予備力ペナルティ特性係数
運転計画算出部104は、上記の式(5)〜式(9)により特定される各可制御発電設備610の運転時の制約条件を満たしつつ、式(4)により特定される拡張目的関数の値が最小になるような解を求めることにより、運転計画を生成する。
Figure 2016093016
Where P t rsvup : Upside reserve penalty at time t
P t rsvdown : Lower reserve penalty at time t
r t up : Ascending reserve at time t
r t down : descent reserve force at time t
G i , t rsvup : Ascending reserve capacity of controllable power generation facility i at time t
G i , t rsvdown : Lowering reserve force at time t of controllable power generation facility i
a rsv , b rsv : reserve power penalty characteristic coefficient The operation plan calculation unit 104 satisfies the constraint conditions during operation of each controllable power generation facility 610 specified by the above expressions (5) to (9), An operation plan is generated by obtaining a solution that minimizes the value of the extended objective function specified by (4).

なお、上記拡張目的関数の解法には、いわゆる最適化問題の解法として公知の様々な手法を用いることが可能である。   It should be noted that various methods known as so-called optimization problems can be used for solving the extended objective function.

そして、運転計画出力部105は、運転計画算出部104が作成した各可制御発電設備610の運転計画を出力し、監視制御システム200に送信する(S1050)。   Then, the operation plan output unit 105 outputs the operation plan of each controllable power generation facility 610 created by the operation plan calculation unit 104, and transmits it to the monitoring control system 200 (S1050).

そして、監視制御システム200は、この運転計画をベースにして、各可制御発電設備610に起動停止状態および発電出力量の制御指令を送信する。   Then, based on this operation plan, the supervisory control system 200 transmits a control command for the start / stop state and the power generation output amount to each controllable power generation facility 610.

以上、本実施形態に係る運転計画生成装置100について説明したが、本実施形態に係る運転計画生成装置100によれば、複数の可制御発電設備610が要求予備力を確保できない場合であっても運転計画を生成することが可能になる。   The operation plan generation device 100 according to the present embodiment has been described above. However, according to the operation plan generation device 100 according to the present embodiment, even when a plurality of controllable power generation facilities 610 cannot secure the required reserve capacity. An operation plan can be generated.

これにより、従来は運転計画の数値解が得られないケースであっても解を得ることができるようになるため、運転計画立案時の業務負担を大幅に軽減することが可能となる。   As a result, since a solution can be obtained even in the case where a numerical solution of an operation plan cannot be obtained conventionally, it is possible to greatly reduce the work burden at the time of operation plan formulation.

また本実施形態に係る運転計画生成装置100によれば、電力の需給予測が外れた場合に備えて確保しておくべき発電量の調整量が上げ側要求予備力に満たない場合のみならず、下げ側要求予備力に満たない場合であっても、運転計画を生成することが可能になる。   In addition, according to the operation plan generation device 100 according to the present embodiment, not only when the adjustment amount of the power generation amount that should be secured in preparation for the case where the power supply and demand prediction deviates, does not satisfy the increase side reserve reserve, Even if the lowering side reserve reserve is not satisfied, an operation plan can be generated.

これにより、従来の運転計画では発電設備の稼働を停止することで下げ側要求予備力を満たすように対応していたような場合でも、発電設備を停止させずにおくような柔軟な運転計画も立てられるようになるので、発電所の効率的な稼働を促進することが可能となる。   As a result, even in the case where the conventional operation plan has been adapted to meet the downside requirement reserve capacity by stopping the operation of the power generation equipment, there is also a flexible operation plan that keeps the power generation equipment without stopping. As a result, the efficient operation of the power plant can be promoted.

さらに本実施形態に係る運転計画生成装置100は、電力需給予測が外れた場合であっても、想定している誤差範囲内なら運用が可能な運転計画を立案することが可能となる。   Furthermore, the operation plan generation apparatus 100 according to the present embodiment can formulate an operation plan that can be operated within an assumed error range even when the power supply and demand prediction is out of the range.

また、本実施形態に係る運転計画生成装置100は、供給予備力の値の可変域を制約条件によって固定するのではなく、供給予備力が要求予備力に満たない場合にペナルティ値を目的関数に加算する方法を用いたことにより、可制御発電設備610の制約上、要求された供給予備力を満たせる運転計画を求めることができない時点が存在する場合でも、実行可能な範囲で優れた運転計画を出力することができる。   In addition, the operation plan generation device 100 according to the present embodiment does not fix the variable range of the value of the supply reserve by the constraint condition, but uses the penalty value as an objective function when the supply reserve is less than the required reserve. By using the method of adding, even if there is a point in time when it is not possible to obtain an operation plan that can satisfy the required supply reserve due to the restrictions of the controllable power generation facility 610, an excellent operation plan within a feasible range is obtained. Can be output.

したがって、本実施形態に係る運転計画生成装置100は、予備力を確保できない時点が存在しても、その中で最良な運転計画が出力される最適化問題を作成することが可能となる。   Therefore, the operation plan generation device 100 according to the present embodiment can create an optimization problem in which the best operation plan is output even when there is a point in time when reserve capacity cannot be secured.

なお上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   The embodiments described above are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

100 運転計画生成装置
101 電力需要予測部
102 自然エネルギー利用発電設備発電量予測部
103 要求電力算出部
104 運転計画算出部
105 運転計画出力部
110 電力消費量DB
111 気象DB
112 自然エネルギー利用発電設備発電量DB
113 発電設備DB
200 監視制御システム
400 ネットワーク
410 通信ケーブル
500 電力系統
510 電力ケーブル
600 電力供給源
610 可制御発電設備
620 自然エネルギー利用発電設備
700 電力負荷装置
800 記録媒体
810 運転計画生成装置制御プログラム
1000 電力システム
DESCRIPTION OF SYMBOLS 100 Operation plan production | generation apparatus 101 Electric power demand prediction part 102 Natural energy generation power generation facility electric power generation amount prediction part 103 Required electric power calculation part 104 Operation plan calculation part 105 Operation plan output part 110 Electricity consumption DB
111 Weather DB
112 Natural energy use power generation facility power generation DB
113 Power generation facility DB
200 monitoring control system 400 network 410 communication cable 500 power system 510 power cable 600 power supply source 610 controllable power generation facility 620 natural energy generation power generation facility 700 power load device 800 recording medium 810 operation plan generation device control program 1000 power system

Claims (6)

電力系統に連系する複数の発電設備の運転計画を生成する運転計画生成装置であって、
前記複数の発電設備の発電コストまたは温室効果ガスの発生量を算出するための目的関数、及び前記複数の発電設備の運転時の制約条件を取得する目的関数取得部と、
前記運転計画の対象期間中における所定時間毎の電力の需給予測値及び当該需給予測値の誤差に基づいて、前記所定時間毎に前記複数の発電設備が発電すべき発電量である要求発電量と、前記需給予測が外れた場合に備えて前記複数の発電設備が確保しておくべき前記要求発電量からの調整量である要求調整量と、を算出する発電量算出部と、
前記複数の発電設備が確保可能な発電量の調整量が前記要求調整量よりも小さい場合に前記要求調整量に対する不足分に応じた値を算出するペナルティ関数を取得するペナルティ関数取得部と、
前記制約条件を満たしつつ、前記ペナルティ関数を前記目的関数に加えて得られる拡張目的関数の値が最小になるように、前記対象期間中の前記複数の発電設備の運転計画を生成する運転計画生成部と、
を備えることを特徴とする運転計画生成装置。
An operation plan generation device that generates an operation plan for a plurality of power generation facilities linked to an electric power system,
An objective function for calculating a power generation cost or a generation amount of greenhouse gas of the plurality of power generation facilities, and an objective function acquisition unit for acquiring a constraint condition during operation of the plurality of power generation facilities;
Based on the power supply / demand prediction value for each predetermined time during the target period of the operation plan and the error of the power supply / demand prediction value, the required power generation amount that is the power generation amount to be generated by the plurality of power generation facilities for each predetermined time; A power generation amount calculation unit that calculates a required adjustment amount that is an adjustment amount from the required power generation amount that should be secured by the plurality of power generation facilities in preparation for the case where the supply and demand prediction is off,
A penalty function acquisition unit that acquires a penalty function for calculating a value corresponding to a shortage with respect to the required adjustment amount when an adjustment amount of the generated power amount that can be secured by the plurality of power generation facilities is smaller than the required adjustment amount;
Operation plan generation for generating an operation plan for the plurality of power generation facilities during the target period so that the value of the extended objective function obtained by adding the penalty function to the objective function is minimized while satisfying the constraint condition And
An operation plan generation device comprising:
請求項1に記載の運転計画生成装置であって、
前記要求調整量は、前記要求発電量よりも発電量の増加が必要な場合の増加分である上げ側要求調整量と、前記要求発電量よりも発電量の減少が必要な場合の減少分である下げ側要求調整量と、を含み、
前記ペナルティ関数は、前記複数の発電設備が発電量を増加する方向に確保可能な調整量が前記上げ側要求調整量に対して不足する場合の不足分に応じた値を算出する上昇側ペナルティ関数と、前記複数の発電設備が発電量を減少する方向に確保可能な調整量が前記下げ側要求調整量に対して不足する場合の不足分に応じた値を算出する下降側ペナルティ関数と、を含む
ことを特徴とする運転計画生成装置。
The operation plan generation device according to claim 1,
The demand adjustment amount is an increase request adjustment amount when the power generation amount needs to be increased more than the demand power generation amount, and a decrease amount when the power generation amount needs to be reduced more than the demand power generation amount. Including a certain amount of adjustment required on the downside,
The penalty function is an ascending penalty function that calculates a value corresponding to a shortage when an adjustment amount that can be secured in a direction in which the plurality of power generation facilities increase the power generation amount is insufficient with respect to the increase request adjustment amount. And a descending penalty function for calculating a value corresponding to the shortage when the adjustment amount that can be secured in the direction in which the plurality of power generation facilities reduce the power generation amount is insufficient with respect to the lower side required adjustment amount, An operation plan generation device comprising:
請求項1または請求項2に記載の運転計画生成装置であって、
前記需給予測値の誤差は、前記運転計画の対象期間における、電力需要の前記予測値に対する想定誤差と、自然エネルギー利用発電設備による発電量の前記予測値の誤差と、の差分から求められる値である
ことを特徴とする運転計画生成装置。
The operation plan generation device according to claim 1 or 2,
The error in the supply and demand prediction value is a value obtained from the difference between the assumption error with respect to the prediction value of power demand in the target period of the operation plan and the error in the prediction value of the amount of power generated by the natural energy generation power generation facility. An operation plan generation device characterized by being.
請求項1〜請求項3のいずれかに記載の運転計画生成装置であって、
前記運転計画には、前記複数の発電設備のそれぞれの前記所定時間毎の起動停止状態及び発電量を示す情報が含まれる
ことを特徴とする運転計画生成装置。
The operation plan generation device according to any one of claims 1 to 3,
The operation plan generating apparatus, wherein the operation plan includes information indicating a start / stop state and a power generation amount for each predetermined time of each of the plurality of power generation facilities.
電力系統に連系する複数の発電設備の運転計画を生成する運転計画生成方法であって、
前記複数の発電設備の発電コストまたは温室効果ガスの発生量を算出するための目的関数、及び前記複数の発電設備の運転時の制約条件を取得し、
前記運転計画の対象期間中における所定時間毎の電力の需給予測値及び当該需給予測値の誤差に基づいて、前記所定時間毎に前記複数の発電設備が発電すべき発電量である要求発電量と、前記需給予測が外れた場合ににおいても需給バランスを維持するために前記複数の発電設備が確保しておくべき前記要求発電量からの調整量である要求調整量と、を算出し、
前記複数の発電設備が確保可能な発電量の調整量が前記要求調整量よりも小さい場合に前記要求調整量に対する不足分に応じた値を算出するペナルティ関数を取得し、
前記制約条件を満たしつつ、前記ペナルティ関数を前記目的関数に加えて得られる拡張目的関数の値が最小になるように、前記対象期間中の前記複数の発電設備の運転計画を生成する
ことを特徴とする運転計画生成方法。
An operation plan generation method for generating an operation plan for a plurality of power generation facilities linked to an electric power system,
An objective function for calculating a power generation cost or greenhouse gas generation amount of the plurality of power generation facilities, and a constraint condition during operation of the plurality of power generation facilities,
Based on the power supply / demand prediction value for each predetermined time during the target period of the operation plan and the error of the power supply / demand prediction value, the required power generation amount that is the power generation amount to be generated by the plurality of power generation facilities for each predetermined time; Calculating a required adjustment amount that is an adjustment amount from the required power generation amount that should be secured by the plurality of power generation facilities in order to maintain a balance between supply and demand even when the supply and demand prediction is off,
When a power generation amount adjustment amount that can be secured by the plurality of power generation facilities is smaller than the required adjustment amount, obtain a penalty function that calculates a value corresponding to the shortage relative to the required adjustment amount,
Generating an operation plan for the plurality of power generation facilities during the target period so that the value of the extended objective function obtained by adding the penalty function to the objective function is minimized while satisfying the constraint condition; Operation plan generation method.
電力系統に連系する複数の発電設備の運転計画を生成する運転計画生成装置に、
前記複数の発電設備の発電コストまたは温室効果ガスの発生量を算出するための目的関数、及び前記複数の発電設備の運転時の制約条件を取得する手段と、
前記運転計画の対象期間中における所定時間毎の電力の需給予測値及び当該需給予測値の誤差に基づいて、前記所定時間毎に前記複数の発電設備が発電すべき発電量である要求発電量と、前記需給予測が外れた場合に備えて前記複数の発電設備が確保しておくべき前記要求発電量からの調整量である要求調整量と、を算出する手段と、
前記複数の発電設備が確保可能な発電量の調整量が前記要求調整量よりも小さい場合に前記要求調整量に対する不足分に応じた値を算出するペナルティ関数を取得する手段と、
前記制約条件を満たしつつ、前記ペナルティ関数を前記目的関数に加えて得られる拡張目的関数の値が最小になるように、前記対象期間中の前記複数の発電設備の運転計画を生成する手段と、
を実現するためのプログラム。
In the operation plan generator that generates operation plans for multiple power generation facilities linked to the power system,
Means for obtaining an objective function for calculating a power generation cost or a generation amount of greenhouse gas of the plurality of power generation facilities, and a constraint condition during operation of the plurality of power generation facilities;
Based on the power supply / demand prediction value for each predetermined time during the target period of the operation plan and the error of the power supply / demand prediction value, the required power generation amount that is the power generation amount to be generated by the plurality of power generation facilities for each predetermined time; Means for calculating a required adjustment amount that is an adjustment amount from the required power generation amount that should be secured by the plurality of power generation facilities in preparation for the case where the supply and demand prediction is off;
Means for obtaining a penalty function for calculating a value corresponding to a shortage with respect to the required adjustment amount when an adjustment amount of the generated power amount that can be secured by the plurality of power generation facilities is smaller than the required adjustment amount;
Means for generating an operation plan of the plurality of power generation facilities during the target period so that the value of the extended objective function obtained by adding the penalty function to the objective function is minimized while satisfying the constraint condition;
Program to realize.
JP2014226413A 2014-11-06 2014-11-06 Operation plan generating device, operation plan generation device and program Pending JP2016093016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226413A JP2016093016A (en) 2014-11-06 2014-11-06 Operation plan generating device, operation plan generation device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226413A JP2016093016A (en) 2014-11-06 2014-11-06 Operation plan generating device, operation plan generation device and program

Publications (1)

Publication Number Publication Date
JP2016093016A true JP2016093016A (en) 2016-05-23

Family

ID=56017331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226413A Pending JP2016093016A (en) 2014-11-06 2014-11-06 Operation plan generating device, operation plan generation device and program

Country Status (1)

Country Link
JP (1) JP2016093016A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067155A (en) * 2016-10-19 2018-04-26 株式会社東芝 Power generation plan formulation device, power generation plan formulation method, and power generation plan formulation program
WO2019220706A1 (en) * 2018-05-17 2019-11-21 株式会社日立製作所 Power grid supply and demand adjustment monitoring device and power grid supply and demand adjustment monitoring method
JP2020086595A (en) * 2018-11-16 2020-06-04 株式会社日立製作所 Numerical analysis device and method
JP2021005311A (en) * 2019-06-27 2021-01-14 Jfeスチール株式会社 Energy operation supporting device and method for supporting operation of energy
TWI755986B (en) * 2020-12-22 2022-02-21 日商Jfe鋼鐵股份有限公司 Energy Utilization Support Device, Energy Utilization Support Method, and Steel Plant Operation Method
KR102545449B1 (en) * 2022-09-22 2023-06-20 주식회사 아이온커뮤니케이션즈 System and Method for redeeming greenhouse gas reduction performance for stand-alone microgrid
KR20230106682A (en) 2020-12-22 2023-07-13 제이에프이 스틸 가부시키가이샤 Energy management support device, energy management support method, and steelworks operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258157A (en) * 2000-03-09 2001-09-21 Hitachi Ltd Device and method of developing operation plan for generator and recording medium storing operation plan program for generator
JP2010183760A (en) * 2009-02-06 2010-08-19 Toshiba Corp Load distribution system and method of power generator
JP2011130584A (en) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd Power generation plan making method and power generation plan making system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258157A (en) * 2000-03-09 2001-09-21 Hitachi Ltd Device and method of developing operation plan for generator and recording medium storing operation plan program for generator
JP2010183760A (en) * 2009-02-06 2010-08-19 Toshiba Corp Load distribution system and method of power generator
JP2011130584A (en) * 2009-12-17 2011-06-30 Fuji Electric Systems Co Ltd Power generation plan making method and power generation plan making system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018067155A (en) * 2016-10-19 2018-04-26 株式会社東芝 Power generation plan formulation device, power generation plan formulation method, and power generation plan formulation program
JP7098411B2 (en) 2018-05-17 2022-07-11 株式会社日立製作所 Power system supply and demand adjustment monitoring device
WO2019220706A1 (en) * 2018-05-17 2019-11-21 株式会社日立製作所 Power grid supply and demand adjustment monitoring device and power grid supply and demand adjustment monitoring method
JP2019200622A (en) * 2018-05-17 2019-11-21 株式会社日立製作所 Demand and supply adjustment monitoring apparatus for power system
US11784489B2 (en) 2018-05-17 2023-10-10 Hitachi, Ltd. Supply and demand adjustment monitoring device of power grid and supply and demand adjustment monitoring method for power grid
JP2020086595A (en) * 2018-11-16 2020-06-04 株式会社日立製作所 Numerical analysis device and method
JP7104609B2 (en) 2018-11-16 2022-07-21 株式会社日立製作所 Numerical analyzer and method
JP2021005311A (en) * 2019-06-27 2021-01-14 Jfeスチール株式会社 Energy operation supporting device and method for supporting operation of energy
TWI755986B (en) * 2020-12-22 2022-02-21 日商Jfe鋼鐵股份有限公司 Energy Utilization Support Device, Energy Utilization Support Method, and Steel Plant Operation Method
KR20230106682A (en) 2020-12-22 2023-07-13 제이에프이 스틸 가부시키가이샤 Energy management support device, energy management support method, and steelworks operation method
EP4270276A4 (en) * 2020-12-22 2024-02-28 Jfe Steel Corp Energy operation assistance device, energy operation assistance method, and steel mill operation method
KR102545449B1 (en) * 2022-09-22 2023-06-20 주식회사 아이온커뮤니케이션즈 System and Method for redeeming greenhouse gas reduction performance for stand-alone microgrid
WO2024063193A1 (en) * 2022-09-22 2024-03-28 주식회사 아이온커뮤니케이션즈 System and method for redeeming greenhouse gas reduction performance for stand-alone microgrid

Similar Documents

Publication Publication Date Title
JP2016093016A (en) Operation plan generating device, operation plan generation device and program
Zhang et al. Robust transmission expansion planning representing long-and short-term uncertainty
US9026259B2 (en) Power generation optimization in microgrid including renewable power source
Mohanta et al. Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results
US10443577B2 (en) Systems and methods for improved wind power generation
Suresh et al. Hybrid improved binary particle swarm optimization approach for generation maintenance scheduling problem
Bansal et al. Economic analysis and power management of a small autonomous hybrid power system (SAHPS) using biogeography based optimization (BBO) algorithm
US8571720B2 (en) Supply-demand balance controller
Kamalinia et al. Generation expansion planning in wind-thermal power systems
Lannoye et al. Power system flexibility assessment—State of the art
US20160169202A1 (en) Short-term operation optimization method of electric power system including large-scale wind power
JP2020527012A (en) Power generation system and energy generation system
Khosravi et al. Optimal sizing and technology selection of hybrid energy storage system with novel dispatching power for wind power integration
CN103377400A (en) Power plant operation enhancement
Xiao et al. Operating reserve policies with high wind power penetration
Fallahi et al. Integrated unit commitment and natural gas network operational planning under renewable generation uncertainty
JPWO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and recording medium
JP6582758B2 (en) Power generation plan creation device, power generation plan creation program, and power generation plan creation method
JP2019102006A (en) Facility planning device, method for facility planning, and facility planning program
Masaud et al. Sizing of large‐scale battery storage for off‐grid wind power plant considering a flexible wind supply–demand balance
CN104820868A (en) Wind electricity probability prediction-based dispatch demonstration method
JP2015061455A (en) Power system management device, and method
CN107832542A (en) A kind of Unit Combination Optimization Scheduling based on spatial and temporal scales consumption scene
Manzano et al. Economic predictive control for isolated microgrids based on real world demand/renewable energy data and forecast errors
Li et al. Stochastic production simulation for generating capacity reliability evaluation in power systems with high renewable penetration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180724