JP2016091826A - Light-emitting diode drive device and illumination, and fishing light employing the same - Google Patents

Light-emitting diode drive device and illumination, and fishing light employing the same Download PDF

Info

Publication number
JP2016091826A
JP2016091826A JP2014225465A JP2014225465A JP2016091826A JP 2016091826 A JP2016091826 A JP 2016091826A JP 2014225465 A JP2014225465 A JP 2014225465A JP 2014225465 A JP2014225465 A JP 2014225465A JP 2016091826 A JP2016091826 A JP 2016091826A
Authority
JP
Japan
Prior art keywords
led
unit
voltage
led unit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014225465A
Other languages
Japanese (ja)
Other versions
JP6433244B2 (en
Inventor
浜出 雄一
Yuichi Hamaide
雄一 浜出
晴海 櫻木
Harumi Sakuragi
晴海 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Towa Denki Seisakusho KK
Original Assignee
Nichia Chemical Industries Ltd
Towa Denki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd, Towa Denki Seisakusho KK filed Critical Nichia Chemical Industries Ltd
Priority to JP2014225465A priority Critical patent/JP6433244B2/en
Publication of JP2016091826A publication Critical patent/JP2016091826A/en
Application granted granted Critical
Publication of JP6433244B2 publication Critical patent/JP6433244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent flickering while using an AC power source.MEANS FOR SOLVING THE PROBLEM: A light-emitting diode (LED) drive device comprises: a full rectification circuit 11 which fully rectifies an AC voltage o a three-phase AC power source; a first LED part 91 which is connected in series with an output side of the full rectification circuit 11; a second LED part 92 which is connected in series with the first LED part 91; first electrification control means which is in parallel with the second LED part 92 and connected in series with the first LED part 91 for controlling the amount of electrification to the first LED part 91; and current limit means 41 which is connected in series with the first LED part 91 and the second LED part 92 for controlling the amounts of electrification to the first LED part 91 and the second LED part 92. A first forward voltage Vf1 for turning on the first LED part 91 is set lower than a second forward voltage Vf2 for turning on the first LED part 91 and the second LED part 92, and the first forward voltage Vf1 for turning on the first LED part 91 is set equal to or lower than a minimum pulsating voltage at which a rectification voltage pulsating a voltage value becomes minimum.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオードを点灯駆動させる駆動装置及びこれを用いた照明並びに漁灯に関し、特に三相の交流電源を用いて駆動させる発光ダイオード駆動装置等に関する。   The present invention relates to a driving device that drives a light-emitting diode to light, an illumination and a fishing light using the same, and more particularly to a light-emitting diode driving device that is driven using a three-phase AC power source.

近年、照明用の光源として、白熱電球や蛍光灯に比べ低消費電力で駆動可能な発光ダイオード(以下「LED」ともいう。)が注目されている。LEDは小型で耐衝撃性にも強く、球切れの心配がないといった利点がある。   In recent years, light-emitting diodes (hereinafter also referred to as “LEDs”) that can be driven with lower power consumption than incandescent bulbs and fluorescent lamps have attracted attention as light sources for illumination. LEDs are advantageous in that they are small in size and strong in impact resistance, and there is no fear of ball breakage.

このような照明機器用の電源としては、交流を電源として用いることが望まれる。そこで単相の交流電源を用いた照明装置が提案されている(例えば特許文献1参照)。このような交流電源を用いた照明装置の回路図の一例を図18に示す。この照明装置では、100Vの単相交流電圧(図19参照のこと)を全波整流し(図20参照のこと)、全波整流した電流を、直列接続したLED122と、駆動素子であるトランジスタ123に供給して点灯させる。   As a power source for such lighting equipment, it is desirable to use an alternating current as a power source. Therefore, a lighting device using a single-phase AC power supply has been proposed (see, for example, Patent Document 1). An example of a circuit diagram of a lighting device using such an AC power supply is shown in FIG. In this lighting device, a single-phase AC voltage of 100 V (see FIG. 19) is full-wave rectified (see FIG. 20), and the full-wave rectified current is connected in series to the LED 122 and the transistor 123 as a driving element. To light up.

特開2006−147933号公報JP 2006-147933 A

しかしながらこの構成では、単相交流を全波整流した電圧波形において0Vとなる区間が存在するため、LEDが点灯しない不点灯区間が生じる結果、ちらつきが発生するという問題があった。このような不点灯期間をなくすためには、平滑コンデンサ等を追加することが考えられるが、大容量の平滑コンデンサには電解コンデンサが利用されるところ、電解コンデンサは他のコンデンサに比べて寿命が短いため、平滑コンデンサの寿命によって装置の寿命も短くなってしまうという問題もあった。   However, in this configuration, there is a section where the voltage waveform obtained by full-wave rectification of the single-phase alternating current is 0 V, and thus there is a problem that flickering occurs as a result of a non-lighting section where the LED does not light. In order to eliminate such a non-lighting period, it is conceivable to add a smoothing capacitor or the like. However, an electrolytic capacitor is used for a large-capacity smoothing capacitor, and the electrolytic capacitor has a longer life than other capacitors. Due to the short length, the life of the device is shortened due to the life of the smoothing capacitor.

本発明は、従来のこのような問題点に鑑みてなされたものである。本発明の目的の一は、交流電源を使用しつつもちらつきを防止した発光ダイオード駆動装置及びこれを用いた照明並びに漁灯を提供することにある。   The present invention has been made in view of such conventional problems. An object of the present invention is to provide a light-emitting diode driving device that uses an AC power source and prevents flickering, and an illumination and fishing light using the same.

以上の目的を達成するために、本発明の一の側面に係る発光ダイオード駆動装置によれば、三相交流電源に接続されて、三相交流電源の交流電圧を全波整流して整流電圧を得るための全波整流回路と、前記全波整流回路の出力側と直列に接続される、少なくとも一のLED素子を含む第一LED部と、前記第一LED部と直列に接続される、少なくとも一のLED素子を含む第二LED部と、前記第二LED部と並列で、且つ前記第一LED部と直列に接続される、前記第一LED部への通電量を制御するための第一通電制御手段と、前記第一LED部及び第二LED部と直列に接続され、前記第一LED部及び前記第二LED部への通電量を制御するための電流制限手段とを備え、前記第一LED部を点灯させるための第一順方向電圧は、前記第一LED部及び第二LED部を点灯させるための第二順方向電圧Vf2よりも低く、かつ前記第一LED部を点灯させる第一順方向電圧を、電圧値が脈動する整流電圧が最小となる最小脈流電圧と同じか、これよりも低く設定されている。   In order to achieve the above object, according to a light-emitting diode driving device according to one aspect of the present invention, a rectified voltage is obtained by full-wave rectifying an AC voltage of a three-phase AC power source connected to a three-phase AC power source. A full-wave rectifier circuit for obtaining, a first LED part including at least one LED element connected in series with an output side of the full-wave rectifier circuit, and connected in series with the first LED part, at least A second LED unit including one LED element; and a first LED for controlling the amount of current supplied to the first LED unit connected in parallel with the second LED unit and in series with the first LED unit. An energization control unit; and a current limiting unit that is connected in series with the first LED unit and the second LED unit and controls the energization amount to the first LED unit and the second LED unit, The first forward voltage for lighting one LED unit is The first forward voltage, which is lower than the second forward voltage Vf2 for lighting the first LED part and the second LED part, and the first forward voltage for lighting the first LED part is the smallest rectified voltage whose voltage value pulsates It is set to be the same as or lower than the minimum pulsating voltage.

上記構成によれば、第一LED部は整流電圧の変動に依らず常時点灯するため、不点灯となる不点灯期間を無くして、ちらつきの少ない発光ダイオードの駆動が実現される。   According to the above configuration, since the first LED unit is always lit regardless of fluctuations in the rectified voltage, the non-lighting period during which the first LED unit is not lit is eliminated, and driving of the light emitting diode with less flickering is realized.

本発明の実施の形態1に係る発光ダイオード駆動装置を示す回路図である。It is a circuit diagram which shows the light emitting diode drive device which concerns on Embodiment 1 of this invention. 三相交流の電圧波形を示すグラフである。It is a graph which shows the voltage waveform of a three-phase alternating current. 三相交流を整流した電圧波形を示すグラフである。It is a graph which shows the voltage waveform which rectified the three-phase alternating current. 図1の発光ダイオード駆動装置で整流された脈流電圧波形と、LED部に印加される電圧波形を示すグラフである。2 is a graph showing a pulsating voltage waveform rectified by the light emitting diode driving device of FIG. 1 and a voltage waveform applied to an LED unit. 本発明の実施の形態2に係る発光ダイオード駆動装置を示す回路図である。It is a circuit diagram which shows the light emitting diode drive device which concerns on Embodiment 2 of this invention. 図5の発光ダイオード駆動装置で整流された正常時の脈流電圧波形と、LED部に印加される電圧波形を示すグラフである。6 is a graph showing a normal pulsating voltage waveform rectified by the light emitting diode driving device of FIG. 5 and a voltage waveform applied to an LED unit. 図5の発光ダイオード駆動装置で整流された電圧降下時の脈流電圧波形と、LED部に印加される電圧波形を示すグラフである。6 is a graph showing a pulsating voltage waveform at the time of voltage drop rectified by the light emitting diode driving device of FIG. 5 and a voltage waveform applied to an LED unit. 本発明の実施例1に係る発光ダイオード駆動装置の回路図である。1 is a circuit diagram of a light-emitting diode driving apparatus according to Embodiment 1 of the present invention. 第一LED駆動部と第二LED駆動部とを基板に搭載した状態の概略図である。It is the schematic of the state which mounted the 1st LED drive part and the 2nd LED drive part on the board | substrate. AC220Vの三相交流を全波整流した電圧波形と実施例1に係るLED部に印加される電圧波形を示すグラフである。It is a graph which shows the voltage waveform which applied the full-wave rectification of AC220V three-phase alternating current, and the voltage waveform applied to the LED part which concerns on Example 1. FIG. AC220Vの三相交流の場合での実施例1に係る発光ダイオード駆動装置で得られる光束を示すグラフである。It is a graph which shows the light beam obtained with the light emitting diode drive device based on Example 1 in the case of AC220V three-phase alternating current. AC200Vの三相交流を全波整流した電圧波形と実施例1に係るLED部に印加される電圧波形を示すグラフである。5 is a graph showing a voltage waveform obtained by full-wave rectification of a three-phase AC of 200 V AC and a voltage waveform applied to the LED unit according to Example 1. AC200Vの三相交流の場合での実施例1に係る発光ダイオード駆動装置で得られる光束を示すグラフである。It is a graph which shows the light beam obtained with the light emitting diode drive device which concerns on Example 1 in the case of AC200V three-phase alternating current. 図14Aは、図18の発光ダイオード駆動装置をAC200Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図14Bは、AC220Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図14Cは、AC240Vで駆動させた際の脈流電圧とLED電圧を示すグラフである。FIG. 14A is a graph showing the pulsating voltage and LED voltage when the LED driving device of FIG. 18 is driven at AC 200V, and FIG. 14B is a graph showing the pulsating voltage and LED voltage when driven at AC 220V. FIG. 14C is a graph showing the pulsating voltage and the LED voltage when driven at 240 V AC. 比較例2に係る単相交流電源を用いた三段の発光ダイオード駆動装置の回路図である。6 is a circuit diagram of a three-stage light emitting diode driving device using a single-phase AC power source according to Comparative Example 2. FIG. 図16Aは、図15の発光ダイオード駆動装置をAC200Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Bは、AC220Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Cは、AC240Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Dは図16Aにおける光束を示すグラフ、図16Eは図16Bにおける光束を示すグラフ、図16Fは図16Cにおける光束を示すグラフである。FIG. 16A is a graph showing the pulsating voltage and LED voltage when the LED driving device of FIG. 15 is driven by AC 200 V, and FIG. 16B is a graph showing the pulsating voltage and LED voltage when driven by AC 220 V; FIG. 16C is a graph showing the pulsating voltage and LED voltage when driven at 240 V AC, FIG. 16D is a graph showing the luminous flux in FIG. 16A, FIG. 16E is a graph showing the luminous flux in FIG. 16B, and FIG. It is a graph which shows. 図17Aは比較例2の電圧と光束の時間変化を示すグラフ、図17Bは実施例1の電圧と光束の時間変化を示すグラフである。FIG. 17A is a graph showing the time change of the voltage and the luminous flux in Comparative Example 2, and FIG. 17B is a graph showing the voltage and the temporal change of the luminous flux in Example 1. 一段の発光ダイオード駆動装置の回路図である。It is a circuit diagram of the light emitting diode drive device of one step. 単相交流の電圧波形を示すグラフである。It is a graph which shows the voltage waveform of a single phase alternating current. 単相交流を整流した電圧波形を示すグラフである。It is a graph which shows the voltage waveform which rectified the single phase alternating current.

以下、本発明の一実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するためのものであって、本発明は以下のものに特定されない。また、本明細書は特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成、構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。なお、本明細書において「直列に接続される」とは、間に他の部材が介在される態様を含む場合もある。
(実施の形態1)
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. However, the embodiment described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. Further, the present specification by no means specifies the members shown in the claims to the members of the embodiments. In particular, unless otherwise specified, the configuration, dimensions, materials, shapes, and relative arrangements of the components described in the embodiments are not intended to limit the scope of the present invention. It is just an illustrative example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In the present specification, “connected in series” may include a mode in which other members are interposed therebetween.
(Embodiment 1)

図1に、本発明の実施の形態1に係る発光ダイオード駆動装置100の回路図を示す。この図に示す発光ダイオード駆動装置100は、三相交流電源に接続される全波整流回路111と、第一LED部191と、第二LED部192と、第一通電制御手段151と、電流制限手段141、電流検出手段104とを備える。この発光ダイオード駆動装置100は、三相交流電源APに接続されて、全波整流回路111で三相交流電圧を整流した整流電圧(脈流電圧)を得る。また全波整流回路111の出力側において、第一LED部191と第二LED部192で構成された第一LED集合体190を、出力ラインOL上で直列に接続している。ここではLED部を2つ使用して、第一LED部191、第二LED部192を直列に接続して、LED集合体10を構成しているが、LED部を3以上とすることもできる。さらに出力ラインOLには、LED集合体10と、電流制限手段141と、電流検出手段104とを直列に接続している。
(第一通電制御手段151)
FIG. 1 shows a circuit diagram of a light-emitting diode driving apparatus 100 according to Embodiment 1 of the present invention. The LED driving device 100 shown in this figure includes a full-wave rectifier circuit 111 connected to a three-phase AC power source, a first LED unit 191, a second LED unit 192, a first energization control unit 151, a current limiter. Means 141 and current detection means 104. The light emitting diode driving apparatus 100 is connected to a three-phase AC power supply AP, and obtains a rectified voltage (pulsating voltage) obtained by rectifying the three-phase AC voltage by the full-wave rectifier circuit 111. Further, on the output side of the full-wave rectifier circuit 111, the first LED aggregate 190 constituted by the first LED part 191 and the second LED part 192 is connected in series on the output line OL. Here, two LED parts are used, and the first LED part 191 and the second LED part 192 are connected in series to constitute the LED assembly 10, but the number of LED parts may be three or more. . Furthermore, the LED assembly 10, the current limiting means 141, and the current detection means 104 are connected in series to the output line OL.
(First energization control means 151)

第一LED部191への通電量を制御するための第一通電制御手段151が、第二LED部192と並列に接続される。第一通電制御手段151は、一端を第一LED部191の下流側と直列に接続し、他端を電流制限手段141の上流側と接続しており、第一LED部191への通電量を調整するバイパス経路を構成する。すなわち、第一通電制御手段151によってバイパスされる電流量を調整できるので、結果的に第一LED部191の通電量を制御できる。図1の例では、第二LED部192と並列に第一通電制御手段151が接続され、第一バイパス経路BP1を形成する。なおここでいう並列接続とは、各LED部の両端と各通電制御手段が接続されていることを要さず、各通電制御手段の一端が各LED部の一端と接続されており、電流が分岐されるように構成されていれば足りる。例えば図1の例では、第一通電制御手段151はその一端を第二LED部192の上流側と接続し、他端を出力ラインOL上で、電流制限手段141の上流側と接続している。このように各通電制御手段の並列接続とは、出力ラインOL上に接続された各LED部の電流を分岐させるような接続形態を指す意味で使用する。   A first energization control unit 151 for controlling the energization amount to the first LED unit 191 is connected in parallel with the second LED unit 192. The first energization control unit 151 has one end connected in series with the downstream side of the first LED unit 191 and the other end connected to the upstream side of the current limiting unit 141, and the amount of energization to the first LED unit 191 is controlled. Configure the bypass path to be adjusted. That is, since the amount of current bypassed by the first energization control unit 151 can be adjusted, the energization amount of the first LED unit 191 can be controlled as a result. In the example of FIG. 1, the first energization control unit 151 is connected in parallel with the second LED unit 192 to form the first bypass path BP1. The parallel connection here does not require that both ends of each LED unit and each energization control means are connected, and one end of each energization control unit is connected to one end of each LED unit, It is sufficient if it is configured to be branched. For example, in the example of FIG. 1, the first energization control unit 151 has one end connected to the upstream side of the second LED unit 192 and the other end connected to the upstream side of the current limiting unit 141 on the output line OL. . As described above, the parallel connection of the energization control means is used to indicate a connection form in which the current of each LED unit connected on the output line OL is branched.

第一通電制御手段151は、例えば第一LED部191を流れる電流をバイパスさせるバイパス手段と、このバイパス手段の動作を制御する電流制御手段とで構成できる。通電制御手段は、LED部の電流駆動を行う電流回路の制御用の部材である。例えば、第一通電制御手段151と、この第一通電制御手段151の動作、すなわちON/OFFや電流量連続可変といった動作を制御する電流制限手段141とで、一種の定電流回路が構成される。この定電流回路の制御は、例えば出力ラインに接続された電流検出手段104を用いて第一LED集合体190の電流量をモニタし、この値に基づいて電流制御手段がバイパス手段の制御量を切り替える。なお、このように第一通電制御手段を、バイパス手段と電流制御手段とで構成する他、一体的に第一通電制御手段として構成してもよい。このような第一通電制御手段151は、トランジスタ等の半導体駆動素子で構成できる。
(第一LED部191、第二LED部192)
The first energization control unit 151 can be configured by, for example, a bypass unit that bypasses the current flowing through the first LED unit 191 and a current control unit that controls the operation of the bypass unit. The energization control means is a member for controlling a current circuit that performs current driving of the LED unit. For example, the first energization control unit 151 and the current limiting unit 141 that controls the operation of the first energization control unit 151, that is, the operation such as ON / OFF and continuously variable current amount, constitute a kind of constant current circuit. . The constant current circuit is controlled by, for example, monitoring the current amount of the first LED aggregate 190 using the current detection means 104 connected to the output line, and the current control means determines the control amount of the bypass means based on this value. Switch. In addition, the first energization control unit may be configured as the first energization control unit in addition to the bypass unit and the current control unit. Such first energization control means 151 can be composed of a semiconductor drive element such as a transistor.
(First LED unit 191 and second LED unit 192)

一方、各LED部は、一又は複数のLED素子を直列及び/又は並列に接続したブロックである。LED素子は、表面実装型(SMD)や砲弾型のLEDが適宜利用できる。またSMDタイプのLED素子のパッケージは、用途に応じて外形を選択でき、平面視が矩形状のタイプ等が利用できる。さらに、複数のLED素子を共通のパッケージ内で直列及び/又は並列に接続したLEDをLED部として使用することも可能であることは言うまでもない。   On the other hand, each LED unit is a block in which one or a plurality of LED elements are connected in series and / or in parallel. As the LED element, a surface mount type (SMD) or a bullet type LED can be used as appropriate. Moreover, the package of the SMD type LED element can select the outer shape according to the application, and a rectangular type in a plan view can be used. Furthermore, it goes without saying that an LED in which a plurality of LED elements are connected in series and / or in parallel in a common package can be used as the LED unit.

また第一LED部191は、複数の第一LED分割部に分割することもできる。例えば第一LED部191を、第一LED分割部91Aと、第二LED分割部91Bとに分割する。第一LED分割部91Aと第二LED分割部91Bとは、互いに直列に接続されている。ただし、第一LED分割部91Aと第二LED分割部91Bとの間に、第二LED部192を接続する。このようにすることで、常時点灯される第一LED部191を分散して配置し、第一LED集合体190の光分布を均一に近付けることができる。特に点滅動作を繰り返す第二LED部192の両側に常時点灯する第一LED分割部91Aと第二LED分割部91Bを配置したことで、第二LED部192の点滅を目立たなくし、ちらつきを低減する効果を得ることができる。さらに、常時点灯する第一LED部191は、点滅する第二LED部192に比べて駆動時間が長い分、発熱量が多くなる。このため、発熱量の大きい第一LED部191を分割して配置することにより、放熱性の点でも有利となる。   Moreover, the 1st LED part 191 can also be divided | segmented into a some 1st LED division part. For example, the first LED unit 191 is divided into a first LED dividing unit 91A and a second LED dividing unit 91B. The first LED division unit 91A and the second LED division unit 91B are connected in series with each other. However, the second LED unit 192 is connected between the first LED dividing unit 91A and the second LED dividing unit 91B. By doing in this way, the 1st LED part 191 always lighted can be dispersively arrange | positioned, and the light distribution of the 1st LED aggregate 190 can be closely approached. In particular, the first LED division portion 91A and the second LED division portion 91B that are always lit on both sides of the second LED portion 192 that repeats the blinking operation are arranged to make the blinking of the second LED portion 192 inconspicuous and reduce flicker. An effect can be obtained. Further, the first LED unit 191 that is constantly lit increases the amount of heat generated because the drive time is longer than that of the second LED unit 192 that blinks. For this reason, it becomes advantageous also in terms of heat dissipation by dividing and arranging the first LED portion 191 having a large calorific value.

第一LED部191に含まれるLED素子の順方向電圧の加算値である第一順方向電圧Vf1は、直列接続されたLED素子の個数によって決まる。また第一LED部191と第二LED部192を共に点灯させるための第二順方向電圧Vf2は、この第一順方向電圧Vf1にさらに、第二LED部192に含まれる直列接続されたLED素子の順方向電圧を加えた値となる。
(電流検出手段104)
The first forward voltage Vf1, which is an added value of the forward voltages of the LED elements included in the first LED unit 191, is determined by the number of LED elements connected in series. The second forward voltage Vf2 for lighting both the first LED part 191 and the second LED part 192 is an LED element connected in series included in the second LED part 192 in addition to the first forward voltage Vf1. The value obtained by adding the forward voltage of.
(Current detection means 104)

この発光ダイオード駆動装置100は、電流検出手段104で検出した電流値に基づいて、各LED部に対する通電量の制御を行う。いいかえると、整流電圧の電圧値でなく、現実に通電される電流量に基づいた電流制御であるため、LED素子の順方向電圧のばらつきに左右されず、適切なタイミングで正確なLED部の切り替えが実現され、信頼性の高い安定した動作が見込まれる。この電流値の検出には、電流検出手段104が利用できる。電流検出手段104には、抵抗器等が好適に利用できる。なお図1の例では、電流検出手段104は電流制限手段141の下流側に接続されているが、この位置に限らず、電流検出手段104は出力ライン上のどの位置に設けてもよい。さらに、電流検出手段は一に限らず、複数設けてもよい。例えば後述するように、通電制御手段を複数設ける場合、各通電制御手段毎に個別に電流検出手段を設けることもできる。
(全波整流回路111)
The light emitting diode driving device 100 controls the energization amount for each LED unit based on the current value detected by the current detecting means 104. In other words, current control is based on the amount of current that is actually energized rather than the voltage value of the rectified voltage, so it is not affected by variations in the forward voltage of the LED element, and the LED unit can be accurately switched at an appropriate timing. Is realized and stable operation with high reliability is expected. Current detection means 104 can be used to detect this current value. A resistor or the like can be suitably used for the current detection means 104. In the example of FIG. 1, the current detection unit 104 is connected to the downstream side of the current limiting unit 141. However, the current detection unit 104 is not limited to this position, and may be provided at any position on the output line. Furthermore, the current detection means is not limited to one, and a plurality of current detection means may be provided. For example, as will be described later, when a plurality of energization control means are provided, a current detection means can be provided for each energization control means.
(Full-wave rectifier circuit 111)

全波整流回路111は、三相交流電源から供給される三相交流電圧を全波整流して整流電圧を得るための部材である。三相交流は、図2のグラフに示すように、理想的にはサインカーブに従い時間変化する交流電源が三相、120°おきに位相をずらした状態で供給される。全波整流回路111は、ダイオードブリッジが好適に利用できる。ダイオードブリッジで構成される全波整流回路111を通過させて全波整流することで、三相交流電圧は図3のグラフに示すように、0Vの区間のない整流された脈流電圧が得られる。この整流電圧の脈流波形を利用することで、平滑化のための特別な部材が不要となる。特に従来のような平滑コンデンサを使用する必要がないため、平滑コンデンサとして一般的な電解コンデンサを発光ダイオード駆動装置から排除できる。電解コンデンサは大容量である反面、電解液の漏れなどに起因する経時劣化が生じ、寿命があるため、電解コンデンサの寿命でもって発光ダイオード駆動装置の寿命が決定されるような事態を回避でき、長期間に亘って安定的に使用可能な信頼性の高い発光ダイオード駆動装置が実現される。
(実施の形態1の動作例)
The full-wave rectifier circuit 111 is a member for obtaining a rectified voltage by full-wave rectifying a three-phase AC voltage supplied from a three-phase AC power supply. As shown in the graph of FIG. 2, the three-phase alternating current is ideally supplied with alternating-current power that changes in time according to a sine curve in a three-phase state with a phase shifted every 120 °. The full-wave rectifier circuit 111 is preferably a diode bridge. By performing full-wave rectification by passing through a full-wave rectifier circuit 111 constituted by a diode bridge, a three-phase AC voltage is obtained as a rectified pulsating voltage without a 0 V section as shown in the graph of FIG. . By using the pulsating flow waveform of the rectified voltage, a special member for smoothing becomes unnecessary. In particular, since it is not necessary to use a conventional smoothing capacitor, a general electrolytic capacitor as a smoothing capacitor can be excluded from the light emitting diode driving device. While electrolytic capacitors have a large capacity, deterioration over time due to electrolyte leakage occurs and there is a lifetime, so it is possible to avoid a situation where the lifetime of the LED driving device is determined by the lifetime of the electrolytic capacitor, A highly reliable LED driving device that can be used stably over a long period of time is realized.
(Operation example of Embodiment 1)

次に図4に基づいて、第一LED部191と第二LED部192を備える発光ダイオード駆動装置の動作を説明する。ここでは、第一LED部191を点灯させるため第一LED部191を構成するLED素子の順方向電圧を加算した第一順方向電圧Vf1が、脈動する整流電圧の最小脈流電圧とほぼ同じとなるように設定されている。実際には、三相交流電源の電圧のばらつきを考慮して、第一順方向電圧Vf1を、最小脈流電圧よりも若干低く設定することで、第一LED部191が点灯しなくなる事態を回避できる。また第一LED部191及び第二LED部192を点灯させるための第二順方向電圧Vf2を、脈動する整流電圧の最小脈流電圧と最大脈流電圧の間に設定する。   Next, based on FIG. 4, operation | movement of a light-emitting-diode drive device provided with the 1st LED part 191 and the 2nd LED part 192 is demonstrated. Here, the first forward voltage Vf1 obtained by adding the forward voltages of the LED elements constituting the first LED unit 191 to turn on the first LED unit 191 is substantially the same as the minimum pulsating voltage of the pulsating rectified voltage. It is set to be. Actually, the first forward voltage Vf1 is set slightly lower than the minimum pulsating voltage in consideration of variations in the voltage of the three-phase AC power supply, thereby avoiding the situation where the first LED unit 191 does not light up. it can. The second forward voltage Vf2 for lighting the first LED unit 191 and the second LED unit 192 is set between the minimum pulsating voltage and the maximum pulsating voltage of the pulsating rectified voltage.

脈流電圧が第二順方向電圧Vf2よりも低い区間(図4において、区間a)では、第一通電制御手段151でもって第一LED部191の通電が制御される。このとき、第二LED部192は消灯された状態となる。   In a section where the pulsating voltage is lower than the second forward voltage Vf2 (section a in FIG. 4), the first LED unit 191 is energized by the first energization control means 151. At this time, the second LED unit 192 is turned off.

脈流電圧が上昇して、第二順方向電圧Vf2に達した時点で、第二LED部192への通電が開始され、脈流電圧が第二順方向電圧Vf2以上の区間(図4において、区間b)では、第一LED部191及び第二LED部192が点灯され、電流制限手段141でもって第二LED部192の通電が制御される。   When the pulsating voltage rises and reaches the second forward voltage Vf2, the energization of the second LED unit 192 is started, and a section where the pulsating voltage is equal to or higher than the second forward voltage Vf2 (in FIG. In the section b), the first LED unit 191 and the second LED unit 192 are turned on, and the current limiting unit 141 controls the energization of the second LED unit 192.

一方、脈流電圧が低下して、第二順方向電圧Vf2に達した時点で、第二LED部192への通電が停止され、脈流電圧が第二順方向電圧Vf2以下の区間(図4において、区間c)では、第二LED部192は消灯され、第一LED部191のみが第一通電制御手段151でもって点灯される。   On the other hand, when the pulsating voltage decreases and reaches the second forward voltage Vf2, the energization to the second LED unit 192 is stopped, and the section where the pulsating voltage is equal to or lower than the second forward voltage Vf2 (FIG. 4). In section c), the second LED portion 192 is turned off, and only the first LED portion 191 is turned on by the first energization control means 151.

そして再度脈流電圧が上昇すると、区間aから区間bに移行して、上述した第二LED部192の点灯が再開される。このように、第一LED部191は脈流電圧の時間変化によらず、常時点灯している。一方で第二LED部192は、脈流電圧の変化に応じて、第二順方向電圧Vf2よりも高い電圧値の区間では点灯し、第二順方向電圧Vf2よりも低い区間では消灯する、点滅動作を繰り返すこととなる。   When the pulsating voltage rises again, the section a is shifted to the section b, and the lighting of the second LED unit 192 described above is resumed. Thus, the 1st LED part 191 is always lighting regardless of the time change of a pulsating voltage. On the other hand, the second LED unit 192 is turned on in a section having a voltage value higher than the second forward voltage Vf2 and turned off in a section lower than the second forward voltage Vf2 in accordance with a change in the pulsating voltage. The operation will be repeated.

この発光ダイオード駆動装置によれば、三相交流を全波整流した電圧波形は0Vとなる区間がないので、点灯しない期間を排除することができ、ちらつきを防止した高品質な発光ダイオード駆動装置を実現することができる。また、全波整流した脈流電圧の電圧波形に関わらず第一LED部191を常時点灯させ、電圧波形の電圧が高い部分で第二LED部192も点灯させることによって駆動損失を低減することができ、光束を向上させることができる。
(実施の形態2)
According to this light emitting diode driving device, since there is no section in which the voltage waveform obtained by full-wave rectification of the three-phase alternating current is 0 V, it is possible to eliminate a period during which the light does not light, and to provide a high quality light emitting diode driving device that prevents flickering. Can be realized. In addition, the drive loss can be reduced by always lighting the first LED unit 191 regardless of the voltage waveform of the full-wave rectified pulsating voltage and lighting the second LED unit 192 at a portion where the voltage waveform voltage is high. And the luminous flux can be improved.
(Embodiment 2)

以上は、第一LED部と第二LED部を備える発光ダイオード駆動装置の動作について説明した。この発光ダイオード駆動装置では、三相交流電源の実効電圧が安定している場合は、上述の通り第一LED部が常時点灯するため、不点灯期間のない、ちらつきの少ない漁灯や照明等に好適に利用できる。   The operation of the light emitting diode driving device including the first LED unit and the second LED unit has been described above. In this LED driving device, when the effective voltage of the three-phase AC power supply is stable, the first LED portion is always lit as described above. It can be suitably used.

一方で、三相交流電源の実効電圧が電源電圧の変動によって低下し、最小脈流電圧が第一順方向電圧Vf1以下になってしまうと、第一LED部が点灯しなくなって、不点灯期間が発生してしまう。特に、電源電圧が安定せず、電源電圧の変動が生じるような環境下においては、点灯しない期間が発生することによる問題が懸念される。そこで、LED部と通電制御手段を多段に接続した発光ダイオード駆動装置の内、いずれかの段を、電源電圧の変動時にのみ動作させるように設定することで、このような電源電圧の変動にも対応できるように構成できる。例えば、電源電圧の低下にも常時点灯がなされるように、定格電圧での動作時に常時点灯させるLED部を複数段用意し、定格電圧以下に電源電圧が低下した場合にも、常時点灯されるLED部が一部残るように構成する。一例として、発光ダイオード駆動装置に、LED部と通電制御手段の組を、動作電圧が上位、中位、下位となるように異ならせた三段を設けて、定格電圧での動作時には、中位と下位の段を常時点灯させ、上位の段を点滅させることで、損失の少ない発光ダイオード駆動装置を実現しつつ、電源電圧が定格電圧よりも低下した際には、上位の段は消灯状態となるが、下位の段は常時点灯させ、中位の段を点滅させることで、電源電圧の実効値が低下した際にもLED部がすべて消灯してしまう区間の発生を阻止して、ちらつきのない、信頼性の高い灯具、例えば漁灯や照明を実現できる。   On the other hand, when the effective voltage of the three-phase AC power supply decreases due to the fluctuation of the power supply voltage and the minimum pulsating voltage becomes equal to or lower than the first forward voltage Vf1, the first LED unit does not light up, and the non-lighting period Will occur. In particular, in an environment where the power supply voltage is not stable and the power supply voltage fluctuates, there is a concern about a problem due to the occurrence of a period during which the power is not turned on. Therefore, by setting any one of the LED driving devices in which the LED unit and the energization control means are connected in multiple stages to operate only when the power supply voltage fluctuates, it is possible to cope with such power supply voltage fluctuations. It can be configured to be compatible. For example, multiple stages of LED units that are always lit when operating at the rated voltage are prepared so that the power voltage is always lit even when the power voltage drops. The LED part is configured to remain partially. As an example, the LED drive device is provided with three stages in which the operating voltage is higher, middle, and lower in the LED unit and energization control means, and when operating at the rated voltage, By always lighting the lower stage and blinking the upper stage, while realizing a light-emitting diode driving device with less loss, when the power supply voltage drops below the rated voltage, the upper stage is turned off. However, the lower stage is always lit, and the middle stage is blinked to prevent the occurrence of a section in which all the LED parts are turned off even when the effective value of the power supply voltage is reduced. It is possible to realize a highly reliable lamp such as a fishing light or lighting.

このような例として、実施の形態2に係る発光ダイオード駆動装置200を、図5に示す。この図に示す発光ダイオード駆動装置200は、第一LED部191’と第二LED部192’に加えて、第三LED部193’を備える。また第一通電制御手段151’に加えて、第二通電制御手段152’を備える。さらに発光ダイオード駆動装置200は、図1と同様、全波整流回路111’と電流制限手段141’と電流検出手段104’を備える。この例では、第一LED部191’及び第二LED部192’を点灯させるための第二順方向電圧Vf2’は、最小脈流電圧とほぼ同じか、又はこれよりも若干低く設定されている。いいかえると、図5における第一LED部191’と第二LED部192’を合わせたものが、上記図1における第一LED部191に相当し、図5における第三LED部193’が図1における第二LED部192に相当する。そして、第一LED部191’、第二LED部192’及び第三LED部193’を点灯させるための第三順方向電圧Vf3’を、最小脈流電圧と最大脈流電圧の間に設定する。これにより、第一LED部191’と第二LED部192’は脈流電圧の時間変化によらず常時点灯されると共に、第三LED部193’は脈流電圧の変化に応じて、第三順方向電圧Vf3’よりも高い電圧値の区間では点灯させる一方、第三順方向電圧Vf3’よりも低い区間では消灯させる点滅動作を繰り返すこととなる。
(実施の形態2の動作例)
As such an example, a light-emitting diode driving apparatus 200 according to Embodiment 2 is shown in FIG. The light emitting diode driving device 200 shown in this figure includes a third LED portion 193 ′ in addition to the first LED portion 191 ′ and the second LED portion 192 ′. Moreover, in addition to 1st electricity supply control means 151 ', 2nd electricity supply control means 152' is provided. Further, the light emitting diode driving apparatus 200 includes a full-wave rectifier circuit 111 ′, a current limiting unit 141 ′, and a current detecting unit 104 ′ as in FIG. In this example, the second forward voltage Vf2 ′ for lighting the first LED unit 191 ′ and the second LED unit 192 ′ is set to be substantially the same as or slightly lower than the minimum pulsating voltage. . In other words, the combination of the first LED portion 191 ′ and the second LED portion 192 ′ in FIG. 5 corresponds to the first LED portion 191 in FIG. 1, and the third LED portion 193 ′ in FIG. This corresponds to the second LED unit 192 in FIG. Then, the third forward voltage Vf3 ′ for lighting the first LED unit 191 ′, the second LED unit 192 ′, and the third LED unit 193 ′ is set between the minimum pulsating voltage and the maximum pulsating voltage. . As a result, the first LED unit 191 ′ and the second LED unit 192 ′ are always lit regardless of the time change of the pulsating voltage, and the third LED unit 193 ′ is activated according to the change of the pulsating voltage. The flashing operation of turning on the light in the section having a voltage value higher than the forward voltage Vf3 ′ while turning off the light in the section having the voltage value lower than the third forward voltage Vf3 ′ is repeated.
(Operation example of Embodiment 2)

具体的な動作を図6のグラフに基づいて説明すると、脈流電圧が第三順方向電圧Vf3’よりも低い区間(図6において、区間a’)では、第二通電制御手段152’でもって第一LED部191’及び第二LED部192’の通電が制御される。このとき、第三LED部193’は消灯された状態となる。   A specific operation will be described based on the graph of FIG. 6. In a section where the pulsating voltage is lower than the third forward voltage Vf3 ′ (section a ′ in FIG. 6), the second energization control means 152 ′. Energization of the first LED unit 191 ′ and the second LED unit 192 ′ is controlled. At this time, the third LED portion 193 'is turned off.

脈流電圧が上昇して、第三順方向電圧Vf3’に達した時点で、第三LED部193’への通電が開始され、脈流電圧が第三順方向電圧Vf3’以上の区間(図6において、区間b’)では、第一LED部191’、第二LED部192’及び第三LED部193’が点灯され、電流制限手段141’でもって第三LED部193’の通電が制御される。   When the pulsating voltage rises and reaches the third forward voltage Vf3 ′, energization to the third LED portion 193 ′ is started, and a section where the pulsating voltage is greater than or equal to the third forward voltage Vf3 ′ (FIG. 6, in the section b ′), the first LED portion 191 ′, the second LED portion 192 ′, and the third LED portion 193 ′ are turned on, and the current limiting means 141 ′ controls the energization of the third LED portion 193 ′. Is done.

一方、脈流電圧が低下して、第三順方向電圧Vf3’に達した時点で、第三LED部193’への通電が停止され、脈流電圧が第三順方向電圧Vf3’以下の区間(図6において、区間c’)では、第三LED部193’は消灯され、第一LED部191’と第二LED部192’が第二通電制御手段152’でもって点灯される。   On the other hand, when the pulsating voltage decreases and reaches the third forward voltage Vf3 ′, the power supply to the third LED portion 193 ′ is stopped, and the section where the pulsating voltage is equal to or lower than the third forward voltage Vf3 ′. In FIG. 6, in the section c ′, the third LED portion 193 ′ is turned off, and the first LED portion 191 ′ and the second LED portion 192 ′ are turned on by the second energization control means 152 ′.

そして再度脈流電圧が上昇すると、区間aから区間bに移行して、上述した第三LED部193’の点灯が再開される。このように、第一LED部191’及び第二LED部192’は脈流電圧の時間変化によらず、常時点灯している。一方で第三LED部193’は、脈流電圧の変化に応じて、第三順方向電圧Vf3’よりも高い電圧値の区間では点灯し、第三順方向電圧Vf3’よりも低い区間では消灯する、点滅動作を繰り返すこととなる。
(実効電圧低下時の動作)
Then, when the pulsating voltage rises again, the section a is shifted to the section b, and the lighting of the third LED portion 193 ′ described above is resumed. Thus, 1st LED part 191 'and 2nd LED part 192' are always lighting regardless of the time change of a pulsating voltage. On the other hand, the third LED unit 193 ′ is turned on in a section having a voltage value higher than the third forward voltage Vf3 ′ and turned off in a section lower than the third forward voltage Vf3 ′ in accordance with a change in the pulsating voltage. The flashing operation will be repeated.
(Operation when effective voltage drops)

一方で、三相交流電源の実効電圧が電源電圧の変動によって低下した場合の動作を、図7に基づいて説明する。ここでは一例として、定格電圧を220Vとする三相交流電源を用い、電源電圧の低下時に実効電圧が200Vに低下した場合にも、第一LED部191’を点灯させるよう設定された発光ダイオード駆動装置について説明する。予め、低下した電源電圧の最小脈流電圧(低下最小脈流電圧)において、第一LED部191’が点灯されるように、第一LED部191’を点灯させるための第一順方向電圧Vf1’が、低下最小脈流電圧とほぼ同じか、マージンを考慮してこれよりも若干低くなるように設定しておく。これにより、脈動する整流電圧は常時第一順方向電圧Vf1’を超える状態となるため、第一LED部191’の点灯は常時維持される。一方で第一LED部191’と第二LED部192’を点灯させる第二順方向電圧Vf2’は、低下最小脈流電圧と低下最大脈流電圧との間に設定される。なお、第三LED部193’を点灯させるための第三順方向電圧Vf3’が低下最大脈流電圧よりも高い場合は、第三LED部193’は常時点灯されないこととなる。したがって、この例では第一LED部191’は脈流電圧によらず常時点灯、第二LED部192’は脈流電圧に応じて点滅、第三LED部193’は常時消灯状態となる。   On the other hand, the operation in the case where the effective voltage of the three-phase AC power supply is reduced due to the fluctuation of the power supply voltage will be described with reference to FIG. Here, as an example, a three-phase AC power supply with a rated voltage of 220V is used, and the LED drive that is set to light the first LED portion 191 ′ even when the effective voltage drops to 200V when the power supply voltage decreases is driven. The apparatus will be described. A first forward voltage Vf1 for turning on the first LED unit 191 ′ so that the first LED unit 191 ′ is turned on in advance at the minimum pulsating voltage (decreased minimum pulsating voltage) of the lowered power supply voltage. 'Is set to be almost the same as the reduced minimum pulsating voltage or slightly lower than this considering the margin. Thereby, since the pulsating rectified voltage always exceeds the first forward voltage Vf1 ', the lighting of the first LED portion 191' is always maintained. On the other hand, the second forward voltage Vf2 'for turning on the first LED portion 191' and the second LED portion 192 'is set between the reduced minimum pulsating voltage and the reduced maximum pulsating voltage. When the third forward voltage Vf3 'for turning on the third LED unit 193' is higher than the reduced maximum pulsating voltage, the third LED unit 193 'is not always turned on. Accordingly, in this example, the first LED portion 191 'is always lit regardless of the pulsating voltage, the second LED portion 192' is blinking in accordance with the pulsating voltage, and the third LED portion 193 'is always in the off state.

具体的には、脈流電圧が第二順方向電圧Vf2’よりも低い区間(図7において、区間a”)では、図5の第一通電制御手段151’でもって第一LED部191’の通電が制御される。このとき、第二LED部192’(及び第三LED部193’)は消灯された状態となる。   Specifically, in a section where the pulsating voltage is lower than the second forward voltage Vf2 ′ (section a ″ in FIG. 7), the first LED unit 191 ′ of FIG. At this time, the second LED unit 192 ′ (and the third LED unit 193 ′) is turned off.

そして脈流電圧が上昇して、第二順方向電圧Vf2’に達した時点で、第二LED部192’への通電が開始され、脈流電圧が第二順方向電圧Vf2’以上の区間(図7において、区間b”)では、第一LED部191’、及び第二LED部192’が点灯され、第二通電制御手段152’でもって第二LED部192’の通電が制御される。なお、第三LED部193’は消灯状態が維持される。   Then, when the pulsating voltage rises and reaches the second forward voltage Vf2 ′, energization to the second LED unit 192 ′ is started, and a section in which the pulsating voltage is equal to or higher than the second forward voltage Vf2 ′ ( In FIG. 7, in the section b ″), the first LED unit 191 ′ and the second LED unit 192 ′ are turned on, and the second LED unit 192 ′ is controlled to be energized by the second energization control unit 152 ′. In addition, 3rd LED part 193 'maintains a light extinction state.

一方、脈流電圧が低下して、第二順方向電圧Vf2’に達した時点で、第二LED部192’への通電が停止され、脈流電圧が第二順方向電圧Vf2’以下の区間(図7において、区間c”)では、第二LED部192’は消灯され、第一LED部191’が第一通電制御手段151’でもって点灯される。また第三LED部193’は消灯状態のまま維持される。   On the other hand, when the pulsating voltage decreases and reaches the second forward voltage Vf2 ′, the energization to the second LED unit 192 ′ is stopped and the pulsating voltage is equal to or lower than the second forward voltage Vf2 ′. In FIG. 7, the second LED unit 192 ′ is turned off, and the first LED unit 191 ′ is turned on by the first energization control unit 151 ′. The third LED unit 193 ′ is turned off. The state is maintained.

そして再度脈流電圧が上昇すると、区間a”から区間b”に移行して、上述した第二LED部192’の点灯が再開される。このように、第一LED部191’は脈流電圧の時間変化によらず、常時点灯している。一方で第二LED部192’は、脈流電圧の変化に応じて、第二順方向電圧Vf2’よりも高い電圧値の区間では点灯し、第二順方向電圧Vf2’よりも低い区間では消灯する、点滅動作を繰り返すこととなる。そして第三LED部193’は常時消灯状態が維持される。   When the pulsating voltage rises again, the section a ″ shifts to the section b ″, and the lighting of the second LED unit 192 ′ described above is resumed. Thus, the first LED portion 191 ′ is always lit regardless of the time change of the pulsating voltage. On the other hand, the second LED unit 192 ′ is turned on in a section having a voltage value higher than the second forward voltage Vf2 ′ and turned off in a section lower than the second forward voltage Vf2 ′ in accordance with a change in the pulsating voltage. The flashing operation will be repeated. The third LED portion 193 'is always kept off.

このようにして、三相交流電源の実効電圧が定格値以下に低下した場合でも、第一LED部191’を常時点灯させることができ、不点灯となる期間をなくしてちらつきを抑制した高品質で信頼性の高い発光ダイオードの駆動が実現される。   In this way, even when the effective voltage of the three-phase AC power supply drops below the rated value, the first LED unit 191 ′ can always be lit, and the high quality that suppresses flickering by eliminating the period of non-lighting. Thus, driving of a light-emitting diode with high reliability is realized.

以上の例では、電源電圧の実効値が10%程度低下した場合にもLED部の点灯を保証した回路例を説明した。ただ、電源電圧の実効値の低下は、この例に限られず、例えば20%の低下でも動作するような回路設計とするなど、要求される仕様や用途等に応じて、適宜設計される。好ましくは、電源電圧の実効値が、定格電圧の5%〜25%、より好ましくは8%〜20%の範囲で低下した場合にも、いずれかのLED部が常時点灯状態を維持するように設計する。   In the above example, the circuit example in which the lighting of the LED unit is ensured even when the effective value of the power supply voltage is reduced by about 10% has been described. However, the reduction of the effective value of the power supply voltage is not limited to this example, and is designed as appropriate according to the required specifications, applications, etc., for example, a circuit design that operates even when the reduction is 20%. Preferably, even when the effective value of the power supply voltage falls within a range of 5% to 25%, more preferably 8% to 20% of the rated voltage, any one of the LED units is maintained in a constantly lit state. design.

また以上の例では、電源電圧の実効値が低下した場合の動作保証について説明したが、逆に電源電圧の実効値が上昇した場合に対応させた発光ダイオード駆動装置を構成することもできる。電源電圧の実効値が高くなる場合、LED部が消灯されることはないが、供給される電力に対して利用されない成分が増え、効率が低下する。そこで、上位の段を追加して、定格電圧以上の電圧が入力された際に点灯するLED部を追加することで、このような効率の低下を抑制することができる。ただ、定格電圧での駆動時には、上位の段のLED部は点灯されないため、通常時に点灯されないLED部を追加することによるハードウェア的な冗長が生じ、また定格時に常時動作される通電制御手段が追加されることで、定格動作時の損失が若干増すことも考えられるので、要求される仕様等に応じて採択が決定される。
(実施例1)
In the above example, the operation guarantee when the effective value of the power supply voltage is reduced has been described. However, it is also possible to configure a light-emitting diode driving device corresponding to the case where the effective value of the power supply voltage is increased. When the effective value of the power supply voltage becomes high, the LED unit is not turned off, but the components that are not used for the supplied power increase, and the efficiency decreases. Therefore, by adding an upper stage and adding an LED unit that is turned on when a voltage higher than the rated voltage is input, such a decrease in efficiency can be suppressed. However, when driving at the rated voltage, the upper LED section is not lit, so adding an LED section that is not lit at normal times causes hardware redundancy, and there is an energization control means that always operates at the rated time. It is possible that the loss during rated operation will increase slightly due to the addition, so the adoption is determined according to the required specifications.
Example 1

以上の発光ダイオード駆動装置は、LEDを用いた各種装置、例えば照明装置や漁灯に利用できる。次に、以上の発光ダイオード駆動装置を実現する具体的な回路例として、本発明の実施例1に係る発光ダイオード駆動装置1の回路図を図8に示す。この発光ダイオード駆動装置1は、三相交流電源に接続されており、三相交流を全波整流するための全波整流回路11を備えている。全波整流回路11の出力側には、この全波整流回路11の出力端子に接続されたローパスフィルタ回路21と、ローパスフィルタ回路21の出力端子に接続された温度保護部31と、温度保護部31の出力端子に接続された電流制限手段41と、電流制限手段41に直列に接続されたLED部制御回路と、LED部とが設けられている。さらに、調光端子コネクタ及び信号線を介してPWM調整装置に接続された調光信号絶縁回路110が設けられている。
(全波整流回路11)
The light emitting diode driving device described above can be used for various devices using LEDs, such as lighting devices and fishing lights. Next, as a specific circuit example for realizing the above light emitting diode driving device, a circuit diagram of the light emitting diode driving device 1 according to Embodiment 1 of the present invention is shown in FIG. The light emitting diode driving device 1 is connected to a three-phase AC power source and includes a full-wave rectifier circuit 11 for full-wave rectifying the three-phase AC. On the output side of the full-wave rectifier circuit 11, a low-pass filter circuit 21 connected to the output terminal of the full-wave rectifier circuit 11, a temperature protection unit 31 connected to the output terminal of the low-pass filter circuit 21, and a temperature protection unit Current limiting means 41 connected to the output terminal 31, an LED unit control circuit connected in series to the current limiting means 41, and an LED unit are provided. Furthermore, a dimming signal insulation circuit 110 connected to the PWM adjustment device via a dimming terminal connector and a signal line is provided.
(Full-wave rectifier circuit 11)

この全波整流回路11は、三相交流電源から供給される三相交流電圧を全波整流のみ行う回路である。全波整流回路11は、三相交流電源に接続されている3つの電源線のうちの2つの電源線間にダイオードをブリッジ接続した第1の単相ブリッジ回路REC1と、3つの電源線のうちの他の2つの電源線間にダイオードをブリッジ接続した第2の単相ブリッジ回路REC2とのみから構成される。全波整流回路11は平滑を行う必要がない。このため、平滑用の電解コンデンサを不要とできる。
(ローパスフィルタ回路)
The full-wave rectifier circuit 11 is a circuit that only performs full-wave rectification on a three-phase AC voltage supplied from a three-phase AC power source. The full-wave rectifier circuit 11 includes a first single-phase bridge circuit REC1 in which a diode is bridge-connected between two power lines out of three power lines connected to a three-phase AC power source, and among the three power lines. It comprises only a second single-phase bridge circuit REC2 in which a diode is bridge-connected between the other two power supply lines. The full wave rectifier circuit 11 does not need to be smoothed. This eliminates the need for a smoothing electrolytic capacitor.
(Low-pass filter circuit)

ローパスフィルタ回路21は、全波整流回路11の出力端子に直列接続されたチョークコイルL1と、この出力端子に並列接続されたコンデンサC5とから構成される。このローパスフィルタ回路21は、全波整流電圧に含まれている高周波域のノイズを抑制するためのものである。なお、VS1はサージ電圧保護素子であって、電源入力ラインにサージ電圧(突発的な高電圧)が印加された場合に、そのエネルギーを吸収して回路を保護する。
(LED部)
The low-pass filter circuit 21 includes a choke coil L1 connected in series to the output terminal of the full-wave rectifier circuit 11, and a capacitor C5 connected in parallel to the output terminal. The low-pass filter circuit 21 is for suppressing high-frequency noise included in the full-wave rectified voltage. VS1 is a surge voltage protection element, and when a surge voltage (suddenly high voltage) is applied to the power input line, it absorbs the energy and protects the circuit.
(LED part)

本実施例では、第一LED部91と、第二LED部92と、第三LED部93とで第一LED集合体101が構成される。また第一LED部91は、互いに直列に接続された、第一LED分割部91Aと、第二LED分割部91Bと、第三LED分割部91Cとに分割されている。ここでは図8に示すように、第一LED分割部91Aと、第二LED部92と、第二LED分割部91Bと、第三LED部93と、第三LED分割部91Cとを、この順番に直列に接続している。第三LED部93は、第二LED部92と後述する電流制限手段41との間で接続されている。なお、第一LED集合体101を構成するLED部やLED分割部の数は、上記構成に限定されず、2個又は4個以上とすることもできる。例えば、第一LED部91と直列に接続されるLED部が第二LED部92だけの場合は、第一LED部91と第二LED部92で第一LED集合体を構成することもできる。   In the present embodiment, the first LED unit 91, the second LED unit 92, and the third LED unit 93 constitute the first LED assembly 101. The first LED unit 91 is divided into a first LED dividing unit 91A, a second LED dividing unit 91B, and a third LED dividing unit 91C that are connected in series with each other. Here, as shown in FIG. 8, the first LED dividing unit 91A, the second LED unit 92, the second LED dividing unit 91B, the third LED unit 93, and the third LED dividing unit 91C are arranged in this order. Connected in series. The third LED unit 93 is connected between the second LED unit 92 and a current limiting unit 41 described later. In addition, the number of LED parts and LED division | segmentation parts which comprise the 1st LED aggregate 101 is not limited to the said structure, It can also be made into 2 pieces or 4 pieces or more. For example, when the second LED unit 92 is the only LED unit connected in series with the first LED unit 91, the first LED unit 91 and the second LED unit 92 can constitute a first LED assembly.

また第二LED集合体102は、第一LED集合体101と同様の構成としている。図8の例では、第二LED集合体102は、第四LED部94と、第五LED部95と、第六LED部96とを直列に接続している。ここで第四LED部94は、互いに直列に接続された、第四LED分割部94Aと、第五LED分割部94Bと、第六LED分割部94Cとに分割されている。ここでは第四LED分割部94Aと、第五LED部95と、第五LED分割部94Bと、第六LED部96と、第六LED分割部94Cと、をこの順番に直列に接続している。この第一LED集合体101と第二LED集合体102とは、互いに並列に接続される。   The second LED assembly 102 has the same configuration as the first LED assembly 101. In the example of FIG. 8, the second LED aggregate 102 has a fourth LED portion 94, a fifth LED portion 95, and a sixth LED portion 96 connected in series. Here, the fourth LED section 94 is divided into a fourth LED dividing section 94A, a fifth LED dividing section 94B, and a sixth LED dividing section 94C that are connected in series with each other. Here, the fourth LED dividing section 94A, the fifth LED section 95, the fifth LED dividing section 94B, the sixth LED section 96, and the sixth LED dividing section 94C are connected in series in this order. . The first LED assembly 101 and the second LED assembly 102 are connected in parallel to each other.

第一LED部91は、後述するように点灯時間が他のLED部(第二LED部92及び第三LED部93)に比べて長いので、発熱量が多くなる。このため、第一LED部91を分割して、LED分割部として第二LED部92と第三LED部93との間又第三LED部93の下流側に配置することにより、均一に発散し易くできる利点も得られる。また、第四LED部も同様であり、第四LED部を分割して、LED分割として第五LED部と第六LED部との間又は第六LED部の下流側に配置することができる。   Since the first LED unit 91 has a longer lighting time than the other LED units (the second LED unit 92 and the third LED unit 93) as described later, the amount of heat generated is increased. For this reason, by dividing the first LED portion 91 and disposing it as an LED dividing portion between the second LED portion 92 and the third LED portion 93 or on the downstream side of the third LED portion 93, the first LED portion 91 diverges uniformly. There are also advantages that can be easily achieved. The fourth LED unit is the same, and the fourth LED unit can be divided and arranged as an LED division between the fifth LED unit and the sixth LED unit or downstream of the sixth LED unit.

各LED部は、順方向電圧が約3VのLED素子を2個直列に接続した組を、複数個直列に接続している。第一LED部91は、2個直列の組を40組、直列に接続している。すなわち、第一LED部91を点灯させる第一順方向電圧Vf1は(3V×2)×40=240Vとなる。具体的には、第一LED部91を構成する第一LED分割部91Aが8組、第二LED分割部91Bが8組、第三LED分割部91Cが24組である。また第二LED部92は、4組を直列に接続しているので、第二LED部92を点灯させる第二順方向電圧Vf2は、240V+(3V×2)×4=240V+24V=264Vとなる。さらに第三LED部93も、4組を直列に接続しているので、この第三LED部93を点灯させる第三順方向電圧Vf3は、240V+24V+(3V×2)×4=240V+24V+24V=288Vとなる。
(LED部制御回路)
Each LED unit is connected in series with a set of two LED elements having a forward voltage of about 3V connected in series. The first LED unit 91 is connected in series with 40 sets of two in series. That is, the first forward voltage Vf1 for lighting the first LED unit 91 is (3V × 2) × 40 = 240V. Specifically, the first LED division unit 91A constituting the first LED unit 91 has 8 sets, the second LED division unit 91B has 8 sets, and the third LED division unit 91C has 24 sets. In addition, since the second LED unit 92 is connected in four groups in series, the second forward voltage Vf2 for lighting the second LED unit 92 is 240V + (3V × 2) × 4 = 240V + 24V = 264V. Further, since the third LED unit 93 is also connected in series in four sets, the third forward voltage Vf3 for lighting the third LED unit 93 is 240V + 24V + (3V × 2) × 4 = 240V + 24V + 24V = 288V. .
(LED control circuit)

本実施例では、LED部制御回路は、第一LED部制御回路51、第二LED部制御回路61、第三LED部制御回路71、第四LED部制御回路81を備えている。   In this embodiment, the LED unit control circuit includes a first LED unit control circuit 51, a second LED unit control circuit 61, a third LED unit control circuit 71, and a fourth LED unit control circuit 81.

第一LED部制御回路51は、第一LED電流制御トランジスタQ1と、第一電流検出トランジスタQ9とを含む第一通電制御手段である。第一LED電流制御トランジスタQ1は第二LED部92と並列に接続され、且つ第一LED分割部91Aと直列に接続されている。第一LED部制御回路51は、さらに第二LED部92と直列に接続された電流検出抵抗R1、R2を備えており、第一LED分割部91A、第二LED分割部91B及び第三LED分割部91Cへの通電量を制御する。   The first LED unit control circuit 51 is first energization control means including a first LED current control transistor Q1 and a first current detection transistor Q9. The first LED current control transistor Q1 is connected in parallel with the second LED unit 92 and connected in series with the first LED dividing unit 91A. The first LED unit control circuit 51 further includes current detection resistors R1 and R2 connected in series with the second LED unit 92, and includes a first LED dividing unit 91A, a second LED dividing unit 91B, and a third LED dividing unit. The energization amount to the part 91C is controlled.

第二LED部制御回路61は、第二LED電流制御トランジスタQ2と、第二電流検出トランジスタQ10とを含む第二通電制御手段である。第二LED電流制御トランジスタQ2は、第三LED部93と並列に接続され、且つ第二LED分割部91Bと直列に接続されている。第二LED部制御回路61は、さらに第三LED部93と直列に接続された電流検出抵抗R3、R4を備えており、第一LED分割部91A、第二LED分割部91B、第三LED分割部91C及び第二LED部92への通電量を制御する。なお、第二LED部制御回路61は電流制限手段41に直列に接続されている。   The second LED unit control circuit 61 is second energization control means including a second LED current control transistor Q2 and a second current detection transistor Q10. The second LED current control transistor Q2 is connected in parallel with the third LED section 93 and connected in series with the second LED dividing section 91B. The second LED unit control circuit 61 further includes current detection resistors R3 and R4 connected in series with the third LED unit 93, and includes a first LED dividing unit 91A, a second LED dividing unit 91B, and a third LED dividing unit. The energization amount to the part 91C and the second LED part 92 is controlled. The second LED unit control circuit 61 is connected to the current limiting means 41 in series.

第三LED制御回路71は、第三LED電流制御トランジスタQ3と、第三電流検出トランジスタQ11とを含む第三通電制御手段である。第三LED電流制御トランジスタQ3は、第五LED部95と並列に接続され、且つ第四LED分割部94Aと直列に接続されている。第三LED制御回路71は、さらに第五LED部95と直列に接続された電流検出抵抗R5、R6を備えており、第四LED分割部94A、第五LED分割部94B及び第六LED分割部94Cへの通電量を制御する。   The third LED control circuit 71 is third energization control means including a third LED current control transistor Q3 and a third current detection transistor Q11. The third LED current control transistor Q3 is connected in parallel with the fifth LED unit 95 and is connected in series with the fourth LED dividing unit 94A. The third LED control circuit 71 further includes current detection resistors R5 and R6 connected in series with the fifth LED unit 95, and includes a fourth LED dividing unit 94A, a fifth LED dividing unit 94B, and a sixth LED dividing unit. The amount of power to 94C is controlled.

第四LED部制御回路81は、第四LED電流制御トランジスタQ4と、第四電流検出トランジスタQ12とを含む第四通電制御手段である。第四LED電流制御トランジスタQ4は、第六LED部96と並列に接続され、且つ第四LED分割部94Bと直列に接続されている。第四LED制御回路81は、さらに第六LED部96と直列に接続された電流検出抵抗R7、R8を備えており、第四LED分割部94A、第五LED分割部94B、第六LED分割部94C及び第五LED部95への通電量を制御する。なお、第四LED制御回路81は電流制限手段41に直列に接続されている。   The fourth LED unit control circuit 81 is fourth energization control means including a fourth LED current control transistor Q4 and a fourth current detection transistor Q12. The fourth LED current control transistor Q4 is connected in parallel with the sixth LED unit 96 and is connected in series with the fourth LED dividing unit 94B. The fourth LED control circuit 81 further includes current detection resistors R7 and R8 connected in series with the sixth LED unit 96. The fourth LED dividing unit 94A, the fifth LED dividing unit 94B, and the sixth LED dividing unit. The energization amount to 94C and the 5th LED part 95 is controlled. The fourth LED control circuit 81 is connected to the current limiting means 41 in series.

発光ダイオード駆動装置を基板に実装する際、回路を二重化して並列に配置することができる。並列に構成した発光ダイオード駆動装置を基板上に実装する例を、図9に示す。この図に示す発光ダイオード駆動装置は、全波整流回路11の出力側において、第一LED駆動部と第二LED駆動部とを並列に接続している。第一LED駆動部は、第一LED部91、第二LED部92、第三LED部93、第一通電制御手段、第二通電制御手段及び電流制限手段41を含む。また第二LED駆動部も、この第一LED駆動部と同様、第一LED部91、第二LED部92、第三LED部93、第一通電制御手段、第二通電制御手段及び電流制限手段41を含む。   When the light emitting diode driving device is mounted on the substrate, the circuit can be duplicated and arranged in parallel. FIG. 9 shows an example in which light emitting diode driving devices configured in parallel are mounted on a substrate. The light-emitting diode driving device shown in this figure has a first LED driving unit and a second LED driving unit connected in parallel on the output side of the full-wave rectifier circuit 11. The first LED drive unit includes a first LED unit 91, a second LED unit 92, a third LED unit 93, a first energization control unit, a second energization control unit, and a current limiting unit 41. Further, the second LED driving section is also the same as the first LED driving section, the first LED section 91, the second LED section 92, the third LED section 93, the first energization control means, the second energization control means, and the current limiting means. 41 is included.

基板上には、第一LED駆動部を実装する領域と、第二LED駆動部を実装する領域とが分離されている。また第一LED駆動部を実装する領域はさらに、第一LED部91、第二LED部92、第三LED部93を含む第一LED集合体101を実装する領域と、第一通電制御手段、第二通電制御手段及び電流制限手段41を含む第一駆動集合体を実装する領域とに分離されている。同様に第二LED駆動部を実装する領域も、第一LED部91、第二LED部92、第三LED部93を含む第一LED集合体101を実装する領域と、第一通電制御手段、第二通電制御手段及び電流制限手段41を含む第一駆動集合体を実装する領域とに分離されている。   On the board | substrate, the area | region which mounts a 1st LED drive part and the area | region which mounts a 2nd LED drive part are isolate | separated. Moreover, the area | region which mounts the 1st LED drive part is further, the area | region which mounts the 1st LED aggregate 101 containing the 1st LED part 91, the 2nd LED part 92, and the 3rd LED part 93, a 1st electricity supply control means, The first drive assembly including the second energization control unit and the current limiting unit 41 is separated from the region for mounting. Similarly, the region for mounting the second LED driving unit includes the region for mounting the first LED assembly 101 including the first LED unit 91, the second LED unit 92, and the third LED unit 93, the first energization control means, The first drive assembly including the second energization control unit and the current limiting unit 41 is separated from the region for mounting.

そして、基板上における第一LED駆動部を実装する領域と、第二LED駆動部を実装する領域とは、並べて配置されている。ここで、第一駆動集合体を実装する領域と、第二駆動集合体を実装する領域とが近接し、第一LED集合体101を実装する領域と、第二LED集合体102を実装する領域とが互いに遠ざかる姿勢となるように、第一LED駆動部を実装する領域と第二LED駆動部を実装する領域とが配置されている。   And the area | region which mounts the 1st LED drive part on a board | substrate, and the area | region which mounts a 2nd LED drive part are arrange | positioned side by side. Here, the region for mounting the first drive assembly and the region for mounting the second drive assembly are close to each other, the region for mounting the first LED assembly 101, and the region for mounting the second LED assembly 102. And the region where the first LED driving unit is mounted and the region where the second LED driving unit is mounted are arranged so that the two are separated from each other.

このように、第一LED集合体101と第二LED集合体102とは図8に示すように、並列に接続することができる。図9は、第一LED集合体101、第二LED集合体102、第一通電制御手段を備える第一LED部制御回路51、第二通電制御手段を備える第二LED部制御回路61、第三通電制御手段を備える第三LED部制御回路71及び第四通電制御手段を備える第四LED部制御回路81を基板103に搭載した状態の概略図である。基板103の平面視において、第一通電制御手段及び第三通電制御手段は、第一通電制御手段が第一LED集合体101に隣接し、第三通電制御手段が第二LED集合体102に隣接するように、第一LED集合体101と第二LED集合体102との間に配置されるのが好ましい。なお、基板103は長手方向及び短手方向を有し、第1LED集合体101と第2LED集合体102はそれぞれ、基板103の長手方向に沿って搭載されている。   Thus, the 1st LED aggregate 101 and the 2nd LED aggregate 102 can be connected in parallel, as shown in FIG. 9 shows a first LED assembly 101, a second LED assembly 102, a first LED unit control circuit 51 having a first energization control means, a second LED unit control circuit 61 having a second energization control means, and a third It is the schematic of the state which mounted in the board | substrate 103 the 3rd LED part control circuit 71 provided with an electricity supply control means, and the 4th LED part control circuit 81 provided with the 4th electricity supply control means. In plan view of the substrate 103, the first energization control means and the third energization control means are such that the first energization control means is adjacent to the first LED assembly 101 and the third energization control means is adjacent to the second LED assembly 102. As such, it is preferable that the first LED assembly 101 and the second LED assembly 102 are disposed. In addition, the board | substrate 103 has a longitudinal direction and a transversal direction, and the 1st LED assembly 101 and the 2nd LED assembly 102 are mounted along the longitudinal direction of the board | substrate 103, respectively.

このような配置とすることで、第一LED部制御回路51及び第二LED部制御回路61の配線と、第三LED部制御回路71及び第四LED部制御回路81の配線とが交差することなく、第一LED部制御回路51及び第二LED部制御回路61の配線を第一LED集合体101に接続することができ、第三LED部制御回路71及び第四LED部制御回路81の配線を第二LED集合体102に接続することができる。これによって、整然と配置することができ、配線を交差させるための部材が不要となる。   By such an arrangement, the wiring of the first LED unit control circuit 51 and the second LED unit control circuit 61 intersects with the wiring of the third LED unit control circuit 71 and the fourth LED unit control circuit 81. The wiring of the first LED unit control circuit 51 and the second LED unit control circuit 61 can be connected to the first LED assembly 101, and the wiring of the third LED unit control circuit 71 and the fourth LED unit control circuit 81. Can be connected to the second LED assembly 102. Thereby, it can arrange | position in order and the member for making wiring cross | intersect becomes unnecessary.

加えて、電流制限手段41を二重化して、第一LED駆動部と第二LED駆動部とに分散して配置したことにより、大きな電圧が印加されるため高い耐性が要求されるFETやトランジスタ等の駆動素子を、複数の素子で分散させることで、コストを低減できる効果も得られる。   In addition, since the current limiting means 41 is duplicated and arranged in the first LED drive unit and the second LED drive unit, a large voltage is applied, so FETs, transistors, etc. that require high durability By dispersing the driving elements in a plurality of elements, an effect of reducing the cost can be obtained.

本実施例に係る発光ダイオード駆動装置1は、LED部を直列接続する出力ラインOLと、各LED部制御回路同士を直列接続する制御ラインCLとをほぼ平行に、2箇所に分けて並列に接続している。このように、複数のLED部とLED部制御回路とを平行に接続することで回路構成を単純化でき、配線パターンをシンプルにすると共に、必要な導線数やパターン長も低減できる。
(温度保護部31)
In the light emitting diode driving device 1 according to the present embodiment, the output line OL for connecting the LED units in series and the control line CL for connecting the LED unit control circuits in series are connected approximately in parallel to each other in two locations. doing. Thus, the circuit configuration can be simplified by connecting the plurality of LED units and the LED unit control circuit in parallel, the wiring pattern can be simplified, and the necessary number of conductors and pattern length can be reduced.
(Temperature protector 31)

温度保護部31は、ローパスフィルタ回路21の出力端子に並列接続された抵抗R27、R28及びポジスタR29の直列回路と、抵抗R27、R28及びポジスタR29の直列回路の中点にベースが接続されたトランジスタQ17とを備え、第一LED分割部91A、第二LED部92、第二LED分割部91B、第三LED部93、第三LED分割部91C、第四LED分割部94A、第五LED部95、第五LED分割部94B、第六LED部96、第六LED分割部94CのLED素子の異常な温度上昇を制限するための回路である。抵抗R27、R28は、トランジスタQ17のベース抵抗であり、ベースに電流成分を入力させてトランジスタQ17の動作を安定させるためのものである。ポジスタR29は、その温度がある値に達すると抵抗値が急激に上昇する素子である。   The temperature protection unit 31 is a transistor having a base connected to the midpoint of a series circuit of resistors R27, R28 and a posistor R29 connected in parallel to the output terminal of the low-pass filter circuit 21, and a series circuit of the resistors R27, R28 and posistor R29. Q17, the first LED division unit 91A, the second LED unit 92, the second LED division unit 91B, the third LED unit 93, the third LED division unit 91C, the fourth LED division unit 94A, the fifth LED unit 95. This is a circuit for limiting an abnormal temperature rise of the LED elements of the fifth LED dividing section 94B, the sixth LED section 96, and the sixth LED dividing section 94C. Resistors R27 and R28 are base resistances of the transistor Q17, and are for inputting a current component to the base to stabilize the operation of the transistor Q17. The posistor R29 is an element whose resistance value rapidly increases when the temperature reaches a certain value.

この温度保護部31の動作は以下の通りである。LED部が搭載される基板の温度が非常に高いある温度に達すると、ポジスタR29の抵抗値が急激に増大することから、このポジスタR29の端子間電圧(トランジスタQ17のベース・エミッタ間電圧)が上昇する。このポジスタR29の端子間電圧がベース電圧Vbeを越えると、トランジスタQ17がオンとなり、電流制限手段41内の電界効果トランジスタQ5,Q6のゲート電圧が0Vとなることから、電界効果トランジスタQ5,Q6がオフとなり、第一LED分割部91A、第二LED部92、第二LED分割部91B、第三LED部93、第三LED分割部91CのLED素子が消灯する。LED素子が消灯して、基板の温度がある温度まで下降すると、ポジスタR29の抵抗値が低減してポジスタR29の端子間電圧が下降し、トランジスタQ17のベース電圧Vbe未満となると、このトランジスタQ17がオフとなり、電界効果トランジスタQ5、Q6がオンとなって第一LED分割部91A、第二LED部92、第二LED分割部91B、第三LED部93、第三LED分割部91CのLED素子が再点灯する。   The operation of the temperature protection unit 31 is as follows. When the temperature of the substrate on which the LED unit is mounted reaches a very high temperature, the resistance value of the posistor R29 increases abruptly. Therefore, the voltage across the terminals of the posistor R29 (the voltage between the base and emitter of the transistor Q17) To rise. When the inter-terminal voltage of the posistor R29 exceeds the base voltage Vbe, the transistor Q17 is turned on, and the gate voltages of the field effect transistors Q5 and Q6 in the current limiting means 41 become 0 V, so that the field effect transistors Q5 and Q6 The LED elements of the first LED dividing unit 91A, the second LED unit 92, the second LED dividing unit 91B, the third LED unit 93, and the third LED dividing unit 91C are turned off. When the LED element is turned off and the temperature of the substrate is lowered to a certain temperature, the resistance value of the posistor R29 is reduced and the voltage across the terminals of the posistor R29 is lowered to become less than the base voltage Vbe of the transistor Q17. The field effect transistors Q5 and Q6 are turned on, and the LED elements of the first LED dividing unit 91A, the second LED unit 92, the second LED dividing unit 91B, the third LED unit 93, and the third LED dividing unit 91C are turned on. Relight.

ポジスタR29の端子間電圧がベース電圧Vbeを越えると、トランジスタQ17がオンとなり、さらに電流制限手段41内の電界効果トランジスタQ7,Q8のゲート電圧が0Vとなることから、電界効果トランジスタQ7,Q8がオフとなり、第四LED分割部94A、第五LED部95、第五LED分割部94B、第六LED部96、第六LED分割部94CのLED素子が消灯する。LED素子が消灯して、基板の温度がある温度まで下降すると、ポジスタR29の抵抗値が低減してポジスタR29の端子間電圧が下降し、トランジスタQ17のベース電圧Vbe未満となると、このトランジスタQ17がオフとなり、電界効果トランジスタQ7、Q8がオンとなって第四LED分割部94A、第五LED部95、第五LED分割部94B、第六LED部96、第六LED分割部94CのLED素子が再点灯する。以上の動作が行われることによって、第一LED分割部91A、第二LED部92、第二LED分割部91B、第三LED部93、第三LED分割部91C、第四LED分割部94A、第五LED部95、第五LED分割部94B、第六LED部96、第六LED分割部94Cの異常な温度上昇が抑制される
(LED電流制御トランジスタ)
When the inter-terminal voltage of the posistor R29 exceeds the base voltage Vbe, the transistor Q17 is turned on, and the gate voltages of the field effect transistors Q7, Q8 in the current limiting means 41 become 0 V, so that the field effect transistors Q7, Q8 are The LED elements of the fourth LED dividing section 94A, the fifth LED section 95, the fifth LED dividing section 94B, the sixth LED section 96, and the sixth LED dividing section 94C are turned off. When the LED element is turned off and the temperature of the substrate is lowered to a certain temperature, the resistance value of the posistor R29 is reduced and the voltage across the terminals of the posistor R29 is lowered to become less than the base voltage Vbe of the transistor Q17. The field effect transistors Q7 and Q8 are turned off, and the LED elements of the fourth LED dividing unit 94A, the fifth LED unit 95, the fifth LED dividing unit 94B, the sixth LED unit 96, and the sixth LED dividing unit 94C are turned on. Relight. By performing the above operation, the first LED division unit 91A, the second LED unit 92, the second LED division unit 91B, the third LED unit 93, the third LED division unit 91C, the fourth LED division unit 94A, Abnormal temperature rise in the five LED units 95, the fifth LED dividing unit 94B, the sixth LED unit 96, and the sixth LED dividing unit 94C is suppressed (LED current control transistor).

第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第三LED電流制御トランジスタQ3、第四LED電流制御トランジスタQ4は、各LED部に対応して、定電流駆動するための部材であり、トランジスタなどのスイッチング素子で構成される。特にFETは、ソース−ドレイン間飽和電圧がほぼゼロであるため、LED部への通電量を阻害することがなく好ましい。ただ、FETに限定されるものでなく、バイポーラトランジスタ等でも構成できることはいうまでもない。   The first LED current control transistor Q1, the second LED current control transistor Q2, the third LED current control transistor Q3, and the fourth LED current control transistor Q4 are members for constant current driving corresponding to each LED unit. And a switching element such as a transistor. In particular, FETs are preferable because the saturation voltage between the source and the drain is almost zero, and the amount of current supplied to the LED portion is not hindered. However, it is needless to say that the present invention is not limited to the FET, and can be configured by a bipolar transistor or the like.

第二LED部92、第三LED部93、第五LED部95、第六LED部96には、それぞれ第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第三LED電流制御トランジスタQ3、第四LED電流制御トランジスタQ4が並列に接続される。各LED電流制御トランジスタは、LED部に流れる電流量に応じて、ON状態や定電流制御が切り替わる。   The second LED unit 92, the third LED unit 93, the fifth LED unit 95, and the sixth LED unit 96 include a first LED current control transistor Q1, a second LED current control transistor Q2, and a third LED current control transistor Q3, respectively. The fourth LED current control transistor Q4 is connected in parallel. Each LED current control transistor is switched between ON state and constant current control according to the amount of current flowing through the LED unit.

LED電流制御トランジスタがOFFになると、バイパス経路に電流が流れなくなって、LED部に通電される。すなわち、第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第三LED電流制御トランジスタQ3、第四LED電流制御トランジスタQ4によってバイパスされる電流量を調整できるので、結果的に各LED部の通電量を制御できることになる。図8の例では、第二LED部92と並列に第一LED電流制御トランジスタQ1が接続され、第一バイパス経路BP1を形成する。また、第三LED部93と並列に第二LED電流制御トランジスタQ2が接続され、第二バイパス経路BP2を形成する。さらに、第五LED部95と並列に第三LED電流制御トランジスタQ3が接続され、第三バイパス経路BP3を形成する。第六LED部96と並列に第四LED電流制御トランジスタQ4が接続され、第四バイパス経路BP4を形成する。さらにまた第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6が接続され、第1LED分割部91A、第二LED部92、第二LED分割部91B、第三LED部93及び第三LED分割部91Cの通電量を制御する。第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8が接続され、第四LED分割部94A、第五LED部95、第二LED分割部94B、第六LED部96及び第六LED分割部94Cの通電量を制御する。   When the LED current control transistor is turned off, no current flows through the bypass path, and the LED portion is energized. That is, the amount of current bypassed by the first LED current control transistor Q1, the second LED current control transistor Q2, the third LED current control transistor Q3, and the fourth LED current control transistor Q4 can be adjusted. It is possible to control the energization amount. In the example of FIG. 8, the first LED current control transistor Q1 is connected in parallel with the second LED unit 92, and the first bypass path BP1 is formed. In addition, the second LED current control transistor Q2 is connected in parallel with the third LED section 93 to form a second bypass path BP2. Further, a third LED current control transistor Q3 is connected in parallel with the fifth LED unit 95, and a third bypass path BP3 is formed. A fourth LED current control transistor Q4 is connected in parallel with the sixth LED unit 96 to form a fourth bypass path BP4. Furthermore, the fifth LED current control transistor Q5 and the sixth LED current control transistor Q6 are connected, and the first LED dividing unit 91A, the second LED unit 92, the second LED dividing unit 91B, the third LED unit 93, and the third LED dividing unit. The energization amount of the part 91C is controlled. The seventh LED current control transistor Q7 and the eighth LED current control transistor Q8 are connected, and the fourth LED dividing unit 94A, the fifth LED unit 95, the second LED dividing unit 94B, the sixth LED unit 96, and the sixth LED dividing unit. The energization amount of 94C is controlled.

ここで第一LED部91(第一LED分割部91A、第二LED分割部91B及び第三LED分割部91C)は、常に点灯させるので、バイパスを行う必要がなく、並列に接続されたバイパス経路やLED電流制御トランジスタを設けていない。第四LED部94も同様である。
(電流検出トランジスタ)
Here, since the first LED unit 91 (the first LED dividing unit 91A, the second LED dividing unit 91B, and the third LED dividing unit 91C) is always turned on, there is no need to perform bypass, and bypass paths connected in parallel. No LED current control transistor is provided. The fourth LED unit 94 is the same.
(Current detection transistor)

第一電流検出トランジスタQ9、第二電流検出トランジスタQ10、第三電流検出トランジスタQ11、第四電流検出トランジスタQ12は、それぞれ第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第三LED電流制御トランジスタQ3、第四LED電流制御トランジスタQ4に直列に接続され、適切なタイミングで定電流駆動を行うよう制御する部材である。電流検出トランジスタとして、例えばバイポーラトランジスタを使用することができる。
(電流検出手段)
The first current detection transistor Q9, the second current detection transistor Q10, the third current detection transistor Q11, and the fourth current detection transistor Q12 are respectively a first LED current control transistor Q1, a second LED current control transistor Q2, and a third LED current. This is a member that is connected in series to the control transistor Q3 and the fourth LED current control transistor Q4, and controls to perform constant current driving at an appropriate timing. As the current detection transistor, for example, a bipolar transistor can be used.
(Current detection means)

電流検出手段は、電流検出抵抗R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12で構成される。電流検出抵抗R1、R2は、第二LED部92に通電される電流を検出する他、第一LED電流制御トランジスタQ1に流れる電流も検出する。このように電流検出抵抗R1〜R8及びR9〜R12は、出力ラインOLに流れる電流を検出している。電流検出抵抗の抵抗値を、R1=R2=R5=R6>R3=R4=R7=R8とすることで、検出する電流値に差を設け、第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2等が適時動作するよう構成される。具体的には、電流検出抵抗R1、R2の検出値でもって、第一電流検出トランジスタQ9及び第一LED電流制御トランジスタQ1が動作され、一方電流検出抵抗R3、R4の検出値でもって第二電流検出トランジスタQ10及び第二LED電流制御トランジスタQ2が動作される。   The current detection means includes current detection resistors R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, and R12. The current detection resistors R1 and R2 detect a current flowing through the first LED current control transistor Q1 in addition to detecting a current passed through the second LED unit 92. As described above, the current detection resistors R1 to R8 and R9 to R12 detect the current flowing through the output line OL. By setting the resistance value of the current detection resistor to R1 = R2 = R5 = R6> R3 = R4 = R7 = R8, a difference is provided in the detected current value, and the first LED current control transistor Q1 and the second LED current control The transistor Q2 and the like are configured to operate in a timely manner. Specifically, the first current detection transistor Q9 and the first LED current control transistor Q1 are operated with the detection values of the current detection resistors R1 and R2, while the second current is detected with the detection values of the current detection resistors R3 and R4. The detection transistor Q10 and the second LED current control transistor Q2 are operated.

なお、図8では、電流検出抵抗をLED部毎に設けているが、これに限定されるものではなく、一つの電流検出抵抗を複数のLED部で共通の電流検出抵抗として使用することもできる。すなわち、各LED部制御回路が、共通の電流検出抵抗の電流量に基づいて制御を行うことにより、回路構成を簡素化することができる。
(電流制限手段)
In FIG. 8, a current detection resistor is provided for each LED unit. However, the present invention is not limited to this, and a single current detection resistor can be used as a common current detection resistor in a plurality of LED units. . That is, the circuit configuration can be simplified by controlling each LED unit control circuit based on the current amount of the common current detection resistor.
(Current limiting means)

電流制限手段41は、ローパスフィルタ回路21の出力端子に並列接続された抵抗R25、R26及びツェナーダイオードD5の直列回路と、抵抗R25、R26及びツェナーダイオードD5の直列回路の中点に並列接続された抵抗R21、R22と第五電流検出トランジスタQ13、第六電流検出トランジスタQ14とがそれぞれ直列に接続された回路と、抵抗R21、R22と第五電流検出トランジスタQ13、第六電流検出トランジスタQ14とがそれぞれ直列に接続された回路の中点にゲートが接続された第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6と、第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6に直列接続された電流検出抵抗R9、R10とからなる回路を備える。第一LED集合体101、第五LED電流制御トランジスタQ5、抵抗R9の回路、及び、第一LED集合体101、第六LED電流制御トランジスタQ6、抵抗R10の回路は、ローパスフィルタ回路21の出力端子に並列接続されている。   The current limiting means 41 is connected in parallel to the middle point of resistors R25 and R26 and a Zener diode D5 connected in parallel to the output terminal of the low-pass filter circuit 21 and the series circuit of resistors R25, R26 and Zener diode D5. A circuit in which the resistors R21, R22 and the fifth current detection transistor Q13, the sixth current detection transistor Q14 are connected in series, and the resistors R21, R22, the fifth current detection transistor Q13, and the sixth current detection transistor Q14, respectively. The fifth LED current control transistor Q5, the sixth LED current control transistor Q6, and the fifth LED current control transistor Q5, the sixth LED current control transistor Q6, whose gate is connected to the midpoint of the series connected circuit, are connected in series. Circuit comprising current sensing resistors R9 and R10 . The circuit of the first LED aggregate 101, the fifth LED current control transistor Q5, and the resistor R9, and the circuit of the first LED aggregate 101, the sixth LED current control transistor Q6, and the resistor R10 are output terminals of the low-pass filter circuit 21. Are connected in parallel.

電流制限手段41は、さらに抵抗R25、R26及びツェナーダイオードD5の直列回路の中点に並列接続された抵抗R23、R24とトランジスタQ15、Q16とがそれぞれ直列に接続された回路と、抵抗R23、R24と第七電流検出トランジスタQ15、第八電流検出トランジスタQ16とがそれぞれ直列に接続された回路の中点にゲートが接続された第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8と、第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8に直列接続された電流検出抵抗R11、R12とからなる回路を備える。第二LED集合体102、第七LED電流制御トランジスタQ7、電流検出抵抗R11の回路、及び、第二LED集合体102、第八LED電流制御トランジスタQ8、電流検出抵抗R12の回路は、ローパスフィルタ回路21の出力端子に並列接続されている。このように、第一LED集合体101と第二LED集合体102とに分けた回路構成とすることで、電流制限手段41と第一LED集合体101,第二LED集合体102との配線が交差することを防止して整然とした外観とすることができる。
(基準電流値)
The current limiting means 41 further includes a circuit in which resistors R23 and R24 connected in parallel to the midpoint of the series circuit of resistors R25 and R26 and a Zener diode D5 and transistors Q15 and Q16 are connected in series, and resistors R23 and R24, respectively. The seventh LED current control transistor Q8, the eighth LED current control transistor Q8, and the eighth LED current control transistor Q8, the gate of which is connected to the midpoint of the circuit in which the seventh current detection transistor Q15 and the eighth current detection transistor Q16 are connected in series. A circuit including current detection resistors R11 and R12 connected in series to the seventh LED current control transistor Q7 and the eighth LED current control transistor Q8 is provided. The circuit of the second LED assembly 102, the seventh LED current control transistor Q7, the current detection resistor R11, and the circuit of the second LED assembly 102, the eighth LED current control transistor Q8, the current detection resistor R12 are low-pass filter circuits. 21 output terminals are connected in parallel. In this way, the circuit configuration divided into the first LED assembly 101 and the second LED assembly 102 allows the wiring between the current limiting means 41 and the first LED assembly 101 and the second LED assembly 102 to be reduced. It is possible to obtain an orderly appearance by preventing crossing.
(Reference current value)

ここでは、第一電流検出トランジスタQ9が第一LED電流制御トランジスタQ1をONからOFFに切り替え、第三電流検出トランジスタQ11が第三LED電流制御トランジスタQ3をONからOFFに切り替える第一基準電流値を、第二電流検出トランジスタQ10が第二LED電流制御トランジスタQ2をONからOFFに切り替え、第四電流検出トランジスタQ12が第四LED電流制御トランジスタQ4をONからOFFに切り替える第二基準電流値よりも低く設定する。このように第一基準電流値<第二基準電流値となるよう設定することで、整流回路11で整流された入力電圧の上昇に伴い、第二LED部92と第三LED部93とをこの順で点灯されることができる。また入力電圧の下降時には、逆の順序となる(すなわち、第三LED部93と第二LED部92とがこの順で消灯する)。同様に、整流回路11で整流された入力電圧の上昇に伴い、第五LED部と第六LED部とがこの順で点灯されることができる。また入力電圧の下降時には、逆の順序となる(すなわち、第六LED部と第五LED部とがこの順に消灯する)。
(調光信号絶縁回路110)
Here, the first current detection transistor Q9 switches the first LED current control transistor Q1 from ON to OFF, and the third current detection transistor Q11 switches the third LED current control transistor Q3 from ON to OFF. The second current detection transistor Q10 switches the second LED current control transistor Q2 from ON to OFF, and the fourth current detection transistor Q12 lowers than the second reference current value that switches the fourth LED current control transistor Q4 from ON to OFF. Set. By setting the first reference current value to be smaller than the second reference current value in this way, the second LED unit 92 and the third LED unit 93 can be connected to each other as the input voltage rectified by the rectifier circuit 11 increases. Can be lit in order. Further, when the input voltage decreases, the order is reversed (that is, the third LED unit 93 and the second LED unit 92 are turned off in this order). Similarly, as the input voltage rectified by the rectifier circuit 11 increases, the fifth LED unit and the sixth LED unit can be lit in this order. When the input voltage is lowered, the order is reversed (that is, the sixth LED unit and the fifth LED unit are turned off in this order).
(Dimming signal isolation circuit 110)

調光信号絶縁回路110は、PWM調光信号を絶縁してPWM調光装置へ三相交流の高電圧が印加されるのを防ぐための回路であり、フォトカプラIC1とこのフォトカプラIC1の発光側の電流制限用の抵抗R30とを備えることができる。PWM調光信号によりフォトカプラIC1がオンとなると、第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6、第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8のゲート電圧が0Vとなることから、この第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6、第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8がオフとなり、LED部が消灯する。フォトカプラIC1がオフとなると、第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6、第七LED電流制御トランジスタQ7、第八LED電流制御トランジスタQ8がオンとなり、LED部が点灯する。
(実施例1の正常時の動作例)
The dimming signal isolation circuit 110 is a circuit for insulating the PWM dimming signal to prevent a high voltage of three-phase alternating current from being applied to the PWM dimming device. The photocoupler IC1 and the light emission of the photocoupler IC1 And a current limiting resistor R30. When the photocoupler IC1 is turned on by the PWM dimming signal, the gate voltages of the fifth LED current control transistor Q5, the sixth LED current control transistor Q6, the seventh LED current control transistor Q7, and the eighth LED current control transistor Q8 are 0V. Therefore, the fifth LED current control transistor Q5, the sixth LED current control transistor Q6, the seventh LED current control transistor Q7, and the eighth LED current control transistor Q8 are turned off, and the LED portion is turned off. When the photocoupler IC1 is turned off, the fifth LED current control transistor Q5, the sixth LED current control transistor Q6, the seventh LED current control transistor Q7, and the eighth LED current control transistor Q8 are turned on, and the LED portion is lit.
(Example of normal operation of the first embodiment)

以下、図8の回路例において、図2に示す三相交流を整流回路で整流した、図3に示す脈流電圧を入力する場合の、第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6の動作を説明する。なお、第三電流制御トランジスタQ3、第四LED電流制御トランジスタQ4、第七LED電流制御トランジスタQ7、第八電流制御トランジスタQ8の動作は、これら第一LED電流制御トランジスタQ1、第二LED電流制御トランジスタQ2、第五LED電流制御トランジスタQ5、第六LED電流制御トランジスタQ6と基本的に同じであるので、説明を省略する。   Hereinafter, in the circuit example of FIG. 8, the first LED current control transistor Q1 and the second LED current control transistor in the case of inputting the pulsating voltage shown in FIG. 3 obtained by rectifying the three-phase alternating current shown in FIG. The operation of Q2, the fifth LED current control transistor Q5, and the sixth LED current control transistor Q6 will be described. The operations of the third current control transistor Q3, the fourth LED current control transistor Q4, the seventh LED current control transistor Q7, and the eighth current control transistor Q8 are the same as those of the first LED current control transistor Q1 and the second LED current control transistor. Since it is basically the same as Q2, the fifth LED current control transistor Q5, and the sixth LED current control transistor Q6, description thereof will be omitted.

ここでは、定格電圧を220Vとし、三相交流電源から定格220Vの交流電圧が入力される例を、図10及び図11に基づいて説明する。図10は、AC220Vの三相交流を整流回路11で整流した脈流電圧と本実施例に係るLED部に印加される電圧との電圧波形を示すグラフである。また図11は、AC220Vの場合での本実施例に係る発光ダイオード駆動装置で得られる光束を示す。   Here, an example in which the rated voltage is 220 V and an AC voltage having a rated voltage of 220 V is input from a three-phase AC power supply will be described with reference to FIGS. 10 and 11. FIG. 10 is a graph showing a voltage waveform of a pulsating voltage obtained by rectifying AC220V three-phase alternating current by the rectifier circuit 11 and a voltage applied to the LED unit according to the present embodiment. FIG. 11 shows the luminous flux obtained by the light emitting diode driving apparatus according to the present embodiment in the case of AC220V.

定格220Vの三相交流電圧を全波整流すると、その瞬時電圧は269V〜311Vの範囲で脈動する。よって、最小脈流電圧は269V、最大脈流電圧は311Vとなる。上述の通り、第二順方向電圧Vf2”は、264Vに設定されているため、最小脈流電圧よりも低く、図10に示す最小脈流電圧の近傍では、第一LED部91と第二LED部92が点灯される。この状態では、第一通電制御手段である第一LED電流制御トランジスタQ1は常時OFF状態となる。   When full-wave rectification is performed on a three-phase AC voltage having a rating of 220 V, the instantaneous voltage pulsates in the range of 269 V to 311 V. Therefore, the minimum pulsating voltage is 269V and the maximum pulsating voltage is 311V. As described above, since the second forward voltage Vf2 ″ is set to 264 V, it is lower than the minimum pulsating voltage, and in the vicinity of the minimum pulsating voltage shown in FIG. The unit 92 is turned on, and in this state, the first LED current control transistor Q1, which is the first energization control means, is always in the OFF state.

ただし、脈流電圧が、第三LED部93が点灯される第三順方向電圧Vf3”である288V以下の領域では、第三LED部93は点灯されない。第一LED部91及び第二LED部92が点灯している期間は、第二通電制御手段である第二LED電流制御トランジスタQ2によって定電流動作がなされ、脈流電圧が増加してもLED部を流れる電流は増加しない。第二LED電流制御トランジスタQ2は、電流検出手段である電流検出抵抗R3、R4でもってLED部を流れるLED電流を検出し、この値でもってON/OFFや定電流動作を制御する。   However, in a region where the pulsating voltage is 288 V or less which is the third forward voltage Vf3 ″ at which the third LED unit 93 is lit, the third LED unit 93 is not lit. The first LED unit 91 and the second LED unit. During the period when 92 is lit, the constant current operation is performed by the second LED current control transistor Q2 which is the second energization control means, and even if the pulsating voltage increases, the current flowing through the LED portion does not increase. The current control transistor Q2 detects the LED current flowing through the LED section with current detection resistors R3 and R4 which are current detection means, and controls ON / OFF and constant current operation with this value.

次に脈流電圧が上昇すると、第二通電制御手段である第二LED電流制御トランジスタQ2が第一LED部91と第二LED部92を定電流で駆動する。脈流電圧がさらに上昇して、第三順方向電圧Vf3”である288Vまで達すると、第三LED部93に電流が流れ始め、第二LED電流制御トランジスタQ2の電流制限値を超えて電流が増加する。この結果、第二LED電流制御トランジスタQ2が定電流動作からOFFに切り替わる。これにより、第一LED部91、第二LED部92、第三LED部93のすべてが点灯される。このとき、第一LED部91、第二LED部92、第三LED部93は、電流制限手段41によって定電流で点灯する。   Next, when the pulsating voltage rises, the second LED current control transistor Q2, which is the second energization control means, drives the first LED unit 91 and the second LED unit 92 with a constant current. When the pulsating voltage further rises to reach 288 V, which is the third forward voltage Vf3 ″, current starts to flow through the third LED section 93, and the current exceeds the current limit value of the second LED current control transistor Q2. As a result, the second LED current control transistor Q2 is switched from the constant current operation to OFF, whereby all of the first LED portion 91, the second LED portion 92, and the third LED portion 93 are lit. At this time, the first LED unit 91, the second LED unit 92, and the third LED unit 93 are lit at a constant current by the current limiting means 41.

そして脈流電圧が低下して第三順方向電圧Vf3”になると、再び第三LED部93が消灯し、第二LED電流制御トランジスタQ2が定電流動作を開始し、LED部の電流値を一定値に維持する。このように、第一LED部91と第二LED部92は常時点灯され、第三LED部93のみが脈流電圧の瞬時値に応じてON/OFFを繰り返す点滅状態となる。このときのLED部の発する光束は、図11のようになり、定期的に低下するものの、すべてのLED部がOFFすることはなく、常時点灯が維持される。このように、電流検出抵抗R1,R2、R3,R4、R9、R10とLED電流検出トランジスタQ9、Q10、Q13、Q14の設定により、定電流駆動するレベルを自由に設定できる。
(実施例1の電圧低下時の動作例)
When the pulsating voltage decreases to the third forward voltage Vf3 ″, the third LED portion 93 is turned off again, the second LED current control transistor Q2 starts constant current operation, and the current value of the LED portion is kept constant. Thus, the first LED portion 91 and the second LED portion 92 are always lit, and only the third LED portion 93 is in a blinking state that repeats ON / OFF according to the instantaneous value of the pulsating voltage. The luminous flux emitted from the LED unit at this time is as shown in Fig. 11 and periodically decreases, but all the LED units are not turned off and are always lit. By setting R1, R2, R3, R4, R9, R10 and LED current detection transistors Q9, Q10, Q13, Q14, the level for constant current driving can be freely set.
(Example of operation when voltage drops in Example 1)

次に、三相交流電源の電圧が変動し、定格電圧であるAC220VからAC200Vに変動した場合の動作について、図12及び図13に基づいて説明する。図12はAC200Vの三相交流を整流回路11で整流した脈流電圧と本実施例に係るLED部に印加される電圧との電圧波形を示すグラフである。図13はAC200Vの場合での本実施例に係る発光ダイオード駆動装置で得られる光束を示す。AC200Vを全波整流した脈流電圧の瞬時電圧は245V〜283Vの範囲で変動する。この場合においても、第一順方向電圧Vf1”=240Vは、低下した脈流電圧の低下最小脈流電圧である245Vよりも低く設定されているため、第一LED部91は低下脈流電圧の瞬時値によらず常時点灯している。一方、第三順方向電圧Vf3”=288Vは、低下最大脈流電圧の283Vよりも低いため、第三LED部93は低下脈流電圧の瞬時値によらず常時消灯されることとなる。したがって、第二LED部92が、低下脈流電圧の瞬時値に応じて、点滅される。   Next, the operation when the voltage of the three-phase AC power supply fluctuates and fluctuates from AC220V, which is the rated voltage, to AC200V will be described based on FIG. 12 and FIG. FIG. 12 is a graph showing a voltage waveform of a pulsating voltage obtained by rectifying AC200V three-phase alternating current by the rectifier circuit 11 and a voltage applied to the LED unit according to the present embodiment. FIG. 13 shows the luminous flux obtained by the light emitting diode driving apparatus according to the present embodiment in the case of AC200V. The instantaneous voltage of the pulsating voltage obtained by full-wave rectification of AC 200V varies in the range of 245V to 283V. Also in this case, since the first forward voltage Vf1 ″ = 240V is set lower than 245V, which is the reduced minimum pulsating voltage of the reduced pulsating voltage, the first LED unit 91 has the reduced pulsating voltage. On the other hand, since the third forward voltage Vf3 ″ = 288 V is lower than the 283 V of the reduced maximum pulsating voltage, the third LED unit 93 changes to the instantaneous value of the declining pulsating voltage. It will always be turned off regardless. Therefore, the second LED unit 92 blinks in accordance with the instantaneous value of the reduced pulsating voltage.

具体的には、図12及び図13に示すように、低下脈流電圧が第二順方向電圧よりも低い区間においては、第一LED電流制御トランジスタQ1により定電流制御されて、第一LED部91のみが点灯される。低下脈流電圧が増加しても第一LED部91を流れる電流は増加しない。第一LED電流制御トランジスタQ1は、電流検出手段である電流検出抵抗R1、R2でもって第一LED部91を流れるLED電流を検出し、この値でもってON/OFFや定電流動作を制御する。   Specifically, as shown in FIGS. 12 and 13, in a section where the reduced pulsating voltage is lower than the second forward voltage, the first LED current control transistor Q1 performs constant current control, and the first LED unit Only 91 is lit. Even if the drop pulsating voltage increases, the current flowing through the first LED unit 91 does not increase. The first LED current control transistor Q1 detects the LED current flowing through the first LED unit 91 with current detection resistors R1 and R2 which are current detection means, and controls ON / OFF and constant current operation with this value.

次に脈流電圧が上昇すると、第一通電制御手段である第一LED電流制御トランジスタQ1が第一LED部91を定電流で駆動する。脈流電圧がさらに上昇して、第二順方向電圧Vf2”=264Vまで達すると、第二LED部92に電流が流れ始め、第一LED電流制御トランジスタQ1の電流制限値を超えて電流が増加する。この結果、第一LED電流制御トランジスタQ1が定電流動作からOFFに切り替わる。これにより、第一LED部91及び第二LED部92が点灯される。このとき、第一LED部91、第二LED部92は、電流制限手段41によって定電流で点灯する。   Next, when the pulsating voltage rises, the first LED current control transistor Q1, which is the first energization control means, drives the first LED unit 91 with a constant current. When the pulsating voltage further rises and reaches the second forward voltage Vf2 ″ = 264V, current begins to flow through the second LED section 92, and the current increases beyond the current limit value of the first LED current control transistor Q1. As a result, the first LED current control transistor Q1 is switched from the constant current operation to OFF, thereby turning on the first LED unit 91 and the second LED unit 92. The two LED units 92 are lit at a constant current by the current limiting means 41.

そして脈流電圧が低下して第二順方向電圧Vf2”以下になると、再び第二LED部92が消灯し、第一LED電流制御トランジスタQ1が定電流動作を開始し、LED電流を一定値に維持する。このように、第一LED部91は常時点灯され、第三LED部93は常時消灯され、第二LED部92のみが低下脈流電圧の瞬時値に応じてON/OFFを繰り返す点滅状態となる。このときのLED部の発する光束は、図13のようになり、定期的に低下するものの、すべてのLED部がOFFすることはなく、常時点灯が維持される。   Then, when the pulsating voltage decreases and becomes equal to or lower than the second forward voltage Vf2 ″, the second LED portion 92 is turned off again, the first LED current control transistor Q1 starts constant current operation, and the LED current is set to a constant value. In this way, the first LED unit 91 is always turned on, the third LED unit 93 is always turned off, and only the second LED unit 92 blinks repeatedly ON / OFF according to the instantaneous value of the reduced pulsating voltage. At this time, the luminous flux emitted from the LED unit is as shown in Fig. 13 and periodically decreases, but all the LED units are not turned off, and the lighting is always maintained.

以上のように、LED部を個別にON/OFF可能な複数段に構成したことで、特に駆動素子の損失を低減した高効率な動作が実現される。例えば、図18に示すようなLED素子を直列に接続した、いわば一段での発光ダイオード駆動装置において、電圧変動時(AC200V)にも常時点灯させようとすれば、図14Aのグラフに示すように、低下最小脈流電圧(245V)ですべてのLED素子が点灯するように設計する必要がある。この場合に、LED素子の駆動に使用されない電圧は、図において斜線で示す領域となり、ダイオード等の駆動素子で発熱となって消費される。定格時(AC220V)においては図14Bに示すように、駆動損失が大きくなり、さらに電源電圧が変動して上昇した場合(AC240V)は、図14Cに示すように損失が一層大きくなる。これに対して、上記実施例1においては、図10、図12のグラフにおいて斜線で示すように、定格時、電圧変動時においても、損失の少ない高効率な動作が実現される。
(比較例1)
As described above, by configuring the LED units in a plurality of stages that can be individually turned on / off, a highly efficient operation with particularly reduced loss of the drive element is realized. For example, in a light-emitting diode driving device in which LED elements as shown in FIG. 18 are connected in series, that is, in a single stage, if it is always lit even when the voltage fluctuates (AC 200 V), as shown in the graph of FIG. 14A. Therefore, it is necessary to design so that all the LED elements are lit at the reduced minimum pulsating voltage (245V). In this case, a voltage that is not used for driving the LED element is a region indicated by hatching in the figure, and is consumed as heat generated by a driving element such as a diode. At the rated time (AC220V), the drive loss increases as shown in FIG. 14B, and when the power supply voltage fluctuates and rises (AC240V), the loss further increases as shown in FIG. 14C. On the other hand, in the first embodiment, as indicated by the oblique lines in the graphs of FIGS. 10 and 12, a highly efficient operation with little loss is realized even at the time of rating and voltage fluctuation.
(Comparative Example 1)

比較例1として、図18に示した発光ダイオード駆動装置において、LED素子を40組使用し、三相交流電源を接続した場合の駆動損失を計算した。この結果、比較例1の駆動損失は、AC200Vにおいて11W、AC220Vにおいて22W、AC240Vにおいて33Wとなった。これに対して実施例1に係る発光ダイオード駆動装置では、AC200Vにおいて5W、AC220Vにおいて6W、AC240Vにおいて13Wとなり、比較例1に対して損失を55%、73%、61%も削減している。駆動損失の低下は、駆動素子の発熱量の削減に繋がり、装置の信頼性の向上にも繋がる。例えば耐電圧性を考慮した場合、基板を絶縁性の樹脂基板とすることが望ましいが、樹脂基板は放熱性に劣るため、発熱量が大きい場合は不利となる。これに対して、発熱量を削減することによって、このような樹脂基板の利用が可能となる。   As Comparative Example 1, the driving loss was calculated when 40 sets of LED elements were used and a three-phase AC power source was connected in the LED driving device shown in FIG. As a result, the driving loss of Comparative Example 1 was 11 W at AC 200 V, 22 W at AC 220 V, and 33 W at AC 240 V. On the other hand, in the light emitting diode driving device according to Example 1, the power consumption is 5 W at AC 200 V, 6 W at AC 220 V, and 13 W at AC 240 V, and the loss is reduced by 55%, 73%, and 61% compared to Comparative Example 1. A reduction in drive loss leads to a reduction in the amount of heat generated by the drive element, and also leads to an improvement in device reliability. For example, considering voltage resistance, it is desirable that the substrate is an insulating resin substrate. However, since the resin substrate is inferior in heat dissipation, it is disadvantageous when the amount of heat generated is large. On the other hand, use of such a resin substrate becomes possible by reducing the heat generation amount.

なお、上記構成では、LED部数を3としたが、LED部数は2とすることも、あるいは4以上にすることができる。LED部数が4以上であれば、例えばAC220Vの三相交流電圧が変動して入力電圧が240Vに上昇した場合に、第一LED部91〜第三LED部93を常時点灯させ、電圧波形に応じて追加した第四LED部を点滅させることができる。このようにすると定格電圧をAC220Vとした場合に、例えば220V±20Vの範囲で変動しても、駆動損失を抑制した制御を行うことができる。
(比較例2)
In the above configuration, the number of LED units is three, but the number of LED units can be two, or four or more. If the number of LED units is 4 or more, for example, when the three-phase AC voltage of AC220V fluctuates and the input voltage rises to 240V, the first LED unit 91 to the third LED unit 93 are always lit and according to the voltage waveform The added fourth LED unit can be blinked. In this way, when the rated voltage is AC220V, even if the voltage fluctuates within the range of 220V ± 20V, for example, it is possible to perform control while suppressing drive loss.
(Comparative Example 2)

さらに比較のため、単相交流電源を用いて発光ダイオード駆動装置を駆動させた場合の駆動損失を、図15、図16A〜図16Fに基づいて説明する。ここでは、図15に示す比較例2に係る二段の発光ダイオード駆動装置1500に、AC220Vを定格とする単相交流電源1Φに接続して、電源電圧を変動させた場合の脈流電圧とLED電流とを測定した。図16Aは、図15の発光ダイオード駆動装置1500をAC200Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Bは、AC220Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Cは、AC240Vで駆動させた際の脈流電圧とLED電圧を示すグラフ、図16Dは図16Aにおける光束を示すグラフ、図16Eは図16Bにおける光束を示すグラフ、図16Fは図16Cにおける光束を示すグラフである。図16A〜図16Cにおいて破線で示した領域が駆動損失となる。この比較例2の駆動損失は、AC200Vにおいて10W、AC220Vにおいて12W、AC240Vにおいて18Wとなり、実施例1はいずれも少ない駆動損失を実現していることが確認された。   Further, for comparison, drive loss when the light emitting diode driving device is driven using a single-phase AC power supply will be described with reference to FIGS. 15 and 16A to 16F. Here, the pulsating current voltage and the LED when the power supply voltage is changed by connecting to the two-stage light emitting diode driving apparatus 1500 according to Comparative Example 2 shown in FIG. The current was measured. 16A is a graph showing the pulsating voltage and LED voltage when the LED driving device 1500 of FIG. 15 is driven by AC 200V, and FIG. 16B is a graph showing the pulsating voltage and LED voltage when driving by AC 220V. 16C is a graph showing the pulsating voltage and the LED voltage when driven at 240 V AC, FIG. 16D is a graph showing the luminous flux in FIG. 16A, FIG. 16E is a graph showing the luminous flux in FIG. 16B, and FIG. It is a graph which shows a light beam. A region indicated by a broken line in FIGS. 16A to 16C is a drive loss. The drive loss of Comparative Example 2 was 10 W at AC 200 V, 12 W at AC 220 V, and 18 W at AC 240 V, and it was confirmed that all of Examples 1 realized low drive loss.

また、単相交流電源を整流すると、0Vとなる領域が発生するため、図16D〜図16Fに示すように、不点灯期間が生じる。この結果、ちらつきが顕著となり、発光の品質も低下する。光束の平均値は、図17A、図17Bに示すように、比較例2では15540lm、実施例1では16370lmとなり、平均値で見た場合実施例1の方が優れていることが確認された。特に図17Aに示すように、比較例2ではピーク時と不点灯時の差が大きいため、ちらつきの度合いが目立つ。これに対して、実施例1ではこれらの差が極めて小さく、より平坦で均一な発光が得られる。   Further, when the single-phase AC power supply is rectified, a region of 0 V is generated, and thus a non-lighting period occurs as shown in FIGS. 16D to 16F. As a result, flickering becomes noticeable and the quality of light emission also decreases. As shown in FIGS. 17A and 17B, the average value of the luminous flux was 15540 lm in Comparative Example 2 and 16370 lm in Example 1, and it was confirmed that Example 1 was superior when viewed in terms of the average value. In particular, as shown in FIG. 17A, since the difference between the peak time and the non-lighting time is large in Comparative Example 2, the degree of flicker is conspicuous. On the other hand, in Example 1, these differences are extremely small, and flatter and uniform light emission can be obtained.

このように、三相交流の定格電圧が変動する場合であっても、電力を有効に利用して駆動損失を低減することができる。また、三相交流電源から定格電圧に対して変動した交流電圧が全波整流回路11に入力され、第一LED部は交流電圧が変動しても常に点灯するため高品質な照明装置を実現できる。また、全波整流した電圧波形は0Vとなる区間がないので、ちらつきを防止することができ、また平滑用の電解コンデンサを設けることを要しない。さらに、本実施例に係る発光ダイオード駆動装置を用いることで高品質な漁灯を実現することができる。これによって、LED漁灯のもとで作業する作業者が抱く高い照度の照明光のちらつきによる不快感を低減できる。   Thus, even when the rated voltage of the three-phase alternating current fluctuates, it is possible to reduce the drive loss by effectively using the power. In addition, an alternating voltage fluctuating with respect to the rated voltage from the three-phase alternating current power supply is input to the full-wave rectifier circuit 11, and the first LED portion is always lit even if the alternating voltage fluctuates, so that a high quality lighting device can be realized. . In addition, since the full-wave rectified voltage waveform has no section where 0 V is applied, flickering can be prevented and it is not necessary to provide a smoothing electrolytic capacitor. Furthermore, a high-quality fishing light can be realized by using the light emitting diode driving device according to the present embodiment. Thereby, the discomfort caused by flickering of illumination light with high illuminance held by an operator working under an LED fishing light can be reduced.

本発明に係る発光ダイオード駆動装置は、ちらつきを防止した高品質な照明装置を実現できる。さらに、高品質な漁灯としても利用することができる。   The light emitting diode driving device according to the present invention can realize a high-quality lighting device that prevents flickering. Furthermore, it can be used as a high-quality fishing light.

1、100、200、1500…発光ダイオード駆動装置
11、111、111’…全波整流回路
21…ローパスフィルタ回路
31…温度保護部
41、141、141’…電流制限手段
51…第一LED部制御回路
61…第二LED部制御回路
71…第三LED部制御回路
81…第四LED部制御回路
190…第一LED集合体
91、191、191’…第一LED部;91A…第一LED分割部;91B…第二LED分割部;91C…第三LED分割部
92、192、192’…第二LED部
93、193’…第三LED部
94…第四LED部;94A…第四LED分割部;94B…第五LED分割部;94C…第六LED分割部
95…第五LED部
96…第六LED部
101…第一LED集合体
102…第二LED集合体
103…基板
104、104’…電流検出手段
110…調光信号絶縁回路
122…LED
123…トランジスタ
151、151’…第一電流制御手段
152’ …第二電流制御手段
AP…三相交流電源
1Φ…単相交流電源
Vf1、Vf1’、Vf1”…第一順方向電圧
Vf2、Vf2’、Vf2”…第二順方向電圧
Vf3’、Vf3”…第三順方向電圧
BP1…第一バイパス経路
BP2…第二バイパス経路
BP3…第三バイパス経路
BP4…第四バイパス経路
OL…出力ライン
Q1…第一LED電流制御トランジスタ
Q2…第二LED電流制御トランジスタ
Q3…第三LED電流制御トランジスタ
Q4…第四LED電流制御トランジスタ
Q5…第五LED電流制御トランジスタ
Q6…第六LED電流制御トランジスタ
Q7…第七LED電流制御トランジスタ
Q8…第八LED電流制御トランジスタ
Q9…第一電流検出トランジスタ
Q10…第二電流検出トランジスタ
Q11…第三電流検出トランジスタ
Q12…第四電流検出トランジスタ
Q13…第五電流検出トランジスタ
Q14…第六電流検出トランジスタ
Q15…第七電流検出トランジスタ
Q16…第八電流検出トランジスタ
Q17…トランジスタ
R1…電流検出抵抗
R2…電流検出抵抗
R3…電流検出抵抗
R4…電流検出抵抗
R5…電流検出抵抗
R6…電流検出抵抗
R7…電流検出抵抗
R8…電流検出抵抗
R9…電流検出抵抗
R10…電流検出抵抗
R11…電流検出抵抗
R12…電流検出抵抗
R17…第一トランジスタ負荷抵抗
R18…第二トランジスタ負荷抵抗
R19…第三トランジスタ負荷抵抗
R20…第四トランジスタ負荷抵抗
R21…抵抗
R22…抵抗
R23…抵抗
R24…抵抗
R25…抵抗
R26…抵抗
R27…抵抗
R28…抵抗
R29…ポジスタ
DESCRIPTION OF SYMBOLS 1, 100, 200, 1500 ... Light-emitting-diode drive device 11, 111, 111 '... Full wave rectifier circuit 21 ... Low-pass filter circuit 31 ... Temperature protection part 41, 141, 141' ... Current limiting means 51 ... First LED part control Circuit 61 ... Second LED part control circuit 71 ... Third LED part control circuit 81 ... Fourth LED part control circuit 190 ... First LED aggregate 91, 191, 191 '... First LED part; 91A ... First LED division Part; 91B ... second LED division part; 91C ... third LED division part 92, 192, 192 '... second LED part 93, 193' ... third LED part 94 ... fourth LED part; 94A ... fourth LED division Part; 94B ... fifth LED division part; 94C ... sixth LED division part 95 ... fifth LED part 96 ... sixth LED part 101 ... first LED assembly 102 ... second LED assembly 103 ... substrate 104; 04 '... current detection unit 110 ... dimming signal insulation circuit 122 ... LED
123 ... transistors 151, 151 '... first current control means 152' ... second current control means AP ... three-phase AC power supply 1Φ ... single-phase AC power supplies Vf1, Vf1 ', Vf1 "... first forward voltages Vf2, Vf2' , Vf2 "... second forward voltage Vf3 ', Vf3" ... third forward voltage BP1 ... first bypass path BP2 ... second bypass path BP3 ... third bypass path BP4 ... fourth bypass path OL ... output line Q1 ... First LED current control transistor Q2 ... Second LED current control transistor Q3 ... Third LED current control transistor Q4 ... Fourth LED current control transistor Q5 ... Fifth LED current control transistor Q6 ... Sixth LED current control transistor Q7 ... Seventh LED current control transistor Q8 ... eighth LED current control transistor Q9 ... first current detection transistor Q10 ... second current Output transistor Q11 ... Third current detection transistor Q12 ... Fourth current detection transistor Q13 ... Fifth current detection transistor Q14 ... Sixth current detection transistor Q15 ... Seventh current detection transistor Q16 ... Eighth current detection transistor Q17 ... Transistor R1 ... Current Detection resistor R2 ... Current detection resistor R3 ... Current detection resistor R4 ... Current detection resistor R5 ... Current detection resistor R6 ... Current detection resistor R7 ... Current detection resistor R8 ... Current detection resistor R9 ... Current detection resistor R10 ... Current detection resistor R11 ... Current Detection resistor R12 ... Current detection resistor R17 ... First transistor load resistor R18 ... Second transistor load resistor R19 ... Third transistor load resistor R20 ... Fourth transistor load resistor R21 ... Resistor R22 ... Resistor R23 ... Resistor R24 ... Resistor R25 ... Resistor R26 ... resistor R27 ... resistor R28 ... Resistance R29 ... Posista

Claims (7)

三相交流電源に接続されて、三相交流電源の交流電圧を全波整流して整流電圧を得るための全波整流回路と、
前記全波整流回路の出力側と直列に接続される、少なくとも一のLED素子を含む第一LED部と、
前記第一LED部と直列に接続される、少なくとも一のLED素子を含む第二LED部と、
前記第二LED部と並列で、且つ前記第一LED部と直列に接続される、前記第一LED部への通電量を制御するための第一通電制御手段と、
前記第一LED部及び第二LED部と直列に接続され、前記第一LED部及び前記第二LED部への通電量を制御するための電流制限手段と
を備え、
前記第一LED部を点灯させるための第一順方向電圧は、前記第一LED部及び第二LED部を点灯させるための第二順方向電圧よりも低く、かつ
前記第一LED部を点灯させる第一順方向電圧を、電圧値が脈動する整流電圧が最小となる最小脈流電圧と同じか、これよりも低く設定されてなる発光ダイオード駆動装置。
A full-wave rectifier circuit connected to a three-phase AC power source to obtain a rectified voltage by full-wave rectifying the AC voltage of the three-phase AC power source;
A first LED unit including at least one LED element connected in series with the output side of the full-wave rectifier circuit;
A second LED unit including at least one LED element connected in series with the first LED unit;
A first energization control means for controlling the energization amount to the first LED unit, connected in parallel with the second LED unit and in series with the first LED unit;
The first LED unit and the second LED unit are connected in series, and includes a current limiting unit for controlling the amount of current supplied to the first LED unit and the second LED unit,
The first forward voltage for lighting the first LED unit is lower than the second forward voltage for lighting the first LED unit and the second LED unit, and the first LED unit is lit. A light emitting diode driving device in which a first forward voltage is set to be equal to or lower than a minimum pulsating voltage at which a rectified voltage at which a voltage value pulsates is minimized.
請求項1に記載の発光ダイオード駆動装置であって、さらに、
前記第一LED部及び第二LED部と直列に接続される、少なくとも一のLED素子を含む第三LED部と、
前記第三LED部と並列で、且つ前記第一LED部及び第二LED部と直列に接続される、該第一LED部及び前記第二LED部への通電量を制御するための第二通電制御手段と
を備えており、
前記第二順方向電圧が、三相交流電源の実効電圧が定格値の場合における定格最小脈流電圧と同じか、これよりも低くなるように設定されており、
前記第一LED部、第二LED部及び第三LED部を点灯させるための第三順方向電圧が、三相交流電源の電圧が定格値の場合における定格最小脈流電圧と、電圧値が脈動する整流電圧が最大となる定格最大脈流電圧との間に設定されており、
前記第一順方向電圧を、三相交流電源の実効電圧が定格値以下の低下実効電圧に低下した場合における低下最小脈流電圧と同じか、これよりも低く設定されてなる発光ダイオード駆動装置。
The light emitting diode driving device according to claim 1, further comprising:
A third LED unit including at least one LED element connected in series with the first LED unit and the second LED unit;
Second energization for controlling the energization amount to the first LED part and the second LED part, which is connected in parallel with the third LED part and in series with the first LED part and the second LED part. Control means,
The second forward voltage is set to be equal to or lower than the rated minimum pulsating voltage when the effective voltage of the three-phase AC power supply is a rated value,
The third forward voltage for lighting the first LED unit, the second LED unit, and the third LED unit is the rated minimum pulsating voltage when the voltage of the three-phase AC power supply is the rated value, and the voltage value is pulsating. Is set between the rated maximum pulsating voltage and the maximum rectified voltage
A light-emitting diode driving device in which the first forward voltage is set to be equal to or lower than a reduced minimum pulsating voltage when the effective voltage of a three-phase AC power supply is reduced to a reduced effective voltage that is lower than a rated value.
請求項2に記載の発光ダイオード駆動装置であって、
前記低下実効電圧が、定格電圧の5%〜25%分、定格電圧から低下した値である発光ダイオード駆動装置。
The light-emitting diode driving device according to claim 2,
The light-emitting diode driving device, wherein the reduced effective voltage is a value lower than the rated voltage by 5% to 25% of the rated voltage.
請求項1〜3のいずれか一に記載の発光ダイオード駆動装置であって、
前記第一LED部は、互いに直列に接続された、第一LED分割部と、第二LED分割部とに分割されており、
前記第一LED分割部と第二LED分割部との間に、前記第二LED部が接続されてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 3,
The first LED part is divided into a first LED split part and a second LED split part connected in series with each other,
A light-emitting diode driving device in which the second LED unit is connected between the first LED dividing unit and the second LED dividing unit.
請求項1〜4のいずれか一に記載の発光ダイオード駆動装置であって、さらに、
前記全波整流回路の出力側において、前記第一LED部及び第二LED部、並びに第一通電制御手段及び電流制限手段を含む第一LED駆動部と並列に接続された、同じく第一LED部及び第二LED部、並びに第一通電制御手段及び電流制限手段を含む第二LED駆動部と、
前記第一LED駆動部と第二LED駆動部とを実装する基板と
を備えており、
前記基板上において、
前記第一LED駆動部を実装する領域と、
第二LED駆動部を実装する領域とが分離されており、
さらに前記第一LED駆動部を実装する領域の内、
前記第一LED駆動部を構成する第一LED部及び第二LED部を含む第一LED集合体を実装する領域と、
前記第一LED駆動部を構成する第一通電制御手段及び電流制限手段を含む第一駆動集合体を実装する領域とが分離されており、
さらに前記第二LED駆動部を実装する領域の内、
前記第二LED駆動部を構成する第一LED部及び第二LED部を含む第二LED集合体を実装する領域と、
前記第二LED駆動部を構成する第一通電制御手段及び電流制限手段を含む第二駆動集合体を実装する領域とが分離されており、
前記基板上における前記第一LED駆動部を実装する領域と、第二LED駆動部を実装する領域とは、
前記第一駆動集合体を実装する領域と、第二駆動集合体を実装する領域とが近接し、
前記第一LED集合体を実装する領域と、第二LED集合体を実装する領域とが互いに遠ざかる姿勢にて、実装されてなる発光ダイオード駆動装置。
The light-emitting diode driving device according to any one of claims 1 to 4, further comprising:
Similarly, on the output side of the full-wave rectifier circuit, the first LED unit and the second LED unit, and the first LED unit connected in parallel with the first LED driving unit including the first energization control unit and the current limiting unit And the second LED unit, and the second LED driving unit including the first energization control means and the current limiting means,
A board on which the first LED driving unit and the second LED driving unit are mounted;
On the substrate,
A region for mounting the first LED driving unit;
The area where the second LED driving unit is mounted is separated,
Furthermore, in the area where the first LED driving unit is mounted,
A region for mounting the first LED assembly including the first LED unit and the second LED unit constituting the first LED driving unit;
A region for mounting the first drive assembly including the first energization control means and the current limiting means constituting the first LED drive unit is separated,
Furthermore, in the area where the second LED driving unit is mounted,
A region for mounting the second LED assembly including the first LED unit and the second LED unit constituting the second LED driving unit;
A region for mounting the second drive assembly including the first energization control means and the current limiting means constituting the second LED drive unit is separated,
The region for mounting the first LED driving unit and the region for mounting the second LED driving unit on the substrate are:
The area for mounting the first drive assembly and the area for mounting the second drive assembly are close to each other,
The light emitting diode drive device mounted in the attitude | position which the area | region which mounts said 1st LED assembly, and the area | region which mounts a 2nd LED assembly move away from each other.
請求項1〜5のいずれか一に記載の発光ダイオード駆動装置で駆動される漁灯。   A fishing lamp driven by the light-emitting diode driving device according to claim 1. 請求項1〜5のいずれか一に記載の発光ダイオード駆動装置で駆動される照明。   Illumination driven by the light emitting diode driving device according to any one of claims 1 to 5.
JP2014225465A 2014-11-05 2014-11-05 LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING AND FISHING LIGHT USING THE SAME Active JP6433244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014225465A JP6433244B2 (en) 2014-11-05 2014-11-05 LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING AND FISHING LIGHT USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225465A JP6433244B2 (en) 2014-11-05 2014-11-05 LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING AND FISHING LIGHT USING THE SAME

Publications (2)

Publication Number Publication Date
JP2016091826A true JP2016091826A (en) 2016-05-23
JP6433244B2 JP6433244B2 (en) 2018-12-05

Family

ID=56018872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225465A Active JP6433244B2 (en) 2014-11-05 2014-11-05 LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING AND FISHING LIGHT USING THE SAME

Country Status (1)

Country Link
JP (1) JP6433244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934039A (en) * 2016-06-15 2016-09-07 北京宇环通高科技有限公司 Apparatus and method for supplying power to LED illuminating lamp by using three-phase alternating current power supply
CN109442234A (en) * 2018-11-10 2019-03-08 深圳市创佳达光电有限公司 A kind of the AC COB light source mould group and its packaging method of three-phase alternating current driving

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129887A (en) * 2005-11-04 2007-05-24 Masashi Otsubo Dynamo lighting set for bicycle
JP2011040701A (en) * 2009-07-14 2011-02-24 Nichia Corp Light emitting diode driving circuit, and illumination control method of light emitting diode
JP2012133971A (en) * 2010-12-21 2012-07-12 Nichia Chem Ind Ltd Led lighting device provided with automatic flicker circuit
US20140125238A1 (en) * 2012-11-02 2014-05-08 Ki Soo KWON Apparatus for controlling light emitiing devices
JP2014161305A (en) * 2013-02-27 2014-09-08 Towa Denki Seisakusho Co Ltd Fishing light control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129887A (en) * 2005-11-04 2007-05-24 Masashi Otsubo Dynamo lighting set for bicycle
JP2011040701A (en) * 2009-07-14 2011-02-24 Nichia Corp Light emitting diode driving circuit, and illumination control method of light emitting diode
JP2012133971A (en) * 2010-12-21 2012-07-12 Nichia Chem Ind Ltd Led lighting device provided with automatic flicker circuit
US20140125238A1 (en) * 2012-11-02 2014-05-08 Ki Soo KWON Apparatus for controlling light emitiing devices
JP2014161305A (en) * 2013-02-27 2014-09-08 Towa Denki Seisakusho Co Ltd Fishing light control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105934039A (en) * 2016-06-15 2016-09-07 北京宇环通高科技有限公司 Apparatus and method for supplying power to LED illuminating lamp by using three-phase alternating current power supply
CN109442234A (en) * 2018-11-10 2019-03-08 深圳市创佳达光电有限公司 A kind of the AC COB light source mould group and its packaging method of three-phase alternating current driving

Also Published As

Publication number Publication date
JP6433244B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5821279B2 (en) Light emitting diode drive device
TWI532412B (en) Light-emitting diode driving apparatus
JP5720392B2 (en) Light emitting diode drive device
JP5471330B2 (en) Light emitting diode drive circuit and light emitting diode lighting control method
US9185758B2 (en) Controlling current flowing through LEDs in a LED light fixture
TWI469687B (en) Lighting control circuit, illuminating lamp using the lighting control circuit, and lighting device using the illuminating lamp
WO2011058805A1 (en) Light-emitting diode drive device and light-emitting diode illumination control method
JP5962889B2 (en) Light emitting diode drive device
JP2014503958A (en) AC drive LED lighting device
JP2011003467A (en) Lighting system
JP5644420B2 (en) LED driving device
JP6094959B2 (en) Lighting device and lighting apparatus
KR101306742B1 (en) A lighting device and a method of controlling a light emitted thereof
JP5644470B2 (en) LED lighting device with automatic flashing circuit
US9591706B2 (en) Universal voltage LED power supply with regenerating power source circuitry, non-isolated load, and 0-10V dimming circuit
JP5495009B2 (en) Lighting device
EP2360992A1 (en) Direct AC drive for LED lamps
JP6433244B2 (en) LIGHT EMITTING DIODE DRIVING DEVICE AND LIGHTING AND FISHING LIGHT USING THE SAME
JP5430716B2 (en) Lighting device
JP5322849B2 (en) Light emitting diode driving circuit, light emitting device and lighting device using the same
KR101326988B1 (en) Bleed circuit, lighting control circuit and method thereof
KR101349516B1 (en) Power device for led lighting
JP6848396B2 (en) Light emitting diode drive device and lighting using it, fishing light
JP2012160284A (en) Led lighting device, luminaire, and lighting control system
CN206908892U (en) A kind of LED emergency lightings lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6433244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250