JP2016091672A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2016091672A
JP2016091672A JP2014222261A JP2014222261A JP2016091672A JP 2016091672 A JP2016091672 A JP 2016091672A JP 2014222261 A JP2014222261 A JP 2014222261A JP 2014222261 A JP2014222261 A JP 2014222261A JP 2016091672 A JP2016091672 A JP 2016091672A
Authority
JP
Japan
Prior art keywords
fuel gas
fuel
plate
gas discharge
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014222261A
Other languages
Japanese (ja)
Inventor
伊藤 栄基
Eiki Ito
栄基 伊藤
谷 俊宏
Toshihiro Tani
俊宏 谷
和之 網谷
Kazuyuki Amitani
和之 網谷
洸貴 杉原
Koki Sugihara
洸貴 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014222261A priority Critical patent/JP2016091672A/en
Publication of JP2016091672A publication Critical patent/JP2016091672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte fuel cell capable of suppressing deterioration in power generation performance due to moisture residence with a simple and compact structure.SOLUTION: A polymer electrolyte fuel cell includes a stack 100 where a water passage 142B connected to an oxidation gas exhaust port 122B of a separator 120 is formed to a collector plate 140 different from a collector plate 130 to which an oxidation gas exhaust port 132B is formed, and a water storage chamber 163B connected to the water passage 142B of the collector plate 140 to store water 3 and a connection port 162B are formed to an insulating plate 160 different from an insulating plate 150 to which an oxidation gas exhaust port 152B is formed.SELECTED DRAWING: Figure 1

Description

本発明は、固体高分子形燃料電池に関する。   The present invention relates to a polymer electrolyte fuel cell.

固体高分子形燃料電池は、プロトン伝導性を有する固体高分子電解質を、ガス透過性を有する燃料極及び酸化極で挟んだセルと、水素ガス等の燃料ガスの流路を一方面に形成されて酸素ガス等の酸化ガスの流路を他方面に形成された導電性を有するセパレータとを交互に複数配列し、配列方向外側に対をなす集電板及び絶縁板を配設して、さらに配列方向外側に対をなす締付板を配設して締付固定したスタックを備えてなっている。   A polymer electrolyte fuel cell is a cell in which a solid polymer electrolyte having proton conductivity is sandwiched between a gas permeable fuel electrode and an oxidation electrode, and a flow path of a fuel gas such as hydrogen gas is formed on one side. A plurality of separators having conductivity formed on the other side of the flow path of an oxidizing gas such as oxygen gas are alternately arranged, and a current collector plate and an insulating plate that are paired on the outer side in the arrangement direction are disposed, and A stack is provided that is clamped and fixed by arranging a pair of clamping plates on the outside in the arrangement direction.

このような固体高分子形燃料電池のスタックにおいては、セパレータの燃料ガス流路からセルの燃料極に燃料ガスを供給し、セパレータの酸化ガス流路からセルの酸化極に酸化ガスを供給すると、燃料ガス中の水素が燃料極からプロトンとなってセルの固体高分子電解質を伝導して酸素極に到達すると同時に、電子が集電板を介して外部回路を流れることにより、プロトンが酸化ガス中の酸素と電気化学的に反応して水を生成すると同時に、外部回路に給電することができる。そして、酸素極で生成した水は、セパレータの酸化ガス流路を介してスタックの外部へ排出されるようになっている。   In such a polymer electrolyte fuel cell stack, when fuel gas is supplied from the fuel gas flow path of the separator to the fuel electrode of the cell, and oxidizing gas is supplied from the oxidizing gas flow path of the separator to the oxidation electrode of the cell, Hydrogen in the fuel gas is converted into protons from the fuel electrode and conducted through the solid polymer electrolyte of the cell to reach the oxygen electrode. At the same time, electrons flow through the external circuit through the current collector plate, so that protons are in the oxidizing gas. It reacts electrochemically with oxygen to produce water and at the same time powers the external circuit. And the water produced | generated by the oxygen electrode is discharged | emitted outside the stack through the oxidizing gas flow path of a separator.

このような固体高分子形燃料電池のスタックを、例えば、水中を移動する水中航行体に搭載して、水の振動等によって当該水中航行体に周期的な揺れが発生すると、当該水中航行体の揺れの方向及び周期によっては、上述した電気化学反応に伴って生成した水が、スタックの酸化ガス排出口から外部へ向かって流れずにセパレータの酸化ガス流路等に滞留してしまう場合がある。このような場合を生じると、セパレータの酸化ガス流路内を酸化ガスが流通できなくなってしまい、発電運転できなくなってしまうおそれがある。   When such a polymer electrolyte fuel cell stack is mounted on, for example, an underwater vehicle that moves in the water, and when the underwater vehicle is periodically shaken by vibrations of water, the underwater vehicle is Depending on the direction and period of shaking, the water generated by the electrochemical reaction described above may stay in the oxidizing gas flow path of the separator without flowing outward from the oxidizing gas discharge port of the stack. . If such a case occurs, the oxidizing gas cannot flow through the oxidizing gas flow path of the separator, and there is a possibility that the power generation operation cannot be performed.

このため、例えば、下記特許文献1,2等においては、セパレータの酸化ガス流路内の水を排出する酸化ガス排出口をスタックの複数の方向に設けることにより、スタックの傾斜に対応する方向に位置した酸化ガス排出口から水を排出できるようにすることを提案している。   For this reason, for example, in the following Patent Documents 1 and 2, etc., by providing the oxidizing gas discharge ports for discharging the water in the oxidizing gas flow path of the separator in a plurality of directions of the stack, in the direction corresponding to the inclination of the stack. It proposes that water can be discharged from the oxidant gas outlet located.

特開2010−177148号公報JP 2010-177148 A 特開2012−043778号公報JP 2012-043778 A

しかしながら、前記特許文献1,2で提案されている発明では、水を排出するための配管をスタックの複数の方向に取り付けなければならず、非常に煩雑になってしまうと共に、かなり嵩張ってしまうという問題があった。   However, in the inventions proposed in Patent Documents 1 and 2, piping for discharging water must be attached in a plurality of directions of the stack, which becomes very complicated and quite bulky. There was a problem.

このようなことから、本発明は、水の滞留による発電性能の低下を簡単且つコンパクトな構造で抑制することができる固体高分子形燃料電池を提供することを目的とする。   In view of the above, an object of the present invention is to provide a polymer electrolyte fuel cell capable of suppressing a decrease in power generation performance due to water retention with a simple and compact structure.

前述した課題を解決するための、第一番目の発明に係る固体高分子形燃料電池は、固体高分子電解質を燃料極及び酸化極で挟んだセルと、前記セルと交互に並ぶように配設されて、当該セルの前記燃料極に燃料ガスを供給する燃料ガス流路を一方面に形成され且つ前記酸化極に酸化ガスを供給する酸化ガス流路を他方面に形成されると共に、前記燃料ガス流路に燃料ガスを供給する燃料ガス供給路及び当該燃料ガス流路から使用済みの燃料ガスを排出する燃料ガス排出路をそれぞれ形成され且つ前記酸化ガス流路に酸化ガスを供給する酸化ガス供給路及び当該酸化ガス流路から使用済みの酸化ガスと水とを排出する酸化ガス排出路をそれぞれ形成されたセパレータと、前記セルと前記セパレータとの配列方向外側に対をなすようにしてそれぞれ配設されて、当該セパレータの前記燃料ガス供給路に接続する燃料ガス供給口、当該セパレータの前記燃料ガス排出路に接続する燃料ガス排出口、当該セパレータの前記酸化ガス供給路に接続する酸化ガス供給口、当該セパレータの前記酸化ガス排出路に接続する酸化ガス排出口を、一方及び他方のいずれかにそれぞれ形成された集電板と、前記集電板の、前記配列方向外側に対をなすようにしてそれぞれ配設されて、前記集電板の前記燃料ガス供給口に接続する燃料ガス供給口、前記集電板の前記燃料ガス排出口に接続する燃料ガス排出口、前記集電板の前記酸化ガス供給口に接続する酸化ガス供給口、前記集電板の前記酸化ガス排出口に接続する酸化ガス排出口を、対応する前記集電板側のものにそれぞれ形成された絶縁板と、前記絶縁板の、前記配列方向外側に対をなすようにしてそれぞれ配設されて、前記絶縁板の前記燃料ガス供給口に接続する燃料ガス供給口、前記絶縁板の前記燃料ガス排出口に接続する燃料ガス排出口、前記絶縁板の前記酸化ガス供給口に接続する酸化ガス供給口、前記絶縁板の前記酸化ガス排出口に接続する酸化ガス排出口を、対応する前記絶縁板側のものにそれぞれ形成された締付板とを有するスタックを備えている固体高分子形燃料電池において、前記酸化ガス排出口を形成された前記集電板と異なる前記集電板に、前記セパレータの前記酸化ガス排出路に接続する通水路が形成されると共に、前記酸化ガス排出口を形成された前記絶縁板及び前記締付板と異なる前記絶縁板及び前記締付板の少なくとも一つに、前記集電板の前記通水路に接続して水を貯留する貯水室が形成されていることを特徴とする。   A solid polymer fuel cell according to a first aspect of the present invention for solving the above-described problem is a cell in which a solid polymer electrolyte is sandwiched between a fuel electrode and an oxidation electrode, and the cells are arranged alternately. A fuel gas channel for supplying fuel gas to the fuel electrode of the cell is formed on one side and an oxidizing gas channel for supplying oxidizing gas to the oxidizing electrode is formed on the other side; An oxidant gas that is formed with a fuel gas supply path for supplying fuel gas to the gas flow path and a fuel gas discharge path for discharging used fuel gas from the fuel gas flow path, and that supplies the oxidant gas to the oxidant gas path A separator formed with an oxidizing gas discharge path for discharging used oxidizing gas and water from the supply path and the oxidizing gas flow path, and a pair formed on the outside in the arrangement direction of the cell and the separator. The A fuel gas supply port connected to the fuel gas supply path of the separator, a fuel gas discharge port connected to the fuel gas discharge path of the separator, and an oxidizing gas connected to the oxidizing gas supply path of the separator A supply port and an oxidant gas discharge port connected to the oxidant gas discharge path of the separator are paired with a current collector plate formed on one or the other of the separator and an outer side in the arrangement direction of the current collector plate. The fuel gas supply port connected to the fuel gas supply port of the current collector plate, the fuel gas discharge port connected to the fuel gas discharge port of the current collector plate, the current collector plate Insulating plates formed respectively on the corresponding current collector plate side, an oxidizing gas supply port connected to the oxidizing gas supply port, an oxidizing gas discharge port connected to the oxidizing gas discharge port of the current collector plate, Absolute A fuel gas supply port connected to the fuel gas supply port of the insulating plate and a fuel connected to the fuel gas discharge port of the insulating plate, which are respectively arranged in pairs in the arrangement direction outside of the plate A gas discharge port, an oxidizing gas supply port connected to the oxidizing gas supply port of the insulating plate, and an oxidizing gas discharge port connected to the oxidizing gas discharge port of the insulating plate are respectively formed on the corresponding insulating plate side. In a polymer electrolyte fuel cell including a stack having a clamped plate, the oxidizing gas discharge path of the separator is connected to the current collecting plate different from the current collecting plate in which the oxidizing gas discharge port is formed. A water passage that connects to the insulating plate, and at least one of the insulating plate and the fastening plate that is different from the insulating plate and the fastening plate in which the oxidizing gas discharge port is formed. Connect to waterway Thus, a water storage chamber for storing water is formed.

第二番目の発明に係る固体高分子形燃料電池は、第一番目の発明において、前記スタックの前記絶縁板の内部に前記貯水室が形成されていることを特徴とする。   The polymer electrolyte fuel cell according to a second invention is characterized in that, in the first invention, the water storage chamber is formed inside the insulating plate of the stack.

第三番目の発明に係る固体高分子形燃料電池は、第一番目又は第二番目の発明において、前記スタックの前記貯水室の内部に補強リブが設けられていることを特徴とする。   The polymer electrolyte fuel cell according to a third invention is characterized in that, in the first or second invention, a reinforcing rib is provided inside the water storage chamber of the stack.

本発明に係る固体高分子形燃料電池によれば、スタックが揺動して、酸化ガス排出口を形成された締付板の高さ位置が、他の締付板の高さ位置よりも高くなるように傾斜すると、セパレータの酸化ガス排出路内の水が、貯水室内に流入して一旦貯留され、酸化ガス排出口を形成された締付板の高さ位置が、他の締付板の高さ位置よりも低くなるように傾斜すると、セパレータの酸化ガス排出路内の水及び貯水室内の水が、締付板の酸化ガス排出口からスタックの外部へ排出されることから、セパレータの酸化ガス流路内に水が貯まってしまうことを大きく抑制することができるので、水の滞留による発電性能の低下を簡単且つコンパクトな構造で抑制することができる。   According to the polymer electrolyte fuel cell according to the present invention, the height position of the clamping plate in which the stack swings and the oxidizing gas discharge port is formed is higher than the height positions of the other clamping plates. In this way, the water in the oxidant gas discharge passage of the separator flows into the water storage chamber and is temporarily stored, and the height position of the clamping plate in which the oxidant gas discharge port is formed is When tilted to be lower than the height position, the water in the separator's oxidizing gas discharge passage and the water in the water storage chamber are discharged from the oxidizing gas outlet of the clamping plate to the outside of the stack. Since it is possible to greatly suppress the accumulation of water in the gas flow path, it is possible to suppress a decrease in power generation performance due to water retention with a simple and compact structure.

本発明に係る固体高分子形燃料電池の主な実施形態のスタックの概略構成図である。1 is a schematic configuration diagram of a stack of a main embodiment of a polymer electrolyte fuel cell according to the present invention. 図1の一方の締付板の概略構成図である。It is a schematic block diagram of one clamping plate of FIG. 図1の一方の絶縁板の概略構成図である。It is a schematic block diagram of one insulating board of FIG. 図1の一方の集電板の概略構成図である。It is a schematic block diagram of one current collecting plate of FIG. 図1のセパレータの一方面側の概略構成図である。It is a schematic block diagram of the one surface side of the separator of FIG. 図1のセパレータの他方面側の概略構成図である。It is a schematic block diagram of the other surface side of the separator of FIG. 図1の他方の集電板の概略構成図である。It is a schematic block diagram of the other current collection board of FIG. 図1の他方の絶縁板の概略構成図である。It is a schematic block diagram of the other insulating board of FIG.

本発明に係る固体高分子形燃料電池の実施形態を図面に基づいて説明するが、本発明は、図面に基づいて説明する以下の実施形態のみに限定されるものではない。   Embodiments of a polymer electrolyte fuel cell according to the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments described with reference to the drawings.

〈主な実施形態〉
本発明に係る固体高分子形燃料電池の主な実施形態を図1〜8に基づいて説明する。
<Main embodiment>
A main embodiment of a polymer electrolyte fuel cell according to the present invention will be described with reference to FIGS.

本実施形態に係る固体高分子形燃料電池は、図1に示すように、プロトン伝導性を有する固体高分子電解質を、ガス透過性を有する燃料極及び酸化極で挟んだセル110及びシール材101と、水素ガス等の燃料ガスの流路を一方面に形成されて酸素ガス等の酸化ガスの流路を他方面に形成された導電性を有するセパレータ120とを交互に複数配列し、配列方向(図1中、左右方向)外側に対をなす集電板130,140及び絶縁板150,160をそれぞれ配設して、さらに配列方向(図1中、左右方向)外側に対をなす締付板170,180をそれぞれ配設して締付固定したスタック100を備えてなっている。   As shown in FIG. 1, the polymer electrolyte fuel cell according to this embodiment includes a cell 110 and a sealing material 101 in which a proton conductive solid polymer electrolyte is sandwiched between a gas permeable fuel electrode and an oxidation electrode. And a plurality of conductive separators 120 having a flow path for a fuel gas such as hydrogen gas formed on one side and a flow path for an oxidant gas such as oxygen gas formed on the other side are alternately arranged in the arrangement direction. (The left-right direction in FIG. 1) The current collector plates 130 and 140 and the insulating plates 150 and 160 that are paired on the outside are disposed, respectively, and further tightened on the outside in the arrangement direction (the left-right direction in FIG. 1). A stack 100 is provided in which plates 170 and 180 are respectively disposed and fastened.

図2に示すように、一方(図1中、左側)の前記締付板170には、水素ガス等の燃料ガス1を供給する燃料ガス供給口171Aと、酸素ガス等の酸化ガス2を供給する酸化ガス供給口171Bと、使用済みの燃料ガス1を排出する燃料ガス排出口172Aと、使用済みの酸化ガス2及び生成した水3を排出する酸化ガス排出口172Bとがそれぞれ形成されている。   As shown in FIG. 2, one (left side in FIG. 1) clamping plate 170 is supplied with a fuel gas supply port 171A for supplying a fuel gas 1 such as hydrogen gas and an oxidizing gas 2 such as oxygen gas. An oxidizing gas supply port 171B for discharging, a fuel gas discharging port 172A for discharging the used fuel gas 1, and an oxidizing gas discharging port 172B for discharging the used oxidizing gas 2 and the generated water 3 are formed. .

図3に示すように、一方(図1中、左側)の前記絶縁板150には、前記締付板170の前記燃料ガス供給口171Aに接続する燃料ガス供給口151Aと、前記締付板170の前記酸化ガス供給口171Bに接続する酸化ガス供給口151Bと、前記締付板170の前記燃料ガス排出口172Aに接続する燃料ガス排出口152Aと、前記締付板170の前記酸化ガス排出口172Bに接続する酸化ガス排出口152Bとがそれぞれ形成されている。   As shown in FIG. 3, the insulating plate 150 on one side (left side in FIG. 1) has a fuel gas supply port 151A connected to the fuel gas supply port 171A of the clamping plate 170, and the clamping plate 170. The oxidizing gas supply port 151B connected to the oxidizing gas supply port 171B, the fuel gas discharge port 152A connected to the fuel gas discharge port 172A of the clamping plate 170, and the oxidizing gas discharge port of the clamping plate 170 An oxidizing gas discharge port 152B connected to 172B is formed.

図4に示すように、一方(図1中、左側)の前記集電板130には、前記絶縁板150の前記燃料ガス供給口151Aに接続する燃料ガス供給口131Aと、前記絶縁板150の前記酸化ガス供給口151Bに接続する酸化ガス供給口131Bと、前記絶縁板150の前記燃料ガス排出口152Aに接続する燃料ガス排出口132Aと、前記絶縁板150の前記酸化ガス排出口152Bに接続する酸化ガス排出口132Bとがそれぞれ形成されている。   As shown in FIG. 4, one (the left side in FIG. 1) of the current collector plate 130 includes a fuel gas supply port 131 </ b> A connected to the fuel gas supply port 151 </ b> A of the insulating plate 150, and the insulating plate 150. Connected to the oxidizing gas supply port 131B connected to the oxidizing gas supply port 151B, the fuel gas discharge port 132A connected to the fuel gas discharge port 152A of the insulating plate 150, and the oxidizing gas discharge port 152B of the insulating plate 150 An oxidizing gas discharge port 132B is formed.

図5,6に示すように、前記セパレータ120には、前記板130,150,170の前記燃料ガス供給口131A,151A,171Aに接続する燃料ガス供給口121Aと、前記板130,150,170の前記酸化ガス供給口131B,151B,171Bに接続する酸化ガス供給口121Bと、前記板130,150,170の前記燃料ガス排出口132A,152A,172Aに接続する燃料ガス排出口122Aと、前記板130,150,170の前記酸化ガス排出口132B,152B,172Bに接続する酸化ガス排出口122Bとがそれぞれ形成されている。   As shown in FIGS. 5 and 6, the separator 120 includes a fuel gas supply port 121A connected to the fuel gas supply ports 131A, 151A, and 171A of the plates 130, 150, and 170, and the plates 130, 150, and 170. The oxidizing gas supply ports 121B connected to the oxidizing gas supply ports 131B, 151B, 171B, the fuel gas discharge ports 122A connected to the fuel gas discharge ports 132A, 152A, 172A of the plates 130, 150, 170, and the An oxidizing gas outlet 122B connected to the oxidizing gas outlets 132B, 152B, 172B of the plates 130, 150, 170 is formed.

また、図5に示すように、前記セパレータ120の一方面には、前記セル110の燃料極に水素ガス等の燃料ガス1を供給する燃料ガス流路123Aと、前記燃料ガス供給口121Aと前記燃料ガス流路123Aとを接続する燃料ガス供給マニホールド124Aと、前記燃料ガス排出口122Aと前記燃料ガス流路123Aとを接続する燃料ガス排出マニホールド125Aとがそれぞれ形成されている。   Further, as shown in FIG. 5, on one surface of the separator 120, a fuel gas flow path 123A for supplying a fuel gas 1 such as hydrogen gas to the fuel electrode of the cell 110, the fuel gas supply port 121A, A fuel gas supply manifold 124A that connects the fuel gas flow path 123A, and a fuel gas discharge manifold 125A that connects the fuel gas discharge port 122A and the fuel gas flow path 123A are formed.

また、図6に示すように、前記セパレータ120の他方面には、前記セル110の酸化極に酸素ガス等の酸化ガス2を供給する酸化ガス流路123Bと、前記酸化ガス供給口121Bと前記酸化ガス流路123Bとを接続する酸化ガス供給マニホールド124Bと、前記酸化ガス排出口122Bと前記酸化ガス流路123Bとを接続する酸化ガス排出マニホールド125Bとがそれぞれ形成されている。   Further, as shown in FIG. 6, on the other surface of the separator 120, an oxidizing gas flow path 123B for supplying an oxidizing gas 2 such as oxygen gas to the oxidizing electrode of the cell 110, the oxidizing gas supply port 121B, and the An oxidizing gas supply manifold 124B that connects the oxidizing gas flow path 123B and an oxidizing gas discharge manifold 125B that connects the oxidizing gas discharge port 122B and the oxidizing gas flow path 123B are formed.

なお、本実施形態では、前記燃料ガス供給口121A及び前記燃料ガス供給マニホールド124Aによりセパレータの燃料ガス供給路を構成し、前記燃料ガス排出口122A及び前記燃料ガス排出マニホールド125Aによりセパレータの燃料ガス排出路を構成し、前記酸化ガス供給口121B及び前記酸化ガス供給マニホールド124Bによりセパレータの酸化ガス供給路を構成し、前記酸化ガス排出口122B及び前記酸化ガス排出マニホールド125Bによりセパレータの酸化ガス排出路を構成している。   In this embodiment, the fuel gas supply port 121A and the fuel gas supply manifold 124A constitute a fuel gas supply path of the separator, and the fuel gas discharge port 122A and the fuel gas discharge manifold 125A discharge the fuel gas of the separator. The oxidant gas supply port 121B and the oxidant gas supply manifold 124B constitute an oxidant gas supply channel of the separator, and the oxidant gas discharge port 122B and the oxidant gas discharge manifold 125B constitute the oxidant gas discharge channel of the separator. It is composed.

図7に示すように、他方(図1中、右側)の前記集電板140には、前記セパレータ120の前記酸化ガス排出口122Bに接続する通水口142Bが形成されている。   As shown in FIG. 7, the other current collector plate 140 (on the right side in FIG. 1) has a water passage 142 </ b> B connected to the oxidizing gas outlet 122 </ b> B of the separator 120.

図1,8に示すように、他方(図1中、右側)の前記絶縁板160には、水3を貯留する貯水室163Bが内部に形成されると共に、前記集電板140の前記通水口142Bに前記貯水室163Bを接続する接続口162Bが形成されている。   As shown in FIGS. 1 and 8, the other insulating plate 160 (on the right side in FIG. 1) has a water storage chamber 163 </ b> B for storing water 3 therein, and the water outlet of the current collector plate 140. A connection port 162B for connecting the water storage chamber 163B to 142B is formed.

他方の前記絶縁板160は、一方の前記絶縁板150と同様に、ガラス繊維強化プラスチック(GFRP)等のような絶縁性や高剛性や加工容易性等を有する材料からなり、内部に十分な大きさの前記貯水室163Bを形成できるように、一方の前記絶縁板150よりも厚さが大きくなっている。   The other insulating plate 160, like the one insulating plate 150, is made of a material having insulation, high rigidity, ease of processing, etc., such as glass fiber reinforced plastic (GFRP), and has a sufficiently large size inside. In order to form the water storage chamber 163B, the thickness is larger than that of the one insulating plate 150.

このようなスタック100を備えた本実施形態に係る固体高分子形燃料電池においては、当該スタック100の前記締付板170の前記燃料ガス供給口171Aに水素ガス等の燃料ガス1を供給すると共に、当該締付板170の前記酸化ガス供給口171Bに酸素ガス等の酸化ガス2を供給すると、上記燃料ガス1が、前記絶縁板150の前記燃料ガス供給口151A及び前記集電板130の前記燃料ガス供給口131Aを介して各前記セパレータ120の前記燃料ガス供給口121Aを流通し、各前記セパレータ120の前記燃料ガス供給マニホールド124A内に流入して前記燃料ガス流路123A内を流れて各セル110の燃料極に供給されると共に、上記酸化ガス2が、前記絶縁板150の前記酸化ガス供給口151B及び前記集電板130の前記酸化ガス供給口131Bを介して各前記セパレータ120の前記酸化ガス供給口121Bを流通し、各前記セパレータ120の前記酸化ガス供給マニホールド124B内に流入して前記酸化ガス流路123B内を流れて各セル110の酸化極に供給されることにより、上記燃料ガス1中の水素と上記酸化ガス2中の酸素とが当該セル110で電気化学的に反応して、当該セル110の酸化極側に水3が生じると共に、前記集電板130,140を介して外部に給電することができる。   In the polymer electrolyte fuel cell according to this embodiment provided with such a stack 100, the fuel gas 1 such as hydrogen gas is supplied to the fuel gas supply port 171A of the clamping plate 170 of the stack 100. When the oxidizing gas 2 such as oxygen gas is supplied to the oxidizing gas supply port 171B of the fastening plate 170, the fuel gas 1 is supplied to the fuel gas supply port 151A of the insulating plate 150 and the current collecting plate 130. The fuel gas supply port 121A of each separator 120 is circulated through the fuel gas supply port 131A, flows into the fuel gas supply manifold 124A of each separator 120 and flows through the fuel gas flow path 123A. While being supplied to the fuel electrode of the cell 110, the oxidizing gas 2 is supplied to the oxidizing gas supply port 151 </ b> B of the insulating plate 150 and the current collector. 130 circulates through the oxidizing gas supply port 121B of each separator 120 via the oxidizing gas supply port 131B of 130, flows into the oxidizing gas supply manifold 124B of each separator 120, and passes through the oxidizing gas channel 123B. By flowing and being supplied to the oxidation electrode of each cell 110, hydrogen in the fuel gas 1 and oxygen in the oxidation gas 2 react electrochemically in the cell 110, and the oxidation electrode of the cell 110. Water 3 is generated on the side, and power can be supplied to the outside through the current collecting plates 130 and 140.

前記セル110で上記電気化学反応に寄与しなかった残りの前記燃料ガス1は、前記セパレータ120の前記燃料ガス流路123Aから前記燃料ガス排出マニホールド125A内に流入して前記燃料ガス排出口122A内を流れ、前記集電板130の前記燃料ガス排出口132A及び前記絶縁板150の前記燃料ガス排出口152Aを介して前記締付板170の前記燃料ガス排出口172Aから前記スタック100の外部へ排出される。   The remaining fuel gas 1 that has not contributed to the electrochemical reaction in the cell 110 flows into the fuel gas discharge manifold 125A from the fuel gas flow path 123A of the separator 120 and enters the fuel gas discharge port 122A. Through the fuel gas discharge port 132A of the current collector plate 130 and the fuel gas discharge port 152A of the insulating plate 150 to the outside of the stack 100 from the fuel gas discharge port 172A of the clamping plate 170. Is done.

また、前記セル110で上記電気化学反応に寄与しなかった残りの前記酸化ガス2は、上記電気化学反応に伴って生成した水3と共に、前記セパレータ120の前記酸化ガス流路123Bから前記酸化ガス排出マニホールド125B内に流入して前記酸化ガス排出口122B内を流れ、前記集電板130の前記酸化ガス排出口132B及び前記絶縁板150の前記酸化ガス排出口152Bを介して前記締付板170の前記酸化ガス排出口172Bから前記スタック100の外部へ排出される。   In addition, the remaining oxidizing gas 2 that has not contributed to the electrochemical reaction in the cell 110, together with the water 3 generated in association with the electrochemical reaction, passes through the oxidizing gas channel 123B of the separator 120 to the oxidizing gas. The clamping plate 170 flows into the exhaust manifold 125B and flows through the oxidizing gas exhaust port 122B, and passes through the oxidizing gas exhaust port 132B of the current collector plate 130 and the oxidizing gas exhaust port 152B of the insulating plate 150. Is discharged from the stack 100 through the oxidizing gas outlet 172B.

このようなスタック100を備えた本実施形態に係る固体高分子形燃料電池を、例えば、水中を移動する水中航行体に搭載して、水の振動等によって当該水中航行体に周期的な揺れを生じて、上記スタック100が、例えば、図1中、左右方向に周期的な揺れを発生して、一方(図1中、左側)の前記締付板170の高さ位置が他方(図1中、右側)の前記締付板180の高さ位置よりも高くなるように傾斜してしまうと、前記セパレータ120の前記酸化ガス排出マニホールド125B及び前記酸化ガス排出口122B並びに一方(図1中、左側)の前記板130,150,170の前記酸化ガス排出口132B,152B,172B内の水3は、他方(図1中、右側)の前記集電板140の前記通水口142Bを介して他方(図1中、右側)の前記絶縁板160の前記接続口162Bから前記貯水室163B内に流入して一旦貯留される。   The polymer electrolyte fuel cell according to the present embodiment including such a stack 100 is mounted on, for example, an underwater vehicle that moves underwater, and the underwater vehicle is periodically shaken by vibration of water or the like. As a result, the stack 100, for example, periodically oscillates in the left-right direction in FIG. 1, and the height position of one (left side in FIG. 1) of the clamping plate 170 is the other (in FIG. 1). , On the right side), if inclined to be higher than the height position of the clamping plate 180, the oxidizing gas discharge manifold 125B and the oxidizing gas discharge port 122B of the separator 120 and one (left side in FIG. 1) ) Of the oxidizing gas discharge ports 132B, 152B, and 172B of the plates 130, 150, and 170 of the other plate (on the right side in FIG. 1) through the water inlet 142B of the current collector plate 140 on the other side ( In FIG. 1, right From the connection port 162B of the insulating plate 160) and flows into the reservoir chamber 163B is stored temporarily.

そして、前記スタック100が、他方(図1中、右側)の前記締付板180の高さ位置が一方(図1中、左側)の前記締付板170の高さ位置よりも高くなるように傾斜すると、他方の前記絶縁板160の前記貯水室163Bの内部に一旦貯留された前記水3は、前記接続口162Bから他方(図1中、右側)の前記集電板140の前記通水口142Bを介して前記セパレータ120の前記酸化ガス排出口122Bを流通し、一方(図1中、左側)の前記板130,150,170の前記酸化ガス排出口132B,152B,172Bを介して外部へ排出される。   In the stack 100, the height position of the other clamping plate 180 (on the right side in FIG. 1) is higher than the height position of one clamping plate 170 (the left side in FIG. 1). When tilted, the water 3 once stored in the water storage chamber 163B of the other insulating plate 160 is transferred from the connection port 162B to the water flow port 142B of the current collector plate 140 on the other side (right side in FIG. 1). Through the oxidant gas discharge port 122B of the separator 120, and exhausted to the outside through the oxidant gas discharge ports 132B, 152B, and 172B of one of the plates 130, 150, and 170 (left side in FIG. 1). Is done.

以下、上記揺動周期に対応して、上記水3は、他方(図1中、左側)の前記絶縁板160の前記貯水室163B内への一時貯留と、一方(図1中、右側)の前記板130,150,170の前記酸化ガス排出口132B,152B,172Bからの外部への排出とが交互に繰り返される。   Hereinafter, the water 3 is temporarily stored in the water storage chamber 163B of the insulating plate 160 on the other side (left side in FIG. 1) and on the one side (right side in FIG. 1) corresponding to the swing cycle. The discharge of the plates 130, 150, and 170 from the oxidizing gas discharge ports 132B, 152B, and 172B to the outside is repeated alternately.

つまり、本実施形態に係る前記スタック100においては、周期的な揺動により一方(図1中、左側)の前記板130,150,170の前記酸化ガス排出口132B,152B,172Bから外部に水3を排出できないときに、他方(図1中、右側)の前記絶縁板160の内部に形成した前記貯水室163B内に水3を一旦貯留し、一方(図1中、左側)の上記板130,150,170の上記酸化ガス排出口132B,152B,172Bから外部に水3を排出できるときに、他方(図1中、右側)の上記絶縁板160の上記貯水室163B内に一旦貯留した水3が排出されるようにしたのである。   In other words, in the stack 100 according to the present embodiment, water is discharged from the oxidizing gas discharge ports 132B, 152B, and 172B of one of the plates 130, 150, and 170 (on the left side in FIG. 1) due to periodic swinging. When 3 cannot be discharged, water 3 is temporarily stored in the water storage chamber 163B formed inside the other insulating plate 160 (on the right side in FIG. 1), and the above-mentioned plate 130 on the one side (left side in FIG. 1). , 150, 170, when the water 3 can be discharged to the outside through the oxidizing gas discharge ports 132B, 152B, 172B, the water once stored in the water storage chamber 163B of the other insulating plate 160 (right side in FIG. 1) 3 was discharged.

このため、本実施形態に係る前記スタック100では、前記セパレータ120の前記酸化ガス供給マニホールド125B及び前記酸化ガス排出口122B並びに前記板130,150,170の前記酸化ガス排出口132B,152B,172B内に水3が貯まってしまうことを大きく抑制することができる。   For this reason, in the stack 100 according to this embodiment, the oxidizing gas supply manifold 125B and the oxidizing gas discharge port 122B of the separator 120 and the oxidizing gas discharge ports 132B, 152B, and 172B of the plates 130, 150, and 170 are provided. It is possible to greatly suppress the accumulation of water 3.

したがって、本実施形態に係る固体高分子形燃料電池によれば、水3の滞留による発電性能の低下を簡単且つコンパクトな構造で抑制することができる。   Therefore, according to the polymer electrolyte fuel cell according to the present embodiment, a decrease in power generation performance due to the retention of water 3 can be suppressed with a simple and compact structure.

また、前記貯水室163Bが前記絶縁板160の内部に形成されているので、当該貯水室163Bに対して電気的な腐食防止加工を省略することができる。   Further, since the water storage chamber 163B is formed inside the insulating plate 160, electrical corrosion prevention processing can be omitted for the water storage chamber 163B.

ここで、図1に示すように、前記スタック100の他方(図1中、右側)の前記絶縁板160に最も近い位置に位置する前記セル110の前記燃料極又は前記酸化極の下端部を通る線(面)Fと水平線(面)Lとのなす角度θが、前記スタック100の前記揺動周期における最大傾斜角となったときに、当該絶縁板160の前記貯水室163Bの上面163Baが上記線(面)Fよりも上方に位置するように、当該貯水室163Bは、その高さHが設定される。   Here, as shown in FIG. 1, it passes through the lower end portion of the fuel electrode or the oxidation electrode of the cell 110 located closest to the insulating plate 160 on the other side (right side in FIG. 1) of the stack 100. When the angle θ formed by the line (surface) F and the horizontal line (surface) L becomes the maximum inclination angle in the swing period of the stack 100, the upper surface 163Ba of the water storage chamber 163B of the insulating plate 160 is The height H of the water storage chamber 163B is set so as to be positioned above the line (surface) F.

また、前記スタック100の単位時間当たりの水3の生成量をQとし、前記スタック100の揺動の一周期に要する時間をCとし、前記スタック100の前記絶縁板160の前記貯水室163Bの内部容積をVとすると、当該貯水室163Bは、下記の式(1)を満足できるように、その厚さTと高さHと幅Wとが設定される。   In addition, the amount of water 3 generated per unit time of the stack 100 is Q, the time required for one cycle of the swing of the stack 100 is C, and the inside of the water storage chamber 163B of the insulating plate 160 of the stack 100 When the volume is V, the water storage chamber 163B is set to have a thickness T, a height H, and a width W so that the following equation (1) can be satisfied.

V>α×Q×C (1)
ただし、αは余裕係数であり、任意に設定される1以上の数値である。
V> α × Q × C (1)
However, α is a margin coefficient and is a numerical value of 1 or more arbitrarily set.

このとき、上記高さH及び上記幅Wは、その最大値が、前記セル110の大きさ等に基づく前記絶縁板160の大きさから自ずと決まるので、上記厚さTを、上記条件を満足し得る最小値に設定することにより、前記絶縁板160は、その厚さの増加が必要最小限に抑えられる。   At this time, since the maximum values of the height H and the width W are naturally determined from the size of the insulating plate 160 based on the size of the cell 110, the thickness T satisfies the above condition. By setting to the minimum value that can be obtained, the thickness of the insulating plate 160 can be minimized.

また、前記貯水室163Bの内部に補強リブを設けると、前記絶縁板160の強度を高めることができ、当該絶縁板160の厚さの増加をさらに抑えることができるので、好ましい。   In addition, it is preferable to provide a reinforcing rib inside the water storage chamber 163B because the strength of the insulating plate 160 can be increased and an increase in the thickness of the insulating plate 160 can be further suppressed.

〈他の実施形態〉
なお、前述した実施形態においては、前記絶縁板160に前記貯水室163Bを形成した前記スタック100を備えた固体高分子形燃料電池の場合について説明したが、他の実施形態として、例えば、前記絶縁板160の前記貯水室163Bに代えて、他方の前記締付板180に、前記絶縁板160の前記接続口162Bに接続する接続口を形成して当該締付板180の内部に貯水室を形成することや、前記絶縁板160に前記貯水室163Bを設けると共に前記締付板180にも上記貯水室を設けるようにすることも可能である。
<Other embodiments>
In the above-described embodiment, the case of the polymer electrolyte fuel cell including the stack 100 in which the water storage chamber 163B is formed on the insulating plate 160 has been described. However, as another embodiment, for example, the insulating plate Instead of the water storage chamber 163B of the plate 160, a connection port connected to the connection port 162B of the insulating plate 160 is formed in the other clamping plate 180, and a water storage chamber is formed inside the clamping plate 180. In addition, the water storage chamber 163B may be provided on the insulating plate 160 and the water storage chamber may be provided on the clamping plate 180.

ここで、前記締付板180に前記貯水室を設ける場合、当該締付板180が金属材料からなることから、電気的な腐食を防止するコーティング等を当該貯水室の内壁面に施工すると、好ましい。   Here, when the water storage chamber is provided in the fastening plate 180, the fastening plate 180 is made of a metal material. Therefore, it is preferable to apply a coating or the like that prevents electrical corrosion on the inner wall surface of the water storage chamber. .

また、前述した実施形態においては、一方の前記板130,150,170にすべての前記口131A,131B,132A,132B,151A,151B,152A,152B,171A,171B,172A,172Bを形成するようにしたが、他の実施形態として、例えば、一方の前記板130,150,170に前記供給口131A,131B,151A,151B,171A,171Bのみを形成して他方の前記板140,160,180に燃料ガス排出口及び酸化ガス排出口をそれぞれ形成し、一方の前記集電板140に通水口を形成すると共に一方の前記絶縁板150や前記締付板170に接続口及び貯水室を形成するようにすることも可能である。   In the above-described embodiment, all the openings 131A, 131B, 132A, 132B, 151A, 151B, 152A, 152B, 171A, 171B, 172A, 172B are formed in one of the plates 130, 150, 170. However, as another embodiment, for example, only the supply ports 131A, 131B, 151A, 151B, 171A, and 171B are formed in one of the plates 130, 150, and 170, and the other plate 140, 160, and 180 is formed. A fuel gas discharge port and an oxidant gas discharge port are respectively formed on one side, a water flow port is formed on one of the current collecting plates 140, and a connection port and a water storage chamber are formed on one of the insulating plate 150 and the fastening plate 170. It is also possible to do so.

つまり、酸化ガス排出口を形成された絶縁板や締付板と異なる絶縁板や締付板に貯水室等を形成するのである。   That is, a water storage chamber or the like is formed on an insulating plate or a fastening plate different from the insulating plate or the fastening plate formed with the oxidizing gas discharge port.

また、上述した電気化学反応によって発生する水3は、前記セル110の酸化極側がほとんどであることから、前述した実施形態においては、前記貯水室を酸化ガス排出口に接続するように前記絶縁板等に形成するようにしたが、各種条件等によっては、前記セル110の燃料極側にも水3が生成してしまう場合があることから、他の実施形態として、例えば、燃料ガス排出口に接続する貯水室を前記絶縁板等にさらに形成するようにすることも可能である。   In addition, since the water 3 generated by the electrochemical reaction described above is mostly on the oxidation electrode side of the cell 110, in the above-described embodiment, the insulating plate is connected to connect the water storage chamber to the oxidizing gas discharge port. However, depending on various conditions, water 3 may also be generated on the fuel electrode side of the cell 110. Therefore, as another embodiment, for example, at the fuel gas outlet It is possible to further form a water storage chamber to be connected to the insulating plate or the like.

本発明に係る固体高分子形燃料電池は、水の滞留による発電性能の低下を簡単且つコンパクトな構造で抑制することができるので、産業上、極めて有益に利用することができる。   Since the polymer electrolyte fuel cell according to the present invention can suppress a decrease in power generation performance due to retention of water with a simple and compact structure, it can be used extremely beneficially industrially.

1 燃料ガス
2 酸化ガス
3 水
100 スタック
101 シール材
110 セル
120 セパレータ
121A 燃料ガス供給口
121B 酸化ガス供給口
122A 燃料ガス排出口
122B 酸化ガス排出口
123A 燃料ガス流路
123B 酸化ガス流路
124A 燃料ガス供給マニホールド
124B 酸化ガス供給マニホールド
125A 燃料ガス排出マニホールド
125B 酸化ガス排出マニホールド
130 集電板
131A 燃料ガス供給口
131B 酸化ガス供給口
132A 燃料ガス排出口
132B 酸化ガス排出口
140 集電板
142B 通水口
150 絶縁板
151A 燃料ガス供給口
151B 酸化ガス供給口
152A 燃料ガス排出口
152B 酸化ガス排出口
160 絶縁板
162B 接続口
163B 貯水室
170 締付板
171A 燃料ガス供給口
171B 酸化ガス供給口
172A 燃料ガス排出口
172B 酸化ガス排出口
180 締付板
DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Oxidizing gas 3 Water 100 Stack 101 Sealing material 110 Cell 120 Separator 121A Fuel gas supply port 121B Oxidizing gas supply port 122A Fuel gas outlet 122B Oxidizing gas outlet 123A Fuel gas channel 123B Oxidizing gas channel 124A Fuel gas Supply manifold 124B Oxidation gas supply manifold 125A Fuel gas discharge manifold 125B Oxidation gas discharge manifold 130 Current collecting plate 131A Fuel gas supply port 131B Oxidation gas supply port 132A Fuel gas discharge port 132B Oxidation gas discharge port 140 Current collecting plate 142B Water flow port 150 Insulation Plate 151A Fuel gas supply port 151B Oxidation gas supply port 152A Fuel gas discharge port 152B Oxidation gas discharge port 160 Insulation plate 162B Connection port 163B Water storage chamber 170 Tightening plate 171A Fuel Gas supply port 171B Oxidation gas supply port 172A Fuel gas discharge port 172B Oxidation gas discharge port 180 Clamping plate

Claims (3)

固体高分子電解質を燃料極及び酸化極で挟んだセルと、
前記セルと交互に並ぶように配設されて、当該セルの前記燃料極に燃料ガスを供給する燃料ガス流路を一方面に形成され且つ前記酸化極に酸化ガスを供給する酸化ガス流路を他方面に形成されると共に、前記燃料ガス流路に燃料ガスを供給する燃料ガス供給路及び当該燃料ガス流路から使用済みの燃料ガスを排出する燃料ガス排出路をそれぞれ形成され且つ前記酸化ガス流路に酸化ガスを供給する酸化ガス供給路及び当該酸化ガス流路から使用済みの酸化ガスと水とを排出する酸化ガス排出路をそれぞれ形成されたセパレータと、
前記セルと前記セパレータとの配列方向外側に対をなすようにしてそれぞれ配設されて、当該セパレータの前記燃料ガス供給路に接続する燃料ガス供給口、当該セパレータの前記燃料ガス排出路に接続する燃料ガス排出口、当該セパレータの前記酸化ガス供給路に接続する酸化ガス供給口、当該セパレータの前記酸化ガス排出路に接続する酸化ガス排出口を、一方及び他方のいずれかにそれぞれ形成された集電板と、
前記集電板の、前記配列方向外側に対をなすようにしてそれぞれ配設されて、前記集電板の前記燃料ガス供給口に接続する燃料ガス供給口、前記集電板の前記燃料ガス排出口に接続する燃料ガス排出口、前記集電板の前記酸化ガス供給口に接続する酸化ガス供給口、前記集電板の前記酸化ガス排出口に接続する酸化ガス排出口を、対応する前記集電板側のものにそれぞれ形成された絶縁板と、
前記絶縁板の、前記配列方向外側に対をなすようにしてそれぞれ配設されて、前記絶縁板の前記燃料ガス供給口に接続する燃料ガス供給口、前記絶縁板の前記燃料ガス排出口に接続する燃料ガス排出口、前記絶縁板の前記酸化ガス供給口に接続する酸化ガス供給口、前記絶縁板の前記酸化ガス排出口に接続する酸化ガス排出口を、対応する前記絶縁板側のものにそれぞれ形成された締付板と
を有するスタックを備えている固体高分子形燃料電池において、
前記酸化ガス排出口を形成された前記集電板と異なる前記集電板に、前記セパレータの前記酸化ガス排出路に接続する通水路が形成されると共に、
前記酸化ガス排出口を形成された前記絶縁板及び前記締付板と異なる前記絶縁板及び前記締付板の少なくとも一つに、前記集電板の前記通水路に接続して水を貯留する貯水室が形成されている
ことを特徴とする固体高分子形燃料電池。
A cell in which a solid polymer electrolyte is sandwiched between a fuel electrode and an oxidation electrode;
An oxidant gas flow path that is arranged so as to be alternately arranged with the cells and that supplies a fuel gas to the fuel electrode of the cell on one side and that supplies an oxidant gas to the oxidation electrode. A fuel gas supply path for supplying fuel gas to the fuel gas flow path and a fuel gas discharge path for discharging used fuel gas from the fuel gas flow path are formed on the other surface and the oxidizing gas. Separators each formed with an oxidizing gas supply path for supplying oxidizing gas to the flow path and an oxidizing gas discharge path for discharging used oxidizing gas and water from the oxidizing gas flow path;
A fuel gas supply port connected to the fuel gas supply path of the separator and a fuel gas discharge path of the separator, which are arranged so as to form a pair on the outside in the arrangement direction of the cell and the separator, respectively. A fuel gas discharge port, an oxidant gas supply port connected to the oxidant gas supply path of the separator, and an oxidant gas discharge port connected to the oxidant gas discharge path of the separator are respectively formed on one or the other. An electrical board;
A fuel gas supply port connected to the fuel gas supply port of the current collector plate and a fuel gas exhaust port of the current collector plate, which are respectively arranged in pairs in the arrangement direction outside of the current collector plate. The fuel gas discharge port connected to the outlet, the oxidation gas supply port connected to the oxidation gas supply port of the current collector plate, and the oxidation gas discharge port connected to the oxidation gas discharge port of the current collector plate correspond to the collector. Insulating plates formed on the electrical plate side,
A fuel gas supply port connected to the fuel gas supply port of the insulation plate and a fuel gas discharge port of the insulation plate, which are arranged in pairs in the arrangement direction outside of the insulation plate, respectively. A fuel gas discharge port, an oxidizing gas supply port connected to the oxidizing gas supply port of the insulating plate, and an oxidizing gas discharge port connected to the oxidizing gas discharge port of the insulating plate on the corresponding insulating plate side. In a polymer electrolyte fuel cell comprising a stack having a clamp plate formed respectively,
On the current collector plate different from the current collector plate on which the oxidizing gas discharge port is formed, a water passage that connects to the oxidizing gas discharge passage of the separator is formed,
Water storage for storing water by connecting to the water flow path of the current collector plate to at least one of the insulating plate and the fastening plate different from the insulating plate and the fastening plate in which the oxidizing gas discharge port is formed A polymer electrolyte fuel cell characterized in that a chamber is formed.
請求項1に記載の固体高分子形燃料電池において、
前記スタックの前記絶縁板の内部に前記貯水室が形成されている
ことを特徴とする固体高分子形燃料電池。
The polymer electrolyte fuel cell according to claim 1, wherein
The water storage chamber is formed inside the insulating plate of the stack. A polymer electrolyte fuel cell, wherein:
請求項1又は請求項2に記載の固体高分子形燃料電池において、
前記スタックの前記貯水室の内部に補強リブが設けられている
ことを特徴とする固体高分子形燃料電池。
The polymer electrolyte fuel cell according to claim 1 or 2,
A solid polymer fuel cell, wherein a reinforcing rib is provided inside the water storage chamber of the stack.
JP2014222261A 2014-10-31 2014-10-31 Polymer electrolyte fuel cell Pending JP2016091672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222261A JP2016091672A (en) 2014-10-31 2014-10-31 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222261A JP2016091672A (en) 2014-10-31 2014-10-31 Polymer electrolyte fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019126258A Division JP6772343B2 (en) 2019-07-05 2019-07-05 Polymer electrolyte fuel cell, fuel cell

Publications (1)

Publication Number Publication Date
JP2016091672A true JP2016091672A (en) 2016-05-23

Family

ID=56017081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222261A Pending JP2016091672A (en) 2014-10-31 2014-10-31 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2016091672A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132174A (en) * 1986-12-08 1992-07-21 International Fuel Cells Corporation Temperature regulation system for endmost fuel cells in a fuel cell stack
JPH0922717A (en) * 1995-07-06 1997-01-21 Fuji Electric Co Ltd Solid highpolymer electrolyte type fuel cell
JP2006092991A (en) * 2004-09-27 2006-04-06 Honda Motor Co Ltd Fuel cell stack
JP2013004321A (en) * 2011-06-16 2013-01-07 Toyota Motor Corp Fuel cell stack
JP2013219000A (en) * 2012-03-14 2013-10-24 Honda Motor Co Ltd Fuel cell stack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132174A (en) * 1986-12-08 1992-07-21 International Fuel Cells Corporation Temperature regulation system for endmost fuel cells in a fuel cell stack
JPH0922717A (en) * 1995-07-06 1997-01-21 Fuji Electric Co Ltd Solid highpolymer electrolyte type fuel cell
JP2006092991A (en) * 2004-09-27 2006-04-06 Honda Motor Co Ltd Fuel cell stack
JP2013004321A (en) * 2011-06-16 2013-01-07 Toyota Motor Corp Fuel cell stack
JP2013219000A (en) * 2012-03-14 2013-10-24 Honda Motor Co Ltd Fuel cell stack

Similar Documents

Publication Publication Date Title
CN106476642B (en) Fuel-cell vehicle
JP4939100B2 (en) Fuel cell stack
KR100757131B1 (en) A metal and polymer complex type endplate for a fuel cell
CN102593485B (en) Fuel cell
JP2007035558A (en) Fuel cell stack
CN101814619A (en) Fuel cell stack
JP4820068B2 (en) Fuel cell stack
CN107026278A (en) Vehicle-mounted fuel cell pack
JP6772343B2 (en) Polymer electrolyte fuel cell, fuel cell
JP2019129090A (en) Exhaust system
JP2004179061A (en) Fuel cell
JP3454837B2 (en) How to install a fuel cell
JP2010117094A (en) Humidifier
JP2016091672A (en) Polymer electrolyte fuel cell
JP2008034251A (en) Fuel cell
JP4739880B2 (en) Polymer electrolyte fuel cell
JP2006093106A (en) Fuel cell stack and fuel cell system including same
US8795911B2 (en) Fuel cell module with a water reservoir including a water storing portion expanding from a cell unit to an anode side
JP5971653B2 (en) Polymer electrolyte fuel cell
JP2014096285A (en) On-vehicle fuel cell system
JP6344028B2 (en) Air battery stack
JP2005293874A (en) Fuel cell stack
KR102635817B1 (en) Separator for fuel cell having structure for ensuring fluidity
JP6900913B2 (en) Fuel cell
JP2009245892A (en) Hydrogen passage and fuel cells equipped therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191105