JP2016090985A - Electrophotographic device and method for designing electrophotographic device - Google Patents

Electrophotographic device and method for designing electrophotographic device Download PDF

Info

Publication number
JP2016090985A
JP2016090985A JP2014229277A JP2014229277A JP2016090985A JP 2016090985 A JP2016090985 A JP 2016090985A JP 2014229277 A JP2014229277 A JP 2014229277A JP 2014229277 A JP2014229277 A JP 2014229277A JP 2016090985 A JP2016090985 A JP 2016090985A
Authority
JP
Japan
Prior art keywords
photosensitive member
exposure
electrophotographic
layer
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014229277A
Other languages
Japanese (ja)
Other versions
JP6463086B2 (en
Inventor
小澤 智仁
Tomohito Ozawa
智仁 小澤
大脇 弘憲
Hironori Owaki
弘憲 大脇
阿部 幸裕
Yukihiro Abe
幸裕 阿部
水谷 匡希
Masaki Mizutani
匡希 水谷
純 大平
Jun Ohira
純 大平
高典 上野
Takanori Ueno
高典 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014229277A priority Critical patent/JP6463086B2/en
Publication of JP2016090985A publication Critical patent/JP2016090985A/en
Application granted granted Critical
Publication of JP6463086B2 publication Critical patent/JP6463086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To suggest an electrophotographic device that can output high-quality images when using an electrophotographic photoreceptor having a higher abrasion resistance than an existing photoreceptor in an electrophotographic process with high processing rates.SOLUTION: The electrophotographic device includes: an electrophotographic photoreceptor having a conductive base material, an optical conducting layer, and a surface layer in that order; pre-exposure means conducting static elimination by irradiating the electrophotographic photoreceptor with pre-exposure light; main charging means charging the electrophotographic photoreceptor; latent image formation means forming an electrostatic latent image on a charged surface of the electrophotographic photoreceptor; developing means developing a toner image on the electrostatic latent image; and transfer means transferring the toner image, the pre-exposure light of the pre-exposure means having such a wavelength that a charging capability of the electrophotographic photoreceptor is in the range of not smaller than 0.975 and not larger than 1.000 when the maximum level of the charging capability, which changes in response to variations in the wavelength of the pre-exposure light, is 1.000.SELECTED DRAWING: Figure 6

Description

本発明は、電子写真装置および電子写真装置の設計方法に関する。   The present invention relates to an electrophotographic apparatus and a method for designing an electrophotographic apparatus.

各種電子写真感光体の中でも、金属などの基体上にアモルファス材料で構成された光導電層(感光層)が形成された電子写真感光体(以下「感光体」とも表記する)は広く知られている。特に、化学気相成長法(CVD法)や物理気相成長法(PVD法)などの成膜技術を用いて作製されたアモルファスシリコン電子写真感光体はすでに製品化されている。なお、アモルファスシリコン電子写真感光体を、以下「a−Si感光体」とも表記する。   Among various electrophotographic photoreceptors, electrophotographic photoreceptors (hereinafter also referred to as “photoreceptors”) in which a photoconductive layer (photosensitive layer) composed of an amorphous material is formed on a substrate such as a metal are widely known. Yes. In particular, amorphous silicon electrophotographic photoreceptors produced using film deposition techniques such as chemical vapor deposition (CVD) and physical vapor deposition (PVD) have already been commercialized. The amorphous silicon electrophotographic photosensitive member is hereinafter also referred to as “a-Si photosensitive member”.

a−Si感光体の基本的な構成として、例えば、マイナス帯電用a−Si感光体の場合、金属などの基体上に下部阻止層、水素化アモルファスシリコン(以下、a−Si:Hとも記す)からなる光導電層、上部阻止層、および表面層が積層した層構成となっている。a−Si感光体で用いられる表面層としては、水素化アモルファスシリコンカーバイド(以下、a−SiC:Hとも記す)、水素化アルモファスカーボン(以下、a−C:Hとも記す)、水素化アモルファスシリコンナイトライド(以下、a−SiN:Hとも記す)などの材料が知られており、なかでもa−SiC:Hがよく使用されている材料である。   As a basic configuration of the a-Si photosensitive member, for example, in the case of a negatively charged a-Si photosensitive member, a lower blocking layer and hydrogenated amorphous silicon (hereinafter also referred to as a-Si: H) on a substrate such as a metal. A layer structure in which a photoconductive layer, an upper blocking layer, and a surface layer are stacked. Examples of the surface layer used in the a-Si photosensitive member include hydrogenated amorphous silicon carbide (hereinafter also referred to as a-SiC: H), hydrogenated amorphous carbon (hereinafter also referred to as aC: H), and hydrogenated amorphous. Materials such as silicon nitride (hereinafter also referred to as a-SiN: H) are known, and among them, a-SiC: H is a frequently used material.

また、a−Si感光体を用いた電子写真装置として、例えば、a−Si感光体の表面に前露光光を照射して除電を行う前露光手段、前記感光体に電荷を付与する帯電手段、像露光を行うことによりa−Si感光体上に静電潜像を形成する潜像形成手段、次いで静電潜像をトナーによって可視化する現像手段、これを転写材に転写する転写手段、および転写残トナーを回収するクリーニング手段からなる電子写真装置が知られている。
a−Si感光体は、表面層の硬度が高いことから耐磨耗性に優れているという特徴を有し、そのため、プロセススピード(以下、PSとも記す)の速い電子写真装置に用いられる場合が多い。
In addition, as an electrophotographic apparatus using an a-Si photosensitive member, for example, a pre-exposure unit that performs static elimination by irradiating the surface of the a-Si photosensitive member with pre-exposure light, a charging unit that imparts a charge to the photosensitive member, A latent image forming unit that forms an electrostatic latent image on an a-Si photoreceptor by performing image exposure, a developing unit that visualizes the electrostatic latent image with toner, a transfer unit that transfers the latent image to a transfer material, and a transfer An electrophotographic apparatus including a cleaning unit that collects residual toner is known.
The a-Si photosensitive member has a feature that it has excellent wear resistance due to the high hardness of the surface layer. For this reason, it may be used in an electrophotographic apparatus having a high process speed (hereinafter also referred to as PS). Many.

一般的には、電子写真装置を高速化、すなわち、PSを速くすると、電子写真感光体の表面電位(以後、帯電能とも記す)は低下する。これは、前露光手段から帯電手段までの時間も短くなるため、前露光で生成された光キャリアの再結合が不十分となり、電子写真感光体内に残留した光キャリアと帯電手段により付与される電荷が結合してしまうため、暗減衰が大きくなるからである。このような理由により、PSを速くすることで帯電能の低下が生じてしまう。   Generally, when the speed of an electrophotographic apparatus is increased, that is, the PS is increased, the surface potential of the electrophotographic photosensitive member (hereinafter also referred to as charging ability) decreases. This also shortens the time from the pre-exposure means to the charging means, so that the recombination of the photocarriers generated by the pre-exposure becomes insufficient, and the charge provided by the photocarrier remaining in the electrophotographic photosensitive member and the charging means. This is because the dark decay becomes large. For these reasons, the charging ability is reduced by increasing the PS.

このようなPSが速い電子写真装置における帯電能の低下を抑制する方法として、特許文献1には、比較的短い前露光の光の波長を用いることで、帯電能の低下を抑制しながら、効率の良い除電ができると記載されている。これは、前露光として比較的短い光の波長を用いると、浸透距離が比較的短い領域に光キャリアを集中的に発生させることができ、帯電手段で電荷を付与する際に、前露光で生成した光キャリアの残存する確率を低減できるためと記載されている。   As a method for suppressing a decrease in charging ability in such an electrophotographic apparatus having a fast PS, Patent Document 1 uses a relatively short wavelength of pre-exposure light, thereby suppressing the decrease in charging ability and improving efficiency. It is described that good static elimination can be achieved. This is because when a relatively short wavelength of light is used as pre-exposure, photocarriers can be intensively generated in a region where the permeation distance is relatively short, and generated by pre-exposure when charging is applied by the charging means. It is described that the probability of remaining optical carriers remaining can be reduced.

特開2010−170111号公報JP 2010-170111 A

近年、電子写真装置の高速化およびカラー化が進んだことで、従来に比べ、電子写真感光体がさらに磨耗しやすい電子写真プロセスへと変化してきている。また、電子写真装置のカラー化に伴い、画像品質の向上と高品質の画像の安定出力に対する要求も高まっている。これらの要求を満たすためには、従来よりも高い耐磨耗性を有し、かつ、高品質な画像を出力可能な電子写真感光体が必要となる。   In recent years, as the speed and color of an electrophotographic apparatus have been increased, the electrophotographic photosensitive member has been changed to an electrophotographic process that is more easily worn than before. In addition, with the colorization of electrophotographic apparatuses, there are increasing demands for improved image quality and stable output of high-quality images. In order to satisfy these requirements, an electrophotographic photosensitive member having higher wear resistance than before and capable of outputting a high-quality image is required.

しかしながら、PSが比較的速く、かつ、前露光の光の波長を短くした電子写真装置に従来よりも高い耐磨耗性を有する電子写真感光体を搭載したとしても、十分な帯電能が得られない場合があった。
よって、本発明の目的は、PSが比較的速い電子写真プロセスにおいて、従来よりも高い耐磨耗性を有する電子写真感光体を使用した場合であっても、高品質な画像を出力可能な電子写真装置を提供することにある。
However, even if an electrophotographic photosensitive member having higher wear resistance than before is mounted on an electrophotographic apparatus in which PS is relatively fast and the wavelength of light for pre-exposure is shortened, sufficient charging ability can be obtained. There was no case.
Therefore, an object of the present invention is to provide an electronic device capable of outputting a high-quality image even in the case of using an electrophotographic photosensitive member having higher wear resistance than in the conventional electrophotographic process having a relatively fast PS. It is to provide a photographic apparatus.

本発明によれば、導電性基体上に光導電層および表面層が順次形成された電子写真感光体と、前記電子写真感光体に前露光光を照射して除電を行う前露光手段と、前記電子写真感光体に帯電を行う主帯電手段と、前記電子写真感光体の帯電面に静電潜像を形成する潜像形成手段と、前記静電潜像をトナー像として現像する現像手段と、前記トナー像を転写する転写手段を有する電子写真装置において、
前記前露光手段が、前露光光の波長を変化させたときに変化する前記電子写真感光体の帯電能の最大値を1.000としたときに、前記帯電能が0.975以上1.000以下となる前露光光の波長を有することを特徴とする電子写真装置が提供される。
According to the present invention, an electrophotographic photosensitive member in which a photoconductive layer and a surface layer are sequentially formed on a conductive substrate, pre-exposure means for performing static elimination by irradiating the electrophotographic photosensitive member with pre-exposure light, A main charging means for charging the electrophotographic photosensitive member, a latent image forming means for forming an electrostatic latent image on a charging surface of the electrophotographic photosensitive member, and a developing means for developing the electrostatic latent image as a toner image; In an electrophotographic apparatus having transfer means for transferring the toner image,
When the maximum value of the charging ability of the electrophotographic photosensitive member that changes when the pre-exposure means changes the wavelength of the pre-exposure light is 1.000, the charging ability is 0.975 or more and 1.000. An electrophotographic apparatus having the following pre-exposure light wavelength is provided.

本発明により、PSが比較的速い電子写真プロセスで耐磨耗性に優れた電子写真感光体を使用した場合であっても、電子写真感光体に適した前露光の光の波長を選択することにより電子写真感光体への光吸収量の制御が可能となる。これにより、帯電能を向上させることが可能となるため、高速、かつ、画像品質の高い画像の出力可能な電子写真装置を提供することができる。   According to the present invention, even when an electrophotographic photoreceptor excellent in abrasion resistance is used in an electrophotographic process having a relatively fast PS, the wavelength of the pre-exposure light suitable for the electrophotographic photoreceptor can be selected. This makes it possible to control the amount of light absorbed by the electrophotographic photosensitive member. Thereby, since charging ability can be improved, an electrophotographic apparatus capable of outputting an image with high speed and high image quality can be provided.

(a)は本発明に関わる電子写真装置の概略構成図である。(b)は本発明に関わる電子写真装置の第二の概略構成図である。FIG. 2A is a schematic configuration diagram of an electrophotographic apparatus according to the present invention. (B) is the 2nd schematic block diagram of the electrophotographic apparatus concerning this invention. (a)は本発明に関わる電子写真装置の第三の概略構成図である。(b)は本発明に関わる電子写真装置の第四の概略構成図である。(A) is a 3rd schematic block diagram of the electrophotographic apparatus concerning this invention. (B) is the 4th schematic block diagram of the electrophotographic apparatus concerning this invention. a−Si感光体の作製に用いられるプラズマCVD装置の例を示す模式図である。It is a schematic diagram which shows the example of the plasma CVD apparatus used for preparation of an a-Si photoreceptor. (a)はプラス帯電用a−Si感光体の層構成の一例を示す模式図である。(b)はマイナス帯電用a−Si感光体の層構成の一例を示す模式図である。(c)は図5の説明に用いたa−Si感光体の層構成を示す模式図である。(A) is a schematic diagram showing an example of a layer configuration of an a-Si photosensitive member for positive charging. FIG. 6B is a schematic diagram illustrating an example of a layer configuration of a negatively charged a-Si photosensitive member. FIG. 6C is a schematic diagram illustrating a layer configuration of the a-Si photosensitive member used in the description of FIG. 5. a−Si感光体に照射される光の波長に対する光導電層よりも自由表面側に有るすべての層での光の吸収率の関係を示す説明図である。It is explanatory drawing which shows the relationship of the light absorption rate in all the layers which exist in the free surface side rather than the photoconductive layer with respect to the wavelength of the light irradiated to an a-Si photoreceptor. 所定の電子写真プロセス条件で、前露光の光の波長に対する現像器位置での電子写真感光体の表面電位の変化を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining a change in surface potential of an electrophotographic photosensitive member at a developing device position with respect to a wavelength of pre-exposure light under predetermined electrophotographic process conditions.

鋭意検討をした結果、PSが比較的速い電子写真プロセスにおいて、耐磨耗性に優れた電子写真感光体を用いた場合、以下に示す条件を満たす電子写真装置を用いることで、高品質な画像を出力可能であることがわかった。
帯電能の前露光の波長依存性から得られる最大値となる帯電能を1.000としたときに、帯電能が0.975以上1.000以下の範囲に入る前露光の波長を有する前露光手段であること。
As a result of intensive studies, when an electrophotographic photosensitive member having excellent wear resistance is used in an electrophotographic process having a relatively fast PS, a high-quality image can be obtained by using an electrophotographic apparatus that satisfies the following conditions. It was found that can be output.
Pre-exposure having a pre-exposure wavelength in which the charging ability falls within the range of 0.975 or more and 1.000 or less when the charging ability that is the maximum value obtained from the wavelength dependence of the pre-exposure of charging ability is 1.000. Be a means.

以下、本発明の電子写真装置において、満たすべき条件とその効果について説明する。
まず、a−Si感光体に照射される前露光の光の波長を変えたときの光導電層よりも自由表面側に有るすべての層(以後、自由表面側の層とも記す)における光の吸収について説明する。
Hereinafter, conditions to be satisfied and effects thereof in the electrophotographic apparatus of the present invention will be described.
First, the absorption of light in all layers on the free surface side (hereinafter also referred to as the free surface side layer) from the photoconductive layer when the wavelength of the pre-exposure light irradiated on the a-Si photoconductor is changed. Will be described.

図5は、図4(c)のa−Si感光体の構成において、a−Si感光体に照射される光の波長に対する自由表面側の層での光の吸収率の関係を示す説明図である。なお、図4(c)の場合、自由表面側の層とは、光導電層の自由表面側に位置する表面層4205であり、以下、自由表面側の層が表面層のみで構成されている場合について説明する。   FIG. 5 is an explanatory diagram showing the relationship of the light absorptance in the layer on the free surface side with respect to the wavelength of light irradiated to the a-Si photosensitive member in the configuration of the a-Si photosensitive member in FIG. is there. In the case of FIG. 4C, the free surface side layer is a surface layer 4205 located on the free surface side of the photoconductive layer, and the free surface side layer is composed of only the surface layer hereinafter. The case will be described.

図5に示すように、a−Si感光体に照射される光を照射すると、照射される光の波長が短くなるにつれ、自由表面側の層による照射される光の吸収量が増加する。
次に、a−Si感光体に照射される前露光の光の波長を変えたときの電子写真感光体の表面電位の変化をもとに、電子写真感光体内に生じる光キャリアの挙動について、図6を用いて説明する。
As shown in FIG. 5, when the a-Si photosensitive member is irradiated with light, the amount of light absorbed by the free surface layer increases as the wavelength of the irradiated light decreases.
Next, the behavior of the photocarrier generated in the electrophotographic photosensitive member based on the change in the surface potential of the electrophotographic photosensitive member when the wavelength of the pre-exposure light irradiated on the a-Si photosensitive member is changed is shown in FIG. 6 will be described.

図6は、電子写真感光体を電子写真装置に搭載し、所定の電子写真プロセス条件で前露光の光の波長のみを変えたときの現像器位置での電子写真感光体の表面電位の変化を説明するための説明図である。なお、以下に示す再結合とは、光キャリア同士が結合して消滅することであり、また、結合とは、外部から付与された電荷と光キャリアが結合して消滅することである。   FIG. 6 shows changes in the surface potential of the electrophotographic photosensitive member at the position of the developing device when the electrophotographic photosensitive member is mounted on the electrophotographic apparatus and only the wavelength of the pre-exposure light is changed under predetermined electrophotographic process conditions. It is explanatory drawing for demonstrating. Note that the recombination shown below is that the photocarriers are bonded and disappeared, and the bond is that the charge applied from the outside and the photocarriers are combined and disappeared.

a−Si感光体を電子写真装置に搭載した場合、前露光の光の波長が比較的長い場合、自由表面側の層で生成される光キャリアの数は僅かである。一方で、浸透距離が光導電層の比較的長い領域にまで前露光が入り込むため、光導電層の自由表面側の層側から導電性基体側に深い範囲まで前露光が浸透する。このため、光導電層において、自由表面から遠い領域でも前露光により光キャリアが発生するため、PSが速い場合、前露光が照射された電子写真感光体の表面が帯電手段まで移動する間での再結合が不十分となり、光導電層内に多量の残キャリアが残存してしまう。この残キャリアの一部は、帯電手段の下を通過する間でも帯電手段により付与された電荷と結合できず、帯電手段通過後に帯電手段により付与された電荷と結合することで大きな暗減衰となると推察される。   When the a-Si photosensitive member is mounted on an electrophotographic apparatus, when the wavelength of the pre-exposure light is relatively long, the number of photocarriers generated in the free surface layer is small. On the other hand, since the pre-exposure enters the region where the penetration distance is relatively long in the photoconductive layer, the pre-exposure penetrates from the free surface side of the photoconductive layer to the conductive substrate side to a deep range. For this reason, in the photoconductive layer, photocarriers are generated by pre-exposure even in a region far from the free surface. Therefore, when PS is fast, the surface of the electrophotographic photosensitive member irradiated with pre-exposure is moved to the charging unit. Recombination becomes insufficient and a large amount of residual carriers remain in the photoconductive layer. A part of the remaining carrier cannot be combined with the charge applied by the charging unit even while passing under the charging unit. When the remaining carrier is combined with the charge applied by the charging unit after passing through the charging unit, a large dark decay occurs. Inferred.

前露光の光の波長を図5のAの領域内で短くしていくと、自由表面側の層での光の吸収は多少増加する。同時に、波長が短くなることにより浸透距離が短くなるため、光導電層中で光キャリアが生成される領域が狭くなる。その一方で、その領域での光キャリア密度が増加するため、前露光が照射された電子写真感光体の表面が帯電手段まで移動する間に、前露光により生成された光キャリアの再結合確率が増加し、光導電層中の残キャリアも減少する。これにより、前露光が照射された電子写真感光体の表面での帯電手段通過後の暗減衰は減少すると推察される。   As the wavelength of the pre-exposure light is shortened within the region A in FIG. 5, the absorption of light in the free surface layer slightly increases. At the same time, the penetrating distance is shortened by shortening the wavelength, so that the region where photocarriers are generated in the photoconductive layer is narrowed. On the other hand, since the photocarrier density in the region increases, the recombination probability of the photocarriers generated by the pre-exposure is increased while the surface of the electrophotographic photosensitive member irradiated with the pre-exposure moves to the charging means. It increases and the residual carriers in the photoconductive layer also decrease. Thereby, it is presumed that the dark attenuation after passing through the charging means on the surface of the electrophotographic photosensitive member irradiated with the pre-exposure decreases.

前露光の光の波長をさらに短くすると、光導電層への侵入深さは減少し、光導電層内に残存する光キャリアの数は減少するため、上述した理由により光導電層に起因する暗減衰は減少する。しかしながら、波長がさらに短くなることにより、図5のBの領域へと移行し始めるため、自由表面側の層での光吸収が増加し、自由表面側の層で生成される光キャリアの数が増加し始める。このときに生成される光キャリアは、前露光が照射された電子写真感光体の表面が帯電手段まで移動するまでの間に再結合により消滅しにくくなるため、自由表面側の層に起因する暗減衰が増加する。この結果、前露光の光の波長を短くしたことによる光導電層に起因する暗減衰減少と自由表面側の層に起因する暗減衰の増加が組み合わさることになる。そのため、図6のDの領域のように、前露光の波長を短くしていくと、所定の電子写真プロセスにおける帯電電位が極大値を有する分布となる。   If the wavelength of the pre-exposure light is further shortened, the penetration depth into the photoconductive layer is reduced, and the number of photocarriers remaining in the photoconductive layer is reduced. For this reason, darkness caused by the photoconductive layer is reduced. Attenuation decreases. However, as the wavelength is further shortened, the region starts to shift to the region B in FIG. 5, so that light absorption in the free surface layer increases, and the number of photocarriers generated in the free surface layer increases. Start to increase. The photocarriers generated at this time are less likely to disappear due to recombination before the surface of the electrophotographic photosensitive member irradiated with the pre-exposure is moved to the charging means. Attenuation increases. As a result, the decrease in dark attenuation caused by the photoconductive layer due to the shortening of the wavelength of the pre-exposure light is combined with the increase in dark attenuation caused by the layer on the free surface side. Therefore, as shown in the area D of FIG. 6, when the pre-exposure wavelength is shortened, the charge potential in a predetermined electrophotographic process has a distribution having a maximum value.

そして、前露光の光の波長をさらに短くし、図5のBの領域となる前露光の光の波長では、光導電層への侵入深さはさらに減少し、光導電層内に残存する光キャリアの数もさらに減少する。逆に、自由表面側の層での光吸収が急激に増加に伴い、自由表面側の層内に多数の光キャリアが生成される。そのため、前露光の光の波長をさらに短くすると、自由表面側の層内の光キャリア数が多く、かつ、前露光が照射された電子写真感光体の表面が帯電手段まで移動するまでの間に光キャリアが再結合により消滅しにくくなる。これため、主帯電手段の下まで多数の光キャリアの残存することにより、光導電層に起因する暗減衰の影響は小さくなるが、自由表面側の層に起因する暗減衰の影響が支配的になると推察される。   Then, the wavelength of the pre-exposure light is further shortened, and the penetration depth into the photoconductive layer is further reduced at the wavelength of the pre-exposure light in the region B in FIG. The number of carriers will further decrease. On the contrary, as the light absorption in the free surface layer increases rapidly, a large number of optical carriers are generated in the free surface layer. Therefore, if the wavelength of the pre-exposure light is further shortened, the number of photocarriers in the layer on the free surface side is large, and before the surface of the electrophotographic photosensitive member irradiated with the pre-exposure moves to the charging means. It becomes difficult for optical carriers to disappear due to recombination. For this reason, the presence of a large number of photocarriers under the main charging means reduces the influence of dark attenuation caused by the photoconductive layer, but the influence of dark attenuation caused by the free surface layer is dominant. It is assumed that

以上に示した理由により、図6のDの領域のように、ある前露光の光の波長で所定の電子写真プロセスにおける帯電電位が極大値となる。その極大値となる前露光の光の波長から長波長側に変化させると、図6のEの領域のように、光導電層に起因する暗減衰の影響により表面電位が低下する。逆に、極大値となる前露光の光の波長から短波長側に変化させると、図6のCの領域のように、自由表面側の層に起因する暗減衰の影響により表面電位が低下する。   For the reasons described above, the charging potential in a predetermined electrophotographic process becomes a maximum value at a certain wavelength of light of pre-exposure as in the region D in FIG. When the wavelength of the pre-exposure light having the maximum value is changed from the wavelength of the pre-exposure light to the longer wavelength side, the surface potential is lowered due to the influence of dark attenuation caused by the photoconductive layer as in the region E in FIG. On the contrary, when the wavelength of the pre-exposure light having the maximum value is changed from the wavelength of short exposure to the short wavelength side, the surface potential is lowered due to the influence of dark attenuation caused by the layer on the free surface side as in the region C in FIG. .

また、図6のDの領域での極大値の有無や極大値となる前露光の光の波長は、光導電層での前露光の光の吸収量と自由表面側の層での前露光の光の吸収量のバランスにより決まる。
さらに、PSが速い程、上述した残存キャリアの影響は大きくなる。特に、PSが500mm/秒以上の場合は顕著となる。
In addition, the presence or absence of the maximum value in the region D in FIG. 6 and the wavelength of the pre-exposure light that becomes the maximum value are the amount of light absorbed in the pre-exposure in the photoconductive layer and the pre-exposure in the layer on the free surface side Determined by the balance of light absorption.
Furthermore, the faster the PS, the greater the influence of the residual carrier described above. In particular, it becomes remarkable when PS is 500 mm / second or more.

このような理由により、PSが比較的速い電子写真プロセスにおいて、a−Si感光体を搭載した電子写真装置においては、搭載されるa−Si感光体の特性に応じて、前露光の条件を適切に制御しなければ、高品質な画像の出力は困難である。
そこで、本発明においては、前露光の光の波長を制御する方法として、所定の電子写真プロセス条件において、電子写真感光体の回転方向における所定の位置(例えば、現像器位置)で前露光の波長を変化させたときの帯電能の変化を測定する。そして、前露光の波長と帯電能の関係から帯電能の最大値を算出し、この帯電能の最大値を1.000とする。その後、各前露光の波長に対する帯電能が帯電能の最大値に対して0.975以上1.000以下の範囲に入る前露光の波長を選択することを必要である。これにより、比較的速いPSであっても、長寿命で、かつ、高品質な画像を出力可能な電子写真装置の実現が可能となる。
For these reasons, in an electrophotographic process with a relatively fast PS, in an electrophotographic apparatus equipped with an a-Si photosensitive member, the pre-exposure conditions are appropriately set according to the characteristics of the mounted a-Si photosensitive member. Without control, it is difficult to output a high-quality image.
Therefore, in the present invention, as a method for controlling the wavelength of the pre-exposure light, the wavelength of the pre-exposure at a predetermined position (for example, the position of the developing device) in the rotation direction of the electrophotographic photosensitive member under predetermined electrophotographic process conditions. Measure the change in charging ability when changing the. Then, the maximum value of the charging ability is calculated from the relationship between the wavelength of the pre-exposure and the charging ability, and the maximum value of the charging ability is set to 1.000. After that, it is necessary to select a pre-exposure wavelength in which the charging ability for each pre-exposure wavelength falls within the range of 0.975 to 1.000 with respect to the maximum value of the charging ability. This makes it possible to realize an electrophotographic apparatus that can output a high-quality image with a long lifetime even with a relatively fast PS.

前露光の光の波長における前記所定の位置で測定される電子写真感光体の表面の帯電電位が、帯電電位の最大値に対して0.975よりも小さい場合には、PSが比較的速い電子写真プロセスに適した帯電電位が得られない場合がある。
なお、前露光の波長を変化させて電子写真感光体の表面の帯電電位を測定する条件を以下に示す。
When the charged potential of the surface of the electrophotographic photosensitive member measured at the predetermined position at the wavelength of the pre-exposure light is smaller than 0.975 with respect to the maximum value of the charged potential, A charged potential suitable for a photographic process may not be obtained.
The conditions for measuring the charged potential on the surface of the electrophotographic photosensitive member by changing the wavelength of the pre-exposure are shown below.

電子写真感光体の表面の帯電電位を測定する場所は、前露光の光の波長を変えても電子写真感光体の回転方向における所定の位置で固定すればよく、所定の位置に関しては制限がないが、現像器位置で測定するのが好ましい。
また、前露光の波長を変化させる際に、少なくとも、電子写真感光体の回転速度、主帯電手段にて電子写真感光体に供給される帯電電流およびクリッド電位、前露光手段から前記感光体に照射される前露光の光量を所定の値に固定して測定する必要がある。
The charging potential on the surface of the electrophotographic photosensitive member may be fixed at a predetermined position in the rotation direction of the electrophotographic photosensitive member even if the wavelength of the pre-exposure light is changed, and there is no restriction on the predetermined position. However, it is preferable to measure at the position of the developing device.
Further, when changing the wavelength of the pre-exposure, at least the rotation speed of the electrophotographic photosensitive member, the charging current and the crid potential supplied to the electrophotographic photosensitive member by the main charging unit, and the irradiation from the pre-exposure unit to the photosensitive member It is necessary to measure the amount of pre-exposure to be fixed at a predetermined value.

さらに、本発明では、前露光の光の波長における電子写真感光体に照射される前露光の光量に対する自由表面側の層で吸収される前露光の光量の割合が25%以上55%以下、かつ、耐磨耗性に優れた電子写真感光体を用いることで、さらに高品質な画像の出力が可能となる。
上述したように、図6のCの領域は、自由表面側の層による前露光の光の吸収量の影響を受ける。そのため前露光の光の波長における電子写真感光体に照射される前露光の光量に対する自由表面側の層で吸収される前露光の光量の割合が25%以上にすることで、特に顕著に表れる。
Furthermore, in the present invention, the ratio of the pre-exposure light amount absorbed by the free surface layer to the pre-exposure light amount irradiated to the electrophotographic photosensitive member at the wavelength of the pre-exposure light is 25% to 55%, and Further, by using an electrophotographic photoreceptor excellent in abrasion resistance, it is possible to output a higher quality image.
As described above, the area C in FIG. 6 is affected by the amount of light absorbed by the pre-exposure by the layer on the free surface side. For this reason, the ratio of the amount of the pre-exposure absorbed by the free surface layer to the amount of the pre-exposure irradiated to the electrophotographic photosensitive member at the wavelength of the pre-exposure light is 25% or more.

また、前露光の光の波長における電子写真感光体に照射される前露光の光量に対する自由表面側の層で吸収される前露光の光量の割合が55%以下とすることが好ましい。これにより、階調性に優れた画像の出力が可能となる。
これは、自由表面側の層で吸収される前露光の光量が非常に多いと、自由表面側の層で生成される光キャリアが多くなるため、前露光で生成された光キャリアが潜像形成手段の下まで残存してしまう場合がある。この残存キャリアの影響で、自由表面側の層が低抵抗化するため、潜像形成手段が潜像を形成した際、潜像が広がってしまい、この結果、階調性が低下すると考えられる。
The ratio of the amount of pre-exposure absorbed by the free surface layer to the amount of pre-exposure irradiated to the electrophotographic photosensitive member at the wavelength of the pre-exposure light is preferably 55% or less. Thereby, it is possible to output an image with excellent gradation.
This is because, if the amount of pre-exposure absorbed by the free surface layer is very large, the amount of light carriers generated in the free surface layer increases, so that the light carrier generated in the pre-exposure forms a latent image. It may remain below the means. Due to the influence of the remaining carriers, the resistance of the layer on the free surface side is lowered, so that when the latent image forming means forms a latent image, the latent image spreads, and as a result, the gradation is considered to deteriorate.

以上に示した本発明の電子写真装置における満たすべき条件とその効果について、図4(c)に示す自由表面側の層が表面層のみで構成される電子写真感光体を用いて説明した。しかしながら、図4(a)および図4(b)に示す自由表面側の層が中間層と表面層で構成された電子写真感光体を用いた場合であっても、a−Si感光体に照射される光の波長に対する自由表面側の層での光の吸収率の関係は、図5と同様の傾向となる。そのため、図4(a)および図4(b)に示す電子写真感光体を用いた場合であっても、a−Si感光体に照射される前露光の光の波長を変えたときの電子写真感光体の表面電位の変化は図6と同様の傾向となる。   The conditions to be satisfied and the effects thereof in the electrophotographic apparatus of the present invention described above have been described using an electrophotographic photoreceptor in which the free surface side layer shown in FIG. However, even when the electrophotographic photosensitive member in which the free surface side layer shown in FIGS. 4A and 4B is composed of an intermediate layer and a surface layer is used, the a-Si photosensitive member is irradiated. The relationship of the light absorptance in the free surface layer with respect to the wavelength of the emitted light has the same tendency as in FIG. Therefore, even when the electrophotographic photosensitive member shown in FIGS. 4A and 4B is used, the electrophotography when the wavelength of the pre-exposure light irradiated to the a-Si photosensitive member is changed is used. The change in the surface potential of the photoreceptor has the same tendency as in FIG.

さらに、自由表面側の層の層構成が複数の層から構成されていたとしても、図5および図6の傾向と同様の傾向となる。
以下、本発明のさらに詳細な説明をする。
Furthermore, even if the layer structure of the free surface side layer is composed of a plurality of layers, the same tendency as the tendency of FIGS. 5 and 6 is obtained.
Hereinafter, the present invention will be described in more detail.

<本発明の電子写真方法で使用可能な電子写真感光体>
本発明で使用可能な電子写真感光体に関しては、少なくとも導電性基体上に光導電層と表面層を有するものであれば特に制限は無く、通常の電子写真装置で使用可能な電子写真感光体を選択すればよく、例えば、a−Si感光体や有機感光体等が挙げられる。
本発明で使用可能な電子写真感光体の一例として、a−Si感光体を用いて説明する。
<Electrophotographic photoreceptor usable in the electrophotographic method of the present invention>
The electrophotographic photosensitive member that can be used in the present invention is not particularly limited as long as it has at least a photoconductive layer and a surface layer on a conductive substrate. An electrophotographic photosensitive member that can be used in an ordinary electrophotographic apparatus is used. What is necessary is just to select, for example, an a-Si photoreceptor and an organic photoreceptor.
As an example of the electrophotographic photosensitive member that can be used in the present invention, an a-Si photosensitive member will be described.

図4は、a−Si感光体の層構成を説明するための模式図である。図4(a)はプラス帯電用a−Si感光体、図4(b)はマイナス帯電用a−Si感光体の模式図である。
図4(a)に示すプラス帯電用a−Si感光体4000は、基体4001上に下部電荷注入阻止層4002およびa−Si:Hで構成された光導電層4003を形成し、その上にa−SiC:Hからなる中間層4004および表面層4005が順次積層した構成となっている。
FIG. 4 is a schematic diagram for explaining the layer structure of the a-Si photosensitive member. FIG. 4A is a schematic diagram of a positive charging a-Si photoconductor, and FIG. 4B is a schematic diagram of a negative charging a-Si photoconductor.
In the positive charging a-Si photosensitive member 4000 shown in FIG. 4A, a lower charge injection blocking layer 4002 and a photoconductive layer 4003 composed of a-Si: H are formed on a substrate 4001, and a An intermediate layer 4004 and a surface layer 4005 made of SiC: H are sequentially stacked.

また、図4(b)に示すマイナス帯電用a−Si感光体4100は、基体4101上に電荷注入阻止層4102およびa−Si:Hで構成された光受容層4102を形成し、その上にa−SiC:Hからなる上部阻止層4104および表面層4105が順次積層した構成となっている。   Further, in the negatively charged a-Si photosensitive member 4100 shown in FIG. 4B, a charge injection blocking layer 4102 and a photoreceptive layer 4102 made of a-Si: H are formed on a base 4101, and the light receiving layer 4102 is formed thereon. The upper blocking layer 4104 and the surface layer 4105 made of a-SiC: H are sequentially stacked.

a−Si感光体に用いられる自由表面側の層としては、特に制限は無く、a−SiC:H、a−SiN:H、a−C:Hなどの材料が挙げられる。なかでも耐磨耗性の観点から、a−SiCやa−Cが好ましい。
また、光導電層よりも自由表面側に有るすべての層とは、a−Siからなる光導電層よりも自由表面側にあり、かつ、光導電層には含有されていない構成原子が含有された層のことである。図4(a)に示すプラス帯電用a−Si感光体では、光導電層にはない炭素原子を有するa−SiCからなる中間層4004および表面層4005がこれに該当する。図4(b)に示すマイナス帯電用a−Si感光体でも同様に、a−SiCからなる上部阻止層4104および表面層4105がこれに該当する。
The layer on the free surface side used for the a-Si photoreceptor is not particularly limited, and examples thereof include materials such as a-SiC: H, a-SiN: H, and aC: H. Of these, a-SiC and a-C are preferable from the viewpoint of wear resistance.
Further, all the layers on the free surface side with respect to the photoconductive layer are on the free surface side with respect to the photoconductive layer made of a-Si, and contain constituent atoms not contained in the photoconductive layer. It is a layer. In the positively charged a-Si photosensitive member shown in FIG. 4A, the intermediate layer 4004 and the surface layer 4005 made of a-SiC having carbon atoms not included in the photoconductive layer correspond to this. Similarly, in the negatively charged a-Si photosensitive member shown in FIG. 4B, the upper blocking layer 4104 and the surface layer 4105 made of a-SiC correspond to this.

図4(a)での中間層4004、図4(b)の上部阻止層4104が、光導電層から表面層にかけて連続的に変化している場合には、中間層および上部阻止層において、炭素原子の含有が確認され、かつ、最も光導電層側の位置よりも自由表面側を、本発明における自由表面側に有るすべての層とする。
また、本発明において、電子写真感光体の寿命の観点から、表面層の層厚を1.0μm以上にすることがさらに好ましい。
When the intermediate layer 4004 in FIG. 4A and the upper blocking layer 4104 in FIG. 4B are continuously changing from the photoconductive layer to the surface layer, carbon in the intermediate layer and the upper blocking layer The free surface side is confirmed to be all layers on the free surface side in the present invention, with the content of atoms being confirmed, and the free surface side from the position closest to the photoconductive layer side.
In the present invention, the thickness of the surface layer is more preferably 1.0 μm or more from the viewpoint of the life of the electrophotographic photosensitive member.

(表面層)
本発明において、上記a−SiC表面層の形成方法は、上記規定を満足する層を形成できるものであればいずれの方法であってもよい。具体的には、プラズマCVD法、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。これらの中でも、原料供給の容易さなどの点で、プラズマCVD法が好ましい。
(Surface layer)
In the present invention, the method for forming the a-SiC surface layer may be any method as long as it can form a layer that satisfies the above definition. Specific examples include plasma CVD, vacuum deposition, sputtering, and ion plating. Among these, the plasma CVD method is preferable from the viewpoint of easy supply of raw materials.

a−SiC表面層の形成方法としてプラズマCVD法を選択した場合、a−SiC表面層の形成方法は以下のとおりである。
すなわち、ケイ素原子供給用の原料ガスおよび炭素原子供給用の原料ガスを、内部を減圧しうる反応容器内に所望のガス状態で導入し、該反応容器内にグロー放電を生起させる。これによって、反応容器内に導入した原料ガスを分解し、あらかじめ所定の位置に設置された基体上にa−SiCで構成された層を形成すればよい。
When the plasma CVD method is selected as the method for forming the a-SiC surface layer, the method for forming the a-SiC surface layer is as follows.
That is, a raw material gas for supplying silicon atoms and a raw material gas for supplying carbon atoms are introduced in a desired gas state into a reaction vessel whose inside can be depressurized, and glow discharge is caused in the reaction vessel. In this way, the source gas introduced into the reaction vessel is decomposed, and a layer composed of a-SiC may be formed on a substrate that is previously set at a predetermined position.

ケイ素原子供給用の原料ガスとしては、たとえば、シラン(SiH)、ジシラン(Si)などのシラン類が好適に使用できる。また、炭素原子供給用の原料ガスとしては、たとえば、メタン(CH)、アセチレン(C)などのガスが好適に使用できる。また、主にH/(Si+C+H)を調整するためとして、水素(H)を、上記の原料ガスとともに使用してもよい。
本発明のa−SiC表面層を形成する場合においては、反応容器に供給するガス流量を少なく、高周波電力を高く、または、基体の温度を高くすることにより、耐磨耗性が良好となりやすい傾向がある。実際には、これらの条件を適宜組み合わせて設定すればよい。
As the source gas for supplying silicon atoms, for example, silanes such as silane (SiH 4 ) and disilane (Si 2 H 6 ) can be preferably used. As the source gas for the carbon atoms supplied, for example, methane (CH 4), acetylene (C 2 H 2) gas or the like can be suitably used. Moreover, hydrogen (H 2 ) may be used together with the above raw material gas mainly for adjusting H / (Si + C + H).
When the a-SiC surface layer of the present invention is formed, the wear resistance tends to be good by reducing the gas flow rate supplied to the reaction vessel, increasing the high-frequency power, or increasing the temperature of the substrate. There is. In practice, these conditions may be set in appropriate combination.

(光導電層)
本発明において、光導電層は、電子写真特性上の性能を満足できる光導電特性を有するものであればいずれのものであってもよいが、耐久性、安定性の観点から、水素化アモルファスシリコンで構成された光導電層が好ましい。
本発明において、光導電層としてa−Siで構成された光導電層を用いる場合は、a−Si中の未結合手を補償するため、水素原子に加えて、ハロゲン原子を含有させることができる。
(Photoconductive layer)
In the present invention, the photoconductive layer may be any one as long as it has photoconductive characteristics that can satisfy the performance on electrophotographic characteristics, but from the viewpoint of durability and stability, hydrogenated amorphous silicon. The photoconductive layer comprised by is preferable.
In the present invention, when a photoconductive layer composed of a-Si is used as the photoconductive layer, in order to compensate for dangling bonds in a-Si, halogen atoms can be contained in addition to hydrogen atoms. .

水素原子(H)およびハロゲン原子(X)の含有量の合計(H+X)は、ケイ素原子(C)と水素原子(H)とハロゲン原子(X)との和(C+H+X)に対して10原子%以上であることが好ましく、15原子%以上であることがより好ましい。一方、30原子%以下であることが好ましく、25原子%以下であることがより好ましい。   The total content (H + X) of the hydrogen atom (H) and the halogen atom (X) is 10 atom% with respect to the sum (C + H + X) of the silicon atom (C), the hydrogen atom (H) and the halogen atom (X). It is preferable that it is above, and it is more preferable that it is 15 atomic% or more. On the other hand, it is preferably 30 atomic% or less, and more preferably 25 atomic% or less.

本発明において、光導電層には必要に応じて伝導性を制御するための原子を含有させることが好ましい。伝導性を制御するための原子は、光導電層中にまんべんなく均一に分布した状態で含有されていてもよいし、また、膜厚方向には不均一な分布状態で含有している部分があってもよい。   In the present invention, the photoconductive layer preferably contains atoms for controlling conductivity as required. Atoms for controlling conductivity may be contained in the photoconductive layer in a uniformly distributed state, or there may be a portion containing in a non-uniform distribution state in the film thickness direction. May be.

伝導性を制御するための原子としては、半導体分野における、いわゆる不純物を挙げることがでる。すなわち、p型伝導性を与える周期表第13族に属する原子またはn型伝導性を与える周期表第15族に属する原子を用いることができる。なお、周期表第13族に属する原子を、以下「第13族原子」とも表記する。また、周期表第15族に属する原子を、以下「第15族原子」とも表記する。   As atoms for controlling conductivity, so-called impurities in the semiconductor field can be mentioned. That is, an atom belonging to Group 13 of the periodic table giving p-type conductivity or an atom belonging to Group 15 of the periodic table giving n-type conductivity can be used. Note that atoms belonging to Group 13 of the periodic table are also referred to as “Group 13 atoms” below. In addition, atoms belonging to Group 15 of the periodic table are also referred to as “Group 15 atoms” below.

第13族原子としては、具体的には、ホウ素原子(B)、アルミニウム原子(Al)、ガリウム原子(Ga)、インジウム原子(In)、タリウム原子(Tl)などがある。これらの中でも、ホウ素原子、アルミニウム原子、ガリウム原子が好ましい。また、第15族原子としては、具体的には、リン原子(P)、ヒ素原子(As)、アンチモン原子(Sb)、ビスマス原子(Bi)などがある。これらの中でも、リン原子、ヒ素原子が好ましい。   Specific examples of the Group 13 atom include a boron atom (B), an aluminum atom (Al), a gallium atom (Ga), an indium atom (In), and a thallium atom (Tl). Among these, a boron atom, an aluminum atom, and a gallium atom are preferable. Specific examples of Group 15 atoms include phosphorus atoms (P), arsenic atoms (As), antimony atoms (Sb), and bismuth atoms (Bi). Among these, a phosphorus atom and an arsenic atom are preferable.

光導電層に含有される伝導性を制御するための原子の含有量は、ケイ素原子(Si)に対して1×10−2原子ppm以上であることが好ましく、5×10−2原子ppm以上であることがより好ましく、1×10−1原子ppm以上であることがより一層好ましい。一方、1×10原子ppm以下であることが好ましく、5×10原子ppm以下であることがより好ましく、1×10原子ppm以下であることがより一層好ましい。 The content of atoms for controlling the conductivity contained in the photoconductive layer is preferably 1 × 10 −2 atom ppm or more with respect to silicon atoms (Si), and 5 × 10 −2 atom ppm or more. It is more preferable that it is 1 × 10 −1 atom ppm or more. On the other hand, it is preferably 1 × 10 4 atom ppm or less, more preferably 5 × 10 3 atom ppm or less, and even more preferably 1 × 10 3 atom ppm or less.

本発明において、光導電層の層厚は、所望の電子写真特性が得られば特に制限はないが、PSが速くなることに由来する帯電能の低下を抑制するうえで、40μm以上が好ましい。また、a−Siの異常成長部位の大きさの観点から、光導電層の層厚を60μm以下にすることにより、画像への影響を抑制することが可能となる。   In the present invention, the layer thickness of the photoconductive layer is not particularly limited as long as desired electrophotographic characteristics can be obtained, but is preferably 40 μm or more in order to suppress a decrease in charging ability resulting from faster PS. Further, from the viewpoint of the size of the abnormal growth site of a-Si, it is possible to suppress the influence on the image by setting the thickness of the photoconductive layer to 60 μm or less.

なお、光導電層は、単一の層で構成されてもよいし、複数の層(たとえば、電荷発生層と電荷輸送層)で構成されてもよい。
a−Siで構成された光導電層の形成方法としては、たとえば、プラズマCVD法、真空蒸着法、スパッタリング法、イオンプレーティング法などが挙げられる。これらの中でも、原料供給の容易さなどの点で、プラズマCVD法が好ましい。
The photoconductive layer may be composed of a single layer or a plurality of layers (for example, a charge generation layer and a charge transport layer).
Examples of a method for forming a photoconductive layer composed of a-Si include a plasma CVD method, a vacuum deposition method, a sputtering method, and an ion plating method. Among these, the plasma CVD method is preferable from the viewpoint of easy supply of raw materials.

以下、光導電層の形成方法について、プラズマCVD法を例にとって説明する。
光導電層を形成するには、ケイ素原子供給用の原料ガスおよび水素原子供給用の原料ガスを、内部を減圧しうる反応容器内に所望のガス状態で導入し、該反応容器内にグロー放電を生起させる。これによって、該反応容器内に導入した原料ガスを分解し、あらかじめ所定の位置に設置された基体上にa−Siで構成された層を形成すればよい。
Hereinafter, a method for forming a photoconductive layer will be described by taking a plasma CVD method as an example.
In order to form the photoconductive layer, a raw material gas for supplying silicon atoms and a raw material gas for supplying hydrogen atoms are introduced into a reaction vessel capable of reducing the pressure in a desired gas state, and glow discharge is performed in the reaction vessel. Wake up. Thus, the source gas introduced into the reaction vessel is decomposed, and a layer composed of a-Si may be formed on a substrate previously set at a predetermined position.

本発明において、ケイ素原子供給用の原料ガスとしては、たとえば、シラン(SiH)、ジシラン(Si)などのシラン類が好適に使用できる。また、水素原子供給用の原料ガスとしては、上記シラン類に加えて、たとえば、水素(H)も好適に使用できる。
また、上述のハロゲン原子、伝導性を制御するための原子、炭素原子、酸素原子、窒素原子など光導電層を含有させる場合には、それぞれの原子を含むガス状または容易にガス化しうる物質を材料として適宜使用すればよい。
In the present invention, as a source gas for supplying silicon atoms, for example, silanes such as silane (SiH 4 ) and disilane (Si 2 H 6 ) can be preferably used. In addition to the above silanes, for example, hydrogen (H 2 ) can also be suitably used as the source gas for supplying hydrogen atoms.
In addition, when a photoconductive layer such as the above-described halogen atom, atom for controlling conductivity, carbon atom, oxygen atom, nitrogen atom or the like is included, a gaseous or easily gasifiable substance containing each atom is used. What is necessary is just to use suitably as a material.

(基体)
基体は、導電性を有し、表面に形成される光導電層および表面層を保持しうるものであれば特に限定されず、いずれのものであってもよい。基体の材質としては、たとえば、アルミニウム、クロム、モリブデン、金、インジウム、ニオブ、テルル、バナジウム、チタン、白金、パラジウム、鉄などの金属や、これらの合金(たとえば、アルミニウム合金、ステンレスなど)などが挙げられる。また、ポリエステル、ポリエチレン、ポリカーボネート、セルロースアセテート、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリアミドなどの樹脂のフィルムやシート、ガラス、セラミックなどの電気絶縁性材料も使用できる。電気絶縁性材料を用いる場合、基体の少なくとも光導電層を形成する側の表面を導電処理すればよい。なお、導電性を有する基体(導電性の基体)を、以下「導電性基体」とも表記する。
(Substrate)
The substrate is not particularly limited as long as it has conductivity and can hold the photoconductive layer formed on the surface and the surface layer, and any substrate may be used. Examples of the material of the substrate include metals such as aluminum, chromium, molybdenum, gold, indium, niobium, tellurium, vanadium, titanium, platinum, palladium, and iron, and alloys thereof (for example, aluminum alloys and stainless steel). Can be mentioned. In addition, an electrically insulating material such as a film or sheet of a resin such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene, or polyamide, glass, or ceramic can be used. In the case of using an electrically insulating material, the surface of the base on which the photoconductive layer is formed may be subjected to a conductive treatment. Note that a conductive substrate (conductive substrate) is hereinafter also referred to as a “conductive substrate”.

(電荷注入阻止層)
本発明において、光導電層への電荷の注入を阻止する働きを有する電荷注入阻止層を設けても良い。電荷注入阻止層には、導電性基体と光導電層の間に設けられた下部電荷注入阻止層と、光導電層と表面層の間に設けた上部電荷注入阻止層がある。
下部電荷注入阻止層は、電子写真感光体の表面が一定極性の帯電処理を受けた際、基体から光導電層への電荷の注入を阻止する機能を有する層である。このような機能を付与するために、下部電荷注入阻止層は、光導電層を構成する材料をベースとしたうえで、伝導性を制御するための原子を光導電層に比べて比較的多く含有させる。
(Charge injection blocking layer)
In the present invention, a charge injection blocking layer having a function of blocking charge injection into the photoconductive layer may be provided. The charge injection blocking layer includes a lower charge injection blocking layer provided between the conductive substrate and the photoconductive layer, and an upper charge injection blocking layer provided between the photoconductive layer and the surface layer.
The lower charge injection blocking layer is a layer having a function of blocking the injection of charges from the substrate to the photoconductive layer when the surface of the electrophotographic photosensitive member is charged with a certain polarity. In order to provide such a function, the lower charge injection blocking layer is based on the material constituting the photoconductive layer, and contains a relatively large number of atoms for controlling conductivity compared to the photoconductive layer. Let

また、上部電荷注入阻止層は、電子写真感光体の表面が一定極性の帯電処理を受けた際、表面層から光導電層への電荷の注入を阻止する機能を有する層である。このような機能を付与するために、上部電荷注入阻止層は、光導電層を構成する材料と表面層を構成する材料の中間にあたる材料をベースとしたうえで、伝導性を制御するための原子を光導電層および表面層に比べて比較的多く含有させる。   The upper charge injection blocking layer is a layer having a function of blocking charge injection from the surface layer to the photoconductive layer when the surface of the electrophotographic photosensitive member is subjected to a charging process with a certain polarity. In order to provide such a function, the upper charge injection blocking layer is based on a material that is intermediate between the material constituting the photoconductive layer and the material constituting the surface layer, and is used for controlling the conductivity. Is contained in a relatively large amount as compared with the photoconductive layer and the surface layer.

伝導性を制御するために電荷注入阻止層に含有させる原子は、電荷注入阻止層中にまんべんなく均一に分布した状態で含有されていてもよいし、また、膜厚方向には不均一な分布状態で含有している部分があってもよい。分布濃度が不均一な場合には、基体側に多く分布するように含有させるのが好適である。いずれの場合においても、伝導性を制御するための原子が基体の表面に対して平行面内方向に均一な分布で電荷注入阻止層に含有されることが、特性の均一化を図る上からも好ましい。   The atoms contained in the charge injection blocking layer for controlling conductivity may be contained in the charge injection blocking layer evenly distributed or in a non-uniform distribution state in the film thickness direction. There may be a part contained in If the distribution concentration is non-uniform, it is preferable to contain it so that it is distributed more on the substrate side. In any case, the atoms for controlling the conductivity are contained in the charge injection blocking layer in a uniform distribution in the in-plane direction parallel to the surface of the substrate. preferable.

伝導性を制御するために電荷注入阻止層に含有させる原子としては、帯電極性に応じて第13族原子または第15族原子を用いることができる。
さらに、電荷注入阻止層には、炭素原子、窒素原子および酸素原子のうち少なくとも1種の原子を含有させることにより、電荷注入阻止層を基体との間の密着性を向上させることができる。
As atoms to be contained in the charge injection blocking layer for controlling conductivity, group 13 atoms or group 15 atoms can be used depending on the charge polarity.
Further, the charge injection blocking layer can contain at least one atom of carbon atom, nitrogen atom and oxygen atom to improve the adhesion between the charge injection blocking layer and the substrate.

電荷注入阻止層に含有される炭素原子、窒素原子および酸素原子のうち少なくとも1種の原子は、電荷注入阻止層中にまんべんなく均一に分布した状態で含有されていてもよいし、また、不均一に分布する状態で含有している部分があってもよい。いずれの場合にも、伝導性を制御するための原子が基体の表面に対して平行面内方向に均一な分布で電荷注入阻止層に含有されることが、特性の均一化を図る上からも好ましい。   At least one kind of carbon atom, nitrogen atom and oxygen atom contained in the charge injection blocking layer may be contained in the charge injection blocking layer in a uniformly distributed state, or non-uniformly. There may be a portion contained in a distributed state. In any case, the atoms for controlling the conductivity are contained in the charge injection blocking layer in a uniform distribution in the in-plane direction parallel to the surface of the substrate from the viewpoint of achieving uniform characteristics. preferable.

電荷注入阻止層の膜厚は、所望の電子写真特性が得られること、経済的効果などの点から、0.1〜10μmであることが好ましく、0.3〜5μmであることがより好ましく、0.5〜3μmであることがより一層好ましい。膜厚を0.1μm以上にすることにより、基体からの電荷の注入阻止能を十分に有することができ、好ましい帯電能を得ることができる。一方、5μm以下にすることにより、電荷注入阻止層形成時間の延長に由来する製造コストの増加を防ぐことができる。
下部電荷注入阻止層と光導電層の間、および、光導電層と上部電荷注入阻止層と表面層の間では、それぞれの組成を連続的につなぐ、いわゆる変化層を必要に応じて設けることもできる。
The film thickness of the charge injection blocking layer is preferably from 0.1 to 10 μm, more preferably from 0.3 to 5 μm from the viewpoint of obtaining desired electrophotographic characteristics and economic effects. More preferably, it is 0.5-3 micrometers. By setting the film thickness to 0.1 μm or more, the charge injection ability from the substrate can be sufficiently obtained, and a preferable charging ability can be obtained. On the other hand, when the thickness is 5 μm or less, it is possible to prevent an increase in manufacturing cost due to the extension of the charge injection blocking layer formation time.
If necessary, a so-called change layer may be provided between the lower charge injection blocking layer and the photoconductive layer, and between the photoconductive layer, the upper charge injection blocking layer, and the surface layer. it can.

(中間層)
本発明においては、光導電層と表面層との間に中間層を設けても良い。
中間層は、光導電層と表面層との密着性を向上し、表面層の剥がれを抑制する機能を有する層である。また、光導電層を機械的なストレスから保護し、圧傷を抑制する機能も有する層である。
(Middle layer)
In the present invention, an intermediate layer may be provided between the photoconductive layer and the surface layer.
The intermediate layer is a layer having a function of improving adhesion between the photoconductive layer and the surface layer and suppressing peeling of the surface layer. In addition, the photoconductive layer is a layer that also protects the photoconductive layer from mechanical stress and also has a function of suppressing crushing.

中間層を構成する材料に関しては、特に制限はないが、上述した中間層の機能を付与するためには、光導電層を構成する材料と表面層を構成する材料の中間となる材料を選択する方が良い。例えば、a−SiC表面層を有するa−Si感光体の場合、中間層は、a−SiC表面層のC/(Si+C)よりも低いa−SiC:Hをベースの材料として使用する方がよい。また、a−Si:Hからなる光導電層とa−SiC:Hからなる表面層の間を、光導電層から表面層に向かって、連続的にC/(Si+C)をa−SiC表面層になるように変化させてもよい。   The material constituting the intermediate layer is not particularly limited, but in order to provide the above-described function of the intermediate layer, a material that is intermediate between the material constituting the photoconductive layer and the material constituting the surface layer is selected. Better. For example, in the case of an a-Si photoreceptor having an a-SiC surface layer, the intermediate layer should use a-SiC: H, which is lower than C / (Si + C) of the a-SiC surface layer, as a base material. . Further, between the photoconductive layer made of a-Si: H and the surface layer made of a-SiC: H, C / (Si + C) is continuously a-SiC from the photoconductive layer toward the surface layer. You may change so that it may become a surface layer.

<本発明に関わる電子写真装置>
図1(a)に示すカラー用電子写真装置の概略構成図を用いて、カラー用電子写真装置における電子写真方法を説明する。
図1(a)に矢印で示すように、電子写真感光体1001が回転駆動され、中間転写ベルト(以下、ITBとも記す)1006が電子写真感光体1001と同じ周速度で回転駆動される。電子写真感光体1001は、回転過程で一次帯電器1002により帯電処理される。その後、電子写真感光体の表面に画像露光光1003を照射し、電子写真感光体の表面に目的のカラー画像の第1の色成分像(例えばマゼンタ成分像)に対応した静電潜像(第1潜像)が形成される。次いで、第2現像器1004bが回転し、その静電潜像が第1色であるマゼンタトナーMにより現像される。そして、第一の転写部材1009に不図示の高圧電源により一次転写電圧を印加することより、この第1色のトナー像がITB1006外周面に転写される。その後、クリーナー1005に設けられたマグネットローラー1007およびクリーニングブレード1008により、電子写真感光体1001の表面に残留するトナーが除去される。次に、除電手段1014により、電子写真感光体の表面を露光することで電子写真感光体が除電される。
<Electrophotographic apparatus according to the present invention>
An electrophotographic method in the color electrophotographic apparatus will be described with reference to a schematic configuration diagram of the color electrophotographic apparatus shown in FIG.
As shown by an arrow in FIG. 1A, the electrophotographic photosensitive member 1001 is rotationally driven, and an intermediate transfer belt (hereinafter also referred to as ITB) 1006 is rotationally driven at the same peripheral speed as the electrophotographic photosensitive member 1001. The electrophotographic photoreceptor 1001 is charged by the primary charger 1002 during the rotation process. Thereafter, the surface of the electrophotographic photosensitive member is irradiated with image exposure light 1003, and an electrostatic latent image (first image) corresponding to a first color component image (for example, a magenta component image) of the target color image is irradiated on the surface of the electrophotographic photosensitive member. 1 latent image) is formed. Next, the second developing device 1004b rotates, and the electrostatic latent image is developed with magenta toner M which is the first color. Then, by applying a primary transfer voltage to the first transfer member 1009 from a high voltage power source (not shown), the first color toner image is transferred to the outer peripheral surface of the ITB 1006. Thereafter, the toner remaining on the surface of the electrophotographic photoreceptor 1001 is removed by the magnet roller 1007 and the cleaning blade 1008 provided in the cleaner 1005. Next, the surface of the electrophotographic photosensitive member is exposed by the charge removing unit 1014 to discharge the electrophotographic photosensitive member.

第1色のトナー像の形成と同様に、第2色のトナー像(例えばシアントナー像)、第3色のトナー像(例えばイエロートナー像)が形成され、この第2色のトナー像、第3色のトナー像が、第1色のトナー像が転写されたITB1006の表面上に順次重畳転写される。最後に、第1現像器1004aにより第4色のトナー像(例えばブラックトナー像)を現像し、ITB1006上に重畳転写されることで目的のカラー画像に対応したカラートナー像が形成される。このカラートナー像を第二の転写部材1010に不図示の高圧電源により二次転写電圧を印加することで、搬送手段1012により搬送された記録材1013に転写する。この記録材1013は不図示の定着器に導かれ、ここで記録材1013上にトナー像が定着される。転写後のITB1006は、ITBクリーナー1011によりクリーニングされ、ITB上の転写残トナーが除去され、一連の電子写真プロセスを終える。   Similar to the formation of the first color toner image, a second color toner image (for example, a cyan toner image) and a third color toner image (for example, a yellow toner image) are formed. The three color toner images are sequentially superimposed and transferred onto the surface of the ITB 1006 onto which the first color toner image has been transferred. Finally, a fourth color toner image (for example, a black toner image) is developed by the first developing device 1004a and is superimposed and transferred onto the ITB 1006 to form a color toner image corresponding to the target color image. This color toner image is transferred to the recording material 1013 conveyed by the conveying means 1012 by applying a secondary transfer voltage to the second transfer member 1010 by a high voltage power supply (not shown). The recording material 1013 is guided to a fixing device (not shown), where a toner image is fixed on the recording material 1013. The ITB 1006 after the transfer is cleaned by the ITB cleaner 1011, the transfer residual toner on the ITB is removed, and a series of electrophotographic processes is completed.

本発明における電子写真装置の構成として、電子写真感光体と、少なくとも前露光手段、主帯電手段、前潜像形成手段、現像手段および転写手段を有する必要がある。また、必要に応じて、転写後の電子写真感光体の表面に残留するトナーを除去するためのクリーニング手段や転写前帯電手段等の構成を設置しても良い。
本発明において、上述した理由により、PSが速くなるほど、本発明の効果が顕著に発揮される。そのため、PSは、500mm/秒以上とすることにより本発明の効果が発揮され、600mm/秒以上とすることで、本発明の効果がより顕著に発揮される。
The configuration of the electrophotographic apparatus in the present invention is required to have an electrophotographic photosensitive member and at least a pre-exposure unit, a main charging unit, a front latent image forming unit, a developing unit, and a transfer unit. Further, if necessary, a cleaning unit for removing toner remaining on the surface of the electrophotographic photosensitive member after transfer, a pre-transfer charging unit, or the like may be provided.
In the present invention, for the reasons described above, the effect of the present invention becomes more remarkable as the PS becomes faster. Therefore, the effect of the present invention is exhibited by setting PS to 500 mm / second or more, and the effect of the present invention is exhibited more significantly by setting PS to 600 mm / second or more.

また、図1(b)に示すように、電子写真感光体の回転方向に対して転写手段の下流側で、かつ主帯電手段の上流側にクリーニング手段を有し、クリーニング手段よりも電子写真感光体の回転方向に対して上流側に前露光手段を有することが好ましい。
これにより、PSが速くなったとしても、前露光が照射された電子写真感光体の表面が前露光手段から帯電手段まで移動する時間が長くなるため、前露光により生成した光キャリアの再結合の確率が高くなる。そのため、帯電手段により付与される電荷との再結合の確率が減少したことにより電子写真感光体内に生じる光キャリアで暗減衰の低減が可能となり、前露光の光の波長を短くした際の帯電能の向上の効果が得られやすい。さらに、前露光により生成した光キャリアの再結合の確率が上がることで、前露光が照射された電子写真感光体の表面が静電潜像手段の下に到達した場合でも、自由表面側の層内に残存した光キャリアが低減するため、階調性の低下も抑制可能となる。
Further, as shown in FIG. 1B, a cleaning unit is provided on the downstream side of the transfer unit and the upstream side of the main charging unit with respect to the rotation direction of the electrophotographic photosensitive member. It is preferable to have pre-exposure means on the upstream side with respect to the rotation direction of the body.
As a result, even if the PS becomes faster, it takes a longer time for the surface of the electrophotographic photosensitive member irradiated with the pre-exposure to move from the pre-exposure means to the charging means. Probability increases. For this reason, the probability of recombination with the charge imparted by the charging means is reduced, so that it is possible to reduce the dark decay of the photocarrier generated in the electrophotographic photosensitive member, and the charging ability when the wavelength of the pre-exposure light is shortened. It is easy to obtain the effect of improvement. Furthermore, the probability of recombination of the photocarriers generated by the pre-exposure is increased, so that even when the surface of the electrophotographic photosensitive member irradiated with the pre-exposure reaches under the electrostatic latent image means, the layer on the free surface side Since the optical carriers remaining in the inside are reduced, it is also possible to suppress a reduction in gradation.

しかしながら、前露光手段をさらに電子写真感光体の回転方向に対して上流側に配置すればよいのではなく、現像手段と転写手段の間に前露光手段を設置すると、出力する画像によっては、電子写真感光体の表面のトナーにより、静電潜像の履歴を消去できない場合がある。これにより、画像不良が発生する場合がある。
このことから、前露光手段の設置位置は、電子写真感光体の回転方向に対して転写手段の下流側で、かつ、転写手段に近い位置に配置することが好ましい。
However, the pre-exposure unit may not be disposed further upstream with respect to the rotation direction of the electrophotographic photosensitive member. If the pre-exposure unit is installed between the developing unit and the transfer unit, depending on the output image, In some cases, the history of the electrostatic latent image cannot be erased due to the toner on the surface of the photoconductor. As a result, image defects may occur.
For this reason, it is preferable that the pre-exposure unit is installed at a position downstream of the transfer unit and close to the transfer unit with respect to the rotation direction of the electrophotographic photosensitive member.

<本発明の電子写真感光体を製造するための製造装置および製造方法>
本発明で使用可能な電子写真感光体の一例として、a−Si感光体の形成方法を以下に示す。
図3は、電子写真感光体の作製に用いられるプラズマCVD装置の一例を示す図である。
この装置は大別すると、反応容器3110を有する堆積装置3100、原料ガス供給装置3200、および、反応容器3110の中を減圧するための排気装置(図示せず)から構成されている。
<Manufacturing apparatus and manufacturing method for manufacturing the electrophotographic photosensitive member of the present invention>
As an example of an electrophotographic photosensitive member that can be used in the present invention, a method for forming an a-Si photosensitive member is described below.
FIG. 3 is a diagram showing an example of a plasma CVD apparatus used for producing an electrophotographic photosensitive member.
This apparatus is roughly composed of a deposition apparatus 3100 having a reaction vessel 3110, a source gas supply device 3200, and an exhaust device (not shown) for depressurizing the inside of the reaction vessel 3110.

反応容器3110の中にはアースに接続された導電性基体3112、導電性基体加熱用ヒーター3113、および、原料ガス導入管3114が設置されている。さらに、絶縁材料3121で絶縁されたカソード電極3111には高周波マッチングボックス3115を介して高周波電源3120が接続されている。   In the reaction vessel 3110, a conductive substrate 3112, a conductive substrate heating heater 3113, and a source gas introduction pipe 3114 connected to the ground are installed. Further, a high frequency power source 3120 is connected to the cathode electrode 3111 insulated by the insulating material 3121 via a high frequency matching box 3115.

原料ガス供給装置3200は、SiH,H,CH,NO,Bなどの原料ガスのボンベ3221〜3225、バルブ3231〜3235、圧力調整器3261〜3265、流入バルブ3241〜3245、流出バルブ3251〜3255およびマスフローコントローラ3211〜3215から構成されている。各原料ガスを封入したガスのボンベは補助バルブ3260およびガス配管3116を介して反応容器3110の中の原料ガス導入管3114に接続されている。 A source gas supply device 3200 includes source gas cylinders 3221 to 3225, valves 3231 to 3235, pressure regulators 3261 to 3265, inflow valves 3241 to 3245, such as SiH 4 , H 2 , CH 4 , NO, and B 2 H 6 . It consists of outflow valves 3251-3255 and mass flow controllers 3211-3215. A gas cylinder filled with each source gas is connected to a source gas introduction pipe 3114 in the reaction vessel 3110 via an auxiliary valve 3260 and a gas pipe 3116.

次にこの装置を使った堆積膜の形成方法について説明する。まず、あらかじめ脱脂洗浄した導電性基体3112を反応容器3110に受け台3123を介して設置する。次に、排気装置(図示せず)を運転し、反応容器3110の中を排気する。真空計3119の表示を見ながら、反応容器3110の中の圧力がたとえば1Pa以下の所定の圧力になったところで、基体加熱用ヒーター3113に電力を供給し、導電性基体3112を例えば50℃から350℃の所望の温度に加熱する。このとき、ガス供給装置3200より、Ar、Heなどの不活性ガスを反応容器3110に供給して、不活性ガス雰囲気中で加熱を行うこともできる。   Next, a method for forming a deposited film using this apparatus will be described. First, a conductive substrate 3112 that has been degreased and washed in advance is placed in the reaction vessel 3110 via a cradle 3123. Next, an exhaust device (not shown) is operated to exhaust the reaction vessel 3110. While viewing the display of the vacuum gauge 3119, when the pressure in the reaction vessel 3110 reaches a predetermined pressure of, for example, 1 Pa or less, power is supplied to the heater 3113 for heating the substrate, and the conductive substrate 3112 is moved from 50 ° C. to 350 ° C., for example. Heat to the desired temperature of ° C. At this time, an inert gas such as Ar or He can be supplied from the gas supply device 3200 to the reaction vessel 3110 and heated in an inert gas atmosphere.

次に、ガス供給装置3200より堆積膜形成に用いるガスを反応容器3110に供給する。すなわち、必要に応じバルブ3231〜3235、流入バルブ3241〜3245、流出バルブ3251〜3255を開き、マスフローコントローラ3211〜3215に流量設定を行う。各マスフローコントローラの流量が安定したところで、真空計3119の表示を見ながらメインバルブ3118を操作し、反応容器3110の中の圧力が所望の圧力になるように調整する。所望の圧力が得られたところで高周波電源3120より高周波電力を印加すると同時に高周波マッチングボックス3115を操作し、反応容器3110の中にプラズマ放電を生起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成を行う。   Next, a gas used to form a deposited film is supplied from the gas supply device 3200 to the reaction vessel 3110. That is, if necessary, the valves 3231 to 3235, the inflow valves 3241 to 3245, and the outflow valves 3251 to 3255 are opened, and the flow rate is set in the mass flow controllers 3211 to 3215. When the flow rate of each mass flow controller is stabilized, the main valve 3118 is operated while viewing the display of the vacuum gauge 3119 to adjust the pressure in the reaction vessel 3110 to a desired pressure. When a desired pressure is obtained, high frequency power is applied from the high frequency power source 3120 and at the same time, the high frequency matching box 3115 is operated to generate plasma discharge in the reaction vessel 3110. Thereafter, the high frequency power is quickly adjusted to a desired power, and a deposited film is formed.

所定の堆積膜の形成が終わったところで、高周波電力の印加を停止し、バルブ3231〜3235、流入バルブ3241〜3245、流出バルブ3251〜3255、および補助バルブ3260を閉じ、原料ガスの供給を終える。同時に、メインバルブ3118を全開にし、反応容器3110の中を1Pa以下の圧力まで排気する。   When the formation of the predetermined deposited film is finished, the application of the high frequency power is stopped, the valves 3231 to 3235, the inflow valves 3241 to 3245, the outflow valves 3251 to 3255, and the auxiliary valve 3260 are closed, and the supply of the source gas is finished. At the same time, the main valve 3118 is fully opened, and the reaction vessel 3110 is exhausted to a pressure of 1 Pa or less.

以上で、堆積層の形成を終えるが、複数の堆積層を形成する場合、再び上記の手順を繰り返してそれぞれの層を形成すれば良い。原料ガス流量や、圧力を光導電層形成用の条件に一定の時間で変化させて、接合領域の形成を行うこともできる。
すべての堆積膜形成が終わった後、メインバルブ3118を閉じ、リークバルブ3117を開けて、反応容器3110の中を大気圧に戻す。その後、導電性基体3112を反応容器3110から取り出す。
The formation of the deposited layers is completed as described above. When a plurality of deposited layers are formed, the above procedure is repeated again to form each layer. The bonding region can also be formed by changing the raw material gas flow rate and pressure to the conditions for forming the photoconductive layer in a certain time.
After all the deposited films are formed, the main valve 3118 is closed, the leak valve 3117 is opened, and the inside of the reaction vessel 3110 is returned to atmospheric pressure. Thereafter, the conductive substrate 3112 is taken out from the reaction vessel 3110.

以下、実施例および比較例により本発明をさらに詳しく説明するが、本発明はこれらにより何ら制限されるものではない。
<基準感光体作製例>
図3に示す、周波数としてRF帯の高周波電源を用いたプラズマCVD装置を用いて、円筒状基体の上に表1に示す条件で下部電荷注入阻止層、光導電層を形成し、基準となる感光体(以下、基準感光体とも記す)を作製した。円筒状基体として、直径84mm、長さ381mm、厚さ3mmの鏡面加工を施した円筒状のアルミニウム製の導電性基体を使用した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.
<Reference photoconductor preparation example>
The lower charge injection blocking layer and the photoconductive layer are formed on the cylindrical substrate under the conditions shown in Table 1 using a plasma CVD apparatus using a high-frequency power source in the RF band as shown in FIG. A photoconductor (hereinafter also referred to as a reference photoconductor) was produced. As the cylindrical substrate, a cylindrical aluminum conductive substrate having a mirror finish with a diameter of 84 mm, a length of 381 mm, and a thickness of 3 mm was used.

Figure 2016090985
Figure 2016090985

<電子写真感光体作製例1>
表2に示すように、基準感光体の上に層厚が0.4μmの表面層を形成した以外は、基準感光体と同様にして電子写真感光体作製例1を作製した。
<Electrophotographic photoconductor preparation example 1>
As shown in Table 2, an electrophotographic photoreceptor preparation example 1 was prepared in the same manner as the reference photoreceptor, except that a surface layer having a thickness of 0.4 μm was formed on the reference photoreceptor.

Figure 2016090985
Figure 2016090985

電子写真感光体作製例1で作製した電子写真感光体において、以下に示す方法で表面層のケイ素原子の原子密度および/または前記炭素原子の原子密度の和(以後、Si+C原子密度とも記す)と、ケイ素原子の原子数と前記炭素原子の原子数の和に対する前記炭素原子の原子数の比(以後、C/(Si+C)とも記す)を求めた。その結果、Si+C原子密度は、6.60×1022原子/cmであり、C/(Si+C)は0.60であった。 In the electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1, the sum of the atomic density of silicon atoms in the surface layer and / or the atomic density of carbon atoms (hereinafter also referred to as Si + C atomic density) by the following method The ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms (hereinafter also referred to as C / (Si + C)) was determined. As a result, the Si + C atom density was 6.60 × 10 22 atoms / cm 3 and C / (Si + C) was 0.60.

(Si+C原子密度、C/(Si+C)の測定)
まず、基準感光体の任意の周方向における長手方向の中央部を15mm四方の正方形で切り出し、リファレンス試料を作製した。
次に、電子写真感光体作製例1で作製した各電子写真感光体を同様に切り出し、測定用試料を作製した。
リファレンス試料と測定用試料とを分光エリプソメトリー(J.A.Woollam社製:高速分光エリプソメトリー M−2000)により測定し、表面層の層厚を求めた。
(Measurement of Si + C atom density, C / (Si + C))
First, a reference sample was prepared by cutting out a central portion in the longitudinal direction in an arbitrary circumferential direction of the reference photoconductor with a 15 mm square.
Next, each electrophotographic photosensitive member produced in the electrophotographic photosensitive member production example 1 was cut out in the same manner to produce a measurement sample.
The reference sample and the measurement sample were measured by spectroscopic ellipsometry (manufactured by JA Woollam: high-speed spectroscopic ellipsometry M-2000) to determine the layer thickness of the surface layer.

分光エリプソメトリーの具体的な測定条件は、入射角:60°、65°、70°、測定波長:195nmから700nm、ビーム径:1mm×2mmである。
まず、リファレンス試料を分光エリプソメトリーにより各入射角で、波長と振幅比Ψおよび位相差Δの関係を求めた。
次に、リファレンス試料の測定結果をリファレンスとして、測定用試料をリファレンス試料と同様に分光エリプソメトリーにより各入射角で、波長と振幅比Ψおよび位相差Δの関係を求めた。
Specific measurement conditions of spectroscopic ellipsometry are incident angles: 60 °, 65 °, 70 °, measurement wavelengths: 195 nm to 700 nm, and beam diameter: 1 mm × 2 mm.
First, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ was determined for each reference angle of the reference sample by spectroscopic ellipsometry.
Next, using the measurement result of the reference sample as a reference, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ was obtained at each incident angle by spectroscopic ellipsometry in the same manner as the reference sample.

さらに、電荷注入阻止層、光導電層、および表面層を順次形成し、最表面に表面層と空気層が共存する粗さ層を有する層構成を計算モデルとして用いる。そして解析ソフトにより粗さ層における表面層と空気層との体積比を変化させて、各入射角における波長と振幅比Ψおよび位相差Δの関係を計算により求めた。そして、各入射角における「上記計算により求めた波長と振幅比Ψおよび位相差Δの関係」と「測定用試料を測定して求めた波長と振幅比Ψおよび位相差Δの関係」の平均二乗誤差が最小となるときの計算モデルを選択した。この選択した計算モデルにより表面層の膜厚を算出し、得られた値を表面層の膜厚とした。
なお、解析ソフトはJ.A.Woollam社製のWVASE32を用いた。また、粗さ層における表面層と空気層との体積比に関しては、表面層:空気層を10:0から1:9まで、粗さ層における空気層の比率を1ずつ変化させて計算をした。
本実施例の各成膜条件で作製されたプラス帯電用a−Si感光体においては、
粗さ層における表面層と空気層の体積比が8:2のときに計算によって求められた波長と振幅比Ψおよび位相差Δの関係と
測定して求められた波長と振幅比Ψおよび位相差Δの関係
の平均二乗誤差が最小となった。
Further, a layer structure having a roughness layer in which a surface layer and an air layer coexist on the outermost surface is formed as a calculation model by sequentially forming a charge injection blocking layer, a photoconductive layer, and a surface layer. Then, the volume ratio between the surface layer and the air layer in the roughness layer was changed by analysis software, and the relationship between the wavelength at each incident angle, the amplitude ratio Ψ, and the phase difference Δ was obtained by calculation. Then, the mean square of “the relationship between the wavelength and the amplitude ratio Ψ and the phase difference Δ obtained by the above calculation” and “the relationship between the wavelength and the amplitude ratio Ψ and the phase difference Δ obtained by measuring the measurement sample” at each incident angle. The calculation model when the error was minimized was selected. The film thickness of the surface layer was calculated using the selected calculation model, and the obtained value was taken as the film thickness of the surface layer.
The analysis software is J.I. A. Woolase WVASE32 was used. Further, the volume ratio of the surface layer to the air layer in the roughness layer was calculated by changing the ratio of the air layer in the roughness layer by 1 from 10: 0 to 1: 9 in the surface layer: air layer. .
In the a-Si photosensitive member for positive charging produced under each film forming condition of this example,
Relationship between wavelength and amplitude ratio Ψ and phase difference Δ obtained by calculation when the volume ratio of the surface layer to the air layer in the roughness layer is 8: 2 and wavelength and amplitude ratio Ψ and phase difference obtained by measurement The mean square error of the Δ relationship was minimized.

分光エリプソメトリーによる測定が終了した後、上記測定用試料をRBS(ラザフォード後方散乱法)により、RBSの測定面積における表面層中のケイ素原子および炭素原子の原子数を測定した。測定装置は、日新ハイボルテージ(株)製の後方散乱測定装置 AN−2500を使用した。測定したケイ素原子および炭素原子の原子数から、C/(Si+C)を求めた。次に、RBSの測定面積から求めたケイ素原子および炭素原子に対し、分光エリプソメトリーにより求めた表面層の膜厚を用いて、Si+C原子密度を求めた。   After the measurement by spectroscopic ellipsometry was completed, the number of silicon atoms and carbon atoms in the surface layer in the RBS measurement area of the measurement sample was measured by RBS (Rutherford backscattering method). As a measuring device, a back scattering measuring device AN-2500 manufactured by Nissin High Voltage Co., Ltd. was used. C / (Si + C) was determined from the measured number of silicon atoms and carbon atoms. Next, the Si + C atom density was calculated | required using the film thickness of the surface layer calculated | required by spectroscopic ellipsometry with respect to the silicon atom and carbon atom which were calculated | required from the measurement area of RBS.

RBSおよびHFSの具体的な測定条件は、入射イオン:4He、入射エネルギー:2.3MeV、入射角:75°、試料電流:35nA、入射ビーム経:1mmである。
また、RBSの検出器は、散乱角:160°、アパーチャ径:8mm、HFSの検出器は、反跳角:30°、アパーチャ径:8mm+Slitで測定を行った。
Specific measurement conditions for RBS and HFS are incident ion: 4He + , incident energy: 2.3 MeV, incident angle: 75 °, sample current: 35 nA, and incident beam length: 1 mm.
The RBS detector was measured with a scattering angle of 160 ° and an aperture diameter of 8 mm, and the HFS detector was measured with a recoil angle of 30 ° and an aperture diameter of 8 mm + Slit.

<実施例1>
表3および表4に示す条件で作製した以外は、電子写真感光体作製例1と同様にしてa−Si感光体を作製した。なお、表面層の作製条件に関しては、層厚以外の条件は電子写真感光体作製例1と同一である。
<Example 1>
An a-Si photoreceptor was produced in the same manner as in the electrophotographic photoreceptor preparation example 1 except that it was produced under the conditions shown in Table 3 and Table 4. In addition, regarding the preparation conditions of the surface layer, the conditions other than the layer thickness are the same as those of the electrophotographic photoreceptor preparation example 1.

Figure 2016090985
Figure 2016090985

Figure 2016090985
Figure 2016090985

実施例1で作製した電子写真感光体を、表5に示すプロセス条件に設定した図2に示す電子写真装置に設置した。そして、吸収割合、帯電能および階調性を以下に示す方法で評価し、結果を表8に示す。
吸収割合は、以下の計算式によって算出される値とする。
吸収割合=光量2/光量1
光量1:電子写真感光体に吸収される前露光の光量
光量2:光導電層よりも自由表面側に存在するすべての層で吸収される前露光の光量
The electrophotographic photosensitive member produced in Example 1 was installed in the electrophotographic apparatus shown in FIG. 2 set to the process conditions shown in Table 5. Then, the absorption ratio, charging ability and gradation are evaluated by the following methods, and the results are shown in Table 8.
The absorption ratio is a value calculated by the following calculation formula.
Absorption ratio = light quantity 2 / light quantity 1
Amount of light 1: Amount of pre-exposure absorbed by the electrophotographic photosensitive member Amount of light 2: Amount of pre-exposure absorbed by all layers existing on the free surface side of the photoconductive layer

実施例1で用いた電子写真装置は、キヤノン(株)製デジタル電子写真装置「iRA−8105」(商品名)の改造機である。この改造機は、プロセススピード(以後、PSとも記す)を変更可能とするために、電子写真感光体を回転させるための不図示のモーターを設けた。また、帯電手段のワイヤーおよびグリッドには、不図示の高圧電源が接続され、電子写真感光体の表面電位が調整可能となっている。   The electrophotographic apparatus used in Example 1 is a modified machine of a digital electrophotographic apparatus “iRA-8105” (trade name) manufactured by Canon Inc. This modified machine is provided with a motor (not shown) for rotating the electrophotographic photosensitive member in order to change the process speed (hereinafter also referred to as PS). A high voltage power source (not shown) is connected to the wire and grid of the charging means so that the surface potential of the electrophotographic photosensitive member can be adjusted.

さらに、前露光手段から電子写真感光体に照射される前露光を、電子写真感光体の長手方向中央位置を中心として±10mmの範囲に照射できないように遮蔽部材を設置した。そして、前露光手段から照射される前露光の光を遮蔽した範囲に光を照射できるように、不図示の光源(ハロゲンランプ)と分光器(日本分光(株)製:CT−25C型回折格子分光器)を設置した。
そして、分光光源より電子写真感光体の表面に照射される前露光は、前露光の波長およびPSに関わらず電子写真感光体への照射エネルギーが2μJとなるように調整した。なお、実施例1では、PSを700mm/秒とした。また、像露光の光源としては、発振波長が658nmの半導体レーザーを用いた。
Further, a shielding member was installed so that the pre-exposure irradiated from the pre-exposure means to the electrophotographic photosensitive member could not be irradiated in a range of ± 10 mm around the longitudinal center position of the electrophotographic photosensitive member. Then, a light source (halogen lamp) and a spectroscope (manufactured by JASCO Corporation: CT-25C type diffraction grating) are used so that light can be irradiated in a range where the pre-exposure light irradiated from the pre-exposure means is shielded. Spectroscope) was installed.
The pre-exposure irradiated from the spectral light source to the surface of the electrophotographic photosensitive member was adjusted such that the irradiation energy to the electrophotographic photosensitive member was 2 μJ regardless of the wavelength of the pre-exposure and PS. In Example 1, PS was set to 700 mm / second. As a light source for image exposure, a semiconductor laser having an oscillation wavelength of 658 nm was used.

Figure 2016090985
Figure 2016090985

<比較例1>
表6に示す条件で上部電荷注入阻止層および表面層を層厚以外は、実施例1と同様にa−Si感光体を作製した。表6の成膜条件No.4の各層の層厚は、表4の成膜条件No.4と同じである。
<Comparative Example 1>
An a-Si photoreceptor was produced in the same manner as in Example 1 except that the upper charge injection blocking layer and the surface layer were formed under the conditions shown in Table 6. The film formation conditions of Table 6 The thickness of each layer of No. 4 is the film formation condition No. Same as 4.

Figure 2016090985
Figure 2016090985

比較例1で作製した電子写真感光体を、表7に示すプロセス条件に設定した図2に示す電子写真装置に設置した。そして、実施例1と同様に評価した。このときの結果を表8に示す。   The electrophotographic photosensitive member produced in Comparative Example 1 was installed in the electrophotographic apparatus shown in FIG. 2 set to the process conditions shown in Table 7. And it evaluated similarly to Example 1. FIG. The results at this time are shown in Table 8.

Figure 2016090985
Figure 2016090985

(前露光の光の波長に対する吸収割合の算出方法)
まず、基準感光体作製例で作製した電子写真感光体の反射率を測定した。
測定位置は、電子写真感光体の任意の周方向で電子写真感光体の長手方向中央を基準とし、基準位置より任意の周方向から60°毎回転させた位置、合計6点である。また、測定方法は、2mmのスポット径で電子写真感光体の表面に垂直に光を照射し、分光計(大塚電子製:MCPD−2000)を用いて、反射光の分光測定を行った。
6点の測定点で測定された反射光の分光測定の結果より、各測定位置での前露光の光の波長の反射率を求めて平均値a(%)を算出した。この平均値aを基準感光体の反射率とした。
(Calculation method of absorption ratio with respect to wavelength of light of pre-exposure)
First, the reflectivity of the electrophotographic photoreceptor produced in the reference photoreceptor production example was measured.
The measurement positions are 6 points in total, which are positions rotated every 60 ° from an arbitrary circumferential direction from the reference position with respect to the center in the longitudinal direction of the electrophotographic photoreceptor in any circumferential direction of the electrophotographic photoreceptor. Moreover, the measurement method irradiates the surface of the electrophotographic photosensitive member perpendicularly with a spot diameter of 2 mm, and spectroscopic measurement of reflected light was performed using a spectrometer (manufactured by Otsuka Electronics: MCPD-2000).
From the result of spectroscopic measurement of reflected light measured at six measurement points, the reflectance of the wavelength of the pre-exposure light at each measurement position was obtained, and the average value a (%) was calculated. This average value a was taken as the reflectance of the reference photoreceptor.

次に、前露光の光の波長に対する自由表面側に有るすべての層での光吸収を測定した。
まず、基準感光体を前述したキヤノン(株)製デジタル電子写真装置「iRA−8105」(商品名)の改造機に搭載した。その際、現像器を取り外して、電子写真感光体の長手方向中央位置における電子写真感光体の表面電位が測定できるように、表面電位計(TREK社製Model555P−4)を設置した。また、前露光手段から遮蔽部材を取り外し、像露光の半導体レーザーへの電流の供給を止めて、発光させないようにした。さらに、不図示の光源(ハロゲンランプ)と分光器(日本分光(株)製:CT−25C型回折格子分光器)から照射される前露光を、像露光が照射される位置に2μJで照射できるように設置した。
Next, the light absorption in all layers on the free surface side with respect to the wavelength of the pre-exposure light was measured.
First, the reference photoconductor was mounted on a modified machine of the above-mentioned digital electrophotographic apparatus “iRA-8105” (trade name) manufactured by Canon Inc. At that time, the developing device was removed, and a surface potential meter (Model 555P-4 manufactured by TREK) was installed so that the surface potential of the electrophotographic photosensitive member at the center position in the longitudinal direction of the electrophotographic photosensitive member can be measured. Further, the shielding member was removed from the pre-exposure means, and the supply of current to the semiconductor laser for image exposure was stopped so as not to emit light. Further, the pre-exposure irradiated from a light source (halogen lamp) not shown and a spectroscope (manufactured by JASCO Corporation: CT-25C type diffraction grating spectroscope) can be irradiated to the position where the image exposure is irradiated at 2 μJ. Was installed.

そして、ハロゲンランプを切った状態で帯電器のワイヤーおよびグリッドに、それぞれ高圧電源を接続し、グリッド電位を−700Vとし、帯電器のワイヤーへ供給する電流を調整して電子写真感光体の表面電位を−500Vとなるように設定した。このときの帯電器のワイヤーから電子写真感光体へ流れる電流I(μA)を測定した。さらに、先に設定した帯電条件で帯電させた状態で、ハロゲンランプを点灯させ、前露光光を照射し、現像器位置での電子写真感光体の表面電位が−150Vに調整したときの前露光の照射エネルギーb(μJ)を測定した。   Then, a high-voltage power supply is connected to the charger wire and grid with the halogen lamp turned off, the grid potential is set to -700 V, and the current supplied to the charger wire is adjusted to adjust the surface potential of the electrophotographic photosensitive member. Was set to −500V. At this time, the current I (μA) flowing from the wire of the charger to the electrophotographic photosensitive member was measured. Further, the pre-exposure when the surface potential of the electrophotographic photosensitive member at the position of the developing device is adjusted to -150 V by turning on the halogen lamp and irradiating pre-exposure light in a state of being charged under the previously set charging conditions. The irradiation energy b (μJ) of was measured.

表面電位を−500Vから−150Vにする光の照射エネルギーbのうち、基準感光体から反射光として検出された以外の光は、基準感光体内に入り、吸収されていると考えらえる。よって、このときに基準感光体に吸収された前露光の照射エネルギーE1(μJ)はb×(1−a/100)となる。
次に、基準感光体と同様にして、作製した電子写真感光体における前露光の光の波長での反射率cを求めた。
Of the irradiation energy b of the light that changes the surface potential from −500 V to −150 V, it can be considered that light other than that detected as reflected light from the reference photoconductor enters the reference photoconductor and is absorbed. Therefore, the pre-exposure irradiation energy E1 (μJ) absorbed by the reference photosensitive member at this time is b × (1−a / 100).
Next, the reflectance c at the wavelength of the pre-exposure light in the produced electrophotographic photosensitive member was determined in the same manner as the reference photosensitive member.

反射率を求めた後、基準感光体と同様に、作製した電子写真感光体の表面電位の測定を行った。その際、帯電器のワイヤーから電子写真感光体へ流れる電流をI(μA)に調整して、作製した電子写真感光体と基準感光体とで表面に付与される電荷量を一定にし、その時の電子写真感光体の表面電位V(V)を測定した。そして、基準感光体で前記前露光光を照射して350V変化したときの電子写真感光体の表面電荷の変化を揃えるために、作製した電子写真感光体に像露光光を照射し、表面電位が150×V/500(V)となるときの前露光の照射エネルギーd(μJ)を測定した。 After obtaining the reflectance, the surface potential of the produced electrophotographic photoreceptor was measured in the same manner as the reference photoreceptor. At that time, the current flowing from the charger wire to the electrophotographic photosensitive member is adjusted to I (μA), and the amount of charge applied to the surface between the produced electrophotographic photosensitive member and the reference photosensitive member is made constant. The surface potential V 1 (V) of the electrophotographic photosensitive member was measured. Then, in order to align the change in the surface charge of the electrophotographic photosensitive member when the pre-exposure light is radiated to 350 V by irradiating the pre-exposure light on the reference photosensitive member, the prepared electrophotographic photosensitive member is irradiated with image exposure light, 150 × V 1/500 irradiation energy of exposure before when the (V) d a (.mu.J) was measured.

表面電位をV(V)から150×V/500(V)にする像露光の照射エネルギーdのうち、作製した電子写真感光体から反射光として検出された以外の光は、作製した電子写真感光体内に入り、吸収されていると考えらえる。よって、このときに作製した電子写真感光体に吸収された前露光の照射エネルギーE2(μJ)はd×(1−c/100)となる。 Among irradiation energy d of image exposure to the surface potential from V 1 (V) to 150 × V 1/500 (V ), light other than that are detected as reflected light from the electrophotographic photosensitive member thus prepared was prepared electronic It can be considered that it has been absorbed into the photographic photosensitive body. Therefore, the pre-exposure irradiation energy E2 (μJ) absorbed by the electrophotographic photosensitive member produced at this time is d × (1−c / 100).

上記方法で算出したE1とE2より、電子写真感光体に照射される前露光の光量のうち、電子写真感光体に吸収される前露光の光量に対する光導電層よりも自由表面側に有るすべての層で吸収される前露光の光量の割合(E2−E1)/E2を算出した。
なお、この照射エネルギーE2(μJ)は、基準感光体にE1(μJ)の前露光光を照射して表面電位が350V変化したときの表面電荷の減少量と同じだけの表面電荷を、作製した電子写真感光体で減少させるために必要なエネルギーである。このことから、(E2−E1)/E2により、実質的に光導電層よりも自由表面側にある層で吸収された像露光の光量が算出することが可能となる。
Based on E1 and E2 calculated by the above method, among the pre-exposure light amount irradiated to the electrophotographic photosensitive member, all of the light exposure layers on the free surface side with respect to the pre-exposure light amount absorbed by the electrophotographic photosensitive member. The ratio (E2-E1) / E2 of the amount of pre-exposure light absorbed by the layer was calculated.
The irradiation energy E2 (μJ) produced a surface charge equal to the amount of decrease in surface charge when the surface potential was changed by 350 V by irradiating the reference photoconductor with pre-exposure light of E1 (μJ). This is the energy required to reduce the electrophotographic photosensitive member. From this, (E2-E1) / E2 makes it possible to calculate the amount of image exposure absorbed by a layer that is substantially on the free surface side of the photoconductive layer.

(帯電能の評価)
帯電能の評価方法にも、温度25℃、相対湿度50%の環境下に設置された前述のキヤノン(株)製デジタル電子写真装置「iRA−8105」(商品名)の改造機を用いた。
作製した電子写真感光体を上記電子写真装置に設置し、前露光を所定の波長になるように調整し、現像器を取り外した。そして、電子写真感光体の長手方向中央位置における電子写真感光体の表面電位が測定できるように、表面電位計(TREK社製Model555P−4)を設置した。次に、分光光源より電子写真感光体に照射される前露光の波長を630nmに設定した。そして、像露光を切った状態で、帯電器のグリッドを−700Vとし、帯電器のワイヤーから電子写真感光体に流れる電流を−300μAとした時の電子写真感光体の表面電位を測定し、前露光の波長に対する帯電電位を求めた。
(Evaluation of charging ability)
For the evaluation method of the charging ability, a modified machine of the above-mentioned Canon Inc. digital electrophotographic apparatus “iRA-8105” (trade name) installed in an environment of a temperature of 25 ° C. and a relative humidity of 50% was used.
The produced electrophotographic photosensitive member was set in the electrophotographic apparatus, pre-exposure was adjusted to a predetermined wavelength, and the developing device was removed. Then, a surface potential meter (Model 555P-4 manufactured by TREK) was installed so that the surface potential of the electrophotographic photosensitive member at the center position in the longitudinal direction of the electrophotographic photosensitive member can be measured. Next, the wavelength of pre-exposure irradiated to the electrophotographic photosensitive member from the spectral light source was set to 630 nm. Then, with the image exposure cut off, the surface potential of the electrophotographic photosensitive member when the grid of the charging device is set to −700 V and the current flowing from the charging device wire to the electrophotographic photosensitive member is set to −300 μA is measured. The charging potential with respect to the wavelength of exposure was determined.

分光光源より電子写真感光体に照射される前露光の波長を630nmから1nm毎に560nmまで変化させて、帯電器のワイヤーおよびグリッドの条件を固定して、同様に、各前露光の波長に対する帯電電位を求めた。そして、前露光の波長を変化させたときに得られた電子写真感光体の表面電位から、前露光の波長を変化させたときの表面電位の最大値を算出した。さらに、この「表面電位の最大値」に対する「前露光の各波長における帯電電位」の比を算出した。   The pre-exposure wavelength irradiated from the spectral light source to the electrophotographic photosensitive member is changed from 630 nm to 560 nm every 1 nm, the conditions of the wire and grid of the charger are fixed, and similarly, charging for each pre-exposure wavelength is performed. The potential was determined. Then, the maximum value of the surface potential when the pre-exposure wavelength was changed was calculated from the surface potential of the electrophotographic photosensitive member obtained when the pre-exposure wavelength was changed. Further, the ratio of “charging potential at each wavelength of pre-exposure” to “maximum value of surface potential” was calculated.

(階調性の評価)
階調性の評価にも、前述のキヤノン(株)製デジタル電子写真装置「iRA−8105」(商品名)の改造機を用いた。
まず、帯電器のワイヤーおよびグリッドに、それぞれ高圧電源を接続した。そして、前露光を所定の波長になるように調整し、像露光を切った状態でグリッド電位を−700Vとし、帯電器のワイヤーへ供給する電流を調整して電子写真感光体の表面電位を−500Vとなるように設定した。
(Evaluation of gradation)
For the evaluation of gradation, a modified machine of the above-mentioned digital electrophotographic apparatus “iRA-8105” (trade name) manufactured by Canon Inc. was used.
First, a high voltage power source was connected to the wire and grid of the charger. Then, the pre-exposure is adjusted to a predetermined wavelength, the grid potential is set to −700 V with the image exposure turned off, and the current supplied to the wire of the charger is adjusted to adjust the surface potential of the electrophotographic photosensitive member to − The voltage was set to 500V.

次に、先に設定した帯電条件で帯電させた状態で、像露光光を照射し、その照射エネルギーを調整することにより、現像器位置の電位を−150Vとした。
そして、画像露光光による45度170lpi(1インチあたり170線)の線密度で面積階調ドットスクリーンを用い、面積階調(すなわち画像露光を行うドット部分の面積階調)によって、全階調範囲を17段階に均等配分した階調データを作成した。このとき、最も濃い階調を17、最も薄い階調を0として各階調に番号を割り当て、階調段階とした。
Next, the image exposure light was irradiated in the state charged under the previously set charging conditions, and the irradiation energy was adjusted, so that the potential at the developing unit position was set to -150V.
Then, an area gradation dot screen is used at a line density of 45 degrees 170 lpi (170 lines per inch) by image exposure light, and the entire gradation range is determined by area gradation (that is, area gradation of a dot portion where image exposure is performed). The gradation data was distributed evenly in 17 steps. At this time, the darkest gradation was set to 17, the thinnest gradation was set to 0, and a number was assigned to each gradation to obtain a gradation step.

上記の改造した電子写真装置に作製した電子写真感光体を設置し、上記階調データを用いて、テキストモードを用いてA3用紙に出力した。このとき、温度22℃、相対湿度50%の環境下で、感光体ヒーターをONにして、電子写真感光体の表面の温度を約40℃に保った条件で画像を出力した。
得られた画像を各階調ごとに反射濃度計(X−Rite Inc製:504 分光濃度計)により画像濃度を測定した。なお、反射濃度測定では各々の階調ごとに3枚の画像を出力し、それらの濃度の平均値を評価値とした。
The prepared electrophotographic photosensitive member was installed in the modified electrophotographic apparatus, and output to A3 paper using the gradation data using the text mode. At this time, in an environment of a temperature of 22 ° C. and a relative humidity of 50%, the photoconductor heater was turned on, and an image was output under the condition that the surface temperature of the electrophotographic photoconductor was kept at about 40 ° C.
The image density of the obtained image was measured with a reflection densitometer (manufactured by X-Rite Inc: 504 spectral densitometer) for each gradation. In the reflection density measurement, three images were output for each gradation, and the average value of the densities was used as the evaluation value.

こうして得られた評価値と階調段階との相関係数を算出し、各階調の反射濃度が完全に直線的に変化する階調表現が得られた場合である相関係数=1.00からの差分を求めた。そして、プロセス条件No.3で出力された画像から算出された相関係数より求められる差分に対する、各プロセス条件にて出力された画像から算出された相関係数より求められる差分の比を階調性の指標として評価した。この評価において、数値が小さいほど階調性が優れており、直線的に近い階調表現がなされていることを示している。   The correlation coefficient between the evaluation value obtained in this way and the gradation stage is calculated, and from the correlation coefficient = 1.00 when the gradation expression in which the reflection density of each gradation changes completely linearly is obtained. The difference of was calculated. The process condition No. The ratio of the difference obtained from the correlation coefficient calculated from the image output under each process condition to the difference obtained from the correlation coefficient calculated from the image output in step 3 was evaluated as a gradation index. . In this evaluation, the smaller the numerical value, the better the gradation, indicating that the gradation expression is linear.

A‥プロセス条件No.3で出力された画像から算出された相関係数から求められる相関係数=1.00からの差分に対する各プロセス条件にて出力された画像から算出された相関係数=1.00からの差分の比が1.80以下。
B‥プロセス条件No.3で出力された画像から算出された相関係数から求められる相関係数=1.00からの差分に対する各プロセス条件にて出力された画像から算出された相関係数=1.00からの差分の比が1.80より大きい。
実施例1および比較例1で評価した吸収割合、帯電能および階調性について、以下に示す方法で総合評価を行った。その結果を表8に示す。
A. Process condition no. The correlation coefficient calculated from the image output under each process condition with respect to the difference from the correlation coefficient calculated from the correlation coefficient calculated from the image output in step 3 = 1.00 = difference from 1.00 Ratio is 1.80 or less.
B Process condition No. The correlation coefficient calculated from the image output under each process condition with respect to the difference from the correlation coefficient calculated from the correlation coefficient calculated from the image output in step 3 = 1.00 = difference from 1.00 The ratio is greater than 1.80.
The absorption ratio, charging ability and gradation property evaluated in Example 1 and Comparative Example 1 were comprehensively evaluated by the following methods. The results are shown in Table 8.

(総合評価)
帯電能の評価結果に関しては、0.975以上1.000以下をAとし、0.975よりも低い場合をBとした。
総合評価としては、帯電能および階調性の各評価結果を以下に示すように評価した。
A‥帯電能および階調性の各評価結果がすべてAである
B‥帯電能の評価結果がA、階調性の評価結果がBである
C‥帯電能の評価結果がBである
総合評価において、B以上で本発明の効果が得られていると判断した。
(Comprehensive evaluation)
Regarding the evaluation result of charging ability, A is 0.975 or more and 1.000 or less, and B is lower than 0.975.
As a comprehensive evaluation, each evaluation result of charging ability and gradation was evaluated as shown below.
A: Each evaluation result of charging ability and gradation is A. B. Evaluation result of charging ability is A and evaluation result of gradation is B. C ... Evaluation result of charging ability is B. Overall evaluation In B, it was judged that the effect of the present invention was obtained at B or higher.

Figure 2016090985
Figure 2016090985

表8の結果より、所定の電子写真プロセス条件において、前露光の光の波長を変化させたときに得られる帯電電位の最大値に対して、0.975以上1.000以下となる前露光の光の波長を選択することで、本発明の効果が確認できた。すなわち、PSが比較的速い電子写真装置を使用した場合であっても、電子写真感光体の帯電電位を最大限に引き出しつつも、階調性の低下を抑制すること可能となり、その結果、高品質の画質が出力可能であることが確認できた。
さらに、電子写真感光体に吸収される前露光の光量に対する光導電層よりも自由表面側に有るすべての層で吸収される前露光の光量の割合が25%以上55%以下とすることで、さらに階調性の低下が抑制され、さらなる高品位の画像が出力可能であることが確認できた。
From the results in Table 8, the pre-exposure of 0.975 or more and 1.000 or less with respect to the maximum value of the charging potential obtained when the wavelength of the pre-exposure light is changed under the predetermined electrophotographic process conditions. The effect of the present invention was confirmed by selecting the wavelength of light. That is, even when an electrophotographic apparatus having a relatively fast PS is used, it is possible to suppress a reduction in gradation while maximizing the charging potential of the electrophotographic photosensitive member. It was confirmed that quality image quality can be output.
Furthermore, the ratio of the pre-exposure light amount absorbed by all the layers on the free surface side of the photoconductive layer to the pre-exposure light amount absorbed by the electrophotographic photosensitive member is 25% or more and 55% or less, In addition, it was confirmed that the gradation was prevented from being lowered and that a higher quality image could be output.

<実施例2、比較例2>
図2(a)および図2(b)の電子写真装置を用いて、表9に示すプロセス条件に設定して実施例1と同様に吸収割合、帯電能および階調性を評価した。このときの結果を表10に示す。なお、図2(a)および図2(b)の電子写真装置には、実施例1で作製した成膜条件No.4の電子写真感光体を搭載した。また、図2(b)は、前露光手段を転写手段とクリーニング手段の間に設置した以外は、図2(a)の電子写真装置と同じである。
<Example 2, comparative example 2>
Using the electrophotographic apparatus shown in FIGS. 2A and 2B, the absorption conditions, charging ability and gradation were evaluated in the same manner as in Example 1 with the process conditions shown in Table 9. The results at this time are shown in Table 10. 2A and 2B was mounted with the electrophotographic photosensitive member of film formation condition No. 4 produced in Example 1. FIG. FIG. 2B is the same as the electrophotographic apparatus of FIG. 2A except that the pre-exposure unit is installed between the transfer unit and the cleaning unit.

Figure 2016090985
Figure 2016090985

Figure 2016090985
Figure 2016090985

表10の結果より、前露光手段をクリーニング手段と帯電手段の間から転写手段とクリーニング手段の間に移動させると、前露光の光の波長が同じ623nmでも帯電能が0.964Vから0.975Vへ変化することが確認できた。つまり、前露光手段を移動させることによって、前露光の光の波長を変化させたときに得られる帯電電位の最大値に対して、0.975以上1.000以下となる前露光の光の波長範囲が広がることが確認できた。
このことから、前露光手段をクリーニング手段と帯電手段の間から転写手段とクリーニング手段の間に移動させることで、本発明で用いることのできる前露光の光の波長範囲が広がり、前露光の光の波長の選択性が向上することが確認できた。
From the results shown in Table 10, when the pre-exposure unit is moved between the cleaning unit and the charging unit between the transfer unit and the cleaning unit, the charging ability is 0.964 V to 0.975 V even when the wavelength of the pre-exposure light is 623 nm. It was confirmed that it changed to. That is, by moving the pre-exposure means, the wavelength of the pre-exposure light that is 0.975 or more and 1.000 or less with respect to the maximum value of the charging potential obtained when the wavelength of the pre-exposure light is changed. It was confirmed that the range expanded.
Therefore, by moving the pre-exposure unit between the cleaning unit and the charging unit between the transfer unit and the cleaning unit, the wavelength range of the pre-exposure light that can be used in the present invention is expanded, and the pre-exposure light It was confirmed that the selectivity of the wavelength was improved.

これは、前露光手段から帯電手段までの時間を長くすることで、前露光が電子写真感光体の表面に照射されたときに光導電層および自由表面側の層で生成される光キャリアの再結合により層内に残存する光キャリア数が減少したためと推察される。
さらに、光導電層および自由表面側の層に残存する光キャリアが減少したことにより、前露光の光の波長を変化させたときに得られる帯電電位の最大値に関しても、前露光手段をクリーニング手段と帯電手段の間から転写手段とクリーニング手段の間に移動させることで、5%の改善が確認された。
This is because the time from the pre-exposure means to the charging means is lengthened, so that when the pre-exposure is applied to the surface of the electrophotographic photosensitive member, the photocarriers generated in the photoconductive layer and the free surface layer are regenerated. This is presumably because the number of photocarriers remaining in the layer has decreased due to bonding.
Further, the pre-exposure means is also cleaned with respect to the maximum value of the charging potential obtained when the wavelength of the pre-exposure light is changed because the photocarriers remaining in the photoconductive layer and the free surface side layer are reduced. 5% improvement was confirmed by moving between the transfer means and the cleaning means from between the charging means and the charging means.

1001、2001‥‥‥‥‥‥‥電子写真感光体
1002、2002‥‥‥‥‥‥‥一次帯電器
1003、2003‥‥‥‥‥‥‥像露光
1004a‥‥‥‥‥‥‥‥‥‥‥第1現像器
1004b‥‥‥‥‥‥‥‥‥‥‥第2現像器
1005、2005‥‥‥‥‥‥‥クリーナー
1006‥‥‥‥‥‥‥‥‥‥‥‥ITB
1007、2007‥‥‥‥‥‥‥マグネットローラー
1008、2008‥‥‥‥‥‥‥クリーニングブレード
1009、2009‥‥‥‥‥‥‥第一の転写部材
1010‥‥‥‥‥‥‥‥‥‥‥‥第二の転写部材
1011‥‥‥‥‥‥‥‥‥‥‥‥ITBクリーナー
1012、2012‥‥‥‥‥‥‥搬送手段
1013、2013‥‥‥‥‥‥‥記録材
1014、2014‥‥‥‥‥‥‥前露光
2004‥‥‥‥‥‥‥‥‥‥‥‥現像器
2006‥‥‥‥‥‥‥‥‥‥‥‥ETB
2011‥‥‥‥‥‥‥‥‥‥‥‥ETBクリーナー
3100‥‥‥‥‥‥‥‥‥‥‥‥堆積装置
3200‥‥‥‥‥‥‥‥‥‥‥‥ガス供給装置
4000‥‥‥‥‥‥‥‥‥‥‥‥プラス帯電用電子写真感光体
4100‥‥‥‥‥‥‥‥‥‥‥‥マイナス帯電用電子写真感光体
4001、4101、4201‥‥基体
4002、4102、4202‥‥下部電荷注入阻止層
4003、4103、4203‥‥光導電層
4004‥‥‥‥‥‥‥‥‥‥‥‥中間層
4104‥‥‥‥‥‥‥‥‥‥‥‥上部電荷注入阻止層
4005、4105、4205‥‥表面層

1001, 2001 ... Electrophotographic photoreceptors 1002, 2002 ... Primary charger 1003, 2003 ... ... Image exposure 1004a ..... ········································································································· ITB
1007, 2007 ... Magnet roller 1008, 2008 ... ... Cleaning blade 1009, 2009 ... ... First transfer member 1010 ... ..... 2nd transfer member 1011 ... ITB cleaner 1012, 2012 ... Transport means 1013, 2013 ... Recording materials 1014, 2014 ... ……………… Pre-exposure 2004 …………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………….
2011 ‥‥‥‥‥‥‥‥‥‥‥‥ ETB cleaner 3100 ‥‥‥‥‥‥‥‥‥‥‥‥ deposition apparatus 3200 ‥‥‥‥‥‥‥‥‥‥‥‥ gas supply device 4000 ‥‥‥ ················································································································ ... Lower charge injection blocking layer 4003, 4103, 4203 ... Photoconductive layer 4004 ..... Intermediate layer 4104 ..... Upper charge injection blocking layer 4005 4105 4205 ... surface layer

Claims (4)

導電性基体上に光導電層および表面層が順次形成された電子写真感光体と、前記電子写真感光体に前露光光を照射して除電を行う前露光手段と、前記電子写真感光体に帯電を行う主帯電手段と、前記電子写真感光体の帯電面に静電潜像を形成する潜像形成手段と、前記静電潜像をトナー像として現像する現像手段と、前記トナー像を転写する転写手段を有する電子写真装置において、
前記前露光手段が、
前露光光の波長を変化させたときに変化する前記電子写真感光体の帯電能の最大値を1.000としたときに、前記帯電能が0.975以上1.000以下となる前露光光の波長を有することを特徴とする電子写真装置。
An electrophotographic photosensitive member in which a photoconductive layer and a surface layer are sequentially formed on a conductive substrate; pre-exposure means for irradiating the electrophotographic photosensitive member with pre-exposure light; and charging the electrophotographic photosensitive member. A main charging means for carrying out the process, a latent image forming means for forming an electrostatic latent image on the charging surface of the electrophotographic photosensitive member, a developing means for developing the electrostatic latent image as a toner image, and transferring the toner image. In an electrophotographic apparatus having transfer means,
The pre-exposure means;
Pre-exposure light in which the charging ability is 0.975 or more and 1.000 or less when the maximum value of charging ability of the electrophotographic photosensitive member that changes when the wavelength of the pre-exposure light is changed is 1.000. An electrophotographic apparatus having the following wavelength:
前記前露光手段が、前記電子写真感光体に吸収される前露光光の光量に対する前記光導電層よりも自由表面側に有るすべての層で吸収される前露光光の光量の割合が25%以上55%以下となる前露光光の波長を有する請求項1に記載の電子写真装置。   The ratio of the amount of pre-exposure light absorbed by all layers on the free surface side of the photoconductive layer to the amount of pre-exposure light absorbed by the electrophotographic photosensitive member is 25% or more. The electrophotographic apparatus according to claim 1, wherein the electrophotographic apparatus has a wavelength of pre-exposure light that is 55% or less. 前記電子写真感光体の回転方向に対して前記転写手段の下流側かつ前記主帯電手段の上流側にクリーニング手段をさらに有し、
前記電子写真感光体の回転方向に対して前記クリーニング手段の上流側に前記前露光手段が位置する請求項1または2に記載の電子写真装置。
A cleaning unit on the downstream side of the transfer unit and the upstream side of the main charging unit with respect to the rotation direction of the electrophotographic photosensitive member;
3. The electrophotographic apparatus according to claim 1, wherein the pre-exposure unit is positioned upstream of the cleaning unit with respect to a rotation direction of the electrophotographic photosensitive member.
導電性基体上に光導電層および表面層が順次形成された電子写真感光体と、前記電子写真感光体に前露光光を照射して除電を行う前露光手段と、前記電子写真感光体に帯電を行う主帯電手段と、前記電子写真感光体の帯電面に静電潜像を形成する潜像形成手段と、前記静電潜像をトナー像として現像する現像手段と、前記トナー像を転写する転写手段を有する電子写真装置の設定方法であって、
前記前露光手段の前露光光として、
前露光光の波長を変化させたときに変化する前記電子写真感光体の帯電能の最大値を1.000としたときに、前記帯電能が0.975以上1.000以下となる前露光光の波長を選択することを特徴とする電子写真装置の設計方法。



An electrophotographic photosensitive member in which a photoconductive layer and a surface layer are sequentially formed on a conductive substrate; pre-exposure means for irradiating the electrophotographic photosensitive member with pre-exposure light; and charging the electrophotographic photosensitive member. A main charging means for carrying out the process, a latent image forming means for forming an electrostatic latent image on the charging surface of the electrophotographic photosensitive member, a developing means for developing the electrostatic latent image as a toner image, and transferring the toner image. A method for setting an electrophotographic apparatus having transfer means,
As pre-exposure light of the pre-exposure means,
Pre-exposure light in which the charging ability is 0.975 or more and 1.000 or less when the maximum value of charging ability of the electrophotographic photosensitive member that changes when the wavelength of the pre-exposure light is changed is 1.000. A method for designing an electrophotographic apparatus, characterized in that the wavelength is selected.



JP2014229277A 2014-11-11 2014-11-11 Electrophotographic apparatus and electrophotographic apparatus design method Active JP6463086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229277A JP6463086B2 (en) 2014-11-11 2014-11-11 Electrophotographic apparatus and electrophotographic apparatus design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229277A JP6463086B2 (en) 2014-11-11 2014-11-11 Electrophotographic apparatus and electrophotographic apparatus design method

Publications (2)

Publication Number Publication Date
JP2016090985A true JP2016090985A (en) 2016-05-23
JP6463086B2 JP6463086B2 (en) 2019-01-30

Family

ID=56017916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229277A Active JP6463086B2 (en) 2014-11-11 2014-11-11 Electrophotographic apparatus and electrophotographic apparatus design method

Country Status (1)

Country Link
JP (1) JP6463086B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234618A (en) * 1993-12-28 1995-09-05 Mita Ind Co Ltd Image forming device
JPH09204077A (en) * 1995-07-14 1997-08-05 Hitachi Koki Co Ltd Image forming device
JP2003287963A (en) * 2002-03-27 2003-10-10 Kyocera Mita Corp Image forming apparatus
JP2003337437A (en) * 2002-05-22 2003-11-28 Canon Inc Negative charging electrophotographic photoreceptor and electrophotographic device using the same
US20070147864A1 (en) * 2005-12-28 2007-06-28 Xerox Corporation Methods and devices for removing latent image ghosts photoreceptors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234618A (en) * 1993-12-28 1995-09-05 Mita Ind Co Ltd Image forming device
JPH09204077A (en) * 1995-07-14 1997-08-05 Hitachi Koki Co Ltd Image forming device
JP2003287963A (en) * 2002-03-27 2003-10-10 Kyocera Mita Corp Image forming apparatus
JP2003337437A (en) * 2002-05-22 2003-11-28 Canon Inc Negative charging electrophotographic photoreceptor and electrophotographic device using the same
US20070147864A1 (en) * 2005-12-28 2007-06-28 Xerox Corporation Methods and devices for removing latent image ghosts photoreceptors

Also Published As

Publication number Publication date
JP6463086B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
US7255969B2 (en) Electrophotographic photosensitive member
US20060194132A1 (en) Electrophotographic photosensitive member
JP2019045685A (en) Xerographic photoreceptor and electrophotographic apparatus
JP4764954B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP5675289B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
US8465891B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP6128885B2 (en) Electrophotographic photosensitive member, method for producing the same, and electrophotographic apparatus
US20140349226A1 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP6463086B2 (en) Electrophotographic apparatus and electrophotographic apparatus design method
JP4599468B1 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2006133525A (en) Electrophotographic photoreceptor and electrophotographic apparatus using same
JP2006189823A (en) Electrophotographic photoreceptor
JP2015007753A (en) Electrophotographic photoreceptor
JP4235593B2 (en) Light receiving member for electrophotography
JP2013007978A (en) Electrophotographic device
JP2006189822A (en) Electrophotographic photoreceptor
JP5451301B2 (en) Method for producing electrophotographic photosensitive member
JP3289011B2 (en) Cleaning method for deposited film forming apparatus
JP2019066704A (en) Manufacturing method of electrophotographic photoreceptor
JP2010102131A (en) Image forming method
JPH0943884A (en) Formation of electrophotographic photoreceptor
JP2003107765A (en) Electrophotographic photoreceptor and method of making electrophotographic photoreceptor
JPH08211641A (en) Forming method of amorphous silicon photosensitive body
JPH07295265A (en) Electrophotographic photoreceptive member and its production
JP2002091041A (en) Electrophotographic photoreception member and electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181228

R151 Written notification of patent or utility model registration

Ref document number: 6463086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03