JP2016090544A - Strain detection plate and strain detection method - Google Patents

Strain detection plate and strain detection method Download PDF

Info

Publication number
JP2016090544A
JP2016090544A JP2014229079A JP2014229079A JP2016090544A JP 2016090544 A JP2016090544 A JP 2016090544A JP 2014229079 A JP2014229079 A JP 2014229079A JP 2014229079 A JP2014229079 A JP 2014229079A JP 2016090544 A JP2016090544 A JP 2016090544A
Authority
JP
Japan
Prior art keywords
strain
plate
strain detection
hole
detection plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014229079A
Other languages
Japanese (ja)
Other versions
JP6294809B2 (en
Inventor
室屋 格
Itaru Muroya
格 室屋
知和 岩田
Tomokazu Iwata
知和 岩田
康裕 津村
Yasuhiro Tsumura
康裕 津村
克実 ▲高▼木
克実 ▲高▼木
Katsumi Takagi
洋一 岩本
Yoichi Iwamoto
洋一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2014229079A priority Critical patent/JP6294809B2/en
Publication of JP2016090544A publication Critical patent/JP2016090544A/en
Application granted granted Critical
Publication of JP6294809B2 publication Critical patent/JP6294809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strain detection plate and a strain detection method capable of easily detecting strain about any direction on a surface of a detection object.SOLUTION: A strain detection plate includes: a metallic plate body 21 attached to a surface of a detection object; a circular pore 23 formed on the plate body 21; and a coating film layer 22 formed by applying stress coating medium on a surface of the plate body 21 on a circumference of the pore 23.SELECTED DRAWING: Figure 2

Description

本発明は、例えば、地震等の荷重により検出対象物に生じたひずみを検出するひずみ検出板及びひずみ検出方法に関する。   The present invention relates to a strain detection plate and a strain detection method for detecting strain generated in a detection object due to a load such as an earthquake.

一般に、原子力発電プラントや化学プラント等のプラント施設では、施設内に設置されるタンク等の構造物に過大な荷重が掛かった場合、構造物の各部位の損傷が問題になる。このため、例えば、地震等が生じた場合には、地震後に、構造物に生じたひずみを把握する必要がある。プラント施設では、対象となる構造物は多数に及ぶため、ひずみを把握するための手段は簡便なものが好ましく、(A)電源を不要とするもの、(B)配線を不要とするもの、(C)目視で検査できるもの、を満たす手段が模索されている。   In general, in a plant facility such as a nuclear power plant or a chemical plant, when an excessive load is applied to a structure such as a tank installed in the facility, damage to each part of the structure becomes a problem. For this reason, for example, when an earthquake or the like occurs, it is necessary to grasp the strain generated in the structure after the earthquake. In plant facilities, since there are a large number of target structures, it is preferable that the means for grasping the strain be simple, (A) a power supply is not required, (B) a wiring is not required, ( C) A means for satisfying what can be visually inspected is being sought.

この種のひずみを把握するものとして、従来、金属板でなり、少なくとも1つの尖鋭開口端を有するよう形成された開口部を備えた計測体を有する表面ひずみ検出計が知られている(例えば、特許文献1参照)。この表面ひずみ検出計は、被計測物(検出対象物)の表面に取り付けられ、開口部の尖鋭開口端に生じた亀裂を計測することで、被計測物に生じたひずみを、電源及び配線を要することなく目視により検出できる。   As a means for grasping this kind of strain, a surface strain detector having a measuring body that is made of a metal plate and has an opening formed so as to have at least one sharp open end is known (for example, Patent Document 1). This surface strain detector is attached to the surface of the object to be measured (detection object), and measures the cracks generated at the sharp opening end of the opening to reduce the strain generated in the object to be measured. It can be detected visually without any need.

特開2010−256212号公報JP 2010-256212 A

しかしながら、従来の表面ひずみ検出計は、尖鋭開口端に生じた亀裂によって被計測物に生じたひずみを検出するため、尖鋭開口端が形成されていない方向のひずみは検出できない。このため、被計測物に取り付けられる計測体(開口部)の周縁の全方向(360°)については、被計測物に生じるひずみを検出することはできないという問題があった。   However, since the conventional surface strain detector detects the strain generated in the measurement object due to the crack generated at the sharp opening end, the strain in the direction in which the sharp opening end is not formed cannot be detected. For this reason, there has been a problem that the strain generated in the measurement object cannot be detected in all directions (360 °) of the periphery of the measurement body (opening) attached to the measurement object.

本発明は、上記に鑑みてなされたものであって、検出対象物の表面のいずれの方向についても、ひずみを簡単に検出できるひずみ検出板及びひずみ検出方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the distortion | strain detection board and distortion | strain detection method which can detect distortion | strain easily about any direction of the surface of a detection target.

上述した課題を解決し、目的を達成するために、本発明に係るひずみ検出板は、検出対象物の表面に取り付けられる金属製の板体と、板体に形成された円形の孔部と、孔部の周縁における板体の表面に応力塗料を塗布して形成された塗膜部とを備えたこと特徴とする。   In order to solve the above-described problems and achieve the object, the strain detection plate according to the present invention includes a metal plate attached to the surface of the detection target, a circular hole formed in the plate, And a coating film portion formed by applying a stress paint to the surface of the plate at the periphery of the hole.

この構成によれば、円形の孔部の周縁に応力塗料を塗布して塗膜部が形成されるため、この塗膜部に生じた亀裂により、検出対象物に生じたひずみを検出することができる。さらに、板体には円形の孔部が形成されているため、尖鋭開口端のように方向が特定されることなく、検出対象物の表面のいずれの方向のひずみについて検出することができる。   According to this configuration, since the coating film portion is formed by applying the stress paint to the periphery of the circular hole portion, it is possible to detect the strain generated in the detection target object by the crack generated in the coating film portion. it can. Furthermore, since the circular hole is formed in the plate body, it is possible to detect the distortion in any direction of the surface of the detection target without specifying the direction like the sharp opening end.

この構成において、孔部は、真円形状の孔部であっても良い。この構成によれば、板体に生じる最大応力は孔部の周方向に均一にすることができるため、検出対象物の表面に生じるいずれの方向のひずみについて正確に検出することができる。   In this configuration, the hole may be a perfect circular hole. According to this configuration, the maximum stress generated in the plate can be made uniform in the circumferential direction of the hole, so that any strain generated on the surface of the detection target can be accurately detected.

また、孔部は、長孔形状の孔部であってもよい。この構成によれば、板体に生じる最大応力を、孔部の周方向位置によって変更できるため、ひずみを検出する感度を調整することができる。   The hole may be a long hole. According to this configuration, since the maximum stress generated in the plate body can be changed depending on the circumferential position of the hole, the sensitivity for detecting the strain can be adjusted.

また、板体は、検出対象物と同一もしくは、検出対象物よりもヤング率の小さい材料で形成されてもよい。この構成によれば、検出対象物に取り付けられたひずみ検出板は、検出対象物と同様に変形することにより、検出対象物のひずみを正確に検出することができる。   The plate may be formed of a material that is the same as the detection target or has a Young's modulus smaller than that of the detection target. According to this structure, the distortion | strain detection board attached to the detection target object can detect the distortion | strain of a detection target object correctly by changing similarly to a detection target object.

また、板体に所定の間隔を設けて複数の孔部を形成してもよい。この構成によれば、孔部と孔部との間隔に応じて、板体に生じる最大応力を変更できるため、ひずみを検出する感度を調整することができる。   Moreover, you may provide a predetermined space | interval in a plate body and may form a some hole part. According to this configuration, since the maximum stress generated in the plate can be changed according to the interval between the hole and the hole, the sensitivity for detecting strain can be adjusted.

また、本発明に係るひずみ検出方法は、金属製の板体に円形の孔部を形成し、孔部の周縁における板体の表面に応力塗料を塗布して塗膜部を設けたひずみ検出板を検出対象物の表面に取り付け、ひずみ検出板の塗膜部に生じた亀裂により、検出対象物に生じたひずみの向きまたは大きさを検出することを特徴とする。この構成によれば、検出対象物の表面のいずれの方向について、ひずみを簡単に検出することができる。   In addition, the strain detection method according to the present invention is a strain detection plate in which a circular hole is formed in a metal plate, and a coating material is provided by applying a stress paint to the surface of the plate at the periphery of the hole. Is attached to the surface of the detection object, and the direction or magnitude of the strain generated in the detection object is detected by a crack generated in the coating film portion of the strain detection plate. According to this configuration, strain can be easily detected in any direction on the surface of the detection target.

本発明によれば、円形の孔部の周縁に応力塗料を塗布して塗膜部が形成されるため、この塗膜部に生じた亀裂により、検出対象物に生じたひずみを検出することができる。さらに、板体には円形の孔部が形成されているため、尖鋭開口端のように方向が特定されることなく、検出対象物の表面のいずれの方向のひずみについて検出することができる。   According to the present invention, since the coating film portion is formed by applying the stress paint to the periphery of the circular hole portion, it is possible to detect the strain generated in the detection target object by the crack generated in the coating film portion. it can. Furthermore, since the circular hole is formed in the plate body, it is possible to detect the distortion in any direction of the surface of the detection target without specifying the direction like the sharp opening end.

図1は、本実施形態に係るひずみ検出板が取り付けられる検査対象物の一例を示す概略図である。FIG. 1 is a schematic view showing an example of an inspection object to which a strain detection plate according to this embodiment is attached. 図2は、第1実施形態に係るひずみ検出板を示す平面図である。FIG. 2 is a plan view showing the strain detection plate according to the first embodiment. 図3は、図2のA−A断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図4は、第1実施形態に係るひずみ検出板の作用を説明する平面図である。FIG. 4 is a plan view for explaining the operation of the strain detection plate according to the first embodiment. 図5は、第2実施形態に係るひずみ検出板の作用を説明する平面図である。FIG. 5 is a plan view for explaining the operation of the strain detection plate according to the second embodiment. 図6は、第3実施形態に係るひずみ検出板の作用を説明する平面図である。FIG. 6 is a plan view for explaining the operation of the strain detection plate according to the third embodiment. 図7は、第4実施形態に係るひずみ検出板の作用を説明する平面図である。FIG. 7 is a plan view for explaining the operation of the strain detection plate according to the fourth embodiment.

以下に、本発明にかかる実施形態について、図面を参照して説明する。なお、以下の実施形態によりこの発明が限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本実施形態に係るひずみ検出板が取り付けられる検出対象物の一例を示す概略図である。図1において、符号10は、例えば、薬液等の溶液を保存する溶液タンクである。この溶液タンク10は、例えば、化学プラントや原子力発電プラント等のプラント施設に設けられ、このプラント施設の建屋の床19の上に設置されている。溶液タンク10は、円筒形の胴部11と、この胴部11の上部に取り付けられる上鏡板12と、該胴部11の下部に取り付けられる下鏡板13とを備えて一体に形成され、下鏡板13に連結される複数の脚部(検出対象物)14により上記床19に設置される。溶液タンク10の下鏡板13には、溶液タンク10内の溶液を導出するための導出管15が接続され、この導出管15は、床19から延びる配管サポート(検出対象物)16により支持されている。   FIG. 1 is a schematic diagram illustrating an example of a detection target to which a strain detection plate according to the present embodiment is attached. In FIG. 1, the code | symbol 10 is a solution tank which stores solutions, such as a chemical | medical solution, for example. The solution tank 10 is provided in a plant facility such as a chemical plant or a nuclear power plant, for example, and is installed on a floor 19 of the building of the plant facility. The solution tank 10 is integrally formed with a cylindrical body portion 11, an upper end plate 12 attached to the upper portion of the body portion 11, and a lower end plate 13 attached to the lower portion of the body portion 11. 13 is installed on the floor 19 by a plurality of leg portions (detection objects) 14 connected to 13. The lower end plate 13 of the solution tank 10 is connected to a lead-out pipe 15 for leading the solution in the solution tank 10. The lead-out pipe 15 is supported by a pipe support (detection target) 16 extending from the floor 19. Yes.

このような構成では、例えば、プラント施設に地震が生じた場合、溶液タンク10が矢印Xで示す方向に揺動することに伴い、脚部14には長手方向(矢印Y方向)に大きな荷重がかかり、この脚部14にひずみが生じる。同様に、配管サポート16には、長手方向(矢印Y方向)に大きな荷重がかかり、この配管サポート16にひずみが生じる。このため、地震が治まった後に、これら溶液タンク10の脚部14や配管サポート16等に生じたひずみの有無を点検する必要がある。本構成では、溶液タンク10の脚部14や配管サポート16等に生じたひずみを、目視によって簡単に検出するために、溶液タンク10の脚部14や配管サポート16にそれぞれひずみ検出板20,20が取り付けられている。次に、ひずみ検出板について説明する。   In such a configuration, for example, when an earthquake occurs in the plant facility, a large load is applied to the leg portion 14 in the longitudinal direction (arrow Y direction) as the solution tank 10 swings in the direction indicated by the arrow X. As a result, the leg 14 is distorted. Similarly, a large load is applied to the pipe support 16 in the longitudinal direction (arrow Y direction), and the pipe support 16 is distorted. For this reason, after the earthquake has subsided, it is necessary to inspect for the presence or absence of distortion generated in the legs 14 and the pipe supports 16 of the solution tank 10. In this configuration, in order to easily detect the strain generated in the leg portion 14 and the pipe support 16 of the solution tank 10 visually, the strain detection plates 20 and 20 are respectively provided on the leg portion 14 and the pipe support 16 of the solution tank 10. Is attached. Next, the strain detection plate will be described.

[第1実施形態]
図2は、第1実施形態に係るひずみ検出板を示す平面図であり、図3は図2のA−A断面図である。ひずみ検出板20は、図2に示すように、例えば、正六角形状の金属製の板体21を備え、この板体21の中央部には、真円形状の孔部23が形成されている。また、図3に示すように、板体21の表面21Aには、応力塗料(後述する)が塗布された塗膜層(塗膜部)22が形成されている。
[First Embodiment]
FIG. 2 is a plan view showing the strain detection plate according to the first embodiment, and FIG. 3 is a cross-sectional view taken along the line AA of FIG. As shown in FIG. 2, the strain detection plate 20 includes, for example, a regular hexagonal metal plate 21, and a perfectly circular hole 23 is formed at the center of the plate 21. . As shown in FIG. 3, a coating layer (coating portion) 22 to which a stress paint (described later) is applied is formed on the surface 21 </ b> A of the plate body 21.

板体21は、裏面21B側に接着材(不図示)等を付けることにより、脚部14もしくは配管サポート16に貼り付けられる。この場合、板体21と脚部14もしくは配管サポート16とが一体となるように、裏面21Bの全面に接着材を付けることが望ましい。板体21は、例えば、貼り付けられる脚部14の母材と同一の金属材料もしくは母材よりも柔らかい(ヤング率の小さい)金属材料で形成される。この構成によれば、例えば、脚部14に貼り付けられたひずみ検出板20は、脚部14と同様に変形することにより、脚部14のひずみを正確に検出することができる。本実施形態では、板体21は、外周縁が正六角形状に形成されているが、他の形状を採用することもでき、例えば、方形状や円形状に形成してもよい。   The plate body 21 is attached to the leg portion 14 or the pipe support 16 by attaching an adhesive (not shown) or the like to the back surface 21B side. In this case, it is desirable to apply an adhesive to the entire back surface 21B so that the plate body 21 and the leg portion 14 or the pipe support 16 are integrated. The plate 21 is made of, for example, the same metal material as the base material of the legs 14 to be attached or a metal material softer (small Young's modulus) than the base material. According to this configuration, for example, the strain detection plate 20 affixed to the leg portion 14 can detect the strain of the leg portion 14 accurately by being deformed in the same manner as the leg portion 14. In the present embodiment, the outer peripheral edge of the plate body 21 is formed in a regular hexagonal shape, but other shapes may be adopted, and for example, the plate body 21 may be formed in a square shape or a circular shape.

塗膜層22は、応力塗料を塗布することにより形成される。応力塗料は、物体に生じる応力解析を目的とした非常にもろい性質の塗料である。応力塗料として、CRUX(登録商標:マークテック株式会社製)やストレスマーク2(株式会社テック技販製)を用いることができる。この種の応力塗料は、エアゾール型で簡便に塗装することができ、また加熱しなくても自然乾燥で乾燥するため、容易に塗膜層22を形成することができる。塗膜層22は、板体21に応力が加えられると、この応力によって亀裂を生じるため、この亀裂により、ひずみの発生の有無を目視にて検出できる。塗膜層22は、膜厚が0.1mm程度となるように、応力塗料を塗布することが好ましい。   The coating layer 22 is formed by applying a stress paint. The stress paint is a paint having very brittle properties for the purpose of analyzing the stress generated in the object. As the stress paint, CRUX (registered trademark: manufactured by Mark Tech Co., Ltd.) or Stress Mark 2 (manufactured by Tech Tech Sales Co., Ltd.) can be used. This type of stress paint can be easily applied in an aerosol type and can be easily dried without drying, so that the coating layer 22 can be easily formed. When a stress is applied to the plate body 21, the coating film layer 22 is cracked by this stress, so that the presence or absence of strain can be visually detected by this crack. The coating layer 22 is preferably coated with a stress coating so that the film thickness is about 0.1 mm.

ひずみ検出板20によるひずみの計測は、次のように行なわれる。まず、ひずみ検出板20を、溶液タンク10の脚部14や配管サポート16の表面に接着剤を用いて貼りつける。その状態で、プラント施設に地震が生じた場合、地震後のプラント施設の再起動に際し、プラント施設の各機器の点検作業が行われる。点検作業では、脚部14や配管サポート16の表面に貼り付けられたひずみ検出板20に着目し、塗膜層22に生じた亀裂によって最大ひずみを検出する。   The strain measurement by the strain detection plate 20 is performed as follows. First, the strain detection plate 20 is attached to the surfaces of the leg portion 14 and the pipe support 16 of the solution tank 10 using an adhesive. In this state, when an earthquake occurs in the plant facility, inspection of each device in the plant facility is performed when the plant facility is restarted after the earthquake. In the inspection work, paying attention to the strain detection plate 20 affixed to the surfaces of the legs 14 and the pipe support 16, the maximum strain is detected by a crack generated in the coating layer 22.

具体的には、図4に示すように、ひずみ検出板20に引張り応力Fが加えられた場合、ひずみ検出板20に生じる応力は、引張り応力Fに垂直で孔部中心を通る二点鎖線24と交差する孔部23の縁で最大となり、その最大応力は引張り応力Fの3倍となる。このため、ひずみ検出板20では、二点鎖線24上に位置する孔部23の両側の領域25にクラック(亀裂)Kが発生し、塗膜層22に鮮明な亀裂模様が描かれる。これらクラックKの発生場所や、クラックKが進展する方向によって、溶液タンク10の脚部14や配管サポート16に生じたひずみの向きを検出することができる。また、ひずみ量(ひずみの大きさ)は、クラックKの本数や長さと関係がある。このため、例えば、実験等により、ひずみ検出板20に対して、所定の大きさのひずみ(応力)を生じさせ、その際のひずみ量とクラックKの本数や長さとの相関関係を予め得ておく。そして、実際に生じたクラックKの本数や長さと比較することで、最大ひずみ量を検出することができる。この際、プラント施設に設置された地震計の計測結果と照合して最大ひずみ量を検証することが好ましい。   Specifically, as shown in FIG. 4, when a tensile stress F is applied to the strain detection plate 20, the stress generated in the strain detection plate 20 is perpendicular to the tensile stress F and passes through the hole center 24. The maximum is at the edge of the hole 23 intersecting with, and the maximum stress is three times the tensile stress F. Therefore, in the strain detection plate 20, cracks (cracks) K are generated in the regions 25 on both sides of the hole 23 located on the two-dot chain line 24, and a clear crack pattern is drawn on the coating layer 22. The direction of strain generated in the leg portion 14 and the pipe support 16 of the solution tank 10 can be detected by the location where the crack K occurs and the direction in which the crack K propagates. The amount of strain (strain magnitude) is related to the number and length of cracks K. For this reason, for example, a strain (stress) of a predetermined magnitude is generated on the strain detection plate 20 by an experiment or the like, and a correlation between the strain amount and the number and length of the cracks K is obtained in advance. deep. Then, the maximum strain amount can be detected by comparing with the number and length of the cracks K actually generated. At this time, it is preferable to verify the maximum strain amount by collating with the measurement result of the seismometer installed in the plant facility.

第1実施形態では、孔部23は真円形状に形成されているため、ひずみ検出板20に対して、いずれの方向から引張り応力Fが加えられたとしても孔部23の縁に生じる最大応力の値は同一である。このため、いずれの方向に生じるひずみに対しても、同一の感度を有するひずみ検出板20を形成することができるため、脚部14や配管サポート16に生じるいずれの方向のひずみについても正確に検出することができる。   In the first embodiment, since the hole 23 is formed in a perfect circle shape, the maximum stress generated at the edge of the hole 23 regardless of the direction from which the tensile stress F is applied to the strain detection plate 20. The values of are the same. For this reason, since the strain detection plate 20 having the same sensitivity can be formed with respect to the strain generated in any direction, the strain in any direction generated in the leg portion 14 or the pipe support 16 is accurately detected. can do.

[第2実施形態]
上記した第1実施形態に係る孔部23は真円形状であったが、この孔部は、円形であれば真円でなくともよい。この第2実施形態では、ひずみ検出板30は、楕円形状(長孔形状)の孔部33を備える。第2実施形態に係るひずみ検出板30において、孔部33の形状の他は、上記ひずみ検出板20と同一であるので、説明を省略する。
[Second Embodiment]
Although the hole 23 according to the first embodiment described above has a perfect circle shape, the hole may not be a perfect circle as long as it is circular. In the second embodiment, the strain detection plate 30 includes an elliptical (long hole shape) hole 33. In the strain detection plate 30 according to the second embodiment, the shape of the hole 33 is the same as that of the strain detection plate 20 except for the shape of the hole 33, and thus description thereof is omitted.

ひずみ検出板30は、図5に示すように、孔部33が楕円形状に形成されている。楕円形状の孔部33を有するひずみ検出板30では、孔部33の短軸に沿った方向に引張り応力Fが加えられた場合、ひずみ検出板30に生じる応力は、引張り応力Fに垂直で長軸を通る二点鎖線34と交差する孔部33の縁で最大となる。この最大応力は、短軸と長軸の長さに関連し、例えば、短軸と長軸との長さの比が1:2であれば、引張り応力Fの5倍となる。   As shown in FIG. 5, the strain detection plate 30 has an elliptical hole 33. In the strain detection plate 30 having the elliptical hole 33, when a tensile stress F is applied in the direction along the short axis of the hole 33, the stress generated in the strain detection plate 30 is long and perpendicular to the tensile stress F. It becomes the maximum at the edge of the hole 33 intersecting the two-dot chain line 34 passing through the axis. This maximum stress is related to the length of the minor axis and the major axis. For example, if the ratio of the length of the minor axis to the major axis is 1: 2, the maximum stress is five times the tensile stress F.

このため、ひずみ検出板30では、二点鎖線34上に位置する孔部33の両側の領域35にクラック(亀裂)Kが発生し、塗膜層22に鮮明な亀裂模様が描かれる。この第2実施形態では、孔部33を楕円形状とすることで、ひずみ検出板30に生じる最大応力を、孔部33の周方向位置によって変更できるため、ひずみを検出する際の感度を調整することができる。具体的には、短軸と長軸との長さの比が1:2の孔部33とした場合には、最大応力が引張り応力Fの5倍となる。このため、孔部33の短軸に沿った方向に引張り応力Fを加えた場合に、ひずみを検出する際の感度を高めることができる。また、第2実施形態では、短軸と長軸との長さの比を変えることで、ひずみを検出する際の感度を変更できるため、例えば、短軸と長軸との長さの比を変えたひずみ検出板30を複数設けることで、最大ひずみ量を正確に検出することができる。   For this reason, in the strain detection plate 30, cracks (cracks) K are generated in the regions 35 on both sides of the hole 33 located on the two-dot chain line 34, and a clear crack pattern is drawn on the coating layer 22. In this 2nd Embodiment, since the maximum stress which arises in the distortion | strain detection board 30 can be changed with the circumferential direction position of the hole 33 by making the hole 33 elliptical, the sensitivity at the time of detecting a distortion is adjusted. be able to. Specifically, when the ratio of the length of the minor axis to the major axis is 1: 2, the maximum stress is five times the tensile stress F. For this reason, when the tensile stress F is applied in the direction along the minor axis of the hole 33, the sensitivity when detecting the strain can be increased. In the second embodiment, since the sensitivity when detecting strain can be changed by changing the ratio of the length between the short axis and the long axis, for example, the ratio of the length between the short axis and the long axis is changed. By providing a plurality of changed strain detection plates 30, the maximum strain amount can be accurately detected.

[第3実施形態]
上記した第1、第2実施形態では、孔部23,33は単一であったが、第3実施形態に係るひずみ検出板40は、複数(2つ)の孔部43,43を備える。第3実施形態に係るひずみ検出板40において、孔部43の数や位置の他は、上記ひずみ検出板20と同一であるので、説明を省略する。
[Third Embodiment]
In the first and second embodiments described above, the holes 23 and 33 are single, but the strain detection plate 40 according to the third embodiment includes a plurality (two) of holes 43 and 43. The strain detection plate 40 according to the third embodiment is the same as the strain detection plate 20 except for the number and positions of the holes 43, and thus the description thereof is omitted.

ひずみ検出板40は、図6に示すように、ひずみ検出板40の中心線44に沿って、2つの孔部43,43が並べて配置されている。この孔部43は、半径がρ(直径2ρ)の真円形状を有し、各孔部43,43の中心間距離(孔部間距離ともいう)が2Pに設定されている。ひずみ検出板40に対して、中心線44に沿って、引張り応力Fが加えられた場合、ひずみ検出板40に生じる応力は、孔部43,43の間の領域46で最大となる。この最大応力は、孔部43の直径2ρと、孔部間距離2Pに関連し、例えば、直径2ρと孔部間距離2Pとの比P/ρが1.337であれば、最大応力は、引張り応力Fの3.5倍程度となる。   As shown in FIG. 6, the strain detection plate 40 has two holes 43 and 43 arranged side by side along the center line 44 of the strain detection plate 40. The hole 43 has a perfect circular shape with a radius ρ (diameter 2ρ), and the distance between the centers of the holes 43 and 43 (also referred to as the distance between the holes) is set to 2P. When a tensile stress F is applied to the strain detection plate 40 along the center line 44, the stress generated in the strain detection plate 40 is maximized in the region 46 between the holes 43 and 43. This maximum stress is related to the diameter 2ρ of the hole 43 and the distance 2P between the holes. For example, if the ratio P / ρ between the diameter 2ρ and the distance 2P between the holes is 1.337, the maximum stress is It is about 3.5 times the tensile stress F.

このため、ひずみ検出板40では、孔部43,43間の領域46に、中心線44に垂直な方向にクラック(亀裂)Kが発生し、塗膜層22に鮮明な亀裂模様が描かれる。この第3実施形態では、孔部43の直径2ρに対する孔部間距離2Pを変更することにより、ひずみ検出板40に生じる最大応力を変更できるため、ひずみを検出する際の感度を調整することができる。具体的には、直径2ρと孔部間距離2Pとの比P/ρを1.061とした場合には、最大応力が引張り応力Fの6.7倍程度となる。このため、直径2ρに対する孔部間距離2Pを変えることで、ひずみを検出する際の感度を変更でき、例えば、直径2ρに対する孔部間距離2Pを変えたひずみ検出板40を複数設けることで、最大ひずみ量を正確に検出することができる。   For this reason, in the strain detection plate 40, a crack (crack) K is generated in the region 46 between the holes 43, 43 in the direction perpendicular to the center line 44, and a clear crack pattern is drawn on the coating layer 22. In the third embodiment, since the maximum stress generated in the strain detection plate 40 can be changed by changing the distance 2P between the holes with respect to the diameter 2ρ of the hole 43, the sensitivity when detecting the strain can be adjusted. it can. Specifically, when the ratio P / ρ between the diameter 2ρ and the inter-hole distance 2P is 1.061, the maximum stress is about 6.7 times the tensile stress F. For this reason, the sensitivity at the time of detecting a strain can be changed by changing the distance 2P between the holes with respect to the diameter 2ρ. For example, by providing a plurality of strain detection plates 40 in which the distance 2P between the holes with respect to the diameter 2ρ is changed, The maximum strain can be accurately detected.

[第4実施形態]
第4実施形態に係るひずみ検出板50では、複数(4つ)の孔部53を備える。第4実施形態に係るひずみ検出板50において、孔部53の数や位置の他は、上記ひずみ検出板20と同一であるので、説明を省略する。
[Fourth Embodiment]
The strain detection plate 50 according to the fourth embodiment includes a plurality (four) of holes 53. The strain detection plate 50 according to the fourth embodiment is the same as the strain detection plate 20 except for the number and positions of the holes 53, and thus the description thereof is omitted.

ひずみ検出板50は、図7に示すように、ひずみ検出板50の中心線54,55に沿って、それぞれ2つの孔部53,53が並べて配置されている。すなわち、中心線54に沿って並ぶ2つの孔部53,53は、中心線54に直交する中心線55を挟んで該中心線55から等距離に配置され、中心線55に沿って並ぶ2つの孔部53,53は、上記中心線54を挟んで該中心線54から等距離に配置される。孔部53は、いずれも半径がρ(直径2ρ)の真円形状を有し、一方の中心線54上に並ぶ孔部53,53と、他方の中心線55上に並ぶ孔部53,53の中心間距離(孔部間距離ともいう)はそれぞれ2Pに設定されている。   As shown in FIG. 7, the strain detection plate 50 has two holes 53 and 53 arranged side by side along the center lines 54 and 55 of the strain detection plate 50. That is, the two holes 53, 53 arranged along the center line 54 are arranged equidistant from the center line 55 across the center line 55 orthogonal to the center line 54, and are arranged along the center line 55. The holes 53 and 53 are arranged equidistant from the center line 54 with the center line 54 interposed therebetween. Each of the holes 53 has a perfect circular shape with a radius ρ (diameter 2ρ), and the holes 53 and 53 arranged on one center line 54 and the holes 53 and 53 arranged on the other center line 55. The center-to-center distances (also referred to as hole-to-hole distances) are each set to 2P.

ひずみ検出板50に対して、例えば、一方の中心線54に沿って引張り応力Fが加えられた場合、ひずみ検出板50に生じる応力は、中心間距離を2Pに設定された孔部53,53の間の領域56で最大となる。この最大応力は、孔部53の直径2ρと、孔部間距離2Pに関連し、例えば、直径2ρと孔部間距離2Pとの比P/ρが0.5であれば、最大応力は、引張り応力Fの6倍程度となる。   For example, when a tensile stress F is applied to the strain detection plate 50 along one center line 54, the stress generated in the strain detection plate 50 is a hole 53, 53 whose center distance is set to 2P. It becomes the maximum in the area | region 56 between. This maximum stress is related to the diameter 2ρ of the hole 53 and the distance 2P between the holes. For example, if the ratio P / ρ between the diameter 2ρ and the distance 2P between the holes is 0.5, the maximum stress is It becomes about 6 times the tensile stress F.

このため、ひずみ検出板50では、孔部53,53間の領域56に、該孔部53,53を結ぶ線に垂直な方向にクラック(亀裂)Kが発生し、塗膜層22に鮮明な亀裂模様が描かれる。この第4実施形態では、孔部53の直径2ρに対する孔部間距離2Pを変更することにより、ひずみ検出板50に生じる最大応力を変更できるため、ひずみを検出する際の感度を調整することができる。具体的には、直径2ρと孔部間距離2Pとの比P/ρを0.75とした場合には、最大応力が引張り応力Fの10倍程度となる。このため、直径2ρに対する孔部間距離2Pを変えることで、ひずみを検出する際の感度を変更でき、例えば、直径2ρに対する孔部間距離2Pを変えたひずみ検出板50を複数設けることで、最大ひずみ量を正確に検出することができる。   For this reason, in the strain detection plate 50, a crack (crack) K is generated in the region 56 between the holes 53, 53 in a direction perpendicular to the line connecting the holes 53, 53, and the coating layer 22 is clear. A crack pattern is drawn. In the fourth embodiment, since the maximum stress generated in the strain detection plate 50 can be changed by changing the inter-hole distance 2P with respect to the diameter 2ρ of the hole 53, it is possible to adjust the sensitivity when detecting the strain. it can. Specifically, when the ratio P / ρ between the diameter 2ρ and the inter-hole distance 2P is 0.75, the maximum stress is about 10 times the tensile stress F. For this reason, the sensitivity at the time of detecting strain can be changed by changing the distance 2P between the holes with respect to the diameter 2ρ. For example, by providing a plurality of strain detection plates 50 in which the distance 2P between the holes with respect to the diameter 2ρ is changed, The maximum strain can be accurately detected.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。上記実施形態では、ひずみ検出板が貼り付けられる検出対象物の一例として、溶液タンク10の脚部14や配管サポート16を説明したが、例えば、風力発電用の風車のナセルの内部に貼り付けても良い。具体的には、ナセル内部に収容される風車の回転軸等にひずみ検出板を貼り付け、この状態で所定期間運転した後に、ひずみ検出板を観察することで、運転時に風車の回転軸に生じる最大ひずみを検出することもできる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. In the above-described embodiment, the leg portion 14 and the pipe support 16 of the solution tank 10 have been described as an example of the detection target to which the strain detection plate is attached. For example, the strain detection plate is attached inside the nacelle of a windmill for wind power generation. Also good. Specifically, a strain detection plate is affixed to the rotating shaft of a windmill housed in the nacelle, and after operating for a predetermined period in this state, the strain detecting plate is observed to generate the rotational shaft of the windmill during operation. Maximum strain can also be detected.

10 溶液タンク
11 胴部
12 上鏡板
13 下鏡板
14 脚部(検出対象物)
15 導出管
16 配管サポート(検出対象物)
19 床
20、30、40、50 ひずみ検出板
21 板体
21A 表面
21B 裏面
22 塗膜層(塗膜部)
23、33、43、53 孔部
25、35,46、56 領域
K クラック(亀裂)
2P 孔部間距離
2ρ 直径
DESCRIPTION OF SYMBOLS 10 Solution tank 11 Trunk part 12 Upper end plate 13 Lower end plate 14 Leg part (detection target object)
15 Lead pipe 16 Piping support (detection target)
19 floor 20, 30, 40, 50 strain detection plate 21 plate body 21A surface 21B back surface 22 coating layer (coating part)
23, 33, 43, 53 Hole 25, 35, 46, 56 Region K Crack (crack)
2P Distance between holes 2ρ Diameter

Claims (7)

検出対象物の表面に取り付けられる金属製の板体と、
前記板体に形成された円形の孔部と、
前記孔部の周縁における前記板体の表面に応力塗料を塗布して形成された塗膜部と、を備えたこと特徴とするひずみ検出板。
A metal plate attached to the surface of the detection object;
A circular hole formed in the plate,
A strain detection plate comprising: a coating film portion formed by applying a stress paint to a surface of the plate body at a peripheral edge of the hole portion.
前記塗膜部に生じた亀裂により、前記検出対象物に生じたひずみの向きまたは大きさを検出すること特徴とする請求項1に記載のひずみ検出板。   The strain detection plate according to claim 1, wherein the direction or magnitude of the strain generated in the detection object is detected by a crack generated in the coating film portion. 前記孔部は、真円形状の孔部であることを特徴とする請求項1または2に記載のひずみ検出板。   The strain detection plate according to claim 1, wherein the hole is a perfect circular hole. 前記孔部は、長孔形状の孔部であることを特徴とする請求項1または2に記載のひずみ検出板。   The strain detection plate according to claim 1, wherein the hole is a long hole. 前記板体は、前記検出対象物と同一もしくは、前記検出対象物よりもヤング率の小さい材料で形成されていることを特徴とする請求項1から4のいずれか一項に記載のひずみ検出板。   5. The strain detection plate according to claim 1, wherein the plate body is made of a material that is the same as the detection object or has a Young's modulus smaller than that of the detection object. . 前記板体に所定の間隔を設けて複数の前記孔部を形成したことを特徴とする請求項1から5のいずれか一項に記載のひずみ検出板。   The strain detection plate according to any one of claims 1 to 5, wherein a plurality of the hole portions are formed at predetermined intervals in the plate body. 金属製の板体に円形の孔部を形成し、前記孔部の周縁における前記板体の表面に応力塗料を塗布して塗膜部を設けたひずみ検出板を検出対象物の表面に取り付け、前記ひずみ検出板の前記塗膜部に生じた亀裂により、前記検出対象物に生じたひずみの向きまたは大きさを検出することを特徴とするひずみ検出方法。   A circular hole is formed in a metal plate, and a strain detection plate provided with a coating film portion by applying a stress coating to the surface of the plate at the periphery of the hole is attached to the surface of the detection object, A strain detection method, comprising: detecting a direction or magnitude of a strain generated in the detection target object by a crack generated in the coating film portion of the strain detection plate.
JP2014229079A 2014-11-11 2014-11-11 Strain detection plate and strain detection method Active JP6294809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014229079A JP6294809B2 (en) 2014-11-11 2014-11-11 Strain detection plate and strain detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014229079A JP6294809B2 (en) 2014-11-11 2014-11-11 Strain detection plate and strain detection method

Publications (2)

Publication Number Publication Date
JP2016090544A true JP2016090544A (en) 2016-05-23
JP6294809B2 JP6294809B2 (en) 2018-03-14

Family

ID=56016191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014229079A Active JP6294809B2 (en) 2014-11-11 2014-11-11 Strain detection plate and strain detection method

Country Status (1)

Country Link
JP (1) JP6294809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148672A (en) * 2019-03-14 2020-09-17 株式会社東芝 Soundness evaluation system and soundness evaluation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930752A (en) * 1982-08-12 1984-02-18 菅野 昭 Strain measuring composition
JPH06201723A (en) * 1992-10-21 1994-07-22 Matsushita Electric Ind Co Ltd Acceleration sensor and air bag system by using this
JP2007033050A (en) * 2005-07-22 2007-02-08 Shimizu Corp Strain sensor
JP2010256212A (en) * 2009-04-27 2010-11-11 Toshiba Corp Meter for detection of surface strain and method of measuring strain
JP2011169683A (en) * 2010-02-17 2011-09-01 Institute Of National Colleges Of Technology Japan Material strength characterization method and material testing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930752A (en) * 1982-08-12 1984-02-18 菅野 昭 Strain measuring composition
JPH06201723A (en) * 1992-10-21 1994-07-22 Matsushita Electric Ind Co Ltd Acceleration sensor and air bag system by using this
JP2007033050A (en) * 2005-07-22 2007-02-08 Shimizu Corp Strain sensor
JP2010256212A (en) * 2009-04-27 2010-11-11 Toshiba Corp Meter for detection of surface strain and method of measuring strain
JP2011169683A (en) * 2010-02-17 2011-09-01 Institute Of National Colleges Of Technology Japan Material strength characterization method and material testing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148672A (en) * 2019-03-14 2020-09-17 株式会社東芝 Soundness evaluation system and soundness evaluation method
JP7062607B2 (en) 2019-03-14 2022-05-06 株式会社東芝 Soundness evaluation system and soundness evaluation method

Also Published As

Publication number Publication date
JP6294809B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP2009133722A5 (en)
JP2010527015A5 (en)
CN103913509A (en) Defect detection method of paint aluminum alloy frame plate
JP6294809B2 (en) Strain detection plate and strain detection method
JP2018195725A5 (en)
CN103411712A (en) Contact stress sensor
JP2013117459A (en) Method for detecting damage of pipe
JP2011017702A (en) Weld analysis device and method
KR101328515B1 (en) Measuring method for steel concrete wall plate and measuring apparatus used in the same
CN203323652U (en) Rapid inspection tool for important size limit deviation of hole on flange
CN103901063A (en) Method for testing C-fiber reinforced resin based composite material by virtue of X-ray diffraction
CN104374834A (en) Sensitivity adjusting method of ultrasonic testing flaw detector and ultrasonic testing flaw detection method
CN206648913U (en) A kind of Industrial Boiler corrosion scaling checking apparatus
CN202837254U (en) Reference block for ultrasonic flaw of large protection ring for rotor of generator in thermal power plant
US11169116B2 (en) Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device
CN208139981U (en) A kind of detection device
CN203908434U (en) Mold for detecting uniformly distributed holes on circumference of annular component
CN207570443U (en) A kind of position detecting device of wind-driven generator end cap drilling
CN216308853U (en) Plug gauge for rubber seam allowance diameter
Reddy et al. Damage detection in structural elements using frequency contour method
CN214223979U (en) Calibration test block for pulse eddy current detection
CN209992439U (en) Internal defect real object reference block of main cable and sling anchor cup
CN206990374U (en) A kind of sample for being used to detect mixing of rubber hardness
CN220288520U (en) Test device for monitoring crack cracking of concrete bridge structure
CN107907650B (en) Multilayer step structure anchor clamps based on electrochemistry polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6294809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150