JP2016090524A - Calibration method and calibration system of electromagnetic flowmeter - Google Patents

Calibration method and calibration system of electromagnetic flowmeter Download PDF

Info

Publication number
JP2016090524A
JP2016090524A JP2014228665A JP2014228665A JP2016090524A JP 2016090524 A JP2016090524 A JP 2016090524A JP 2014228665 A JP2014228665 A JP 2014228665A JP 2014228665 A JP2014228665 A JP 2014228665A JP 2016090524 A JP2016090524 A JP 2016090524A
Authority
JP
Japan
Prior art keywords
electromotive force
magnetic flux
measurement
correction coefficient
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014228665A
Other languages
Japanese (ja)
Inventor
喜彦 岡山
Yoshihiko Okayama
喜彦 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2014228665A priority Critical patent/JP2016090524A/en
Publication of JP2016090524A publication Critical patent/JP2016090524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize calibration of a detector of an electromagnetic flowmeter without making water flow into the electromagnetic flowmeter at a low cost.SOLUTION: A calibration method of an electromagnetic flowmeter includes: a measurement step (S1) for measuring a cross-section area of a measurement tube and a distance between electrodes; a measurement step (S2) for measuring density of a magnetic flux at a center of the measurement tube and density of a magnetic flux in the vicinity of the electrodes; a parabolic distribution function calculation step (S3, S4) for multiplying the density of a magnetic flux by a weight function indicating contribution to electromotive force generation, of a flow rate of fluid flowing in the measurement tube, and determining a parabolic distribution function showing a relation between a position where the density of a magnetic flux is measured and the calculated multiplication value; a parameter calculation step (S5) for integrating a formula of the parabolic distribution function from a position of one electrode to a position of the other electrode so as to calculate an electromotive force parameter which is proportional to electromotive force generated by the fluid flowing on a straight line connecting the electrodes; and a correction coefficient calculation step (S6) for calculating a correction coefficient on the basis of the electromotive force parameter and the cross-section area of the measurement tube.SELECTED DRAWING: Figure 3

Description

本発明は、電磁流量計の検出器を校正する校正方法および校正システムに関するものである。   The present invention relates to a calibration method and a calibration system for calibrating a detector of an electromagnetic flow meter.

電磁流量計の性能のバラつきの原因として、機械的なバラつきがあり、具体的には(A)測定管の口径のバラつき、(B)電極の位置や形状のバラつき、(C)磁場分布のバラつきなどがある。   The cause of the variation in the performance of the electromagnetic flowmeter is mechanical variation, specifically (A) variation in the diameter of the measuring tube, (B) variation in the position and shape of the electrode, and (C) variation in the magnetic field distribution. and so on.

電磁流量計の電子回路のバラつきについては電磁流量計の変換器に正確な信号電圧を与えることで校正できるが、電磁流量計の検出器の機械的なバラつきについては流量に与える影響が分からないため、電磁流量計に実際に水を流して調整する実流量校正が行われている(特許文献1、特許文献2参照)。   The variation of the electronic circuit of the electromagnetic flow meter can be calibrated by applying an accurate signal voltage to the transducer of the electromagnetic flow meter, but the effect of the mechanical variation of the electromagnetic flow meter detector on the flow rate is unknown. Actual flow rate calibration is actually performed to adjust the flow rate by actually flowing water through the electromagnetic flow meter (see Patent Document 1 and Patent Document 2).

実公平4−50500号公報No. 4-50500 実公平5−36174号公報Japanese Utility Model Publication No. 5-36174

しかしながら、従来の実流量校正では、大掛かりな校正設備とコストがかかってしまうという問題点があった。
また、特許文献1、特許文献2には、電磁流量計に水を流さずに校正するドライキャリブレーションの技術が開示されている。しかしながら、特許文献1に開示された技術は、ドライキャリブレーション用電圧を信号処理回路に与えることで信号処理回路のゲインを調整するものであり、電磁流量計の電子回路のバラつきを校正することはできても、機械的なバラつきを校正することはできない。
However, the conventional actual flow rate calibration has a problem in that a large-scale calibration facility and cost are required.
Patent Documents 1 and 2 disclose dry calibration techniques that calibrate an electromagnetic flowmeter without flowing water. However, the technique disclosed in Patent Document 1 adjusts the gain of the signal processing circuit by applying a dry calibration voltage to the signal processing circuit, and calibrating the variation in the electronic circuit of the electromagnetic flow meter is not possible. Even if it is possible, the mechanical variation cannot be calibrated.

一方、特許文献2に開示された技術では、電磁流量計の測定管を管軸方向に振動させることにより校正を行うようにしている。電磁流量計の測定管を流れる流体の流速をV、測定管の内径をD、測定管に垂直に印加される磁界の磁束密度をBとすると、電磁流量計の検出器から得られる起電力EAを、信号処理回路で増幅した後の起電力EA’は次式のようになる。
A’∝kBDV ・・・(1)
On the other hand, in the technique disclosed in Patent Document 2, calibration is performed by vibrating a measurement tube of an electromagnetic flowmeter in the tube axis direction. When the flow velocity of the fluid flowing through the measurement pipe of the electromagnetic flowmeter is V, the inner diameter of the measurement pipe is D, and the magnetic flux density of the magnetic field applied perpendicularly to the measurement pipe is B, the electromotive force E obtained from the detector of the electromagnetic flowmeter the a, electromotive force after amplified by a signal processing circuit E a 'is expressed by the following equation.
E A '∝kBDV (1)

ここで、kは磁場分布や測定管に関係する係数である。一方、測定管を管軸方向に振動させたときの加振周波数に対応する角速度をωB、振動の片振幅をXoとすると、測定管を振動させたことに伴う起電力EBを、信号処理回路で増幅した後の起電力EB’は次式のようになる。
B’∝kBDωBXo ・・・(2)
Here, k is a coefficient related to the magnetic field distribution and the measurement tube. On the other hand, if the angular velocity corresponding to the excitation frequency when the measuring tube is vibrated in the tube axis direction is ω B , and the vibration amplitude is Xo, the electromotive force E B associated with the vibration of the measuring tube is expressed as a signal. The electromotive force E B ′ after amplification by the processing circuit is as follows.
E B '∝kBDω B Xo (2)

特許文献2に開示された技術では、EA’/EB’の比率Rを演算して、比率Rを既知の定数ωBXo倍することで、流速Vを得るようにしている。
V=RωBXo ・・・(3)
In the technique disclosed in Patent Document 2, a flow rate V is obtained by calculating a ratio R of E A '/ E B ' and multiplying the ratio R by a known constant ω B Xo.
V = Rω B Xo (3)

特許文献2に開示された技術では、測定管が管軸方向に振動する範囲内で磁束密度分布が一様であることが求められる。磁束密度分布に偏りがあると、式(3)の演算に誤差が生じる結果となる。測定管が管軸方向に振動する範囲内で磁束密度分布を一様にしようとすると、通常の電磁流量計よりも広範な範囲にわたって磁束密度分布を一様にする必要があり、また測定管を振動させる加振装置が必要となるので、電磁流量計の製品コストが上昇する。   The technique disclosed in Patent Document 2 requires that the magnetic flux density distribution be uniform within a range in which the measurement tube vibrates in the tube axis direction. If there is a bias in the magnetic flux density distribution, an error occurs in the calculation of Equation (3). In order to make the magnetic flux density distribution uniform within the range in which the measuring tube vibrates in the direction of the tube axis, it is necessary to make the magnetic flux density distribution uniform over a wider range than a normal electromagnetic flowmeter. Since a vibrating device that vibrates is necessary, the product cost of the electromagnetic flowmeter increases.

本発明は、上記課題を解決するためになされたもので、電磁流量計の検出器の校正を電磁流量計に水を流さずに低コストで実現することができる電磁流量計の校正方法および校正システムを提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a calibration method and calibration of an electromagnetic flow meter capable of realizing calibration of a detector of the electromagnetic flow meter at low cost without flowing water through the electromagnetic flow meter. The purpose is to provide a system.

本発明の電磁流量計の校正方法は、校正対象の電磁流量計の測定管の断面積とこの測定管に設けられた2つの電極間の距離とを計測する第1の計測ステップと、前記電磁流量計の励磁コイルから前記測定管に磁界が印加されている状態で、前記2つの電極間を結ぶ直線上において、前記測定管の中心の磁束密度と前記2つの電極近傍の磁束密度とを計測する第2の計測ステップと、この第2の計測ステップで計測した磁束密度の値と前記測定管を流れる流体の流速の、起電力発生への寄与度を示す所定の重み関数とを乗算した値を、前記磁束密度を計測した位置毎に算出し、前記磁束密度を計測した位置と前記算出した乗算値との関係を示す放物分布関数の式を決定する放物分布関数算出ステップと、この放物分布関数算出ステップで決定した放物分布関数の式を一方の電極の位置から他方の電極の位置まで積分することで、前記2つの電極間を結ぶ直線上を流れる流体が作り出す起電力に比例する起電力パラメータを算出するパラメータ算出ステップと、このパラメータ算出ステップで算出した起電力パラメータと前記第1の計測ステップで計測した断面積とに基づいて、前記測定管を流れる流体の流量または流速を補正するための補正係数を算出する補正係数算出ステップとを含むことを特徴とするものである。   The electromagnetic flow meter calibration method of the present invention includes a first measurement step of measuring a cross-sectional area of a measurement tube of an electromagnetic flow meter to be calibrated and a distance between two electrodes provided on the measurement tube; Measures the magnetic flux density at the center of the measuring tube and the magnetic flux density in the vicinity of the two electrodes on a straight line connecting the two electrodes while a magnetic field is applied to the measuring tube from the excitation coil of the flow meter. A value obtained by multiplying the second measurement step, the value of the magnetic flux density measured in the second measurement step, and a predetermined weight function indicating the contribution to the electromotive force generation of the flow velocity of the fluid flowing through the measurement tube For each position where the magnetic flux density is measured, and a parabolic distribution function calculating step for determining an expression of a parabolic distribution function indicating a relationship between the position where the magnetic flux density is measured and the calculated multiplication value, Determined in the parabolic distribution function calculation step A parameter for calculating an electromotive force parameter proportional to an electromotive force generated by a fluid flowing on a straight line connecting the two electrodes by integrating the expression of the parabolic distribution function from the position of one electrode to the position of the other electrode. Based on the calculation step, the electromotive force parameter calculated in the parameter calculation step, and the cross-sectional area measured in the first measurement step, a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the measurement pipe is calculated. And a correction coefficient calculating step.

また、本発明の電磁流量計の校正方法の1構成例において、前記補正係数算出ステップは、基準となる電磁流量計の補正係数とこの電磁流量計の測定管の断面積と起電力パラメータとを記憶手段から取得するステップと、この取得した値と、前記パラメータ算出ステップで算出した起電力パラメータと前記第1の計測ステップで計測した断面積とに基づいて、校正対象の電磁流量計の測定管を流れる流体の流量または流速を補正するための補正係数を算出するステップとを含むことを特徴とするものである。   Further, in one configuration example of the electromagnetic flow meter calibration method of the present invention, the correction coefficient calculating step includes a correction coefficient of a reference electromagnetic flow meter, a cross-sectional area of a measurement tube of the electromagnetic flow meter, and an electromotive force parameter. Based on the step acquired from the storage means, the acquired value, the electromotive force parameter calculated in the parameter calculation step, and the cross-sectional area measured in the first measurement step, the measuring tube of the electromagnetic flow meter to be calibrated And a step of calculating a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the fluid.

また、本発明の電磁流量計の校正システムは、校正対象の電磁流量計の測定管の断面積とこの測定管に設けられた2つの電極間の距離とを計測する光学センサと、前記電磁流量計の励磁コイルから前記測定管に磁界が印加されている状態で、前記2つの電極間を結ぶ直線上において、前記測定管の中心の磁束密度と前記2つの電極近傍の磁束密度とを計測するガウスメータと、このガウスメータで計測した磁束密度の値と前記測定管を流れる流体の流速の、起電力発生への寄与度を示す所定の重み関数とを乗算した値を、前記磁束密度を計測した位置毎に算出し、前記磁束密度を計測した位置と前記算出した乗算値との関係を示す放物分布関数の式を決定する放物分布関数算出手段と、この放物分布関数算出手段が決定した放物分布関数の式を一方の電極の位置から他方の電極の位置まで積分することで、前記2つの電極間を結ぶ直線上を流れる流体が作り出す起電力に比例する起電力パラメータを算出するパラメータ算出手段と、このパラメータ算出手段が算出した起電力パラメータと前記光学センサが計測した断面積とに基づいて、前記測定管を流れる流体の流量または流速を補正するための補正係数を算出する補正係数算出手段とを備えることを特徴とするものである。   The calibration system for an electromagnetic flowmeter of the present invention includes an optical sensor for measuring a cross-sectional area of a measurement tube of an electromagnetic flowmeter to be calibrated and a distance between two electrodes provided on the measurement tube, and the electromagnetic flow rate. The magnetic flux density at the center of the measuring tube and the magnetic flux density in the vicinity of the two electrodes are measured on a straight line connecting the two electrodes while a magnetic field is applied to the measuring tube from the exciting coil of the meter. A position where the magnetic flux density is measured by multiplying a gauss meter by a value obtained by multiplying the value of the magnetic flux density measured by the gauss meter and a predetermined weight function indicating the contribution to the electromotive force generation of the flow velocity of the fluid flowing through the measuring tube. A parabolic distribution function calculating means for determining a parabolic distribution function formula indicating the relationship between the position where the magnetic flux density is measured and the calculated multiplication value, and the parabolic distribution function calculating means Parabolic distribution function formula Parameter calculating means for calculating an electromotive force parameter proportional to an electromotive force generated by a fluid flowing on a straight line connecting the two electrodes by integrating from the position of one electrode to the position of the other electrode; Correction coefficient calculation means for calculating a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the measurement tube based on the electromotive force parameter calculated by the means and the cross-sectional area measured by the optical sensor. It is a feature.

本発明によれば、電磁流量計に水を流さずに補正係数を求めることができるので、検出器の校正に要するコストと工数を低減することができる。本発明では、校正対象の電磁流量計を校正装置上にセットすれば、装置上で電磁流量計を搬送して計測を行うことで、校正作業を自動化することができる。また、本発明では、電磁流量計の流量誤差が測定管に起因するのか、電極の位置に起因するのか、磁束密度分布に起因するのかを特定できるので、電磁流量計のユーザからクレームが発生したときの調査や対策が容易になる。また、本発明では、測定管を振動させる方法のように通常の電磁流量計よりも広範な範囲にわたって磁束密度分布を一様にする必要がなく、また測定管を振動させる加振装置も必要がないので、特殊な仕様の電磁流量計を使用する必要がなく、通常の電磁流量計に対して校正を実施することができる。   According to the present invention, since the correction coefficient can be obtained without flowing water through the electromagnetic flow meter, the cost and man-hours required for the calibration of the detector can be reduced. In the present invention, when the electromagnetic flow meter to be calibrated is set on the calibration device, the calibration work can be automated by carrying the measurement and carrying the electromagnetic flow meter on the device. Further, in the present invention, it is possible to specify whether the flow error of the electromagnetic flowmeter is caused by the measuring tube, the electrode position, or the magnetic flux density distribution, and therefore a complaint has been generated from the electromagnetic flowmeter user. When investigation and countermeasures become easier. Further, in the present invention, unlike the method of vibrating the measurement tube, it is not necessary to make the magnetic flux density distribution uniform over a wider range than a normal electromagnetic flow meter, and there is also a need for a vibration device that vibrates the measurement tube. Therefore, it is not necessary to use an electromagnetic flow meter with a special specification, and calibration can be performed on a normal electromagnetic flow meter.

本発明の実施の形態に係る電磁流量計の校正システムの構成を示すブロック図である。It is a block diagram which shows the structure of the calibration system of the electromagnetic flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る電磁流量計の校正システムの補正係数算出部の構成の1例を示すブロック図である。It is a block diagram which shows an example of a structure of the correction coefficient calculation part of the calibration system of the electromagnetic flowmeter which concerns on embodiment of this invention. 本発明の実施の形態に係る電磁流量計の校正システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the calibration system of the electromagnetic flowmeter which concerns on embodiment of this invention. ガウスメータによる磁束密度の測定方法を説明する断面図である。It is sectional drawing explaining the measuring method of the magnetic flux density by a gauss meter. 測定管を流れる流体の流速の、起電力発生への寄与度を示す図である。It is a figure which shows the contribution to the electromotive force generation | occurrence | production of the flow velocity of the fluid which flows through a measurement pipe | tube. 磁束密度の分布と重み関数とを乗算した値の変化の1例を示す図である。It is a figure which shows one example of the change of the value which multiplied the distribution of magnetic flux density, and the weight function.

以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の実施の形態に係る電磁流量計の校正システムの構成を示すブロック図である。本実施の形態の校正システムは、校正対象の電磁流量計の測定管の断面積とこの測定管に設けられた2つの電極間の距離とを計測する光学センサ2と、2つの電極間を結ぶ直線上において、測定管の中心の磁束密度と2つの電極近傍の磁束密度とを計測するガウスメータ3と、測定管を流れる流体の流量または流速を補正するための補正係数を算出する補正係数算出部4とを備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an electromagnetic flowmeter calibration system according to an embodiment of the present invention. The calibration system according to the present embodiment connects an optical sensor 2 that measures a cross-sectional area of a measurement tube of an electromagnetic flow meter to be calibrated and a distance between two electrodes provided on the measurement tube, and the two electrodes. A Gauss meter 3 that measures the magnetic flux density at the center of the measurement tube and the magnetic flux density near the two electrodes on a straight line, and a correction coefficient calculation unit that calculates a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the measurement tube. 4 is provided.

電磁流量計の検出器1は、磁界を発生する励磁コイル10a,10bと、励磁コイル10a,10bから発生する磁界中に配置される測定管11と、測定管11に設けられる1対の電極12a,12bとから構成される。
光学センサ2は、センサヘッド20a,20bと、センサコントローラ21とから構成される。
The detector 1 of the electromagnetic flow meter includes an excitation coil 10a, 10b that generates a magnetic field, a measurement tube 11 that is disposed in the magnetic field generated from the excitation coil 10a, 10b, and a pair of electrodes 12a that are provided on the measurement tube 11. , 12b.
The optical sensor 2 includes sensor heads 20 a and 20 b and a sensor controller 21.

図2は補正係数算出部4の構成の1例を示すブロック図である。補正係数算出部4は、放物分布関数算出手段40と、パラメータ算出手段41と、補正係数算出手段42と、記憶手段43と、補正係数設定手段44とから構成される。   FIG. 2 is a block diagram showing an example of the configuration of the correction coefficient calculation unit 4. The correction coefficient calculation unit 4 includes a parabolic distribution function calculation means 40, a parameter calculation means 41, a correction coefficient calculation means 42, a storage means 43, and a correction coefficient setting means 44.

以下、本実施の形態の校正システムの動作を図3のフローチャートを用いて説明する。電磁流量計の校正時に、光学センサ2のセンサコントローラ21は、校正対象の電磁流量計の測定管11の一方の開口に向けてセンサヘッド20aからレーザ平行光を照射させ、測定管11を通過して他方の開口から出射したレーザ平行光をセンサヘッド20bで受光させることにより、測定管11の内壁側のエッジの位置を検出し、測定管11の断面積Sと、測定管11の内壁に露出した電極12a,12b間の距離dとを演算する(図3ステップS1)。断面積Sについては、測定管11の内壁側のエッジの位置に基づいて測定管11の内径Dを求め、内径Dから断面積Sを演算してもよいし、測定管11を通過した光の面積を積算することにより断面積Sを演算してもよい。なお、電極12a,12bの位置が既知なので、測定管11の内壁の既知の位置についてエッジの位置を検出すれば、電極12a,12b間の距離dを求めることができる。以上のような光学センサとしては、例えばアズビル株式会社製のエッジセンサがある。   Hereinafter, the operation of the calibration system of the present embodiment will be described with reference to the flowchart of FIG. During calibration of the electromagnetic flow meter, the sensor controller 21 of the optical sensor 2 irradiates laser parallel light from the sensor head 20a toward one opening of the measurement tube 11 of the electromagnetic flow meter to be calibrated, and passes through the measurement tube 11. The laser parallel light emitted from the other opening is received by the sensor head 20b to detect the position of the edge on the inner wall side of the measuring tube 11 and exposed to the cross-sectional area S of the measuring tube 11 and the inner wall of the measuring tube 11. The distance d between the electrodes 12a and 12b is calculated (step S1 in FIG. 3). Regarding the cross-sectional area S, the inner diameter D of the measuring tube 11 may be obtained based on the position of the edge on the inner wall side of the measuring tube 11, and the cross-sectional area S may be calculated from the inner diameter D, or the light passing through the measuring tube 11 may be calculated. The cross-sectional area S may be calculated by integrating the areas. Since the positions of the electrodes 12a and 12b are known, the distance d between the electrodes 12a and 12b can be obtained by detecting the edge position with respect to the known position of the inner wall of the measuring tube 11. As an optical sensor as described above, for example, there is an edge sensor manufactured by Azbil Corporation.

次に、校正対象の電磁流量計の励磁コイル10a,10bには、検出器1と対になる変換器(不図示)から励磁電流が供給される。これにより、測定管11に対して垂直に磁界が印加される。
光学センサ2による計測の終了後、図4に示すように電極12a,12b間を結ぶ直線L上の位置のうち、測定管11の中心位置x2と電極12b近傍の位置x1と電極12a近傍の位置x3にはガウスメータ3のプローブが配置される。ガウスメータ3は、プローブによって磁場を検知し、測定管11の中心位置x2の磁束密度B(x2)と、電極12b近傍の位置x1の磁束密度B(x1)と、電極12a近傍の位置x3の磁束密度B(x3)とを計測する(図3ステップS2)。なお、測定管11をステージ上に載置し、ステージ上に取り付けられたプローブを測定管11の内部に入れるようにして磁束密度B(x1),B(x2),B(x3)を計測するので、ステージと測定管11との位置関係、およびステージとプローブとの位置関係から、直線L上の座標(x1,x2,x3)を正確に決定することができる。
Next, an excitation current is supplied from a converter (not shown) paired with the detector 1 to the excitation coils 10a and 10b of the electromagnetic flow meter to be calibrated. Thereby, a magnetic field is applied perpendicularly to the measuring tube 11.
After completion of the measurement by the optical sensor 2, the electrode 12a as shown in FIG. 4, of a position on the straight line L connecting the 12b, the position x 1 and the electrode 12a near the central position x 2 and the electrode 12b near the measuring tube the position x 3 of which is arranged the probe of the gauss meter 3. The gauss meter 3 detects the magnetic field with the probe, and the magnetic flux density B (x 2 ) at the center position x 2 of the measuring tube 11, the magnetic flux density B (x 1 ) at the position x 1 near the electrode 12b, and the vicinity of the electrode 12a. The magnetic flux density B (x 3 ) at the position x 3 is measured (step S2 in FIG. 3). The measurement tube 11 is placed on the stage, and the magnetic flux density B (x 1 ), B (x 2 ), B (x 3 ) is set so that the probe attached on the stage is placed inside the measurement tube 11. Therefore, the coordinates (x 1 , x 2 , x 3 ) on the straight line L can be accurately determined from the positional relationship between the stage and the measuring tube 11 and the positional relationship between the stage and the probe.

電磁流量計の電極12a,12b間に生じる起電力Eは、次式のように測定管11の内径Dと磁束密度Bと測定管11を流れる流体の流速Vとから決まるので、測定管11の断面積Sと電極12a,12b間の距離dと磁束密度Bとを測ることができれば、流量(流速)の補正係数DFを決定することが可能である(式(4)のkは係数)。
E=kBDV ・・・(4)
なお、流量Qは次式により求まる。
Q=(πD2/4)×V ・・・(5)
The electromotive force E generated between the electrodes 12a and 12b of the electromagnetic flowmeter is determined from the inner diameter D, the magnetic flux density B, and the flow velocity V of the fluid flowing through the measurement tube 11, as shown in the following equation. If the cross-sectional area S and the distance d between the electrodes 12a and 12b and the magnetic flux density B can be measured, the correction coefficient DF of the flow rate (flow velocity) can be determined (k in equation (4) is a coefficient).
E = kBDV (4)
The flow rate Q is obtained by the following equation.
Q = (πD 2/4) × V ··· (5)

測定管11の断面積Sと電極12a,12b間の距離dとは、上記のように光学センサ2によって正確に測ることができるが、磁束密度Bについては一様でないため、測定管11内の磁束密度Bの分布を測定する必要がある。しかし、流体の流速は場所によって起電力発生への寄与度(重み)が違っており、流体による起電力Eは、電極12a,12b間を結ぶ直線L上を流れる流体の速度でほぼ決まる。そこで、起電力発生に大きく寄与する測定管11の中心位置と電極12b近傍の位置と電極12a近傍の位置の3点の磁束密度B(x1),B(x2),B(x3)を計測し、これら磁束密度B(x1),B(x2),B(x3)と重み関数とから起電力Eに比例するパラメータを求めて、基準となる検出器との比較で流量(流速)の補正係数DFを求める。 The cross-sectional area S of the measuring tube 11 and the distance d between the electrodes 12a and 12b can be accurately measured by the optical sensor 2 as described above, but the magnetic flux density B is not uniform, It is necessary to measure the distribution of the magnetic flux density B. However, the flow rate of the fluid has a different contribution (weight) to the generation of electromotive force depending on the location, and the electromotive force E due to the fluid is substantially determined by the speed of the fluid flowing on the straight line L connecting the electrodes 12a and 12b. Therefore, magnetic flux densities B (x 1 ), B (x 2 ), B (x 3 ) at three points, that is, the central position of the measuring tube 11 that greatly contributes to the generation of electromotive force, the position in the vicinity of the electrode 12b, and the position in the vicinity of the electrode 12a. Is measured, a parameter proportional to the electromotive force E is obtained from the magnetic flux densities B (x 1 ), B (x 2 ), B (x 3 ) and the weight function, and the flow rate is compared with a reference detector. A correction coefficient DF of (flow velocity) is obtained.

図5(A)、図5(B)は測定管11を流れる流体の流速の、起電力発生への寄与度(重み)を示す図であり、図5(A)は測定管11の断面(xy平面)で見たときの重みを示し、図5(B)は測定管11の管軸方向(z方向)で見たときの重みを示している。
重み関数Uは、式で表すと直交座標(x,y)では式(6)のようになる。
U=(1+(x2−y2))/(1+2(x2−y2)+(x2+y22) ・・(6)
5A and 5B are diagrams showing the contribution (weight) of the flow velocity of the fluid flowing through the measurement tube 11 to the generation of electromotive force, and FIG. 5A is a cross-section of the measurement tube 11 ( FIG. 5B shows the weight when viewed in the tube axis direction (z direction) of the measurement tube 11.
The weighting function U is expressed by an expression (6) in the orthogonal coordinates (x, y).
U = (1+ (x 2 −y 2 )) / (1 + 2 (x 2 −y 2 ) + (x 2 + y 2 ) 2 ) (6)

また、重み関数Uは、測定管11の断面上の点を原点(電極12aまたは12bの位置)からの距離rと始線(x軸)からの偏角θとで表す極座標(r,θ)では式(7)のようになる。
U=(1+r2cos(2θ))/(1+2r2cos(2θ)+r4) ・・(7)
The weighting function U is a polar coordinate (r, θ) that represents a point on the cross section of the measuring tube 11 by a distance r from the origin (position of the electrode 12a or 12b) and a deviation angle θ from the starting line (x axis). Then, it becomes like Formula (7).
U = (1 + r 2 cos (2θ)) / (1 + 2r 2 cos (2θ) + r 4 ) (7)

なお、式(6)、式(7)は、測定管11の断面において、測定管11の中心から電極12a側の半円の領域については電極12aの位置を原点とし、測定管11の中心から電極12b側の半円の領域については電極12bの位置を原点としている。   Note that, in the cross section of the measurement tube 11, the expressions (6) and (7) are obtained from the center of the measurement tube 11 with the position of the electrode 12 a as the origin for the semicircular region on the electrode 12 a side from the center of the measurement tube 11. For the semicircular region on the electrode 12b side, the position of the electrode 12b is the origin.

例えば式(7)から明らかなように、重み関数Uの式の分母にr4が含まれているので、電極12a,12bの近傍の流速は測定管11の中心付近の流速に比べて起電力発生への寄与が非常に大きくなる。以上のような重み関数については、文献「遠藤昭,“電磁流量計の基礎理論:G.Schmartz著,Induktive Stromungsmessung Abschn.1,2の邦訳”,動力炉・核燃料開発事業団,1985年」に開示されている。 For example, as apparent from equation (7), since r 4 is included in the denominator of the equation of the weight function U, the electromotive force in the vicinity of the electrodes 12a and 12b is higher than that in the vicinity of the center of the measuring tube 11. The contribution to generation is very large. The above weight function is described in the literature “Akira Endo,“ Basic Theory of Electromagnetic Flowmeters: Japanese Translation of Induktive Stromungsmessung Abschn.1, 2 ”, Power Reactor and Nuclear Fuel Development Corporation, 1985”. It is disclosed.

補正係数算出部4の放物分布関数算出手段40は、電極12a,12b間を結ぶ直線L上の3点(x1,x2,x3)でガウスメータ3が計測した磁束密度B(x1),B(x2),B(x3)の値に、式(6)または式(7)から得られる直線L上の座標(x1,x2,x3)の重み関数U(x1),U(x2),U(x3)を乗算した値B(x1)U(x1),B(x2)U(x2),B(x3)U(x3))を算出する(図3ステップS3)。乗算値B(x1)U(x1),B(x2)U(x2),B(x3)U(x3)は、図6に示すように直線L上の座標xに応じて放物線状に変化する。図6における原点O(x=0)は、測定管11の中心位置に相当する。 The parabolic distribution function calculating means 40 of the correction coefficient calculating unit 4 is a magnetic flux density B (x 1 ) measured by the gauss meter 3 at three points (x 1 , x 2 , x 3 ) on the straight line L connecting the electrodes 12a, 12b. ), B (x 2 ), B (x 3 ), the weight function U (x of the coordinates (x 1 , x 2 , x 3 ) on the straight line L obtained from the equation (6) or (7) 1 ), U (x 2 ), and U (x 3 ) multiplied by values B (x 1 ) U (x 1 ), B (x 2 ) U (x 2 ), B (x 3 ) U (x 3 ) ) Is calculated (step S3 in FIG. 3). The multiplication values B (x 1 ) U (x 1 ), B (x 2 ) U (x 2 ), and B (x 3 ) U (x 3 ) correspond to the coordinates x on the straight line L as shown in FIG. It changes into a parabola. The origin O (x = 0) in FIG. 6 corresponds to the center position of the measuring tube 11.

そして、放物分布関数算出手段40は、(x1,B(x1)U(x1))、(x2,B(x2)U(x2))、(x3,B(x3)U(x3))の3点を通る次式のような放物分布関数(2次関数)の係数a,b,cを決定する(図3ステップS4)。
BU=ax2+bx+c ・・・(8)
Then, the parabolic distribution function calculating means 40 includes (x 1 , B (x 1 ) U (x 1 )), (x 2 , B (x 2 ) U (x 2 )), (x 3 , B (x 3 ) Coefficients a, b, and c of a parabolic distribution function (quadratic function) such as the following equation passing through three points U (x 3 )) are determined (step S4 in FIG. 3).
BU = ax 2 + bx + c (8)

補正係数算出部4のパラメータ算出手段41は、放物分布関数算出手段40が決定した式(8)を電極12bの位置(x=−d/2)から電極12aの位置(x=d/2)まで積分することで、電極12a,12b間を結ぶ直線L上を流れる流体が作り出す起電力Eに比例する起電力パラメータMを算出する(図3ステップS5)。BUの不定積分はF(x)=2/3ax3+1/2bx2+cx+D(Dは定数で定積分で消える)なので、M=F(d/2)−F(−d/2)となる。なお、ステップS1で求めた電極12a,12b間の距離dは、電極12a,12bの位置(x=−d/2,d/2)の決定に使用されることは言うまでもない。 The parameter calculation unit 41 of the correction coefficient calculation unit 4 changes the formula (8) determined by the parabolic distribution function calculation unit 40 from the position of the electrode 12b (x = −d / 2) to the position of the electrode 12a (x = d / 2). ), The electromotive force parameter M proportional to the electromotive force E generated by the fluid flowing on the straight line L connecting the electrodes 12a and 12b is calculated (step S5 in FIG. 3). The indefinite integral of BU is F (x) = 2 / 3ax 3 + 1 / 2bx 2 + cx + D (D is a constant and disappears with a definite integral), so M = F (d / 2) −F (−d / 2). Needless to say, the distance d between the electrodes 12a and 12b obtained in step S1 is used to determine the positions of the electrodes 12a and 12b (x = −d / 2, d / 2).

補正係数算出部4の補正係数算出手段42は、校正対象の電磁流量計と同型の基準となる電磁流量計の補正係数DF0とこの電磁流量計の測定管の断面積S0と起電力パラメータM0とを記憶手段43から取得し、これらの値とパラメータ算出手段41が算出した起電力パラメータMとから次式により補正係数DFを算出する(図3ステップS6)。
DF=DF0×M/M0×S/S0 ・・・(9)
The correction coefficient calculation means 42 of the correction coefficient calculation unit 4 includes a correction coefficient DF0 of an electromagnetic flow meter that is the same type as the electromagnetic flow meter to be calibrated, a cross-sectional area S0 of the measurement tube of the electromagnetic flow meter, and an electromotive force parameter M0. Is obtained from the storage means 43, and the correction coefficient DF is calculated from these values and the electromotive force parameter M calculated by the parameter calculation means 41 by the following equation (step S6 in FIG. 3).
DF = DF0 × M / M0 × S / S0 (9)

基準となる電磁流量計の測定管の断面積S0と起電力パラメータM0については上記と同様にして予め求めておけばよく、また基準となる電磁流量計の補正係数DF0については電磁流量計に実際に水を流す実流量校正により予め求めておけばよい。   The cross-sectional area S0 and electromotive force parameter M0 of the measurement pipe of the reference electromagnetic flowmeter may be obtained in the same manner as described above, and the correction coefficient DF0 of the reference electromagnetic flowmeter is actually applied to the electromagnetic flowmeter. What is necessary is just to obtain | require beforehand by the actual flow volume calibration which flows water into.

補正係数算出部4の補正係数設定手段44は、補正係数算出手段42が算出した補正係数DFを校正対象の電磁流量計の変換器(不図示)に設定する(図3ステップS7)。
こうして、校正対象の電磁流量計の検出器1の補正係数DFを求めることができる。上記のとおり、補正係数DFは、検出器1から出力される起電力Eを流量値や流速値に変換する変換器に設定される。変換器は、起電力Eから算出した流量値または流速値に補正係数DFを乗算することで、流量値または流速値を補正する。
The correction coefficient setting unit 44 of the correction coefficient calculation unit 4 sets the correction coefficient DF calculated by the correction coefficient calculation unit 42 to the converter (not shown) of the electromagnetic flow meter to be calibrated (step S7 in FIG. 3).
In this way, the correction coefficient DF of the detector 1 of the electromagnetic flow meter to be calibrated can be obtained. As described above, the correction coefficient DF is set in a converter that converts the electromotive force E output from the detector 1 into a flow rate value or a flow velocity value. The converter corrects the flow rate value or the flow velocity value by multiplying the flow rate value or the flow velocity value calculated from the electromotive force E by the correction coefficient DF.

以上のように、本実施の形態では、電磁流量計に水を流さずに補正係数DFを求めることができるので、検出器1の校正に要するコストと工数を低減することができる。本実施の形態では、校正対象の電磁流量計を校正装置上にセットすれば、装置上で電磁流量計を搬送してステップS1,S2の計測を行うことで、校正作業を自動化することができる。また、本実施の形態では、電磁流量計の流量誤差が測定管に起因するのか、電極の位置に起因するのか、磁束密度分布に起因するのかを特定できるので、電磁流量計のユーザからクレームが発生したときの調査や対策が容易になる。   As described above, in the present embodiment, since the correction coefficient DF can be obtained without flowing water through the electromagnetic flow meter, the cost and man-hours required for calibration of the detector 1 can be reduced. In this embodiment, when the electromagnetic flow meter to be calibrated is set on the calibration device, the calibration work can be automated by carrying the electromagnetic flow meter on the device and performing the measurement in steps S1 and S2. . Further, in the present embodiment, it is possible to specify whether the flow error of the electromagnetic flow meter is caused by the measurement tube, the electrode position, or the magnetic flux density distribution. It becomes easier to investigate and take measures when it occurs.

本実施の形態では、特許文献2のように通常の電磁流量計よりも広範な範囲にわたって磁束密度分布を一様にする必要がなく、また測定管を振動させる加振装置も必要がないので、特殊な仕様の電磁流量計を使用する必要がなく、通常の電磁流量計に対して校正を実施することができる。   In the present embodiment, there is no need to make the magnetic flux density distribution uniform over a wider range than a normal electromagnetic flowmeter as in Patent Document 2, and there is no need for a vibration device that vibrates the measurement tube. It is not necessary to use a special specification electromagnetic flow meter, and calibration can be performed on a normal electromagnetic flow meter.

本実施の形態で説明した補正係数算出部4は、CPU(Central Processing Unit)、記憶装置及びインタフェースを備えたコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。CPUは、記憶装置に格納されたプログラムに従って本実施の形態で説明した処理を実行する。   The correction coefficient calculation unit 4 described in the present embodiment can be realized by a computer having a CPU (Central Processing Unit), a storage device, and an interface, and a program for controlling these hardware resources. The CPU executes the processing described in the present embodiment in accordance with a program stored in the storage device.

本発明は、電磁流量計の検出器を校正する技術に適用することができる。   The present invention can be applied to a technique for calibrating a detector of an electromagnetic flow meter.

1…検出器、2…光学センサ、3…ガウスメータ、4…補正係数算出部、10a,10b…励磁コイル、11…測定管、12a,12b…電極、20a,20b…センサヘッド、21…センサコントローラ、40…放物分布関数算出手段、41…パラメータ算出手段、42…補正係数算出手段、43…記憶手段、44…補正係数設定手段。   DESCRIPTION OF SYMBOLS 1 ... Detector, 2 ... Optical sensor, 3 ... Gauss meter, 4 ... Correction coefficient calculation part, 10a, 10b ... Excitation coil, 11 ... Measuring tube, 12a, 12b ... Electrode, 20a, 20b ... Sensor head, 21 ... Sensor controller , 40 ... Parabolic distribution function calculating means, 41 ... Parameter calculating means, 42 ... Correction coefficient calculating means, 43 ... Storage means, 44 ... Correction coefficient setting means.

Claims (4)

校正対象の電磁流量計の測定管の断面積とこの測定管に設けられた2つの電極間の距離とを計測する第1の計測ステップと、
前記電磁流量計の励磁コイルから前記測定管に磁界が印加されている状態で、前記2つの電極間を結ぶ直線上において、前記測定管の中心の磁束密度と前記2つの電極近傍の磁束密度とを計測する第2の計測ステップと、
この第2の計測ステップで計測した磁束密度の値と前記測定管を流れる流体の流速の、起電力発生への寄与度を示す所定の重み関数とを乗算した値を、前記磁束密度を計測した位置毎に算出し、前記磁束密度を計測した位置と前記算出した乗算値との関係を示す放物分布関数の式を決定する放物分布関数算出ステップと、
この放物分布関数算出ステップで決定した放物分布関数の式を一方の電極の位置から他方の電極の位置まで積分することで、前記2つの電極間を結ぶ直線上を流れる流体が作り出す起電力に比例する起電力パラメータを算出するパラメータ算出ステップと、
このパラメータ算出ステップで算出した起電力パラメータと前記第1の計測ステップで計測した断面積とに基づいて、前記測定管を流れる流体の流量または流速を補正するための補正係数を算出する補正係数算出ステップとを含むことを特徴とする電磁流量計の校正方法。
A first measurement step for measuring a cross-sectional area of a measurement tube of an electromagnetic flow meter to be calibrated and a distance between two electrodes provided on the measurement tube;
In a state where a magnetic field is applied from the exciting coil of the electromagnetic flow meter to the measurement tube, a magnetic flux density at the center of the measurement tube and a magnetic flux density near the two electrodes on a straight line connecting the two electrodes. A second measuring step for measuring
The magnetic flux density was measured by multiplying the value of the magnetic flux density measured in the second measurement step by a predetermined weight function indicating the contribution to the electromotive force generation of the flow velocity of the fluid flowing through the measuring tube. A parabolic distribution function calculating step for calculating a parabolic distribution function for each position and determining a formula of a parabolic distribution function indicating a relationship between the position where the magnetic flux density is measured and the calculated multiplication value;
An electromotive force generated by a fluid flowing on a straight line connecting the two electrodes by integrating the parabolic distribution function determined in the parabolic distribution function calculating step from the position of one electrode to the position of the other electrode. A parameter calculating step for calculating an electromotive force parameter proportional to
Correction coefficient calculation for calculating a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the measurement pipe based on the electromotive force parameter calculated in the parameter calculation step and the cross-sectional area measured in the first measurement step. And a calibration method for an electromagnetic flowmeter.
請求項1記載の電磁流量計の校正方法において、
前記補正係数算出ステップは、
基準となる電磁流量計の補正係数とこの電磁流量計の測定管の断面積と起電力パラメータとを記憶手段から取得するステップと、
この取得した値と、前記パラメータ算出ステップで算出した起電力パラメータと前記第1の計測ステップで計測した断面積とに基づいて、校正対象の電磁流量計の測定管を流れる流体の流量または流速を補正するための補正係数を算出するステップとを含むことを特徴とする電磁流量計の校正方法。
The electromagnetic flowmeter calibration method according to claim 1,
The correction coefficient calculating step includes:
Obtaining a correction coefficient of a reference electromagnetic flow meter, a cross-sectional area of the measurement pipe of the electromagnetic flow meter, and an electromotive force parameter from the storage means;
Based on the acquired value, the electromotive force parameter calculated in the parameter calculation step, and the cross-sectional area measured in the first measurement step, the flow rate or flow velocity of the fluid flowing through the measurement pipe of the electromagnetic flow meter to be calibrated is calculated. And a step of calculating a correction coefficient for correcting the electromagnetic flowmeter.
校正対象の電磁流量計の測定管の断面積とこの測定管に設けられた2つの電極間の距離とを計測する光学センサと、
前記電磁流量計の励磁コイルから前記測定管に磁界が印加されている状態で、前記2つの電極間を結ぶ直線上において、前記測定管の中心の磁束密度と前記2つの電極近傍の磁束密度とを計測するガウスメータと、
このガウスメータで計測した磁束密度の値と前記測定管を流れる流体の流速の、起電力発生への寄与度を示す所定の重み関数とを乗算した値を、前記磁束密度を計測した位置毎に算出し、前記磁束密度を計測した位置と前記算出した乗算値との関係を示す放物分布関数の式を決定する放物分布関数算出手段と、
この放物分布関数算出手段が決定した放物分布関数の式を一方の電極の位置から他方の電極の位置まで積分することで、前記2つの電極間を結ぶ直線上を流れる流体が作り出す起電力に比例する起電力パラメータを算出するパラメータ算出手段と、
このパラメータ算出手段が算出した起電力パラメータと前記光学センサが計測した断面積とに基づいて、前記測定管を流れる流体の流量または流速を補正するための補正係数を算出する補正係数算出手段とを備えることを特徴とする電磁流量計の校正システム。
An optical sensor for measuring a cross-sectional area of a measurement tube of an electromagnetic flow meter to be calibrated and a distance between two electrodes provided on the measurement tube;
In a state where a magnetic field is applied from the exciting coil of the electromagnetic flow meter to the measurement tube, a magnetic flux density at the center of the measurement tube and a magnetic flux density near the two electrodes on a straight line connecting the two electrodes. Gauss meter to measure
A value obtained by multiplying the value of the magnetic flux density measured by the gauss meter and a predetermined weight function indicating the contribution to the electromotive force generation of the flow velocity of the fluid flowing through the measuring tube is calculated for each position where the magnetic flux density is measured. A parabolic distribution function calculating means for determining an expression of a parabolic distribution function indicating a relationship between the position where the magnetic flux density is measured and the calculated multiplication value;
The electromotive force generated by the fluid flowing on the straight line connecting the two electrodes by integrating the parabolic distribution function formula determined by the parabolic distribution function calculating means from the position of one electrode to the position of the other electrode. Parameter calculating means for calculating an electromotive force parameter proportional to
Correction coefficient calculation means for calculating a correction coefficient for correcting the flow rate or flow velocity of the fluid flowing through the measurement pipe based on the electromotive force parameter calculated by the parameter calculation means and the cross-sectional area measured by the optical sensor; A calibration system for an electromagnetic flowmeter, comprising:
請求項3記載の電磁流量計の校正システムにおいて、
さらに、基準となる電磁流量計の補正係数とこの電磁流量計の測定管の断面積と起電力パラメータとを予め記憶する記憶手段を備え、
前記補正係数算出手段は、前記記憶手段に記憶されている値と、前記パラメータ算出手段が算出した起電力パラメータと前記光学センサが計測した断面積とに基づいて、校正対象の電磁流量計の測定管を流れる流体の流量または流速を補正するための補正係数を算出することを特徴とする電磁流量計の校正システム。
The electromagnetic flowmeter calibration system according to claim 3,
Furthermore, a storage means for storing in advance the correction coefficient of the electromagnetic flow meter serving as a reference, the cross-sectional area of the measurement pipe of the electromagnetic flow meter, and the electromotive force parameter,
The correction coefficient calculation means is configured to measure a calibration target electromagnetic flowmeter based on a value stored in the storage means, an electromotive force parameter calculated by the parameter calculation means, and a cross-sectional area measured by the optical sensor. A calibration system for an electromagnetic flowmeter, wherein a correction coefficient for correcting a flow rate or a flow velocity of a fluid flowing through a pipe is calculated.
JP2014228665A 2014-11-11 2014-11-11 Calibration method and calibration system of electromagnetic flowmeter Pending JP2016090524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014228665A JP2016090524A (en) 2014-11-11 2014-11-11 Calibration method and calibration system of electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014228665A JP2016090524A (en) 2014-11-11 2014-11-11 Calibration method and calibration system of electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JP2016090524A true JP2016090524A (en) 2016-05-23

Family

ID=56016705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014228665A Pending JP2016090524A (en) 2014-11-11 2014-11-11 Calibration method and calibration system of electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JP2016090524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715708A (en) * 2018-07-11 2020-01-21 浙江大学 Flowmeter calibrating device
JP7372164B2 (en) 2020-01-31 2023-10-31 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
CN117451145A (en) * 2023-10-17 2024-01-26 上海肯特仪表股份有限公司 Electromagnetic flowmeter calibration method, system, medium and equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715708A (en) * 2018-07-11 2020-01-21 浙江大学 Flowmeter calibrating device
JP7372164B2 (en) 2020-01-31 2023-10-31 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
CN117451145A (en) * 2023-10-17 2024-01-26 上海肯特仪表股份有限公司 Electromagnetic flowmeter calibration method, system, medium and equipment
CN117451145B (en) * 2023-10-17 2024-05-28 上海肯特仪表股份有限公司 Electromagnetic flowmeter calibration method, system, medium and equipment

Similar Documents

Publication Publication Date Title
JP4469337B2 (en) Coriolis flow meter diagnostic device and diagnostic method
RU2665350C1 (en) Device for application of a variable algorithm for a vibration flowmeter and a related method
JP6089113B2 (en) Detection of changes in the cross-sectional area of a fluid tube in a vibrometer by determining the stiffness of the transverse mode
JP5307292B2 (en) Method and apparatus for determining flow rate error of vibratory flow meter
US20130338943A1 (en) Method for operating a resonance measuring system and a resonance measuring system in this regard
JP2016090524A (en) Calibration method and calibration system of electromagnetic flowmeter
JP2013134091A (en) Flow rate correction coefficient setting method and flow rate measuring device employing the same
JP5463440B1 (en) Calibration method and calibration jig for mold level gauge in mold
RU2696909C1 (en) Method and device for hot measurement, during rolling, size of metal profiles
CN108469298A (en) A kind of standing wave tube vector hydrophone calibration low frequency modification method
JP5293486B2 (en) Electromagnetic flow meter
US11543337B2 (en) Method for signaling a standard frequency of a density meter which has at least one vibratable measurement tube for conducting a medium
CN105841760B (en) A kind of inserted electromagnet flow meter
US11326919B2 (en) Coriolis mass flow meter having a central vibration sensor and method for determining the viscosity of the medium using Coriolis mass flow meter
JP6441604B2 (en) High frequency measuring device and calibration method of high frequency measuring device
JP5839456B2 (en) Sound intensity measuring method and apparatus
CN109579973A (en) A kind of vibrating speed sensors sensitivity coefficient method of calibration
CN117451145B (en) Electromagnetic flowmeter calibration method, system, medium and equipment
RU2719281C2 (en) Correction of analytical impendances in acoustic calibration of diagnostic probes and hearing aids
JP2016090516A (en) Coriolis mass flowmeter
CN114739278B (en) Method and system for measuring two-dimensional thickness field of liquid film on surface of rod bundle in rod bundle channel
WO2018051448A1 (en) Flowmeter and flow rate measuring method
RU2680985C1 (en) Device and method for hot measurement of metal profile size during rolling
US20230140328A1 (en) Speaker displacement detection calibration method and speaker displacement detection apparatus
RU2344376C1 (en) Method and device for compensating coriolis flow meter