JP2016089196A - Valuable metal recovery method and valuable metal recovery system - Google Patents

Valuable metal recovery method and valuable metal recovery system Download PDF

Info

Publication number
JP2016089196A
JP2016089196A JP2014222030A JP2014222030A JP2016089196A JP 2016089196 A JP2016089196 A JP 2016089196A JP 2014222030 A JP2014222030 A JP 2014222030A JP 2014222030 A JP2014222030 A JP 2014222030A JP 2016089196 A JP2016089196 A JP 2016089196A
Authority
JP
Japan
Prior art keywords
mill
raw material
waste
particle size
material waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014222030A
Other languages
Japanese (ja)
Other versions
JP6375205B2 (en
Inventor
智典 竹本
Tomonori Takemoto
智典 竹本
泰之 石田
Yasuyuki Ishida
泰之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014222030A priority Critical patent/JP6375205B2/en
Publication of JP2016089196A publication Critical patent/JP2016089196A/en
Application granted granted Critical
Publication of JP6375205B2 publication Critical patent/JP6375205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a valuable metal recovery method and a valuable metal recovery system capable of efficiently recovering valuable metals such as gold in waste.SOLUTION: Provided is a valuable metal recovery system 1 comprising a vertical mill 20 where mill refined flour obtained by pulverizing raw material waste and having a prescribed grain size distribution obtainable as the result of the pulverization and mill exhausted stone including coarse flour with a grain size distribution located in the large diameter side than the prescribed grain size distribution are selected, and, by conducting the pulverization and selection in such a manner that prescribed grain size distribution of the mill refined flour is regulated, the ratio of the content of the valuable metals in the mill exhausted stone to the content of the valuable metals in the raw material waste is regulated in such a manner that the content of the valuable metals in the mill exhausted stone is made higher than the content of the valuable metals in the raw material waste.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物中の有価金属を回収する有価金属回収方法及び有価金属回収システムに関する。   The present invention relates to a valuable metal recovery method and a valuable metal recovery system for recovering valuable metals in waste.

近年、セメント原料及び燃料の一部として、建設残土、汚泥等の固形廃棄物を利用するために、固形廃棄物を粉砕し、粉砕された廃棄物をセメント原料及び燃料に適した大きさのものとそれ以外のものとに選別する竪型ミルと、竪型ミルよりも上流プロセスにおいて固形廃棄物から金属類を分離除去する金属選別機とを備えるセメント製造装置が提案されている(例えば、特許文献1)。   In recent years, in order to use solid waste such as construction soil and sludge as part of cement raw material and fuel, solid waste is pulverized, and the pulverized waste is of a size suitable for cement raw material and fuel. And other types of cement mills have been proposed (for example, patents), and a metal sorter that separates and removes metals from solid waste in a process upstream of the vertical mill. Reference 1).

特開2013−28477号公報JP 2013-28477 A

固形廃棄物、特に、都市ごみである焼却灰、焼却飛灰及び溶融飛灰中には、有価金属、例えば、銅、亜鉛、金、銀、パラジウム、白金等が含まれていることが知られている。   It is known that solid waste, especially incineration ash, incineration fly ash and molten fly ash, which are municipal waste, contain valuable metals such as copper, zinc, gold, silver, palladium, platinum, etc. ing.

しかしながら、特許文献1に記載されたセメント製造装置では、金属選別部により鉄、アルミニウムを固形廃棄物から回収し得るが、固体廃棄物において当該それ以外の金属、特に金等の有価金属は含有率が低く、また含有率に変動があるため、有価金属は回収されずに、セメント原料としてキルンに投入される。   However, in the cement manufacturing apparatus described in Patent Document 1, iron and aluminum can be recovered from the solid waste by the metal sorting unit. However, in the solid waste, the other metals, particularly valuable metals such as gold, are contained. However, since the content rate varies, valuable metals are not recovered and are input to the kiln as cement raw materials.

そこで、本発明は、廃棄物中の有価金属を効率的に回収できる有価金属回収方法及び有価金属回収システムを提供することを目的とする。   Therefore, an object of the present invention is to provide a valuable metal recovery method and a valuable metal recovery system capable of efficiently recovering valuable metals in waste.

本発明は、以下の[1]〜[4]の有価金属回収方法、及び、[5]〜[6]の有価金属回収システムを提供する。
[1]有価金属を含有する原料廃棄物を予備処理する予備処理工程と、前記予備処理工程により予備処理された前記原料廃棄物を粉砕し、当該粉砕の結果得られる所定粒径分布を有するミル精粉と、前記所定粒径分布よりも大径側にある粒径分布を有する粗粉を含むミル排石とを選別する工程であって、前記ミル精粉の前記所定粒径分布を調整するように当該粉砕及び当該選別を実行することにより、前記原料廃棄物又は前記ミル精粉における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比を第1指定値以上になるように調整する粉砕工程と、前記ミル排石を回収する回収工程とを備え、前記予備処理工程は、前記原料廃棄物の含水率を低下させる乾燥工程、前記原料廃棄物を所定値以下の粒径の原料廃棄物に粉砕する粗粉砕工程、前記原料廃棄物に対して磁力選別を行う磁力選別工程、及び、前記原料廃棄物に対して渦電流選別を行う渦電流選別工程のうち少なくとも1つの工程を含む、有価金属回収方法。
[2][1]記載の有価金属回収方法において、前記回収工程は、前記ミル排石の一部であって、前記原料廃棄物における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比が前記第1指定値より高い第2指定値以上である所定粒径範囲の粒径が含まれる前記ミル排石を回収することを特徴とする有価金属回収方法。
[3][1]又は[2]記載の有価金属回収方法において、前記原料廃棄物は都市ごみ焼却灰である有価金属回収方法。
[4][1]〜[3]のいずれかに記載の有価金属回収方法において、前記有価金属は、金及び銀のうち少なくとも1つである有価金属回収方法。
[5]有価金属を含有する原料廃棄物を予備処理する予備処理システムと、前記予備処理システムにより調整された前記原料廃棄物を粉砕し、当該粉砕の結果得られる所定粒径分布を有するミル精粉と、前記所定粒径分布よりも大径側にある粒径分布を有する粗粉を含むミル排石とを選別するとともに、前記ミル精粉の前記所定粒径分布を調整するように当該粉砕及び当該選別を実行することにより、前記原料廃棄物又は前記ミル精粉における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比を第1指定値以上になるように調整する竪型ミルとを備え、前記予備処理システムは、前記原料廃棄物の含水率を低下させる乾燥機、前記原料廃棄物を所定値以下の粒径の原料廃棄物に粉砕する粗粉砕機、前記原料廃棄物に対して磁力選別を行う磁力選別機、及び、前記原料廃棄物に対して渦電流選別を行う渦電流選別機のうち少なくとも1つを含む、有価金属回収システム。
[6][5]記載の有価金属回収システムにおいて、前記ミル排石の一部であって、前記原料廃棄物における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比が前記第1指定値より高い第2指定値以上である所定粒径範囲の粒径が含まれる前記ミル排石を回収する回収装置を備える有価金属回収システム。
The present invention provides the following valuable metal recovery methods [1] to [4] and the valuable metal recovery system [5] to [6].
[1] A pretreatment step for pretreating raw material waste containing valuable metals, and a mill having a predetermined particle size distribution obtained as a result of pulverizing the raw material waste pretreated by the pretreatment step Selecting a fine powder and a mill stone containing coarse powder having a particle size distribution larger than the predetermined particle size distribution, and adjusting the predetermined particle size distribution of the mill fine powder By performing the pulverization and the sorting as described above, the ratio of the valuable metal content in the mill waste stone to the valuable metal content in the raw material waste or the mill fine powder becomes equal to or higher than the first specified value. And a recovery step for recovering the mill waste stone, wherein the preliminary treatment step is a drying step for reducing the water content of the raw material waste, and the raw material waste has a particle size of a predetermined value or less. Crush into raw material waste A valuable metal recovery method comprising at least one of a coarse pulverization step, a magnetic force selection step of performing magnetic force selection on the raw material waste, and an eddy current selection step of performing eddy current selection on the raw material waste .
[2] In the valuable metal recovery method according to [1], the recovery step is a part of the mill waste stone, and contains the valuable metal in the mill waste stone with respect to the content of the valuable metal in the raw material waste. The valuable metal recovery method, wherein the mill waste stone containing a particle size in a predetermined particle size range in which a ratio of the rates is equal to or higher than a second specified value higher than the first specified value is recovered.
[3] The valuable metal recovery method according to [1] or [2], wherein the raw material waste is municipal waste incineration ash.
[4] The valuable metal recovery method according to any one of [1] to [3], wherein the valuable metal is at least one of gold and silver.
[5] A pretreatment system for pretreating raw material waste containing valuable metals, and a mill refiner having a predetermined particle size distribution obtained by pulverizing the raw material waste prepared by the pretreatment system and resulting from the pulverization. The pulverization is performed by selecting powder and mill waste stone containing coarse powder having a particle size distribution larger than the predetermined particle size distribution and adjusting the predetermined particle size distribution of the mill fine powder. And adjusting the ratio of the content of valuable metal in the mill waste stone to the content of valuable metal in the raw material waste or the mill fine powder to be equal to or higher than the first specified value by executing the sorting. A pre-processing system comprising: a dryer that lowers the moisture content of the raw material waste; a coarse pulverizer that pulverizes the raw material waste into raw material waste having a particle size of a predetermined value or less; and the raw material waste Against things Magnetic separator for performing magnetic separation, and at least one of an eddy current separator for performing eddy-current sorting to the raw material waste, valuable metals recovery system.
[6] In the valuable metal recovery system according to [5], the ratio of the content of valuable metal in the mill waste stone that is a part of the mill waste stone and the content of valuable metal in the raw material waste is the ratio. A valuable metal recovery system comprising a recovery device that recovers the mill waste stone including a particle size in a predetermined particle size range that is equal to or higher than a second specified value higher than the first specified value.

本発明の有価金属回収方法及び有価金属回収システムによれば、ミル排石における金等の有価金属の含有率を高め、ミル排石を回収することにより廃棄物中の金等の有価金属を効率的に回収できる。また、得られたミル排石には有価金属が高含有率で含まれているので、製錬用原料として極めて有用である。   According to the valuable metal recovery method and the valuable metal recovery system of the present invention, the content of valuable metals such as gold in the mill waste is increased, and the valuable metals such as gold in the waste are efficiently recovered by collecting the mill waste. Can be recovered. Further, since the obtained mill waste stone contains valuable metals at a high content, it is extremely useful as a raw material for smelting.

本発明の実施形態の有価金属回収システムを模式的に示す図。The figure which shows typically the valuable metal collection | recovery system of embodiment of this invention. 本発明の実施形態に有価金属回収システムの竪型ミルを示す図。The figure which shows the vertical mill of a valuable metal collection | recovery system in embodiment of this invention.

[有価金属回収システム]
図1に示されるように、本実施形態の有価金属回収システム1は、乾燥機10、磁力選別機12,12’、篩分機14,14’,14”、粉砕機16、及び、渦電流選別機18から構成される予備処理システムと、竪型ローラーミル20(以下、「竪型ミル」という。)とを備える。尚、竪型ミル20は、種々のタイプが販売されており形式は問わない。竪型ミル20の例示的態様を、図2に示す。
[Valuable metal recovery system]
As shown in FIG. 1, the valuable metal recovery system 1 of the present embodiment includes a dryer 10, a magnetic separator 12, 12 ′, a sieving machine 14, 14 ′, 14 ″, a pulverizer 16, and an eddy current separator. And a vertical roller mill 20 (hereinafter referred to as “vertical mill”). In addition, the vertical mill 20 is sold in various types, and the type is not limited. An exemplary embodiment of the saddle mill 20 is shown in FIG.

有価金属回収システム1の原料である原料廃棄物は、有価金属、例えば、銅、亜鉛、金、銀、パラジウム、白金等が含まれている廃棄物をいうが、特に、金、銀、パラジウム、白金等が含まれている都市ごみ焼却灰(例えば、掘り起こした焼却灰等を含む)が好ましい。尚、本明細書において、有価金属とは、鉄及びアルミニウム以外の金属、例えば、銅、亜鉛、金、銀、パラジウム、白金をいう。   The raw material waste that is a raw material of the valuable metal recovery system 1 refers to a waste containing valuable metals such as copper, zinc, gold, silver, palladium, platinum, etc., in particular, gold, silver, palladium, Municipal waste incineration ash containing platinum or the like (for example, including excavated incineration ash or the like) is preferable. In addition, in this specification, valuable metals mean metals other than iron and aluminum, for example, copper, zinc, gold | metal | money, silver, palladium, and platinum.

予備処理システムは、竪型ミル20に供給される原料廃棄物を予備処理するものである。具体的には、予備処理システムは、有価金属を含有する原料廃棄物の含水率を好ましくは5[wt%]以下、最大粒径を好ましくは40[mm]以下、より好ましくは20[mm]以下に調整した所望粒径分布を有するミル精粉を形成し得るように、竪型ミル20の操業条件が調整される。   The pretreatment system pretreats the raw material waste supplied to the vertical mill 20. Specifically, in the pretreatment system, the water content of the raw material waste containing valuable metals is preferably 5 [wt%] or less, the maximum particle size is preferably 40 [mm] or less, more preferably 20 [mm]. The operating conditions of the vertical mill 20 are adjusted so that mill fine powder having the desired particle size distribution adjusted below can be formed.

乾燥機10は、廃棄物を乾燥し、竪型ミル20の操業条件に適合する所定含水率の原料廃棄物を形成する装置である。特に、都市ごみ焼却灰等を利用する場合、清掃工場での焼却灰等に対する水冷処理により金属屑に灰分が付着した形態であるため、廃棄物を乾燥させることにより、磁力選別機12,12’、篩分機14,14’,14”、及び、渦電流選別機18における選別が容易になる。   The dryer 10 is an apparatus that dries waste and forms raw material waste having a predetermined moisture content that conforms to the operating conditions of the vertical mill 20. In particular, when using municipal waste incineration ash, etc., it is a form in which ash is attached to metal scraps by water-cooling treatment for incineration ash etc. in a garbage incinerator, so by drying the waste, magnetic separators 12, 12 ′ Sorting in the sieving machines 14, 14 ', 14 "and the eddy current sorter 18 is facilitated.

尚、廃棄物の含水率が所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合する場合、予備処理システム内に乾燥機10を設けることは必ずしも必要ない。   In addition, when the moisture content of the waste meets the operating conditions of the vertical mill 20 that can form mill fine powder having a desired particle size distribution, it is not always necessary to provide the dryer 10 in the pretreatment system.

磁力選別機12,12’は、鉄等の磁性金属を廃棄物から選別する装置である。廃棄物、特に都市ごみ焼却灰等には、数十[mm]〜数百[mm]の金属屑を含んでいる場合があるので、竪型ミル20の安定操業及び後工程で回収されるミル排石中の銅、亜鉛、及び貴金属の含有率を高めるために、原料廃棄物が原料として竪型ミル20に供給される前に鉄等の汎用金属を廃棄物から選別除去する必要がある。   The magnetic separators 12 and 12 'are devices that sort magnetic metals such as iron from waste. Waste, especially municipal waste incineration ash, etc. may contain several tens [mm] to several hundred [mm] of metal scrap, so that the mill that is recovered in the stable operation of the vertical mill 20 and subsequent processes In order to increase the content of copper, zinc and noble metals in the waste stone, it is necessary to selectively remove general-purpose metals such as iron from the waste before the raw material waste is supplied to the vertical mill 20 as a raw material.

篩分機14,14’,14”は、篩分機に供給された原料廃棄物を所定粒径以下の廃棄物と、当該所定粒径を超える粒径の廃棄物とに選別する装置である。図1に示されるように、篩分機14と篩分機14’とがプロセスにおいて直列に設置されている。予備処理システムにおいてより多くの原料を形成するために、プロセス上流の篩分機14で選別された所定粒径を超える廃棄物を後述する粉砕機16に供給し、粉砕機16によって所定粒径以下に粉砕された廃棄物をプロセス下流の篩分機14’により回収するためである。   The sieving machine 14, 14 ', 14 "is an apparatus that sorts the raw material waste supplied to the sieving machine into a waste having a predetermined particle size or less and a waste having a particle size exceeding the predetermined particle size. As shown in Fig. 1, a sieving machine 14 and a sieving machine 14 'are installed in series in the process, and sorted in the sieving machine 14 upstream of the process to form more raw material in the pretreatment system. This is because waste exceeding the predetermined particle size is supplied to a pulverizer 16 to be described later, and the waste pulverized by the pulverizer 16 to a predetermined particle size or less is collected by a sieving machine 14 'downstream of the process.

尚、篩分機14”は、磁力選別機12’により廃棄物から選別された鉄等の磁性金属に対して、所定粒径以下の磁性金属に付着した磁性金属ではない粒子を竪型ミル20に回収するために設けられた装置である。回収されるミル排石中の有価金属の含有率の低下を招く場合は、予備処理システム内に篩分機14”を設けることは必ずしも必要ない。   Note that the sieving machine 14 ″ applies non-magnetic metal particles adhering to a magnetic metal having a predetermined particle size or less to the vertical mill 20 with respect to a magnetic metal such as iron selected from waste by the magnetic separator 12 ′. In order to reduce the content of valuable metals in the mill stone to be recovered, it is not always necessary to provide a sieving machine 14 ″ in the pretreatment system.

粉砕機16は、原料廃棄物を粗粉砕し、竪型ミル20の操業条件に適合する所定粒径の原料廃棄物を形成する装置である。   The pulverizer 16 is an apparatus that coarsely pulverizes raw material waste to form raw material waste having a predetermined particle size that matches the operating conditions of the vertical mill 20.

渦電流選別機18は、渦電流に基づく反発力差を利用し、アルミニウムを廃棄物から選別する装置である。例えば、コンベヤベルトの先端側に設けられた回転磁石体の移動磁界の電磁誘導作用を受けて内部に生じる誘導電流と移動磁界との相互作用によって、コンベヤベルトの先端側に搬送された金属類廃棄物に回転磁石体の回転方向に推力を与え、コンベヤベルトの表面からこの推力と非鉄金属類に作用する重力との合成力の方向に非鉄金属類を飛び出させるように構成されたものがある。   The eddy current sorter 18 is a device that sorts aluminum from waste using a repulsive force difference based on eddy current. For example, disposal of metals transported to the front end side of the conveyor belt due to the interaction between the induced current generated by the moving magnetic field of the rotating magnetic body provided on the front end side of the conveyor belt and the moving magnetic field. There is a structure in which a thrust is applied to an object in the rotational direction of a rotating magnet body, and nonferrous metals are ejected from the surface of the conveyor belt in the direction of the combined force of this thrust and gravity acting on the nonferrous metals.

尚、渦電流選別機18は、後述する竪型ミル20のプロセス上流に設けることは必ずしも必要ではなく、竪型ミル20のプロセス下流、または、竪型ミル20のプロセス上流及びプロセス下流に設けてもよい。   The eddy current sorter 18 is not necessarily provided upstream of the vertical mill 20 described later, but is provided downstream of the vertical mill 20 or upstream and downstream of the vertical mill 20. Also good.

竪型ミル20は、予備処理システムにより予備処理された原料廃棄物に対する粉砕、乾燥、及び、微粉と粗粉の分級により、微粉である所定粒径分布のミル精粉と、所定粒径分布よりも大径側にある粒径分布を有する粗粉を含むミル排石とに選別する装置である。   The vertical mill 20 is obtained by milling and drying the raw material waste pretreated by the pretreatment system, and classifying the fine powder and the coarse powder into fine powder having a predetermined particle size distribution and a predetermined particle size distribution. Is a device that sorts into mill stone containing coarse powder having a particle size distribution on the large diameter side.

ここで、「(ミル精粉の)所定粒径分布よりも大径側にある(粗粉の)粒径分布」とは、ミル精粉と粗粉の粒径分布において、2つの分布で重なり合う部分の有無は問わないが、粗粉の粒径分布がミル精粉の粒径分布よりも大径側に位置することを意味する。   Here, “the particle size distribution (of coarse powder) on the larger diameter side than the predetermined particle size distribution (of mill fine powder)” means that the particle size distribution of mill fine powder and coarse powder overlaps in two distributions. Although the presence or absence of a part is not ask | required, it means that the particle size distribution of coarse powder is located in a larger diameter side than the particle size distribution of mill fine powder.

ミル精粉の粒径分布を決定するために、予め竪型ミル20の操業可能な範囲で操業条件(粉砕量[t/H]、分級回転数[rpm]、通風量[m/min]、竪型ミル内の温度分布、ダムリングの高さ等)を変化させ、ミル精粉の粒径分布とミル排石における金等の有価金属の含有率を測定する。そして、測定結果に基づいて、竪型ミル20の操業条件と、竪型ミル20により選別されるミル精粉の粒径分布と、ミル排石中の有価金属の含有率との関係を決定する。 In order to determine the particle size distribution of the mill fine powder, the operating conditions (grinding amount [t / H], classification rotational speed [rpm], ventilation rate [m 3 / min] within a range in which the vertical mill 20 can be operated in advance) The temperature distribution in the vertical mill, the height of the dam ring, etc.) are changed, and the particle size distribution of the mill fine powder and the content of valuable metals such as gold in the mill stone are measured. And based on a measurement result, the relationship between the operating conditions of the vertical mill 20, the particle size distribution of the mill fine powder sorted by the vertical mill 20, and the content of valuable metals in the mill waste is determined. .

当該関係に基づいて、竪型ミル20により選別されるミル精粉の粒径分布は、竪型ミル20の所定操業条件の下、原料廃棄物における有価金属の含有率に対するミル排石における有価金属の含有率の比が、第1指定値(「第1指定値」は、原料廃棄物における有価金属の含有率に対するミル排石における有価金属の含有率の比で表された値であり、例えば、原料廃棄物におけるCu含有率に対するミル排石中におけるCu含有率の比が10倍、原料廃棄物におけるAu含有率に対するミル排石におけるAu含有率の比が10倍、原料廃棄物におけるAg含有率に対するミル排石におけるAg含有率の比が5倍等をいう。)より高い値になるように、JIS Z 8801に規定するJIS篩による90[μm]残分が5〜50[質量%]になるような粒径分布に調整される。尚、第1指定値について、当該関係に基づいて、竪型ミル20の操業条件の変更可能な範囲内の数値に適宜選択し得る。   Based on this relationship, the particle size distribution of mill fines selected by the vertical mill 20 is that the valuable metals in the mill stones with respect to the content of valuable metals in the raw material waste under the predetermined operating conditions of the vertical mill 20 The content ratio of the first designated value ("first designated value" is a value expressed by the ratio of the content of valuable metals in the mill stone to the content of valuable metals in the raw material waste, for example, The ratio of the Cu content in the mill stone to the Cu content in the raw material waste is 10 times, the ratio of the Au content in the mill stone to the Au content in the raw material waste is 10 times, and the Ag content in the raw material waste The ratio of the Ag content in the mill stone with respect to the rate is 5 times, etc.) 90 [μm] residue by JIS sieve specified in JIS Z 8801 is 5 to 50 [mass%]. It becomes The particle size distribution is adjusted. In addition, about the 1st designated value, based on the said relationship, it can select suitably in the numerical value within the range which can change the operating condition of the vertical mill 20. FIG.

尚、第1指定値として、原料廃棄物における有価金属の含有率に対するミル排石における有価金属の含有率の比に代えて、ミル精粉における有価金属の含有率に対するミル排石における有価金属の含有率の比(例えば、ミル精粉におけるCu含有率に対するミル排石中におけるCu含有率の比が20倍、ミル精粉におけるAu含有率に対するミル排石におけるAu含有率の比が20倍、ミル精粉におけるAg含有率に対するミル排石におけるAg含有率の比が10倍等)を用いてもよい。   As the first specified value, instead of the ratio of the valuable metal content in the mill waste to the valuable metal content in the raw material waste, the value of the valuable metal in the mill waste relative to the valuable metal content in the mill fines Content ratio (for example, the ratio of the Cu content in the mill stones to the Cu content in the mill fines is 20 times, the ratio of the Au content in the mill stones to the Au content in the mill fines is 20 times, A ratio of the Ag content in the mill stone to the Ag content in the mill fine powder may be 10 times).

また、ミル精粉の粒径分布はこれに限定されず、第1指定値に応じて適宜選択してもよく、例えば平均粒径(D50)が所定値以下である粒径分布等を用いてもよい。   Moreover, the particle size distribution of mill fine powder is not limited to this, and may be appropriately selected according to the first designated value. For example, a particle size distribution having an average particle size (D50) of a predetermined value or less is used. Also good.

尚、第1指定値は、原料廃棄物の投入量に対するミル排石の排出量を目安として調整することもできる。ミル排石における銅、金、銀等の有価金属の含有率、あるいは、原料廃棄物の投入量に対する有価金属の回収率の観点から、原料廃棄物の投入量に対するミル排石の排出量が0.5〜5[%]が好ましく、1〜3[%]がより好ましい。   Note that the first designated value can be adjusted using the discharge amount of the mill waste stone relative to the input amount of the raw material waste as a guide. From the viewpoint of the content of valuable metals such as copper, gold and silver in the mill waste, or the recovery rate of valuable metals relative to the input of raw material waste, the amount of mill waste discharged relative to the input of raw material waste is 0 0.5 to 5 [%] is preferable, and 1 to 3 [%] is more preferable.

竪型ミル20は、図2に示されるように、筒状の本体部22を備え、その内部に原料廃棄物を粉砕するための粉砕部24が設けられている。本体部22の側方には、縦方向に延びる原料供給路26が設けられており、原料廃棄物が原料供給路26を通って本体部22内に供給されるように構成されている。   As shown in FIG. 2, the vertical mill 20 includes a cylindrical main body portion 22, and a crushing portion 24 for crushing raw material waste is provided therein. A raw material supply path 26 extending in the vertical direction is provided on the side of the main body 22, and the raw material waste is supplied into the main body 22 through the raw material supply path 26.

粉砕部24は、本体部22内の底部にあり、図示しない電動機を駆動源として鉛直軸周りに回転するテーブル28Bと、その上面で転がる複数の粉砕ローラ28Aとを有する。本体部22内に供給された原料はテーブル28B上に供給され、テーブル28B上で回転しながら粉砕ローラ28Aによって粉砕される。   The crushing unit 24 is located at the bottom of the main body unit 22 and includes a table 28B that rotates around a vertical axis using an electric motor (not shown) as a drive source, and a plurality of crushing rollers 28A that roll on the upper surface. The raw material supplied into the main body 22 is supplied onto the table 28B, and is pulverized by the pulverizing roller 28A while rotating on the table 28B.

また、テーブル28Bの周縁部には、一定の厚みを有する円環状のダムリング29が設けられている。ダムリング29は、適正な厚さの原料の粉体層をテーブル28B上に形成することにより、竪型ミル20の振動を抑制し、粉砕効率を制御する。   An annular dam ring 29 having a certain thickness is provided on the peripheral edge of the table 28B. The dam ring 29 suppresses the vibration of the vertical mill 20 and controls the pulverization efficiency by forming a raw material powder layer having an appropriate thickness on the table 28B.

本体部22の底部側面にはガス導入口30が設けられており、ガス導入口30から高温のガス(例えば300℃)が本体部22内に導入されるように構成されている。導入されたガスは本体部22内で上昇ガス流32となり、上昇ガス流32によって、粉砕された原料の粉体が上方に飛ばされる。   A gas inlet 30 is provided on the bottom side surface of the main body 22, and a high-temperature gas (for example, 300 ° C.) is introduced into the main body 22 from the gas inlet 30. The introduced gas becomes a rising gas flow 32 in the main body 22, and the pulverized raw material powder is blown upward by the rising gas flow 32.

本体部22内の上部には、形状選別を行う分級機34が設けられている。分級機34は、遠心分離の原理を利用して、上昇ガス流32によって運ばれた粉体を微粉と粗粉に分級する。そして、所定粒径以下の微粉は、ミル精粉としてガスとともに本体部22上部の排出口36から外部に排出され、所定粒径を超える粗粉は、再度粉砕するために粉砕部24に供給される。   A classifier 34 that performs shape selection is provided in the upper part of the main body 22. The classifier 34 classifies the powder carried by the rising gas flow 32 into fine powder and coarse powder using the principle of centrifugal separation. Fine powder having a predetermined particle size or less is discharged as a mill fine powder together with gas from the discharge port 36 at the top of the main body 22, and coarse powder exceeding the predetermined particle size is supplied to the pulverizing unit 24 for pulverization again. The

テーブル28Bの周囲には排石用の開口部38が設けられている。上昇ガス流32に乗ることができない比較的大きな粗粒や塊、高比重物など(金属類を含んでいる)は、テーブル28Bのダムリング29を超えて開口部38に落下する。開口部38に落下した粗粒はミル排石として、図示しないベルトコンベアによって外部に搬送される。   An opening 38 for stone removal is provided around the table 28B. Relatively large coarse particles, lumps, high specific gravity and the like (including metals) that cannot get on the rising gas flow 32 fall over the dam ring 29 of the table 28B and fall into the opening 38. Coarse particles dropped into the opening 38 are conveyed to the outside by a belt conveyor (not shown) as mill waste.

竪型ミル20から外部に搬送されるミル排石の搬送プロセスにおいて、図示しない篩分機を、当該ミル排石から所定粒径範囲のミル排石を選別して回収する回収装置として設けてもよい。回収装置によって所定粒径範囲のミル排石を選別して回収することによって、第1指定値として指定した原料廃棄物における有価金属の含有率に対するミル排石における有価金属の含有率の比より大きな値を第2指定値として選定し、第2指定値に対応する有価金属が高含有率のミル排石を回収し得るからである。   In the process of transporting the mill stone transported to the outside from the vertical mill 20, a sieving machine (not shown) may be provided as a collection device that selects and collects the mill stone in a predetermined particle size range from the mill stone. . By selecting and recovering mill waste in a predetermined particle size range with a recovery device, the ratio of the valuable metal content in the mill waste to the content of valuable metal in the raw material waste specified as the first specified value is greater than This is because the value is selected as the second specified value, and the valuable metal corresponding to the second specified value can recover the mill waste stone having a high content.

発明者等は、予め竪型ミル20の操業可能な範囲で操業条件を変化させ、ミル排石における金等の有価金属の含有率をミル排石の粒径範囲毎に測定した結果、竪型ミル20の操業条件と、ミル排石の粒径範囲と、ミル排石の粒径範囲に対する有価金属の含有率との間に、粒径が小径になるに従いミル排石における有価金属の含有率が向上するという関係があるという知見を得た。   The inventors changed the operating conditions in the range in which the vertical mill 20 can be operated in advance, and measured the content of valuable metals such as gold in the mill stone for each particle size range of the mill stone. Between the operating conditions of the mill 20, the particle size range of the mill waste stone, and the content rate of the valuable metal with respect to the particle size range of the mill waste stone, the content rate of the valuable metal in the mill waste stone as the particle diameter becomes smaller. The knowledge that there is a relationship of improving.

当該関係に基づいて、回収装置により回収されるミル排石の篩分けを行い、竪型ミル20の所定操業条件の下、例えば、原料廃棄物又はミル精粉における有価金属含有率に対するミル排石における有価金属含有率の比が、第2指定値(「第2指定値」は、原料廃棄物又はミル精粉における有価金属含有率に対するミル排石における有価金属含有率の比で表された、第1指定値よりも大きな値であり、例えば、原料廃棄物におけるCu含有率に対するミル排石におけるCu含有率の比が20倍、原料廃棄物におけるAu含有率に対するミル排石におけるAu含有率の比が20倍、原料廃棄物におけるAg含有率に対するミル排石におけるAg含有率の比が10倍、ミル精粉におけるCu含有率に対するミル排石におけるCu含有率に比が40倍、ミル精粉におけるAu含有率に対するミル排石におけるAu含有率の比が40倍、ミル精粉におけるAg含有率に対するミル排石におけるAg含有率の比が20倍をいう。)より高い値になるように、ミル排石の粒径を調整する。例えば、JIS Z 8801に規定するJIS篩により、好ましくは10[mm]を通過するミル排石、より好ましくは5[mm]を通過するミル排石を回収する。   Based on this relationship, the mill waste collected by the recovery device is screened, and the mill waste with respect to the valuable metal content in the raw material waste or mill fine powder, for example, under the predetermined operating conditions of the vertical mill 20 The ratio of the valuable metal content in the second designated value ("second designated value" is represented by the ratio of the valuable metal content in the mill stone to the valuable metal content in the raw material waste or mill fine powder, The value is larger than the first specified value. For example, the ratio of the Cu content in the mill waste to the Cu content in the raw material waste is 20 times, and the Au content in the mill waste relative to the Au content in the raw material waste The ratio is 20 times, the ratio of the Ag content in the mill stone to the Ag content in the raw material waste is 10 times, and the ratio of the Cu content in the mill stone is 40 times the Cu content in the mill fine powder The ratio of the Au content in the mill stone to the Au content in the mill fine powder is 40 times, and the ratio of the Ag content in the mill stone to the Ag content in the mill fine powder is 20 times.) In this way, the particle size of the mill stone is adjusted. For example, mill stones that preferably pass 10 [mm], more preferably mill stones that pass 5 [mm], are collected by a JIS sieve specified in JIS Z 8801.

尚、本実施形態の有価金属回収システム1では、乾燥機10、磁力選別機12,12’、篩分機14,14’,14”、粉砕機16、及び、渦電流選別機18から構成される予備処理システムを図1に示した。しかしながら、原料廃棄物の水分濃度、粒径等が、所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合すれば、予備処理システムの構成はこれに限定されるものではない。   The valuable metal recovery system 1 according to this embodiment includes a dryer 10, magnetic separators 12, 12 ′, sieving machines 14, 14 ′, 14 ″, a pulverizer 16, and an eddy current selector 18. The pretreatment system is shown in Fig. 1. However, if the moisture concentration, particle size, etc. of the raw material waste meet the operating conditions of the vertical mill 20 capable of forming mill fine powder having a desired particle size distribution, The configuration of the processing system is not limited to this.

[有価金属回収方法]
図1の有価金属回収システムを用いて、本実施形態の有価金属を含有する原料廃棄物、特に都市ごみである焼却灰から金等の有価金属を回収する方法を説明する。
[Recovery method for valuable metals]
A method of recovering valuable metals such as gold from raw material waste containing valuable metals according to the present embodiment, particularly incineration ash which is municipal waste, will be described using the valuable metal recovery system of FIG.

本方法は、有価金属を含有する原料廃棄物を予備処理する予備処理工程と、予備処理工程により予備処理された原料廃棄物を粉砕し、所定粒径分布のミル精粉とミル精粉以外のミル排石とに選別する粉砕工程と、有価金属の含有率を高めたミル排石を回収する回収工程とを備える。   This method includes a pretreatment step for pretreating raw material waste containing valuable metals, and a raw waste material pretreated by the pretreatment step, which is pulverized to obtain a mill particle having a predetermined particle size distribution and a mill powder other than the mill powder. A pulverization step for sorting into mill stones and a recovery step for collecting mill stones with increased content of valuable metals are provided.

(予備処理工程)
まず、原料廃棄物の含水率を低下させるために、原料廃棄物を乾燥する(乾燥工程)。廃棄物を乾燥し、竪型ミル20の操業条件に適合する所定水分濃度の原料廃棄物を形成するためである。また、原料廃棄物を乾燥させることにより、磁力選別機12,12’、篩分機14,14’,14”、及び、渦電流選別機18における選別を容易化するためである。
(Pretreatment process)
First, in order to reduce the moisture content of the raw material waste, the raw material waste is dried (drying step). This is because the waste is dried to form a raw material waste having a predetermined moisture concentration that meets the operating conditions of the vertical mill 20. In addition, by drying the raw material waste, the sorting in the magnetic separators 12 and 12 ', the sieving machines 14, 14' and 14 ", and the eddy current separator 18 is facilitated.

尚、廃棄物の含水率が所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合する場合、予備処理工程に当該乾燥工程を設けることは必ずしも必要ない。   In addition, when the moisture content of the waste meets the operating conditions of the vertical mill 20 that can form mill fine powder having a desired particle size distribution, it is not always necessary to provide the drying step in the preliminary treatment step.

次に、乾燥工程により乾燥させた原料廃棄物を、磁力選別機12により鉄等の磁性金属を廃棄物から選別する(第1磁力選別工程)。竪型ミル20に供給される原料廃棄物中に鉄等の磁性金属(例えば、鉄屑等)が含まれている場合、竪型ミル20の安定操業を困難化し、また、回収されるミル排石中の有価金属の含有率低下を招く可能性があるからである。   Next, the raw material waste dried in the drying step is separated from the waste by using a magnetic separator 12 from a magnetic metal such as iron (first magnetic separation step). When the raw material waste supplied to the vertical mill 20 contains a magnetic metal such as iron (for example, iron scraps), the stable operation of the vertical mill 20 becomes difficult and the recovered mill waste This is because the content of valuable metals in the stone may be reduced.

次に、第1磁力選別工程により鉄等の磁性金属が廃棄物から選別除去された原料廃棄物を、篩分機14より、所定粒径以下の廃棄物と、当該所定粒径を超える粒径の廃棄物とに選別した後、所定粒径を超える粒径の廃棄物を粗粉砕する。そして、粗粉砕された廃棄物は篩分機14より選別された所定粒径以下の廃棄物中に供給され、篩分機14’より、所定粒径以下の廃棄物と、当該所定粒径を超える粒径の廃棄物とに選別する(粗粉砕工程)。   Next, the raw material waste from which the magnetic metal such as iron is sorted and removed from the waste by the first magnetic sorting process is separated from the sieving machine 14 into a waste having a predetermined particle size or less and a particle size exceeding the predetermined particle size. After sorting into waste, the waste having a particle size exceeding a predetermined particle size is coarsely pulverized. Then, the coarsely pulverized waste is supplied into the waste having a predetermined particle size or less selected by the sieving machine 14, and the waste having the predetermined particle diameter or less is discharged from the sieving machine 14 'and the particles exceeding the predetermined particle size. Sort into diameter waste (coarse grinding process).

所定粒径以上の粒径の廃棄物がプロセスから選別除去されることにより、所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合させるためである。従って、廃棄物の粒径分布が所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合する場合、予備処理工程に当該粗粉砕工程を設けることは必ずしも必要ない。   This is because the waste having a particle size of a predetermined particle size or more is selected and removed from the process to meet the operating conditions of the vertical mill 20 that can form mill fine powder having a desired particle size distribution. Accordingly, when the particle size distribution of the waste meets the operating conditions of the vertical mill 20 that can form mill fine powder having a desired particle size distribution, it is not always necessary to provide the coarse pulverization step in the pretreatment step.

尚、図1に示されるように、本実施形態では、粗粉砕工程において、篩分機14’により選別除去された当該所定粒径を超える粒径の廃棄物は、便宜上、非磁性金属として回収する。   As shown in FIG. 1, in this embodiment, in the coarse pulverization step, waste having a particle size exceeding the predetermined particle size selected and removed by the sieving machine 14 'is recovered as a nonmagnetic metal for convenience. .

次に、粗粉砕工程より粗粉砕された所定粒径以下の原料廃棄物を、磁力選別機12’により鉄等の磁性金属を廃棄物から選別する(第2磁力選別工程)。粗粉砕工程により粗粉砕された廃棄物から、鉄等の磁性金属を効率良く回収できる。図1に示されるように、本実施形態では、第1磁力選別工程及び第2磁力選別工程により回収された鉄屑等の廃棄物は、磁性金属として回収される。   Next, the raw material waste having a predetermined particle size or less coarsely pulverized in the coarse pulverization step is selected from the magnetic metal such as iron by the magnetic separator 12 '(second magnetic separation step). Magnetic metal such as iron can be efficiently recovered from waste roughly pulverized by the coarse pulverization step. As shown in FIG. 1, in the present embodiment, wastes such as iron scraps collected by the first magnetic sorting process and the second magnetic sorting process are collected as magnetic metals.

尚、第2磁力選別工程において、廃棄物から選別された鉄等の磁性金属に対して、所定粒径以下の磁性金属を竪型ミル20に回収し、磁性金属に付着した磁性金属ではない原料廃棄物の数量を増やしてもよい。   In addition, in the second magnetic separation process, the magnetic metal having a predetermined particle size or less is collected in the vertical mill 20 with respect to the magnetic metal such as iron selected from the waste, and the raw material is not the magnetic metal attached to the magnetic metal. The quantity of waste may be increased.

次に、第2磁力選別工程により磁性金属が選別除去された原料廃棄物を、渦電流選別機18により、アルミニウムを選別する(渦電流選別工程)。渦電流選別工程により選別されたアルミニウムは非磁性金属として回収される。そして、渦電流選別工程によりアルミニウムが選別除去された原料廃棄物は竪型ミル20に供給される。尚、予備処理工程に当該渦電流選別工程を設けることは必ずしも必要ではなく、後述する粉砕工程の後工程として渦電流選別工程を設けてもよい。   Next, the eddy current sorter 18 sorts aluminum from the raw material waste from which the magnetic metal has been sorted and removed by the second magnetic sorting process (eddy current sorting process). Aluminum selected by the eddy current selection process is recovered as a nonmagnetic metal. The raw material waste from which the aluminum has been sorted and removed by the eddy current sorting step is supplied to the vertical mill 20. In addition, it is not always necessary to provide the eddy current selection step in the preliminary processing step, and an eddy current selection step may be provided as a step after the crushing step described later.

以上、本実施形態の予備処理工程により予備処理された原料廃棄物は、低含水率の粉体であるので取扱いが容易であり、セメント原料とするために予め石灰石等の他の原料と調合してから粉砕工程に供してもよい。   As described above, the raw material waste pretreated by the pretreatment process of the present embodiment is easy to handle because it is a powder having a low water content, and is previously blended with other raw materials such as limestone to form a cement raw material. Then, it may be used for the pulverization step.

以上、本実施形態の予備処理工程において、乾燥工程、第1磁力選別工程、第2磁力選別工程、粗粉砕工程、及び、渦電流選別工程により、所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合させた原料廃棄物となるように予備処理した。しかしながら、原料廃棄物の含水率、粒径等が、所望粒径分布を有するミル精粉を形成し得る竪型ミル20の操業条件に適合すれば、適宜各工程の順序、採否を選択でき、予備処理工程の構成はこれに限定されるものではない。   As described above, in the pretreatment process of the present embodiment, the mill fine powder having the desired particle size distribution is formed by the drying process, the first magnetic field selection process, the second magnetic field selection process, the coarse pulverization process, and the eddy current selection process. Pretreatment was carried out so as to obtain raw material waste adapted to the operating conditions of the obtained vertical mill 20. However, if the moisture content, particle size, etc. of the raw material waste meet the operating conditions of the vertical mill 20 capable of forming mill fine powder having a desired particle size distribution, the order of each step can be selected as appropriate, The configuration of the pretreatment process is not limited to this.

(粉砕工程)
次に、竪型ミル20を用いて、予備処理工程により予備処理された原料廃棄物を粉砕し、粉砕の結果得られる所定粒径分布を有するミル精粉と、当該所定粒径分布の上限値よりも粒径が大きい粗粉を含むミル排石とに選別する(粉砕工程)。
(Crushing process)
Next, the mill waste having a predetermined particle size distribution obtained as a result of pulverizing the raw material waste pretreated in the pretreatment step using the vertical mill 20, and an upper limit value of the predetermined particle size distribution To mill stone containing coarse powder having a larger particle size than that (grinding step).

ミル精粉は、セメント原料として有用である。本実施形態では、第1磁力選別工程、第2磁力選別工程で磁性のステンレスが分離され、さらに粉砕工程で非磁性のステンレスもミル排石として分離されるので、セメント中の有害物質である六価クロムを生成し得るCr含有率が低減されたセメント原料を得ることができる。   Mill fine powder is useful as a raw material for cement. In the present embodiment, magnetic stainless steel is separated in the first magnetic separation process and the second magnetic separation process, and nonmagnetic stainless steel is also separated as mill waste in the pulverization process. A cement raw material with a reduced Cr content capable of producing valent chromium can be obtained.

(回収工程)
そして、有価金属、特に、銅、亜鉛、銀、及び、金の含有率を高めたミル排石を回収する(回収工程)。原料廃棄物において、金等の有価金属の含有率は低く、含有率の変動も大きいが、ミル排石中における金等の有価金属の含有率を高めたミル排石を回収することにより、原料廃棄物中の金等の有価金属を効率的に回収でき、製錬原料として用いることができる。
(Recovery process)
And the mill waste stone which raised the content rate of valuable metals, especially copper, zinc, silver, and gold | metal | money is collect | recovered (collection process). In raw material waste, the content of valuable metals such as gold is low and the fluctuation of the content is large, but the raw material is recovered by collecting mill waste stones with increased content of valuable metals such as gold in the mill waste stones. Valuable metals such as gold in the waste can be efficiently recovered and used as a smelting raw material.

ミル排石は、さらに磁力選別工程、渦電流選別(図示せず)を行って、銅、亜鉛、銀、及び、金の含有率を高めてもよい。とくに、磁力選別は、非磁性のステンレスは竪型ミル20で衝撃が加わることで変形して磁性を帯びる傾向があり、当該ステンレスを選別除去することにより、ミル排石中の銅、亜鉛、銀、及び、金の含有率を高めることができる。   The mill stone may be further subjected to a magnetic force sorting step and eddy current sorting (not shown) to increase the content of copper, zinc, silver, and gold. In particular, in the magnetic sorting, non-magnetic stainless steel tends to become magnetized by deformation by the impact of the vertical mill 20, and by removing the stainless steel, copper, zinc, silver in the mill waste stone is removed. And the content rate of gold can be increased.

ミル排石中の銅、亜鉛、銀、及び、金の含有率が所望の値とならなかった場合は、再度原料廃棄物として、又は、予備処理された原料廃棄物として、竪型ミル20に投入し、原料廃棄物とともに粉砕する。   If the content of copper, zinc, silver, and gold in the mill waste stone does not reach the desired value, the raw mill waste 20 is again used as raw material waste or pretreated raw material waste. Input and pulverize with raw material waste.

以下、図1の有価金属回収システムを用い、原料廃棄物である都市ごみ焼却灰に対して有価金属回収方法を実施した実施例を説明する。   Hereinafter, the Example which implemented the valuable metal recovery method with respect to the municipal waste incineration ash which is a raw material waste using the valuable metal recovery system of FIG. 1 is described.

予備処理システムにおいて、市販されている乾燥機、磁力選別機、渦電流選別機、粗粉砕機、及び、篩分機を用いた。また、JIS篩による90[μm]残分が5〜50[質量%]のミル精粉を形成できる、テーブル径1800[mm]のテーブルと、平均ローラ径1120[mm]の3個の粉砕ローラとを備える竪型ミルを用いた。   In the pretreatment system, a commercially available dryer, magnetic separator, eddy current separator, coarse pulverizer, and sieving machine were used. Further, a table having a table diameter of 1800 [mm] and three grinding rollers having an average roller diameter of 1120 [mm] capable of forming mill fine powder having a 90 [μm] residue of 5 to 50 [mass%] by a JIS sieve. A vertical mill provided with

原料廃棄物は乾燥機により5[wt%]以下に乾燥した。また、原料廃棄物は磁力選別機により予め磁性金属を除去してから、粗粉砕機により最大粒径20[mm]以下になるように粗粉砕した。粒径が20[mm]以下に粗粉砕されなかったもの、及び粒径が20[mm]以下であっても磁力選別されずに渦電流選別されたものを非磁性金属として回収した。   The raw material waste was dried to 5 wt% or less by a dryer. The raw material waste was preliminarily pulverized with a coarse pulverizer so that the maximum particle size was 20 [mm] or less after the magnetic metal was previously removed by a magnetic separator. Those that were not coarsely pulverized to a particle size of 20 [mm] or less and those that were eddy current-selected without being subjected to magnetic force selection even when the particle size was 20 [mm] or less were recovered as nonmagnetic metals.

また、磁力選別されたことによって渦電流選別されなかったものに対して篩分機により、5[mm]を超える鉄等を磁性金属として回収した。そして、磁性金属及び非磁性金属が選別除去された原料廃棄物を竪型ミルに供給した。   Further, iron or the like exceeding 5 [mm] was collected as a magnetic metal by a sieving machine for those that were not subjected to eddy current selection due to magnetic selection. And the raw material waste from which the magnetic metal and the nonmagnetic metal were selectively removed was supplied to the vertical mill.

竪型ミルの運転条件は、粉砕量14〜22[t/H]、分級機回転数700〜730[rpm]、熱風の通風量1000〜1200[m/min]であった。 The operating conditions of the vertical mill were a grinding amount of 14 to 22 [t / H], a classifier rotation speed of 700 to 730 [rpm], and a hot air flow rate of 1000 to 1200 [m 3 / min].

表1及び表2に、上記運転条件の下で、有価金属回収システムを用いて有価金属回収方法を実施した結果を示す。尚、各金属の含有率は、無水ベースのものであり、各金属元素について測定したものである(Fe:JISM 8212,Al:JIS M 8220,Cu:JIS M8121,Zn:JIS M 8124,Au及びAg:JIS M 8111)。   Tables 1 and 2 show the results of carrying out the valuable metal recovery method using the valuable metal recovery system under the above operating conditions. In addition, the content rate of each metal is an anhydrous base, and is measured about each metal element (Fe: JISM 8212, Al: JIS M 8220, Cu: JIS M8121, Zn: JIS M8124, Au and Ag: JIS M 8111).

表1は、有価金属回収システムを1日間もしくは3日間運転して得られたミル排石中の金属(鉄、アルミニウム、銅、亜鉛、金、銀)の含有率を示したものである。尚、ケイ素、カルシウム等については、表1に記載しなかった。表2は、実施例6により得られた非磁性金属と、磁性金属と、ミル排石と、ミル精粉の金属含有率を示したものである。尚、焼却灰の金属含有率は、非磁性金属と、磁性金属と、ミル排石と、ミル精粉(90[μm]残分33[質量%])の金属含有率から逆算して求めた。   Table 1 shows the content of metals (iron, aluminum, copper, zinc, gold, silver) in mill stone obtained by operating the valuable metal recovery system for 1 day or 3 days. In addition, about silicon, calcium, etc., it did not describe in Table 1. Table 2 shows the metal content of the nonmagnetic metal, magnetic metal, mill stone, and mill fine powder obtained in Example 6. The metal content of the incinerated ash was calculated from the metal content of non-magnetic metal, magnetic metal, mill stone, and mill fine powder (90 [μm] residue 33 [mass%]). .

Figure 2016089196
Figure 2016089196

Figure 2016089196
Figure 2016089196

表3は、実施例6における金属の分配を示したものである。さらに、実施例6及び実施例7で得られたミル排石を約3[kg]分取し、粒径ごとに篩分けし、直径20[cm]の円柱容器内でネオジム棒磁石にて20分間磁力選別を行った。その結果得られた、粒径により分類した粒群毎の磁性物と非磁性物の金属含有率を表4に示した。尚、表4において、重量%で表された磁性物及び非磁性物は、小数点以下1桁を四捨五入した値を示している。   Table 3 shows the metal distribution in Example 6. Furthermore, about 3 [kg] of the milled stone obtained in Example 6 and Example 7 was collected, sieved for each particle size, and 20 Nd in a 20 [cm] cylindrical container with a neodymium bar magnet. Magnetic sorting was performed for a minute. Table 4 shows the metal content of the magnetic material and the nonmagnetic material for each particle group classified by the particle size obtained as a result. In Table 4, the magnetic material and non-magnetic material expressed by weight% show values obtained by rounding off one decimal place.

Figure 2016089196
Figure 2016089196

Figure 2016089196
Figure 2016089196

表1に示されるように、ミル排石において、銅、亜鉛の含有率は、一般的な天然の鉱石と比較して、2〜10倍であり、また、金、銀の含有率は10倍以上となった。さらに、表2に示されるように、銅、亜鉛、金、銀のミル排石中の含有率が焼却灰の10倍以上になり、特に、ミル排石における金、銀の含有率[g/t]が、顕著に高いことがわかる。また、表3に示されるように、特に金の回収率が高く、銅、亜鉛、銀の回収率も高いことがわかる。   As shown in Table 1, in mill stone, the content of copper and zinc is 2 to 10 times that of general natural ore, and the content of gold and silver is 10 times. That's it. Furthermore, as shown in Table 2, the content of copper, zinc, gold, and silver in the milled stone is 10 times or more that of incinerated ash, and in particular, the content of gold and silver in the milled stone [g / It can be seen that t] is significantly higher. Further, as shown in Table 3, it can be seen that the recovery rate of gold is particularly high and the recovery rates of copper, zinc, and silver are also high.

従って、原料廃棄物において金等の有価金属の含有率は非常に低く、含有率の変動も大きいが、ミル排石中における金等の有価金属の含有率は顕著に高められ、銅、亜鉛、金、銀の製錬用原料として、ミル排石が有用であることがわかる。また、ミル排石を回収することにより、これまで回収されていなかった廃棄物中の金等の有価金属を効率的に回収でき、資源のリサイクルに大きく貢献することができる。   Therefore, the content of valuable metals such as gold in the raw material waste is very low and the fluctuation of the content is large, but the content of valuable metals such as gold in the mill stone is remarkably increased, copper, zinc, It turns out that mill waste stone is useful as a raw material for smelting gold and silver. In addition, by collecting mill waste stone, valuable metals such as gold in the waste that have not been collected can be efficiently collected, which can greatly contribute to resource recycling.

さらに、表4に示されるように、粒度が細かいミル排石を選別することにより、銅、亜鉛、金、銀のミル排石における含有率が高くなることがわかる。また、ミル排石から非磁性物を回収することにより、銅、亜鉛、金、銀のミル排石における含有率が高くなることがわかる。   Further, as shown in Table 4, it can be seen that by selecting mill stones having a fine particle size, the content of copper, zinc, gold, and silver in the mill stones increases. Moreover, it turns out that the content rate in the mill stone of copper, zinc, gold | metal | money, and silver becomes high by collect | recovering nonmagnetic substances from mill stone.

1…有価金属回収システム1、10…乾燥機、12,12’…磁力選別機、14,14’,14”…篩分機、16…粉砕機、18…渦電流選別機18、20…竪型ローラーミル(竪型ミル)、22…本体部、24…粉砕部、26…原料供給路、28A…粉砕ローラ、28B…テーブル、29…ダムリング、30…ガス導入口、32…上昇ガス流、34…分級機、36…排出口、38…開口部。   DESCRIPTION OF SYMBOLS 1 ... Valuable metal recovery system 1, 10 ... Dryer, 12, 12 '... Magnetic separator, 14, 14', 14 "... Sieving machine, 16 ... Crusher, 18 ... Eddy current sorter 18, 20 ... Vertical type Roller mill (vertical mill), 22 ... body part, 24 ... grinding part, 26 ... raw material supply path, 28A ... grinding roller, 28B ... table, 29 ... dam ring, 30 ... gas inlet, 32 ... rising gas flow, 34: classifier, 36: outlet, 38 ... opening.

Claims (6)

有価金属を含有する原料廃棄物を予備処理する予備処理工程と、
前記予備処理工程により予備処理された前記原料廃棄物を粉砕し、当該粉砕の結果得られる所定粒径分布を有するミル精粉と、前記所定粒径分布よりも大径側にある粒径分布を有する粗粉を含むミル排石とを選別する工程であって、前記ミル精粉の前記所定粒径分布を調整するように当該粉砕及び当該選別を実行することにより、前記原料廃棄物又は前記ミル精粉における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比を第1指定値以上になるように調整する粉砕工程と、
前記ミル排石を回収する回収工程とを備え、
前記予備処理工程は、前記原料廃棄物の含水率を低下させる乾燥工程、前記原料廃棄物を所定値以下の粒径の原料廃棄物に粉砕する粗粉砕工程、前記原料廃棄物に対して磁力選別を行う磁力選別工程、及び、前記原料廃棄物に対して渦電流選別を行う渦電流選別工程のうち少なくとも1つの工程を含む、有価金属回収方法。
A pretreatment process for pretreating raw material waste containing valuable metals;
Milling the raw material waste pretreated by the pretreatment step, mill fine powder having a predetermined particle size distribution obtained as a result of the grinding, and a particle size distribution on the larger diameter side than the predetermined particle size distribution A step of selecting mill waste containing coarse powder having the raw material waste or the mill by performing the pulverization and the selection so as to adjust the predetermined particle size distribution of the mill fine powder. A crushing step of adjusting the ratio of the content of valuable metals in the mill stone to the content of valuable metals in the fine powder so as to be equal to or higher than the first specified value;
A recovery step of recovering the mill waste stone,
The preliminary treatment step includes a drying step for reducing the moisture content of the raw material waste, a coarse pulverization step for pulverizing the raw material waste into raw material waste having a particle size of a predetermined value or less, and magnetic separation for the raw material waste. A method for recovering valuable metals, comprising at least one of a magnetic selection process for performing eddy current selection and an eddy current selection process for performing eddy current selection on the raw material waste.
請求項1記載の有価金属回収方法において、
前記回収工程は、前記ミル排石の一部であって、前記原料廃棄物における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比が前記第1指定値より高い第2指定値以上である所定粒径範囲の粒径が含まれる前記ミル排石を回収することを特徴とする有価金属回収方法。
The valuable metal recovery method according to claim 1,
The recovery step is a part of the mill waste stone, wherein a ratio of a valuable metal content rate in the mill waste stone to a valuable metal content rate in the raw material waste is higher than the first designated value. A valuable metal recovery method for recovering the mill stone containing a particle size in a predetermined particle size range equal to or greater than a value.
請求項1又は2記載の有価金属回収方法において、
前記原料廃棄物は都市ごみ焼却灰である有価金属回収方法。
In the valuable metal recovery method according to claim 1 or 2,
The method for recovering valuable metals, wherein the raw material waste is municipal waste incineration ash.
請求項1〜3のいずれか一項記載の有価金属回収方法において、
前記有価金属は、金及び銀のうち少なくとも1つである有価金属回収方法。
In the valuable metal collection | recovery method as described in any one of Claims 1-3,
The valuable metal recovery method, wherein the valuable metal is at least one of gold and silver.
有価金属を含有する原料廃棄物を予備処理する予備処理システムと、
前記予備処理システムにより調整された前記原料廃棄物を粉砕し、当該粉砕の結果得られる所定粒径分布を有するミル精粉と、前記所定粒径分布よりも大径側にある粒径分布を有する粗粉を含むミル排石とを選別するとともに、前記ミル精粉の前記所定粒径分布を調整するように当該粉砕及び当該選別を実行することにより、前記原料廃棄物又は前記ミル精粉における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比を第1指定値以上になるように調整する竪型ミルとを備え、
前記予備処理システムは、前記原料廃棄物の含水率を低下させる乾燥機、前記原料廃棄物を所定値以下の粒径の原料廃棄物に粉砕する粗粉砕機、前記原料廃棄物に対して磁力選別を行う磁力選別機、及び、前記原料廃棄物に対して渦電流選別を行う渦電流選別機のうち少なくとも1つを含む、有価金属回収システム。
A pretreatment system for pretreating raw material waste containing valuable metals;
The raw material waste prepared by the pretreatment system is pulverized, the mill fine powder having a predetermined particle size distribution obtained as a result of the pulverization, and a particle size distribution on the larger diameter side than the predetermined particle size distribution The mill waste containing coarse powder is sorted and the pulverization and the sorting are performed so as to adjust the predetermined particle size distribution of the mill fine powder. A vertical mill that adjusts the ratio of the content of valuable metal in the mill waste stone to the content of metal to be equal to or higher than the first specified value;
The preliminary treatment system includes a dryer that reduces the moisture content of the raw material waste, a coarse pulverizer that pulverizes the raw material waste into raw material waste having a particle size of a predetermined value or less, and magnetic separation for the raw material waste. A valuable metal recovery system including at least one of a magnetic separator for performing eddy current selection and an eddy current separator for performing eddy current selection on the raw material waste.
請求項5記載の有価金属回収システムにおいて、
前記ミル排石の一部であって、前記原料廃棄物における有価金属の含有率に対する前記ミル排石における有価金属の含有率の比が前記第1指定値より高い第2指定値以上である所定粒径範囲の粒径が含まれる前記ミル排石を回収する回収装置を備える有価金属回収システム。
In the valuable metal recovery system according to claim 5,
A predetermined part of the mill waste stone, wherein a ratio of a valuable metal content rate in the mill waste stone to a valuable metal content rate in the raw material waste is equal to or higher than a second designated value higher than the first designated value. A valuable metal recovery system including a recovery device for recovering the mill waste stone having a particle size in a particle size range.
JP2014222030A 2014-10-30 2014-10-30 Valuable metal recovery method and valuable metal recovery system Active JP6375205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222030A JP6375205B2 (en) 2014-10-30 2014-10-30 Valuable metal recovery method and valuable metal recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222030A JP6375205B2 (en) 2014-10-30 2014-10-30 Valuable metal recovery method and valuable metal recovery system

Publications (2)

Publication Number Publication Date
JP2016089196A true JP2016089196A (en) 2016-05-23
JP6375205B2 JP6375205B2 (en) 2018-08-15

Family

ID=56018921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222030A Active JP6375205B2 (en) 2014-10-30 2014-10-30 Valuable metal recovery method and valuable metal recovery system

Country Status (1)

Country Link
JP (1) JP6375205B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106944463A (en) * 2017-04-15 2017-07-14 湖南北控威保特环境科技股份有限公司 A kind of scattered domestic garbage resource utilizes equipment
WO2018061545A1 (en) * 2016-09-28 2018-04-05 太平洋セメント株式会社 Incinerated-ash treatment device and treatment method
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof
JP2018075543A (en) * 2016-11-10 2018-05-17 Jx金属株式会社 Processing method
EP3486336A1 (en) 2017-11-17 2019-05-22 Taiheiyo Cement Corporation Metal-containing waste treatment method
JP2020011194A (en) * 2018-07-18 2020-01-23 株式会社神戸製鋼所 Recovery method of valuables from steelmaking slag
JP2021003661A (en) * 2019-06-25 2021-01-14 太平洋セメント株式会社 Treatment apparatus and treatment method for incineration bottom ash
KR102234211B1 (en) * 2020-09-18 2021-03-31 주식회사 엠에스자원 Automatic apparatus for sorting of industrial waste
US20210277498A1 (en) * 2018-06-25 2021-09-09 Thomas A. Valerio Method, process, and system of using a mill to separate metals from fibrous feedstock
JP2021138579A (en) * 2020-03-06 2021-09-16 太平洋セメント株式会社 Method for producing chromium-reduced cement raw material
JP7573482B2 (en) 2021-05-11 2024-10-25 太平洋セメント株式会社 Method for recovering valuable metals from waste

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157651A (en) * 1997-08-08 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment of shredder dust and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157651A (en) * 1997-08-08 1999-03-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment of shredder dust and device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014092B2 (en) 2016-09-28 2021-05-25 Taiheiyo Cement Corporation Incinerated-ash treatment device and treatment method
WO2018061545A1 (en) * 2016-09-28 2018-04-05 太平洋セメント株式会社 Incinerated-ash treatment device and treatment method
JP2018058059A (en) * 2016-09-28 2018-04-12 太平洋セメント株式会社 Processing apparatus of incineration ash and processing method thereof
JP7017855B2 (en) 2016-09-28 2022-02-09 太平洋セメント株式会社 Incinerator ash treatment equipment and treatment method
JP2018075543A (en) * 2016-11-10 2018-05-17 Jx金属株式会社 Processing method
CN106944463A (en) * 2017-04-15 2017-07-14 湖南北控威保特环境科技股份有限公司 A kind of scattered domestic garbage resource utilizes equipment
EP3486336A1 (en) 2017-11-17 2019-05-22 Taiheiyo Cement Corporation Metal-containing waste treatment method
US20210277498A1 (en) * 2018-06-25 2021-09-09 Thomas A. Valerio Method, process, and system of using a mill to separate metals from fibrous feedstock
JP2020011194A (en) * 2018-07-18 2020-01-23 株式会社神戸製鋼所 Recovery method of valuables from steelmaking slag
JP2021003661A (en) * 2019-06-25 2021-01-14 太平洋セメント株式会社 Treatment apparatus and treatment method for incineration bottom ash
JP7143255B2 (en) 2019-06-25 2022-09-28 太平洋セメント株式会社 Incineration bottom ash processing equipment
JP2021138579A (en) * 2020-03-06 2021-09-16 太平洋セメント株式会社 Method for producing chromium-reduced cement raw material
JP7406407B2 (en) 2020-03-06 2023-12-27 太平洋セメント株式会社 Manufacturing method of chromium-reduced cement raw material
KR102234211B1 (en) * 2020-09-18 2021-03-31 주식회사 엠에스자원 Automatic apparatus for sorting of industrial waste
JP7573482B2 (en) 2021-05-11 2024-10-25 太平洋セメント株式会社 Method for recovering valuable metals from waste

Also Published As

Publication number Publication date
JP6375205B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6375205B2 (en) Valuable metal recovery method and valuable metal recovery system
JP6465825B2 (en) Method and apparatus for recovering precious metals from incinerated ash
CA2866770A1 (en) Extraction process of clay, silica and iron ore by dry concentration
US11130141B2 (en) System and method for recovering glass and metal from a mixed waste stream
JP2018058059A (en) Processing apparatus of incineration ash and processing method thereof
JPS63116794A (en) Method of recovering available substance from garbage fuel ash
KR102667916B1 (en) Air separation methods and equipment
JP2017013024A (en) Method for recovering metal pieces from mixed waste including plastic and metal pieces
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
JP2020069406A (en) Processing device and processing method of metal-containing waste
JP6817127B2 (en) How to treat shredder dust
EP3325166B1 (en) System and method for recovering desired materials and producing clean aggregate from incinerator ash
WO2017172980A1 (en) Use of multi-gravity separation to recover metals from iba, asr, and electronic scrap
RU2577777C1 (en) Method and process line for enrichment of waste of mining and processing enterprises
JP2020093184A (en) Processing method and processing equipment for metal-containing waste
JP5827990B2 (en) Method and equipment for grinding mineral material containing at least calcium and metal impurities
JP2023132909A (en) Method of treating metal-containing waste
JP7084840B2 (en) Metal-containing waste treatment equipment and treatment method
JP6938414B2 (en) How to dispose of parts waste
JPH0975853A (en) Treatment method for shredder dust incineration ash
JP5409269B2 (en) Dust recovery method in scrap shredder equipment
JP7204590B2 (en) Valuable metal recovery method and recovery system
JP7573482B2 (en) Method for recovering valuable metals from waste
JP2024129563A (en) Method for recovering valuable metals from valuable metal-containing waste
JP7461167B2 (en) Bottom ash treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6375205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250