JP2016088757A - Phosphate fertilizer raw material and manufacturing method therefor - Google Patents

Phosphate fertilizer raw material and manufacturing method therefor Download PDF

Info

Publication number
JP2016088757A
JP2016088757A JP2014220732A JP2014220732A JP2016088757A JP 2016088757 A JP2016088757 A JP 2016088757A JP 2014220732 A JP2014220732 A JP 2014220732A JP 2014220732 A JP2014220732 A JP 2014220732A JP 2016088757 A JP2016088757 A JP 2016088757A
Authority
JP
Japan
Prior art keywords
mass
raw material
phase
phosphate fertilizer
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014220732A
Other languages
Japanese (ja)
Other versions
JP6458449B2 (en
Inventor
基紘 坂元
Motohiro Sakamoto
基紘 坂元
佐々木 直人
Naoto Sasaki
直人 佐々木
佳世 眞鍋
Kayo Manabe
佳世 眞鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014220732A priority Critical patent/JP6458449B2/en
Publication of JP2016088757A publication Critical patent/JP2016088757A/en
Application granted granted Critical
Publication of JP6458449B2 publication Critical patent/JP6458449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fertilizers (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a phosphate fertilizer raw material having high fertilizer effect while containing iron oxide and a manufacturing method therefor.SOLUTION: There are provided a phosphate fertilizer raw material containing CaO, SiO, POand iron oxide (in terms of Fe) of total 60% or more, having a basicity α represented by mass concentration ratio of CaO and SiOof 1.5 to 3.0 inclusive and containing POof 8 mass% to (-4α+23α-4) mass% inclusive and iron oxide in terms of Fe of 5 mass% to 25 mass% inclusive, the phosphate fertilizer raw material having a total of existing concentrations of one or more of Ca(PO)-CaSiOsolid solution, 5CaO SiOPOand 7CaO 2SiOPOof 28 mass% or more. A molten slag having the above composition at 1250 to 1400°C is cooled at 10°C/min or more till 600°C.SELECTED DRAWING: Figure 3

Description

本発明は、リン酸肥料原料及びその製造方法に関するものである。   The present invention relates to a phosphate fertilizer raw material and a method for producing the same.

我が国は降水量が多いので、土壌からミネラル分が流出して、土壌が酸性化し易い。そのため、植物を生育させる際に使用するリン酸肥料には土壌中のリン酸濃度だけでなく、土壌pHも同時に増加させる塩基性リン酸肥料が広く使用されている。現在、塩基性リン酸肥料として、アルカリ分を多く含む溶成リン肥が利用されている。   Since Japan has a large amount of precipitation, minerals flow out of the soil and the soil is easily acidified. Therefore, basic phosphate fertilizers that increase not only the phosphate concentration in soil but also soil pH are widely used as phosphate fertilizers used when growing plants. At present, as a basic phosphate fertilizer, dissolved phosphorus fertilizer containing a large amount of alkali is used.

非特許文献1に示すように、過去には、製鋼法の1つであるトーマス製鋼法で副産物として製造されるトーマスリン肥が、塩基性リン酸肥料としても利用されてきた。しかし、現在は、トーマス製鋼法が衰退したため、トーマスリン肥は使用されていない。   As shown in Non-Patent Document 1, in the past, Thomaslin fertilizer manufactured as a by-product in the Thomas steelmaking method, which is one of steelmaking methods, has been used as a basic phosphate fertilizer. However, because of the decline of the Thomas steelmaking method, Thomaslin fertilizer is not used at present.

現在、高炉から出銑された溶銑は不純物として約0.1%のリンを含んでいるが、リンは、製鋼工程でフラックスを添加し酸素を吹き込むことで酸化除去されて、製鋼スラグとして排出されている。   Currently, the hot metal discharged from the blast furnace contains about 0.1% phosphorus as an impurity. Phosphorus is oxidized and removed by adding flux and blowing oxygen in the steelmaking process and discharged as steelmaking slag. ing.

特許文献1に示すように、製鋼スラグのリン酸濃度は1〜4質量%程度であり、リン酸肥料として十分な濃度ではないものの、製鋼スラグ中には、フラックス由来のCaO分や溶銑から酸化除去されたSiO2分が多量に含まれているので、ケイ酸リン酸肥料として利用されている。 As shown in Patent Document 1, the steelmaking slag has a phosphoric acid concentration of about 1 to 4% by mass, which is not a sufficient concentration as a phosphate fertilizer, but the steelmaking slag is oxidized from the CaO content derived from the flux and the hot metal. Since the removed SiO 2 component is contained in a large amount, it is used as a silicate phosphate fertilizer.

しかし、現在でもリン酸肥料の原料であるリン鉱石の全量を輸入に依存している我が国では、製鋼スラグ中のリン酸分は有用なリン酸肥料資源として考えられており、特許文献2〜4に示すように、製鋼スラグ中のリン酸分を濃縮して高リン酸スラグを製造し、製鋼スラグからリン酸肥料を製造することが試みられている。   However, in Japan, which still depends on imports for the total amount of phosphate ore that is a raw material for phosphate fertilizer, the phosphoric acid content in steelmaking slag is considered as a useful phosphate fertilizer resource. As shown in Fig. 2, attempts have been made to produce phosphoric acid fertilizer from steelmaking slag by concentrating the phosphoric acid content in steelmaking slag to produce high phosphoric acid slag.

ところで、上記リン酸肥料を肥料として使用する際において肥料効果を高めるには、リン酸濃度だけではなく、リンの結晶状態や鉱物相を制御する必要がある。例えば、上記溶成リン肥は、燐鉱石と酸化マグネシウムを融解し混合して、ジェット水流で急冷して製造した肥料であり、リン含有鉱物相を、非晶質、即ち、ガラスにすることにより、肥料効果を高めている。   By the way, in order to enhance the fertilizer effect when using the phosphate fertilizer as a fertilizer, it is necessary to control not only the phosphoric acid concentration but also the crystal state and mineral phase of phosphorus. For example, the above-mentioned melted phosphorus fertilizer is a fertilizer manufactured by melting and mixing phosphate ore and magnesium oxide and quenching with a jet water stream, and the phosphorus-containing mineral phase is made amorphous, that is, glass. , Enhance the fertilizer effect.

なお、本発明でのリン含有鉱物相とは、肥料中各鉱物相の中でリンが濃化した相を指すこととする。   The phosphorus-containing mineral phase in the present invention refers to a phase in which phosphorus is concentrated in each mineral phase in the fertilizer.

非特許文献1に示すように、トーマスリン肥は、主成分がCaO、P25、及び、SiO2であるので、リン含有鉱物相が、Ca3(PO42−Ca2SiO4固溶体相、5CaO・SiO2・P25相、又は、7CaO・2SiO2・P25相(以下、「固溶体相」と総称する場合がある。)である。固溶体相は、肥料効果の高い鉱物相である。 As shown in Non-Patent Document 1, Thomas phosphorus fertilizer is mainly composed of CaO, P 2 O 5 and SiO 2 , so that the phosphorus-containing mineral phase is Ca 3 (PO 4 ) 2 —Ca 2 SiO 4. It is a solid solution phase, 5CaO · SiO 2 · P 2 O 5 phase, or 7CaO · 2SiO 2 · P 2 O 5 phase (hereinafter sometimes referred to as "solid solution phase"). The solid solution phase is a mineral phase with a high fertilizer effect.

特許文献3には、組成を制御することにより、リン酸肥料中のリンの鉱物相を意図的にCa3(PO42相(以下「C3P相」と記載することがある。)を形成して肥料効果を高めることが開示されている。 In Patent Document 3, by controlling the composition, the mineral phase of phosphorus in the phosphate fertilizer is intentionally described as a Ca 3 (PO 4 ) 2 phase (hereinafter sometimes referred to as “C 3 P phase”). To increase the effect of fertilizer by forming

このように、高リン酸スラグ中で肥料効果が高いリン含有鉱物相は、ガラス相、固溶体相、及び、C3P相であると考えられている。 Thus, the fertilizer effect in high phosphate slag is high phosphorus-containing mineral phase is a glass phase, solid solution phase, and is believed to be a C 3 P phase.

特許第5105322号公報Japanese Patent No. 5105322 特開平11−158526号公報JP-A-11-158526 特開2009−132544号公報JP 2009-132544 A 特開2011−208277号公報JP 2011-208277 A

日本土壌肥料学雑誌、第13巻、p93Japan Soil Fertilizer Journal, Vol. 13, p93

リン酸肥料の原料であるリン鉱石を海外から輸入している我が国では、溶銑中のリンは非常に魅力的な資源である。溶銑中のリンや製鋼スラグ中のリン酸分を原料として、リン酸肥料を製造する場合、リン酸肥料への酸化鉄の混入は不可避であるため、酸化鉄を含んで、リン酸濃度が高く、肥料効果が高いリン酸肥料を開発することが望まれている。   In Japan, where phosphorus ore, the raw material for phosphate fertilizer, is imported from overseas, phosphorus in hot metal is a very attractive resource. When producing phosphate fertilizer using phosphoric acid in hot metal or phosphoric acid in steelmaking slag, it is inevitable that iron oxide is mixed into the phosphate fertilizer. Therefore, it is desired to develop a phosphate fertilizer with high fertilizer effect.

しかし、酸化鉄を含有するリン酸肥料原料、又は、製鋼スラグを原料とする肥料効果の高いリン酸肥料原料や、その製造方法は開発されていない。   However, a phosphate fertilizer raw material containing iron oxide, a phosphate fertilizer raw material having a high fertilizer effect using steelmaking slag as a raw material, and a manufacturing method thereof have not been developed.

例えば、溶成リン肥では、前述のようにガラス化して、肥料効果を高めているが、酸化鉄が混入すると結晶化が起き、そのときの肥料効果が不明である。   For example, in solution phosphorus fertilizer, it is vitrified as described above to enhance the fertilizer effect, but crystallization occurs when iron oxide is mixed, and the fertilizer effect at that time is unknown.

また、トーマスリン肥は、CaOとSiO2の重量比で表示する塩基度が5以上と非常に高い組成領域にあり、塩基度が一般的には5未満である製鋼スラグを原料とした場合、必ずしも固溶体が析出するとは限らず、肥料効果が不明である。 In addition, Thomaslin fertilizer is in a composition region where the basicity represented by the weight ratio of CaO and SiO 2 is very high as 5 or more, and when the steelmaking slag whose basicity is generally less than 5 is used as a raw material, The solid solution does not always precipitate, and the fertilizer effect is unknown.

特許文献1には、溶銑予備処理工程で回収されるスラグをケイ酸リン酸肥料として使用することが開示されているが、意図的にリン酸濃度を濃縮する工程がないために、スラグのリン酸濃度が5%以下と低く、リン酸肥料としての肥料効果は低い。   Patent Document 1 discloses that the slag recovered in the hot metal pretreatment process is used as a silicate phosphate fertilizer. However, since there is no step of intentionally concentrating the phosphoric acid concentration, phosphorus in the slag is disclosed. The acid concentration is as low as 5% or less, and the fertilizer effect as a phosphate fertilizer is low.

特許文献2に開示された技術によっては、高リン酸スラグを製造することは可能であるが、冷却速度などが明示されておらず、リン酸含有鉱物相などを意図的に制御しておらず、肥料効果が不明である。   Depending on the technique disclosed in Patent Document 2, it is possible to produce high-phosphate slag, but the cooling rate is not clearly specified, and the phosphate-containing mineral phase is not intentionally controlled. The fertilizer effect is unknown.

特許文献3に開示された技術によっては、高リン酸スラグを製造することは可能であるが、リン含有鉱物相を3CaO・P25相(C3P相)及び/又は4CaO・P25相であるために肥料効果が高くない。理由は後述する。 Depending disclosed in Patent Document 3 technologies, it is possible to produce a high phosphate slag, 3CaO · P 2 O 5 phase phosphorus-containing mineral phase (C 3 P phase) and / or 4CaO · P 2 fertilizer effect is not high because of the O 5 phase. The reason will be described later.

特許文献4に開示された技術も、リン酸肥料中のリン含有鉱物相を制御して、主にC3P相としているため肥料効果が高くない。理由は後述する。 The technique disclosed in Patent Document 4 also has a low fertilizer effect because the phosphorus-containing mineral phase in the phosphate fertilizer is controlled and mainly the C 3 P phase. The reason will be described later.

そのため、本発明は、上記状況に鑑み、酸化鉄を含有するリン酸肥料原料、又は、溶銑中のリンを出発原料とした時のリン酸肥料原料、及び、その製造方法を提供することを目的とする。   Therefore, in view of the above situation, the present invention aims to provide a phosphate fertilizer raw material containing iron oxide, or a phosphate fertilizer raw material when phosphorus in hot metal is used as a starting material, and a method for producing the same. And

本発明者は、上記目的を達成するため、成分組成及び製造条件の面で肥料効果の高いリン酸肥料原料について検討を重ねた結果、リン含有鉱物相を肥料効果の観点で整理すると序列があることを見出した。そして、成分組成及び冷却条件を制御することにより、肥料効果の高い鉱物相の析出を促進させ、肥料効果の低い鉱物相の析出を抑制し、かつ、酸化鉄を含有しても肥料効果の高いリン酸肥料を安定的に製造する方法を見出した。   In order to achieve the above-mentioned object, the present inventor has studied the phosphate fertilizer raw material having a high fertilizer effect in terms of the component composition and production conditions. As a result, the phosphorus-containing mineral phase is arranged in terms of the fertilizer effect. I found out. And by controlling the component composition and cooling conditions, the precipitation of the mineral phase with a high fertilizer effect is promoted, the precipitation of the mineral phase with a low fertilizer effect is suppressed, and the fertilizer effect is high even if iron oxide is contained. A method for stably producing phosphate fertilizer was found.

なお、本発明では、リン酸肥料の肥料効果を評価する指標としては、一般的なク溶性リン酸を使用せずに、可溶性リン酸を使用する。ク溶性リン酸、可溶性リン酸とは、それぞれ、肥料中のリン酸の中で2%クエン酸水溶液に溶解するリン酸分、又は、より中性に近い2%クエン酸アンモニウム溶液に溶解するリン酸分のことを指す。   In the present invention, soluble phosphoric acid is used as an index for evaluating the fertilizer effect of phosphate fertilizer without using general soluble phosphate. Soluble phosphoric acid and soluble phosphoric acid are phosphoric acid in fertilizer, phosphoric acid dissolved in 2% aqueous citric acid solution, or phosphoric acid dissolved in 2% ammonium citrate solution, which is more neutral. It refers to the acid content.

これは、植物が良く育つ土壌のpHは弱酸性から中性であることから、pH2程度の酸性溶液に溶解するク溶性リン酸よりも、より中性に近い溶液に溶解する可溶性リン酸で評価した方が妥当であるという考えによるものであり、最近では、可溶性リン酸の方が植物の生育に対応することが知られている。   This is because the pH of soil in which plants grow well is weakly acidic to neutral, so it is evaluated with soluble phosphoric acid that dissolves in a solution close to neutrality rather than soluble phosphoric acid that dissolves in an acidic solution of about pH 2. This is based on the idea that this is more appropriate. Recently, it has been known that soluble phosphate corresponds to the growth of plants.

本発明は、上記知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

[1]CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有するリン酸肥料原料であって、該リン酸肥料原料中、Ca3(PO42−Ca2SiO4固溶体、5CaO・SiO2・P25、及び、7CaO・2SiO2・P25の1種又は2種以上の存在濃度の合計が28質量%以上であることを特徴とするリン酸肥料原料。 [1] CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) are contained in a total of 60% by mass or more, and the basicity α expressed by the mass concentration ratio of CaO and SiO 2 is 1.5 or more. A phosphate fertilizer raw material containing 3.0 mass% or less, 8 mass% or more (-4α 2 + 23α-4) mass% or less of P 2 O 5 and 5 mass% or more and 25 mass% or less of iron oxide in terms of Fe. In the phosphate fertilizer raw material, one or two of Ca 3 (PO 4 ) 2 -Ca 2 SiO 4 solid solution, 5CaO · SiO 2 · P 2 O 5 , and 7CaO · 2SiO 2 · P 2 O 5 The phosphate fertilizer raw material characterized in that the total concentration is 28% by mass or more.

[2]前記リン酸肥料原料が、高炉で製造した溶銑を脱リンして製造される製鋼スラグを出発原料とするものであることを特徴とする前記[1]に記載のリン酸肥料原料。   [2] The phosphate fertilizer raw material according to [1], wherein the phosphate fertilizer raw material is a steelmaking slag produced by dephosphorizing hot metal produced in a blast furnace.

[3]前記[1]又は[2]に記載のリン酸肥料原料の製造方法であって、CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有する、1200〜1450℃の溶融スラグを、600℃に到達するまでの間の温度降下量を600℃に到達するまでの時間で除算した数値で、10℃/min以上になるように制御して冷却することを特徴とするリン酸肥料原料の製造方法。 [3] The method for producing a phosphate fertilizer raw material according to [1] or [2], wherein CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) are 60% by mass or more in total. And the basicity α expressed by the mass concentration ratio of CaO and SiO 2 is 1.5 or more and 3.0 or less, and P 2 O 5 is 8 mass% or more (−4α 2 + 23α-4) mass%, A molten slag of 1200 to 1450 ° C. containing iron oxide in an amount of 5% by mass or more and 25% by mass or less in terms of Fe was divided by the time until the temperature reached 600 ° C. until the temperature reached 600 ° C. A method for producing a phosphate fertilizer raw material, which is controlled by numerical values and controlled to be 10 ° C./min or higher.

[4]前記1200〜1450℃の溶融スラグを、600℃に到達するまでの間の温度降下量を600℃に到達するまでの時間で除算した数値で、30℃/min以上になるように制御して冷却することを特徴とする前記[3]に記載のリン酸肥料原料の製造方法。   [4] The molten slag of 1200 to 1450 ° C. is controlled to be 30 ° C./min or more by a numerical value obtained by dividing the temperature drop until reaching 600 ° C. by the time to reach 600 ° C. And the method for producing a phosphate fertilizer raw material according to [3] above.

[5]前記溶融スラグが、リンを0.5〜4質量%含有する高リン溶銑を脱リンすることにより製造される製鋼スラグであることを特徴とする前記[3]又は[4]に記載のリン酸肥料原料の製造方法。   [5] The above-mentioned [3] or [4], wherein the molten slag is a steelmaking slag produced by dephosphorizing high phosphorus hot metal containing 0.5 to 4% by mass of phosphorus. Manufacturing method of phosphate fertilizer raw material.

本発明によれば、酸化鉄を含むが、リン酸濃度が高く、肥料効果の高いリン酸肥料原料とその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, although it contains iron oxide, a phosphoric acid fertilizer raw material with a high phosphoric acid concentration and a high fertilizer effect and its manufacturing method can be provided.

製鋼工程においてリン酸含有スラグを製造する工程の一例を示す図である。It is a figure which shows an example of the process of manufacturing phosphoric acid containing slag in a steelmaking process. 可溶性リン酸率(可溶性リン酸濃度/全リン酸濃度)と結晶化度の関係を示す図である。It is a figure which shows the relationship between a soluble phosphoric acid ratio (soluble phosphoric acid concentration / total phosphoric acid concentration) and crystallinity. リン酸濃度及び塩基度とリン含有鉱物相との関係を示す図である。It is a figure which shows the relationship between phosphoric acid concentration and basicity, and a phosphorus containing mineral phase. 結晶化度とt.Fe濃度の関係を示す図である。Crystallinity and t. It is a figure which shows the relationship of Fe density | concentration. 固溶体相の存在濃度とt.Fe濃度の関係、及び、C3P相の存在濃度とt.Fe濃度の関係を示す図である。The concentration of the solid solution phase and t. Relationship between Fe concentration, C 3 P phase existing concentration and t. It is a figure which shows the relationship of Fe density | concentration. 固溶体相又はC3P相の存在濃度と冷却速度の関係を示す図である。Is a diagram showing the relationship between existence concentration and the cooling rate of the solid solution phase or C 3 P phase.

本発明のリン酸肥料原料(以下「本発明肥料原料」ということがある。)は、CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有するリン酸肥料原料であって、該リン酸肥料原料中、Ca3(PO42−Ca2SiO4固溶体、5CaO・SiO2・P25、及び、7CaO・2SiO2・P25の1種又は2種以上の存在濃度の合計が28質量%以上であることを特徴とする。 The phosphate fertilizer raw material of the present invention (hereinafter sometimes referred to as “the present fertilizer raw material”) contains CaO, SiO 2 , P 2 O 5 , and iron oxide (in terms of Fe) in total of 60% by mass or more. The basicity α expressed as a mass concentration ratio of CaO and SiO 2 is 1.5 or more and 3.0 or less, P 2 O 5 is 8 mass% or more (−4α 2 + 23α-4) mass%, iron oxide Is a phosphate fertilizer raw material containing 5 mass% or more and 25 mass% or less in terms of Fe, and the Ca 3 (PO 4 ) 2 —Ca 2 SiO 4 solid solution, 5CaO · SiO 2 · P 2 in the phosphate fertilizer raw material The total of the concentration of one or more of O 5 and 7CaO.2SiO 2 .P 2 O 5 is 28% by mass or more.

本発明のリン酸肥料原料の製造方法(以下「本発明製造方法」ということがある。)は、本発明肥料原料の製造方法であって、CaO、SiO2、P25、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有する、1200〜1450℃の溶融スラグを、600℃に到達するまでの間の温度降下量を600℃に到達するまでの時間で除算した数値で、10℃/min以上になるように制御して冷却することを特徴とする。 The method for producing a phosphate fertilizer raw material according to the present invention (hereinafter sometimes referred to as “the present invention production method”) is a method for producing the fertilizer raw material according to the present invention, and includes CaO, SiO 2 , P 2 O 5 , iron oxide ( Fe content) is 60% by mass or more in total, the basicity α expressed by the mass concentration ratio of CaO and SiO 2 is 1.5 or more and 3.0 or less, and P 2 O 5 is 8% by mass or more (− 4α 2 + 23α-4) Less than mass%, iron oxide is contained in an amount of 5% by mass to 25% by mass in terms of Fe, and the amount of temperature drop until reaching 600 ° C. is 1000 to 1450 ° C. It is characterized by cooling by controlling it to be 10 ° C./min or more by a numerical value divided by the time to reach ° C.

まず、植物生育用のリン酸肥料の原料(リン酸肥料原料)として使用可能なリン酸含有スラグの製造方法について説明する。図1に、製鋼工程において、リン酸含有スラグを製造する工程の一例を示す。   First, the manufacturing method of the phosphoric acid containing slag which can be used as a raw material (phosphate fertilizer raw material) of the phosphate fertilizer for plant growth is demonstrated. FIG. 1 shows an example of a process for producing phosphoric acid-containing slag in the steel making process.

図1に示すように、製鋼工程においては、高炉で製造した溶銑であって、通常はリンを0.08〜0.15質量%含有する溶銑を転炉に移送し、溶銑の上にスラグを形成し、酸素源を吹き込んで、溶銑とスラグの反応で、溶銑の脱リン処理S01を行う。   As shown in FIG. 1, in the steelmaking process, hot metal produced in a blast furnace, usually containing 0.08 to 0.15% by mass of phosphorus, is transferred to a converter, and slag is placed on the hot metal. After forming, oxygen source is blown, and hot metal dephosphorization treatment S01 is performed by reaction of hot metal and slag.

脱リン処理S01によって生成した転炉脱リンスラグ41を転炉から排出し、その後、転炉内の溶銑の上に、再度、スラグを形成し、酸素源を吹き込んで、脱炭処理S02を行う。脱炭処理S02で得られた溶鋼に2次精錬S03を施した後、連続鋳造S04で鋼片を製造する。   The converter dephosphorization slag 41 generated by the dephosphorization process S01 is discharged from the converter, and then slag is formed again on the molten iron in the converter, and an oxygen source is blown to perform a decarburization process S02. After subjecting the molten steel obtained in the decarburization treatment S02 to secondary refining S03, a steel slab is produced in continuous casting S04.

脱リン処理S01の後、転炉から排出される転炉脱リンスラグ41には、溶銑中のリンが酸化したリン酸とともに、多量の鉄分を含んでいる。そこで、転炉脱リンスラグ41から鉄やリン等の有価元素を回収するために、転炉脱リンスラグ41に還元・改質処理S11を施す。   After the dephosphorization treatment S01, the converter dephosphorization slag 41 discharged from the converter contains a large amount of iron together with phosphoric acid obtained by oxidizing phosphorus in the hot metal. Therefore, in order to recover valuable elements such as iron and phosphorus from the converter dephosphorization slag 41, the converter dephosphorization slag 41 is subjected to reduction / reforming treatment S11.

還元・改質処理S11においては、転炉脱リンスラグ41を溶融し、還元剤及び改質剤として、微粉炭、Al23源、SiO2源を添加して、リンを0.5〜4質量%と多く含有する高P溶銑42を製造する。 In the reduction / reformation treatment S11, the converter dephosphorization slag 41 is melted, pulverized coal, an Al 2 O 3 source, and an SiO 2 source are added as a reducing agent and a modifying agent, and phosphorus is added in an amount of 0.5-4. The high P hot metal 42 containing as much as mass% is manufactured.

そして、高P溶銑42に、必要に応じ脱Cr処理S12を施した後、生石灰やSiO2などを原料としたフラックスを添加し、酸素を吹き込む脱リン処理S13を施して、植物生育用のリン酸肥料の原料(リン酸肥料原料)として使用可能なリン酸含有スラグ50を製造する。 Then, after applying a Cr removal treatment S12 to the high P hot metal 42 as necessary, a flux using quick lime, SiO 2 or the like as a raw material is added, and a phosphorus removal treatment S13 in which oxygen is blown is applied to obtain phosphorus for plant growth. The phosphoric acid containing slag 50 which can be used as a raw material (acid fertilizer raw material) of acid fertilizer is manufactured.

なお、脱リン処理S13によって、リン含有濃度で0.1〜0.3質量%まで脱リンされた溶銑51は、高炉で生成された溶銑とともに転炉へ供給される。   Note that the hot metal 51 dephosphorized to a phosphorus content concentration of 0.1 to 0.3 mass% by the dephosphorization treatment S13 is supplied to the converter together with the hot metal generated in the blast furnace.

リン酸含有スラグ50を製造する際、成分組成や冷却速度を制御して、リン酸含有スラグ中の可溶性リン酸の量を増大する必要がある。   When manufacturing the phosphoric acid containing slag 50, it is necessary to control the component composition and the cooling rate to increase the amount of soluble phosphoric acid in the phosphoric acid containing slag.

本発明肥料原料では、CaO、SiO2、P25、及び、酸化鉄(Fe換算)の合計が60質量%以上で、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下で、P25が8質量%以上(−4α2+23α−4)質量%以下、酸化鉄がFe換算で5質量%以上25質量%以下であり、さらに、Ca3(PO42−Ca2SiO4固溶体、5CaO・SiO2・P25、及び、7CaO・2SiO2・P25(以下、3つの鉱物相をまとめて「固溶体相」ということがある。)の1種又は2種以上の存在濃度の合計が28質量%以上である。 In the fertilizer raw material of the present invention, the total of CaO, SiO 2 , P 2 O 5 and iron oxide (in terms of Fe) is 60% by mass or more, and the basicity α expressed by the mass concentration ratio of CaO and SiO 2 is 1. 5 to 3.0, P 2 O 5 is 8% by mass or more (−4α 2 + 23α-4)% by mass, iron oxide is 5% by mass to 25% by mass in terms of Fe, and Ca 3 (PO 4) 2 -Ca 2 SiO 4 solid solution, 5CaO · SiO 2 · P 2 O 5 and,, 7CaO · 2SiO 2 · P 2 O 5 ( hereinafter, collectively three mineral phases may be referred to as "solid solution phase" The total of the concentration of one kind or two kinds or more) is 28% by mass or more.

また、脱リン処理S13(図1、参照)を行う際には、その脱リン処理S13終了時の処理容器内の溶融スラグの塩基度αが1.5以上3.0以下で、P25が8質量%以上(−4α2+23α−4)質量%以下、酸化鉄がFe換算で5質量%以上25質量%以下になるように、脱リン処理条件を調整する。 Further, when performing the dephosphorization treatment S13 (see FIG. 1), the basicity α of the molten slag in the processing container at the end of the dephosphorization treatment S13 is 1.5 to 3.0, and P 2 O The dephosphorization conditions are adjusted so that 5 is 8% by mass or more (-4α 2 + 23α-4)% by mass and iron oxide is 5% by mass or more and 25% by mass or less in terms of Fe.

その上で、上記のように調整した溶融スラグを、その処理終了時の温度である1200〜1450℃から600℃に到達するまでの間の温度降下量を、600℃に到達するまでの時間で除算した数値(以下、「600℃までの冷却速度」ということがある。)で、10℃/min以上になるように制御して、好ましくは30℃/min以上になるように制御して冷却する。   Then, the amount of temperature drop until the molten slag adjusted as described above reaches 600 ° C. from 1200 to 1450 ° C., which is the temperature at the end of the treatment, is the time until it reaches 600 ° C. Cooling by dividing the numerical value (hereinafter sometimes referred to as “cooling rate to 600 ° C.”) to be 10 ° C./min or higher, preferably 30 ° C./min or higher. To do.

以下、リン酸含有スラグのリン含有鉱物相から固溶体相の析出を促進し、C3P相の析出を抑制する理由、成分組成を限定する理由、塩基度、P25濃度、酸化鉄濃度を限定する理由、また、脱リン処理を行ってリン酸含有スラグを製造する時、塩基度、リン酸濃度、冷却速度を限定する理由について説明する。 Hereinafter, the reason for accelerating the precipitation of the solid solution phase from the phosphorus-containing mineral phase of the phosphoric acid-containing slag and suppressing the precipitation of the C 3 P phase, the reason for limiting the component composition, the basicity, the P 2 O 5 concentration, the iron oxide concentration The reason why the basicity, the phosphoric acid concentration, and the cooling rate are limited when the phosphoric acid-containing slag is produced by performing the dephosphorization process will be described.

まず、固溶体相の析出を促進し、C3P相の析出を抑制する理由について説明する。 First, the reason for promoting the precipitation of the solid solution phase and suppressing the precipitation of the C 3 P phase will be described.

表1に示す成分組成のスラグ原料は、脱リン処理S13により生成されたものである。脱リン処理S13により生成されたスラグを、その処理終了時のスラグ温度である1200〜1450℃から600℃までの冷却速度が10℃/min以上になるように制御して冷却し、そのスラグの温度が25℃程度の常温になった後に、その試料中のリン含有鉱物相を、XRD、SEMなどで確認した。   The slag raw material having the composition shown in Table 1 is produced by the dephosphorization treatment S13. The slag generated by the dephosphorization treatment S13 is cooled by controlling the cooling rate from 1200 to 1450 ° C. to 600 ° C., which is the slag temperature at the end of the treatment, to 10 ° C./min or more. After the temperature reached room temperature of about 25 ° C., the phosphorus-containing mineral phase in the sample was confirmed by XRD, SEM or the like.

一部のスラグ試料では、結晶相の他にガラス相が確認された。ガラス相は、リンを含有していることが確認された。一方、結晶相は、リン酸塩相、ケイ酸塩相、FeO相の三つの鉱物相に分類することが可能であった。リン酸塩相は、C3P相と固溶体相の二種類であった。 In some slag samples, a glass phase was confirmed in addition to the crystalline phase. The glass phase was confirmed to contain phosphorus. On the other hand, the crystal phase could be classified into three mineral phases: phosphate phase, silicate phase, and FeO phase. There were two types of phosphate phases: C 3 P phase and solid solution phase.

結果を表1にまとめて示す。   The results are summarized in Table 1.

Figure 2016088757
Figure 2016088757

リン酸肥料として重要な部分であるリンが存在する鉱物相(以下「リン含有鉱物相」ということがある。)は、ガラス相、C3P相、固溶体相であることが解った。表1中の○は主要な鉱物相であることを示し、△は主要でない鉱物相又は微量に存在する鉱物相を意味する。結晶相であるC3P相と固溶体相が同時に析出することはなく、また、C3P相、又は、固溶体相が析出する時、ガラス相が同時に析出する場合があった。 It was found that the mineral phase in which phosphorus, which is an important part as a phosphate fertilizer, is present (hereinafter sometimes referred to as “phosphorus-containing mineral phase”) is a glass phase, a C 3 P phase, and a solid solution phase. ○ in Table 1 indicates that it is a major mineral phase, and Δ means a minor mineral phase or a minor mineral phase. Never C3P phase and solid solution phase is a crystal phase is precipitated at the same time, also, C 3 P phase, or, when the solid solution phase is precipitated, there is a case where the glass phase is precipitated at the same time.

製造したスラグのリン含有鉱物相と肥料効果の関係を調査するため、表1に示すスラグ試料の結晶化度と可溶性リン酸率を測定した。結果を図2に示す。   In order to investigate the relationship between the phosphorus-containing mineral phase of the produced slag and the fertilizer effect, the crystallinity and soluble phosphoric acid ratio of the slag samples shown in Table 1 were measured. The results are shown in FIG.

可溶性リン酸率は、リン酸肥料原料中の全リン酸濃度に対する可溶性リン酸濃度の存在比である。リン酸肥料を使用する場合、リン酸量が一定となるように、リン酸肥料のリン酸濃度に応じて添加量を調整して土壌に添加するので、肥料効果は、可溶性リン酸濃度でなく、可溶性リン酸率で評価した。   The soluble phosphate rate is the ratio of the soluble phosphate concentration to the total phosphate concentration in the phosphate fertilizer feedstock. When using phosphate fertilizer, the amount of phosphate fertilizer is adjusted according to the phosphate concentration of the phosphate fertilizer and added to the soil so that the amount of phosphate is constant, so the fertilizer effect is not the soluble phosphate concentration The soluble phosphate rate was evaluated.

図2から、C3P相が析出する場合は(図中「×」参照)、結晶化度の増加に伴い可溶性リン酸率が減少することが解る。また、固溶体が析出する場合は(図中「○」参照)、結晶化度は、ほぼ100%であり、可溶性リン酸率は、C3P相、ガラス相が存在する場合よりも高いことが解る。 From FIG. 2, it can be seen that when the C 3 P phase precipitates (see “x” in the figure), the soluble phosphoric acid ratio decreases as the crystallinity increases. When a solid solution is precipitated (see “◯” in the figure), the degree of crystallinity is almost 100%, and the soluble phosphoric acid ratio may be higher than when a C 3 P phase and a glass phase are present. I understand.

これらの結果から、(a)C3P相、ガラス相、及び、固溶体相の可溶性リン酸率には序列があり、(b)C3P相<<ガラス相<固溶体相の順に可溶性リン酸率が大きくなり、(c)固溶体相が、可溶性リン酸率が最も高い相であり、C3P相が、可溶性リン酸率が最も低い相であることが解った。 From these results, (a) the soluble phosphoric acid ratio of the C 3 P phase, the glass phase, and the solid solution phase has an order, and (b) the soluble phosphoric acid in the order of C 3 P phase << glass phase <solid solution phase. It was found that (c) the solid solution phase was the phase having the highest soluble phosphoric acid ratio, and the C 3 P phase was the phase having the lowest soluble phosphoric acid ratio.

このことから、スラグ中の肥料効果、つまり、可溶性リン酸濃度を高めるためには、C3P相の析出を可能な限り抑制して、固溶体相を積極的に析出させる必要があることが解る。 From this, it is understood that in order to increase the fertilizer effect in slag, that is, the concentration of soluble phosphoric acid, it is necessary to suppress the precipitation of the C 3 P phase as much as possible and to actively precipitate the solid solution phase. .

実際、後述するように、固溶体相を28.2質量%析出させた高リン酸スラグと、固溶体相を含まず、C3P相のみの高リン酸スラグとを使用して、ヒロシマ菜を育てて生育を確認した。結果を表2に示す。 In fact, as described later, Hiroshima vegetables are grown using high phosphate slag in which 28.2% by mass of the solid solution phase is precipitated and high phosphate slag that does not contain the solid solution phase and includes only the C 3 P phase. The growth was confirmed. The results are shown in Table 2.

Figure 2016088757
Figure 2016088757

表2に示すように、固溶体相を析出させた高リン酸スラグを使用した場合(試料No.4)、ヒロシマ菜の生育が良いのに対し、固溶体相を含まず、C3P相のみの高リン酸スラグを使用した場合(試料No.9)、ヒロシマ菜の生育が悪いことを確認した。 As shown in Table 2, when high-phosphate slag with a solid solution phase precipitated was used (sample No. 4), the growth of Hiroshima vegetable was good, but the solid solution phase was not included and only the C 3 P phase was included. When high phosphate slag was used (sample No. 9), it was confirmed that the growth of Hiroshima vegetable was poor.

即ち、本発明者らは、リン含有鉱物相において、C3P相の析出を抑え、固溶体相の析出を促進することにより、可溶性リン酸濃度が高い脱リンスラグ(リン酸肥料原料)を製造できることを確認した。 That is, the present inventors can produce dephosphorization slag (phosphate fertilizer raw material) with a high soluble phosphoric acid concentration by suppressing the precipitation of the C 3 P phase and promoting the precipitation of the solid solution phase in the phosphorus-containing mineral phase. It was confirmed.

リン酸肥料原料は、主成分として、CaO、SiO2、P25、及び、酸化鉄を含んでおり、各成分の合計を60質量%以上とする。各成分の合計が60質量%未満であると、上記成分以外の成分とリン酸が化合物を形成して、リン酸含有鉱物相の生成を制御することができなくなるので、上記各成分の合計は60質量%以上とする。好ましくは70質量%以上である。 The phosphate fertilizer raw material contains CaO, SiO 2 , P 2 O 5 and iron oxide as main components, and the total of each component is 60% by mass or more. If the total of each component is less than 60% by mass, components other than the above components and phosphoric acid form a compound, and generation of a phosphoric acid-containing mineral phase cannot be controlled. 60 mass% or more. Preferably it is 70 mass% or more.

ただし、酸化鉄の濃度は、試料中のFe濃度で表示することとし、以後、“t.Fe濃度”と表示する。   However, the concentration of iron oxide is expressed as the Fe concentration in the sample, and hereinafter referred to as “t.Fe concentration”.

本発明者らは、固溶体相が最も安定的に析出する条件を検討した。図3に、t.Fe濃度を10質量%、MnO濃度を5質量%、MgO濃度を5質量%、Al23濃度を3質量%に固定し、溶融スラグを、脱リン処理S13(図1、参照)後の温度である1200〜1450℃から600℃までの冷却速度が、10℃/min以上になるように制御して冷却した際の、リン酸濃度及び塩基度とリン含有鉱物相との関係を示す。 The present inventors examined the conditions under which the solid solution phase is most stably precipitated. In FIG. The Fe concentration was fixed to 10% by mass, the MnO concentration was fixed to 5% by mass, the MgO concentration was fixed to 5% by mass, the Al 2 O 3 concentration was fixed to 3% by mass, and the molten slag was removed after the dephosphorization treatment S13 (see FIG. 1). The relationship between the phosphoric acid concentration and the basicity and the phosphorus-containing mineral phase when the cooling rate from 1200 to 1450 ° C. to 600 ° C., which is the temperature, is controlled to be 10 ° C./min or higher is shown.

即ち、図3は、リン含有鉱物相の塩基度依存性及びP25濃度依存性を示している。○は、固溶体相が析出した場合を示し、×は、C3P相が析出した場合を示す。塩基度α(=CaO/SiO2)が1.5以上3.0以下で、固溶体相が析出する。それ故、肥料効果を高めるには、塩基度αを1.5以上3.0以下にする必要がある。 That is, FIG. 3 shows the basicity dependency and the P 2 O 5 concentration dependency of the phosphorus-containing mineral phase. ○ indicates a case where a solid solution phase is precipitated, and × indicates a case where a C 3 P phase is precipitated. When the basicity α (= CaO / SiO 2 ) is 1.5 or more and 3.0 or less, a solid solution phase is precipitated. Therefore, in order to enhance the fertilizer effect, the basicity α needs to be 1.5 or more and 3.0 or less.

塩基度αが1.5より小さいか、又は、3.0より大きい場合は、C3P相が析出して肥料効果が低下する。それ故、脱りん処理時には、添加する生石灰やSiO2などのフラックスの量を調整し、スラグの塩基度αを1.5以上3.0以下にする。塩基度αが1.5以上3.0以下のスラグにおける固溶体相の全スラグ質量に対する存在比をSEMで測定したところ、リン酸濃度が8質量%以上で固溶体相が28質量%以上存在することを確認できた。 Basicity α is 1.5 or less, or, if greater than 3.0, the fertilizer effect decreases in precipitation C 3 P phase. Therefore, at the time of dephosphorization treatment, the amount of flux such as quick lime and SiO 2 to be added is adjusted so that the basicity α of the slag is 1.5 or more and 3.0 or less. When the abundance ratio of the solid solution phase in the slag having a basicity α of 1.5 or more and 3.0 or less with respect to the total slag mass is measured by SEM, the phosphoric acid concentration is 8 mass% or more and the solid solution phase is 28 mass% or more. Was confirmed.

一方、リン酸濃度の上限を、塩基度αの二次式で限定する理由について説明する。図3に示すように、塩基度αが1.5〜3.0の範囲内でも、リン酸濃度がある程度以上に増加すると、C3P相が析出し始める。そのC3P相が析出し始めるリン酸濃度は、塩基度αが増加すると二次曲線的に増加することを実験的に確認したため、二次曲線的に増加するリン酸濃度を(−4α2+23α−4)で近似した。 On the other hand, the reason why the upper limit of the phosphoric acid concentration is limited by a secondary expression of basicity α will be described. As shown in FIG. 3, even when the basicity α is in the range of 1.5 to 3.0, the C 3 P phase starts to precipitate when the phosphoric acid concentration increases more than a certain level. Since it was experimentally confirmed that the phosphate concentration at which the C 3 P phase begins to precipitate increases with a quadratic curve when the basicity α increases, the phosphoric acid concentration that increases with a quadratic curve (−4α 2 + 23α-4).

即ち、塩基度を一定にして、リン酸濃度を0質量%から増加させていくと、8質量%の条件から固溶体相が析出するようになり、リン酸濃度が(−4α2+23α−4)質量%以下の領域では、リン含有鉱物相は固溶体相であるが、(−4α2+23α−4)質量%を超えると、リン含有鉱物相はC3P相となる。 That is, when the basicity is kept constant and the phosphoric acid concentration is increased from 0% by mass, a solid solution phase is precipitated from the condition of 8% by mass, and the phosphoric acid concentration becomes (−4α 2 + 23α-4). In the region of mass% or less, the phosphorus-containing mineral phase is a solid solution phase, but when it exceeds (−4α 2 + 23α-4) mass%, the phosphorus-containing mineral phase becomes a C 3 P phase.

そこで、リン酸肥料原料のリン含有鉱物相がC3P相であると肥料効果が落ちるので、リン酸濃度は8質量%以上(−4α2+23α−4)質量%以下とする。そのため、脱りん処理時、スラグに添加するフラックスの量を調整して、リン酸濃度を8質量%以上(−4α2+23α−4)質量%以下にする必要がある。 Therefore, if the phosphorus-containing mineral phase of the phosphate fertilizer raw material is a C 3 P phase, the fertilizer effect is reduced, so the phosphoric acid concentration is 8 mass% or more (−4α 2 + 23α-4) mass% or less. Therefore, it is necessary to adjust the amount of flux added to the slag during the dephosphorization treatment so that the phosphoric acid concentration is 8 mass% or more (−4α 2 + 23α-4) mass% or less.

リン酸濃度が8質量%未満であると、リン酸濃度が低い上に固溶体相でなくC3P相である。その結果、リン酸肥料の使用量が多大になり、肥料としての商品価値が低下する。 When the phosphoric acid concentration is less than 8% by mass, the phosphoric acid concentration is low, and it is not a solid solution phase but a C 3 P phase. As a result, the amount of phosphoric acid fertilizer used becomes large, and the commercial value as a fertilizer decreases.

t.Fe濃度は、5質量%以上25質量%とする。表1に示す試料の中で塩基度αが1.5以上3.0以下で、かつ、リン酸濃度が12質量%以上20質量%以下の試料における、結晶化度とt.Fe濃度の関係を図4に示す。   t. Fe concentration shall be 5 mass% or more and 25 mass%. Among the samples shown in Table 1, the degree of crystallinity and t. In a sample having a basicity α of 1.5 or more and 3.0 or less and a phosphoric acid concentration of 12% by mass or more and 20% by mass or less. The relationship of Fe concentration is shown in FIG.

t.Fe濃度が5.0質量%より小さいと、スラグ中にガラス相が存在し、5質量%以上では、結晶化度が100%となり結晶相が存在した。酸化鉄は、FeOとして存在すると考えられており、塩基性酸化物であって、スラグの結晶化を促進する成分である。それ故、結晶相である固溶体相を析出させるためには5質量%以上の酸化鉄が必要であることが解る。   t. When the Fe concentration was less than 5.0% by mass, a glass phase was present in the slag. When the Fe concentration was 5% by mass or more, the crystallinity was 100% and a crystal phase was present. Iron oxide is considered to exist as FeO and is a basic oxide and a component that promotes crystallization of slag. Therefore, it can be understood that 5% by mass or more of iron oxide is necessary to precipitate the solid solution phase which is a crystalline phase.

図5に、上記試料における固溶体相の存在濃度とt.Fe濃度の関係、及び、C3P相の存在濃度とt.Fe濃度の関係を示す。t.Fe濃度が5質量%以上25質量%以下の範囲では固溶体相が析出し、t.Fe濃度が25質量%を超えるとC3P相が析出した。 FIG. 5 shows the concentration of the solid solution phase in the sample and t. Relationship between Fe concentration, C 3 P phase existing concentration and t. The relationship of Fe concentration is shown. t. When the Fe concentration is in the range of 5% by mass or more and 25% by mass or less, a solid solution phase is precipitated, and t. When the Fe concentration exceeded 25% by mass, a C 3 P phase was precipitated.

この結果から、固溶体相を析出させるためには、脱リン処理時に吹き込む酸素量を調整して、t.Fe濃度を5質量%以上25質量%以下にする必要があることが解る。   From this result, in order to precipitate the solid solution phase, the amount of oxygen blown during the dephosphorization treatment is adjusted, and t. It can be seen that the Fe concentration needs to be 5 mass% or more and 25 mass% or less.

リン酸肥料原料を製造する際には、上記組成に調整した1200〜1450℃の溶融スラグを、600℃までの冷却速度が10℃/min以上になるように制御して冷却する必要がある。   When manufacturing a phosphate fertilizer raw material, it is necessary to control and cool the 1200 to 1450 degreeC molten slag adjusted to the said composition so that the cooling rate to 600 degreeC may be 10 degreeC / min or more.

溶融スラグの温度が1200℃未満であると、スラグが完全に溶融しない場合があり、その場合、リン酸肥料としての肥料効果が発現しない。溶融スラグの温度を、1450℃を超える温度とすることは、脱リン反応平衡から脱リンが進み難くなって、スラグ中のリン酸濃度が低下してしまう他、加熱コストが嵩むし、処理容器の耐火物の損耗も激しくなるので不適当である。   If the temperature of the molten slag is less than 1200 ° C., the slag may not be completely melted, and in that case, the fertilizer effect as a phosphate fertilizer does not appear. Setting the temperature of the molten slag to a temperature exceeding 1450 ° C. makes it difficult for dephosphorization to proceed from the dephosphorization reaction equilibrium, resulting in a decrease in the phosphoric acid concentration in the slag, increasing the heating cost, and the processing container. The refractory material wears too much, so it is inappropriate.

溶融スラグの塩基度、リン酸濃度、t.Fe濃度が上記範囲内にあるとしても、必ずしもC3P相の析出を抑制できるわけではない。C3P相の析出を抑制するためには、溶融スラグを冷却する冷却速度も重要な因子となる。 Molten slag basicity, phosphoric acid concentration, t. Even if the Fe concentration is within the above range, the precipitation of the C 3 P phase cannot always be suppressed. In order to suppress the precipitation of the C 3 P phase, the cooling rate for cooling the molten slag is also an important factor.

本発明者らは、塩基度α:1.6、Al23:3質量%、MgO:9質量%、P25:18質量%、t.Fe濃度:6質量%の溶融スラグ試料を、600℃までの冷却速度が1℃/min、5℃/min、10℃/min、30℃/min、及び、50℃/minになるよう制御して冷却し、試料中のリン含有鉱物相の存在濃度を調査した。 The inventors of the present invention have a basicity α: 1.6, Al 2 O 3 : 3% by mass, MgO: 9% by mass, P 2 O 5 : 18% by mass, t. Fe concentration: 6 mass% of molten slag sample is controlled so that the cooling rate to 600 ° C. is 1 ° C./min, 5 ° C./min, 10 ° C./min, 30 ° C./min, and 50 ° C./min. The sample was cooled and the concentration of phosphorus-containing mineral phase in the sample was examined.

脱リン処理後の温度から600℃までの間の冷却速度を、600℃に到達するまでの間は所定の冷却速度以上になるように制御することとしたのは、スラグ中のリン含有鉱物相が、その温度範囲で定まり、600℃より下の温度領域では鉱物相に変化が生じないからである。調査結果を図6に示す。   The reason for controlling the cooling rate between the temperature after the dephosphorization process to 600 ° C. so as to be equal to or higher than the predetermined cooling rate until reaching 600 ° C. is that the phosphorus-containing mineral phase in the slag However, it is determined in the temperature range, and the mineral phase does not change in the temperature range below 600 ° C. The survey results are shown in FIG.

図6に示すように、前記冷却速度が1℃/min、5℃/minでは、C3P相のみが析出し、10℃/min、30℃/min、50℃/minでは、固溶体相のみが析出した。 As shown in FIG. 6, when the cooling rate is 1 ° C./min and 5 ° C./min, only the C 3 P phase is precipitated, and at 10 ° C./min, 30 ° C./min and 50 ° C./min, only the solid solution phase is precipitated. Precipitated.

この結果から、固溶体相の存在濃度を28質量%以上にするには、水冷や溶融スラグを鉄板の板に流し込んで急冷する方法などを用いて、600℃に到達するまでの間の前記数値で、10℃/min以上になるように制御して冷却する必要があることが解る。好ましくは30℃/min以上である。   From this result, in order to increase the existing concentration of the solid solution phase to 28% by mass or more, the above-mentioned numerical value until reaching 600 ° C. is used by using water cooling or a method of pouring molten slag into a steel plate and quenching. It turns out that it is necessary to control and cool so that it may become 10 degrees C / min or more. Preferably it is 30 degrees C / min or more.

以上、リン酸含有スラグの製造方法及びリン酸含有スラグについて説明したが、本発明は、上記説明に限定されることはなく、発明の技術的思想を逸脱しない範囲で適宜変更が可能である。   As mentioned above, although the manufacturing method and phosphoric acid containing slag of phosphoric acid containing slag were demonstrated, this invention is not limited to the said description, In the range which does not deviate from the technical idea of invention, it can change suitably.

なお、図1に示すリン酸含有スラグを製造する工程においては、転炉脱リンスラグから得た高リン溶銑を脱リン処理してリン酸含有スラグを製造すると説明したが、リン酸含有スラグを製造は、この説明に限定されることはない。   In addition, in the process of manufacturing the phosphoric acid containing slag shown in FIG. 1, although it demonstrated that the high phosphorus hot metal obtained from the converter dephosphorization slag was dephosphorized and manufactured phosphoric acid containing slag, manufacturing phosphoric acid containing slag was manufactured. Is not limited to this description.

例えば、高炉で生成した溶銑を脱リン処理することで製造してもよい。また、生石灰、SiO2、P25、酸化鉄などを出発原料として、上記組成範囲に入るように混合した後、溶融して、上記冷却速度で冷却してリン酸肥料原料を製造してもよい。 For example, the hot metal produced in the blast furnace may be manufactured by dephosphorization. In addition, quick lime, SiO 2 , P 2 O 5 , iron oxide and the like are mixed as starting materials so as to enter the above composition range, and then melted and cooled at the cooling rate to produce a phosphate fertilizer raw material. Also good.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on these one example conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
脱リン処理S13(図1、参照)を、その処理後のスラグの組成がCaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下になるように調整し、かつ、その処理後の温度を1250〜1400℃に制御して、行った。
(Example)
Dephosphorization treatment S13 (refer to FIG. 1), the composition of the slag after the treatment contains CaO, SiO 2 , P 2 O 5 , and iron oxide (Fe conversion) in a total of 60% by mass or more, The basicity α expressed by the mass concentration ratio of SiO 2 is 1.5 or more and 3.0 or less, P 2 O 5 is 8 mass% or more (−4α 2 + 23α-4) mass%, and iron oxide is converted to Fe. The temperature was adjusted to 5 mass% or more and 25 mass% or less, and the temperature after the treatment was controlled to 1250 to 1400 ° C.

その際に生成したスラグを、600℃までの間は、主として、前記数値で10℃/minの冷却速度になるよう制御して冷却し、スラグの固溶体相の存在比、可溶性リン酸率、及び、結晶化度を調査した。結果を表3に示す。   The slag generated at that time is mainly cooled to 600 ° C. so as to be a cooling rate of 10 ° C./min with the above numerical value, and the abundance ratio of the solid solution phase of the slag, the soluble phosphoric acid ratio, and The crystallinity was investigated. The results are shown in Table 3.

Figure 2016088757
Figure 2016088757

可溶性リン酸率を、可溶性リン酸率0.6以上を◎、0.5未満を×として評価した。   The soluble phosphoric acid ratio was evaluated by evaluating the soluble phosphoric acid ratio of 0.6 or more as ◎, and less than 0.5 as x.

冷却速度が10℃/minの実施例1〜9のスラグ試料においては、塩基度が1.5以上3.0以下、リン酸濃度が8質量%以上(−4α2+23α−4)質量%以下、t.Fe濃度が5質量%以上25質量%以下で、かつ、全スラグ質量に対する固溶体相の存在比が28質量%以上である。 In the slag samples of Examples 1 to 9 having a cooling rate of 10 ° C./min, the basicity is 1.5 or more and 3.0 or less, and the phosphoric acid concentration is 8 mass% or more (−4α 2 + 23α-4) mass% or less. T. The Fe concentration is 5% by mass or more and 25% by mass or less, and the abundance ratio of the solid solution phase with respect to the total slag mass is 28% by mass or more.

比較例1〜8、のスラグ試料では、塩基度αが1.5未満と低く、リン酸濃度が(−4α2+23α−4)質量%を超えていたため、また、比較例9では、塩基度αが1.5未満と低く、t.Fe濃度が25質量%超と高いため、比較例10では、塩基度が3.0より高いため、固溶体相が析出しなかった。 In the slag samples of Comparative Examples 1 to 8, since the basicity α was as low as less than 1.5 and the phosphoric acid concentration exceeded (−4α 2 + 23α-4) mass%, in Comparative Example 9, the basicity was α is as low as less than 1.5, t. Since the Fe concentration was as high as more than 25% by mass, in Comparative Example 10, the basicity was higher than 3.0, so the solid solution phase did not precipitate.

比較例11では、りん酸濃度が8質量%より低く、比較例12では、(−4α2+23α−4)より高いため、固溶体相が析出しなかった。比較例13では、t.Fe濃度が5%より低く、ガラス相となり、また、比較例14と15では、t.Fe濃度が25%より高かったため、固溶体相が析出しなった。 In Comparative Example 11, the phosphoric acid concentration was lower than 8% by mass, and in Comparative Example 12, since it was higher than (−4α 2 + 23α-4), the solid solution phase did not precipitate. In Comparative Example 13, t. The Fe concentration is lower than 5%, resulting in a glass phase. In Comparative Examples 14 and 15, t. Since the Fe concentration was higher than 25%, no solid solution phase precipitated.

比較例13のスラグ試料では、冷却速度が10℃/min未満であるので、固溶体が析出しなかった。   In the slag sample of Comparative Example 13, the cooling rate was less than 10 ° C./min, so no solid solution was precipitated.

同じ組成で冷却速度が異なる実施例6及び10と、比較例16を比較すると、600℃までの冷却速度を10℃/min以上とした場合には、固溶体相が28質量%以上になっていて、600℃までの冷却速度を30℃/minに高めた例の方が固溶体相の濃度が高くなっていることを確認した。   When Examples 6 and 10 having the same composition and different cooling rates are compared with Comparative Example 16, when the cooling rate up to 600 ° C. is set to 10 ° C./min or more, the solid solution phase is 28% by mass or more. It was confirmed that the concentration of the solid solution phase was higher in the example where the cooling rate to 600 ° C. was increased to 30 ° C./min.

前述したように、本発明によれば、酸化鉄を含むが、リン酸濃度が高く、肥料効果の高いリン酸肥料原料とその製造方法を提供することができる。よって、本発明は、鉄鋼産業及び植物育成産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a phosphate fertilizer raw material that contains iron oxide but has a high phosphate concentration and a high fertilizer effect, and a method for producing the same. Therefore, the present invention has high applicability in the steel industry and the plant breeding industry.

Claims (5)

CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有するリン酸肥料原料であって、該リン酸肥料原料中、Ca3(PO42−Ca2SiO4固溶体、5CaO・SiO2・P25、及び、7CaO・2SiO2・P25の1種又は2種以上の存在濃度の合計が28質量%以上であることを特徴とするリン酸肥料原料。 CaO, SiO 2 , P 2 O 5 and iron oxide (Fe conversion) are contained in a total of 60% by mass or more, and the basicity α expressed by the mass concentration ratio of CaO and SiO 2 is 1.5 or more and 3.0. A phosphate fertilizer raw material containing 8% by mass or more (-4α 2 + 23α-4)% by mass or less of P 2 O 5 and 5% by mass or more and 25% by mass or less of iron oxide in terms of Fe, Presence of one or more of Ca 3 (PO 4 ) 2 -Ca 2 SiO 4 solid solution, 5CaO · SiO 2 · P 2 O 5 and 7CaO · 2SiO 2 · P 2 O 5 in phosphate fertilizer raw material A phosphate fertilizer raw material characterized in that the total concentration is 28% by mass or more. 前記リン酸肥料原料が、高炉で製造した溶銑を脱リンして製造される製鋼スラグを出発原料とするものであることを特徴とする請求項1に記載のリン酸肥料原料。   The phosphate fertilizer raw material according to claim 1, wherein the phosphate fertilizer raw material is a steelmaking slag produced by dephosphorizing hot metal produced in a blast furnace. 請求項1又は2に記載のリン酸肥料原料の製造方法であって、CaO、SiO2、P25、及び、酸化鉄(Fe換算)を合計で60質量%以上含有し、CaOとSiO2の質量濃度比で表示する塩基度αが1.5以上3.0以下であり、P25を8質量%以上(−4α2+23α−4)質量%以下、酸化鉄をFe換算で5質量%以上25質量%以下含有する、1250〜1400℃の溶融スラグを、600℃に到達するまでの間の温度降下量を600℃に到達するまでの時間で除算した数値で、10℃/min以上になるように制御して冷却することを特徴とするリン酸肥料原料の製造方法。 A method of manufacturing a phosphate fertilizer material of claim 1 or 2, CaO, SiO 2, P 2 O 5, and contain more than 60 wt% iron oxide (Fe conversion) in total, CaO and SiO The basicity α expressed by a mass concentration ratio of 2 is 1.5 or more and 3.0 or less, P 2 O 5 is 8 mass% or more (−4α 2 + 23α-4) mass% or less, and iron oxide is converted into Fe. A numerical value obtained by dividing a molten slag of 1250 to 1400 ° C. containing 5% by mass or more and 25% by mass or less by a time until reaching 600 ° C. until reaching 600 ° C. A method for producing a phosphate fertilizer raw material, which is controlled and cooled so as to be at least min. 前記1250〜1400℃の溶融スラグを、600℃に到達するまでの間の温度降下量を600℃に到達するまでの時間で除算した数値で、30℃/min以上になるように制御して冷却することを特徴とする請求項3に記載のリン酸肥料原料の製造方法。   Cooling by controlling the molten slag of 1250 to 1400 ° C. to be 30 ° C./min or higher by dividing the amount of temperature drop until reaching 600 ° C. by the time to reach 600 ° C. The manufacturing method of the phosphate fertilizer raw material of Claim 3 characterized by the above-mentioned. 前記溶融スラグが、リンを0.5〜4質量%含有する高P溶銑を脱リンすることにより製造される製鋼スラグであることを特徴とする請求項3又は4に記載のリン酸肥料原料の製造方法。   5. The phosphate fertilizer raw material according to claim 3, wherein the molten slag is a steelmaking slag produced by dephosphorizing high P hot metal containing 0.5 to 4 mass% of phosphorus. Production method.
JP2014220732A 2014-10-29 2014-10-29 Method for producing phosphate fertilizer raw material Active JP6458449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014220732A JP6458449B2 (en) 2014-10-29 2014-10-29 Method for producing phosphate fertilizer raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014220732A JP6458449B2 (en) 2014-10-29 2014-10-29 Method for producing phosphate fertilizer raw material

Publications (2)

Publication Number Publication Date
JP2016088757A true JP2016088757A (en) 2016-05-23
JP6458449B2 JP6458449B2 (en) 2019-01-30

Family

ID=56015801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014220732A Active JP6458449B2 (en) 2014-10-29 2014-10-29 Method for producing phosphate fertilizer raw material

Country Status (1)

Country Link
JP (1) JP6458449B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130400A (en) * 2017-12-21 2018-06-08 中南大学 A kind of method that phosphorus enrichment phase particle aggregation is grown up in promotion dephosphorized slag
JP2018104252A (en) * 2016-12-28 2018-07-05 新日鐵住金株式会社 Phosphate fertilizer raw material and method of producing the same
JP2018131379A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Phosphate fertilizer raw material and silicate phosphate fertilizer raw material, and method of producing the same
KR20190022720A (en) * 2017-06-28 2019-03-06 신닛테츠스미킨 카부시키카이샤 Steel making slag for fertilizer raw material, manufacturing method of steel making slag for fertilizer raw material, manufacturing method of fertilizer, and fertilizing method
KR20190022721A (en) * 2017-06-28 2019-03-06 신닛테츠스미킨 카부시키카이샤 Steel making slag for fertilizer raw material, manufacturing method of steel making slag for fertilizer raw material, manufacturing method of fertilizer, and fertilizing method
WO2019078199A1 (en) 2017-10-20 2019-04-25 新日鐵住金株式会社 Method for dechromizing hot metal and method for producing phosphate fertilizer raw material
JP2019151528A (en) * 2018-03-05 2019-09-12 日本製鉄株式会社 Method of producing phosphate fertilizer raw material
JP2019170342A (en) * 2018-03-29 2019-10-10 Jfeスチール株式会社 Phosphorus supply material for water area and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234262A (en) * 1975-09-12 1977-03-16 Nisshin Steel Co Ltd Process for producing mineral residue containing phosphate as soil amendment fertilizer material
JPS6475618A (en) * 1987-09-18 1989-03-22 Sumitomo Metal Ind Method for treating converter slag
WO2002092537A1 (en) * 2001-05-17 2002-11-21 Jfe Steel Corporation Material for phosphate fertilizer and method for production thereof
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
JP2014189427A (en) * 2013-03-26 2014-10-06 Nippon Steel & Sumitomo Metal Manufacturing method of phosphoric acid-containing slag, and phosphoric acid-containing slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234262A (en) * 1975-09-12 1977-03-16 Nisshin Steel Co Ltd Process for producing mineral residue containing phosphate as soil amendment fertilizer material
JPS6475618A (en) * 1987-09-18 1989-03-22 Sumitomo Metal Ind Method for treating converter slag
WO2002092537A1 (en) * 2001-05-17 2002-11-21 Jfe Steel Corporation Material for phosphate fertilizer and method for production thereof
JP2004137136A (en) * 2001-10-31 2004-05-13 Jfe Steel Kk Raw material for silicate phosphate fertilizer, and its manufacturing method
JP2014189427A (en) * 2013-03-26 2014-10-06 Nippon Steel & Sumitomo Metal Manufacturing method of phosphoric acid-containing slag, and phosphoric acid-containing slag

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104252A (en) * 2016-12-28 2018-07-05 新日鐵住金株式会社 Phosphate fertilizer raw material and method of producing the same
JP2018131379A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Phosphate fertilizer raw material and silicate phosphate fertilizer raw material, and method of producing the same
KR20190022720A (en) * 2017-06-28 2019-03-06 신닛테츠스미킨 카부시키카이샤 Steel making slag for fertilizer raw material, manufacturing method of steel making slag for fertilizer raw material, manufacturing method of fertilizer, and fertilizing method
KR20190022721A (en) * 2017-06-28 2019-03-06 신닛테츠스미킨 카부시키카이샤 Steel making slag for fertilizer raw material, manufacturing method of steel making slag for fertilizer raw material, manufacturing method of fertilizer, and fertilizing method
KR102182277B1 (en) 2017-06-28 2020-11-24 닛폰세이테츠 가부시키가이샤 Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
KR102189122B1 (en) 2017-06-28 2020-12-09 닛폰세이테츠 가부시키가이샤 Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
WO2019078199A1 (en) 2017-10-20 2019-04-25 新日鐵住金株式会社 Method for dechromizing hot metal and method for producing phosphate fertilizer raw material
KR20200051765A (en) 2017-10-20 2020-05-13 닛폰세이테츠 가부시키가이샤 Method for dechromium of molten iron and method for producing raw material for phosphate fertilizer
US11254992B2 (en) 2017-10-20 2022-02-22 Nippon Steel Corporation Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
CN108130400A (en) * 2017-12-21 2018-06-08 中南大学 A kind of method that phosphorus enrichment phase particle aggregation is grown up in promotion dephosphorized slag
JP2019151528A (en) * 2018-03-05 2019-09-12 日本製鉄株式会社 Method of producing phosphate fertilizer raw material
JP2019170342A (en) * 2018-03-29 2019-10-10 Jfeスチール株式会社 Phosphorus supply material for water area and production method thereof

Also Published As

Publication number Publication date
JP6458449B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6458449B2 (en) Method for producing phosphate fertilizer raw material
JP6631265B2 (en) Method for producing derinsed slag
JP6119361B2 (en) Method for producing phosphoric acid-containing slag for fertilizer
JP6387776B2 (en) Method for producing phosphate fertilizer raw material from dephosphorized slag
JP5935770B2 (en) Method for producing phosphate resource raw material and phosphate fertilizer
JP6471640B2 (en) Phosphate fertilizer raw material and production method thereof
JP6326904B2 (en) Phosphate fertilizer raw material and method for producing the same
JP6303696B2 (en) Phosphate fertilizer raw material and production method thereof
JP6003911B2 (en) Phosphate fertilizer raw material, phosphate fertilizer and production method thereof
JP6988580B2 (en) Manufacturing method of phosphoric acid fertilizer raw material
JP2019172548A (en) High phosphorus-containing slag, manufacturing method of slag-based fertilizer, and phosphate fertilizer
JP6988532B2 (en) Phosphoric acid fertilizer raw material, silicic acid phosphoric acid fertilizer raw material and their manufacturing method
US11254992B2 (en) Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
JP2019172547A (en) Manufacturing method of phosphoric acid fertilizer, and phosphoric acid fertilizer
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP2010001536A (en) Method for dephosphorizing molten iron
JP2022163419A (en) Phosphate fertilizer and method of producing the same
JP6776892B2 (en) Phosphate fertilizer raw material and its manufacturing method
JP6011556B2 (en) Method for producing phosphate fertilizer raw material
CN107849624B (en) Bessemerize method
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JP2005060846A (en) Method for producing raw material for fertilizer
JP2005226148A (en) Refinery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R151 Written notification of patent or utility model registration

Ref document number: 6458449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350