JP2016087545A - Method for cleaning film distillation apparatus - Google Patents

Method for cleaning film distillation apparatus Download PDF

Info

Publication number
JP2016087545A
JP2016087545A JP2014224610A JP2014224610A JP2016087545A JP 2016087545 A JP2016087545 A JP 2016087545A JP 2014224610 A JP2014224610 A JP 2014224610A JP 2014224610 A JP2014224610 A JP 2014224610A JP 2016087545 A JP2016087545 A JP 2016087545A
Authority
JP
Japan
Prior art keywords
cleaning
liquid
water
raw water
distillation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014224610A
Other languages
Japanese (ja)
Other versions
JP6394290B2 (en
Inventor
聡志 三輪
Satoshi Miwa
聡志 三輪
英之 小森
Hideyuki Komori
英之 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2014224610A priority Critical patent/JP6394290B2/en
Publication of JP2016087545A publication Critical patent/JP2016087545A/en
Application granted granted Critical
Publication of JP6394290B2 publication Critical patent/JP6394290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for easily and reliably cleaning a film distillation apparatus, in particular, a hydrophobic porous membrane in a film distillation apparatus.SOLUTION: According to a method for cleaning a film distillation apparatus, first, washing water R of a room temperature or lower is flown into a raw water chamber 3 thereby washing away a liquid W to be treated remaining in the raw water chamber 3 (first cleaning process). Next, a hot cleaning chemical of 50 to 80°C is circulated in a condensation chamber 4 thereby cleaning the condensation room 4 side (second cleaning process). Subsequently, a cleaning chemical of a room temperature or lower is circulated in the raw water chamber 3 thereby cleaning adsorptive components (impurities) of the liquid W to be treated which are adsorbed onto a hydrophobic porous membrane 2 surface on the raw water chamber 3 side (third cleaning process).SELECTED DRAWING: Figure 6

Description

本発明は、膜蒸留装置の洗浄方法に関し、特に膜蒸留装置の疎水性多孔湿膜を簡単かつ確実に洗浄するための方法に関する。   The present invention relates to a method for cleaning a membrane distillation apparatus, and more particularly to a method for easily and reliably cleaning a hydrophobic porous wet membrane of a membrane distillation apparatus.

膜蒸留技術は、海水淡水化、溶媒や油からの脱水などの他、食品プロセス、例えば、果汁、糖液あるいは蜂蜜などの糖質やだし汁などの濃縮を想定した用途において、省エネルギー、省スペースの技術として期待されている。特に、近年真空式膜蒸留装置への関心が高まっている。   In addition to seawater desalination, dehydration from solvents and oils, membrane distillation technology is energy-saving and space-saving for food processes such as concentrating sugars and broth such as fruit juice, sugar solution or honey. Expected as a technology. In particular, in recent years, interest in a vacuum membrane distillation apparatus has increased.

この真空式膜蒸留装置は、水を弾く疎水性多孔質膜(水蒸気のみを透過する)を介して、片側に60℃から80℃程度の被処理液を通液する流路(原水室)と、疎水性膜を透過した水蒸気を被処理液と反対側にある凝縮部へ導き凝縮させて蒸留水を得る凝縮室とが配置された構造を単位構造体とし、この単位構造体を複数段、直列に配置してなる。これにより単位構造体の1段目で濃縮された被濃縮液は、直列配置された2段目で更に濃縮され、2段目で濃縮された被処理液は、さらに3段目で濃縮され、というように次々と濃縮され、最終段で所望とする濃度にまで濃縮された後回収される。一方、凝縮室は疎水性膜を透過した水蒸気を凝縮させて蒸留水を得るため、被処理液側よりも数度以上低温である。この凝縮室で水蒸気は凝縮して蒸留水となり、濃縮液とは別に回収される。このような真空式膜蒸留装置としては、特許文献1、2に示すような技術が公知であり、疎水性多孔質膜には、撥水性の高いテフロン(登録商標)樹脂膜が汎用されている。   This vacuum membrane distillation apparatus has a flow path (raw water chamber) for passing a liquid to be treated at about 60 ° C. to 80 ° C. on one side through a hydrophobic porous membrane (permeating only water vapor) that repels water. The structure in which the water vapor that has passed through the hydrophobic membrane is arranged in a condensing chamber that leads to the condensation section on the opposite side of the liquid to be treated to condense and obtain distilled water is a unit structure, and this unit structure is composed of a plurality of stages. It is arranged in series. As a result, the concentrated liquid concentrated in the first stage of the unit structure is further concentrated in the second stage arranged in series, and the processed liquid concentrated in the second stage is further concentrated in the third stage, In this way, it is concentrated one after another, and is collected after being concentrated to a desired concentration in the final stage. On the other hand, the condensing chamber condenses the water vapor that has passed through the hydrophobic membrane to obtain distilled water, and is therefore at a temperature that is several degrees lower than the liquid to be treated. In this condensing chamber, the water vapor is condensed into distilled water, which is collected separately from the concentrated liquid. As such a vacuum membrane distillation apparatus, techniques as shown in Patent Documents 1 and 2 are known, and a highly porous Teflon (registered trademark) resin film is widely used as the hydrophobic porous film. .

図13は、上述したような膜蒸留装置の一例を示している。この膜蒸留装置21は、疎水性多孔質膜22を備えており、この疎水性多孔質膜22により区画されることで原水室23と凝縮室24とが形成されている。原水室23は被処理液Wを導入する原水部の一例であり、凝縮室24は疎水性多孔質膜22を通過した蒸気Sを凝縮する凝縮部の一例である。   FIG. 13 shows an example of the membrane distillation apparatus as described above. The membrane distillation apparatus 21 includes a hydrophobic porous membrane 22, and a raw water chamber 23 and a condensing chamber 24 are formed by being partitioned by the hydrophobic porous membrane 22. The raw water chamber 23 is an example of a raw water unit that introduces the liquid W to be treated, and the condensing chamber 24 is an example of a condensing unit that condenses the vapor S that has passed through the hydrophobic porous membrane 22.

疎水性多孔質膜22は、原水室23に導入された被処理液Wの蒸気のみを選択的に通過させる手段の一例である。この疎水性多孔質膜22としては、耐熱性に優れていることからフッ素樹脂製多孔質膜を好適に用いることができる。この疎水性多孔質膜22においては、被処理液Wの蒸気Sのみを透過させ、膜透過蒸気量に対する被処理液Wの浸透圧や粘度の影響を受けにくく、蒸気透過性が高いので、被処理液Wの懸濁成分などの濃縮を効率的に行うことができる。   The hydrophobic porous membrane 22 is an example of means for selectively allowing only the vapor of the liquid W to be treated introduced into the raw water chamber 23 to pass through. As the hydrophobic porous membrane 22, a fluororesin porous membrane can be suitably used because of its excellent heat resistance. In this hydrophobic porous membrane 22, only the vapor S of the liquid W to be treated is permeated, hardly affected by the osmotic pressure and viscosity of the liquid W to be treated with respect to the amount of vapor passing through the membrane, and has high vapor permeability. Concentration of suspended components of the treatment liquid W can be performed efficiently.

原水室23には、被処理液Wを導入する原水ライン25が接続している。一方、凝縮室24には真空ポンプ26が接続され、凝縮室24の壁面には冷却部27が備えられている。そして、凝縮室24とともに原水室23が真空ポンプ26により減圧されて減圧状態に維持され、冷却部27は接触する蒸気Sを凝縮する程度の温度に冷却手段(図示せず)により冷却されている。なお、28は原水室23から濃縮液W1を回収する濃縮液回収ラインであり、29は凝縮室24から蒸留水W2を回収する蒸留水排出ラインである。   A raw water line 25 for introducing the liquid W to be treated is connected to the raw water chamber 23. On the other hand, a vacuum pump 26 is connected to the condensation chamber 24, and a cooling unit 27 is provided on the wall surface of the condensation chamber 24. Then, the raw water chamber 23 is decompressed by the vacuum pump 26 together with the condensing chamber 24 and is maintained in a decompressed state, and the cooling unit 27 is cooled by a cooling means (not shown) to a temperature to condense the vapor S in contact therewith. . Reference numeral 28 denotes a concentrate recovery line for recovering the concentrate W1 from the raw water chamber 23, and reference numeral 29 denotes a distilled water discharge line for recovering the distilled water W2 from the condensation chamber 24.

上述したような膜蒸留装置21において、まず被処理液Wは、図示しない熱交換器により所定の温度、例えば100℃未満、好ましくは40〜90℃、特に50℃〜80℃程度になるように温度調整され、原水ライン25から供給される。ここで、各真空式膜蒸留装置21内は一台の真空ポンプ26により減圧されている。このため被処理液Wは、膜蒸留装置21の原水室23内へと吸いこまれる。   In the membrane distillation apparatus 21 as described above, first, the liquid W to be treated is set to a predetermined temperature, for example, less than 100 ° C., preferably 40 to 90 ° C., particularly about 50 ° C. to 80 ° C. by a heat exchanger (not shown). The temperature is adjusted and supplied from the raw water line 25. Here, the inside of each vacuum membrane distillation apparatus 21 is depressurized by a single vacuum pump 26. For this reason, the liquid W to be treated is sucked into the raw water chamber 23 of the membrane distillation apparatus 21.

この場合、凝縮室24が減圧状態に維持されるので、蒸気Sを引き込む機能だけでなく、被処理液Wの沸点をより降下させる機能を有する。これにより、被処理液Wから生じる蒸気Sが顕著となり、疎水性多孔質膜22を透過する蒸気量が増大する。この結果、原水室23で濃縮液W1が得られる。つまり、被処理液Wから多くの蒸気Sが凝縮除去されて濃縮液W1に変換されるので、原水室23の被処理液Wが効率的に濃縮される。したがって、原水室23から多くの濃縮液W1が生成され、濃縮液回収ライン28から回収される。一方、蒸気Sは凝縮室24の冷却部27に触れ凝縮して水滴Lが生じる。これにより、冷却部27では蒸気Sが結露して蒸留水W2が蒸留水排出ライン29から排出される。   In this case, since the condensing chamber 24 is maintained in a reduced pressure state, the condensing chamber 24 has not only a function of drawing the steam S but also a function of lowering the boiling point of the liquid W to be processed. Thereby, the vapor | steam S which arises from the to-be-processed liquid W becomes remarkable, and the vapor | steam amount which permeate | transmits the hydrophobic porous membrane 22 increases. As a result, the concentrate W1 is obtained in the raw water chamber 23. That is, since much steam S is condensed and removed from the liquid W to be processed and converted into the concentrated liquid W1, the liquid W to be processed in the raw water chamber 23 is efficiently concentrated. Accordingly, a large amount of concentrated liquid W1 is generated from the raw water chamber 23 and recovered from the concentrated liquid recovery line 28. On the other hand, the steam S touches the cooling unit 27 of the condensation chamber 24 and condenses, and water droplets L are generated. Thereby, in the cooling unit 27, the steam S is condensed and distilled water W <b> 2 is discharged from the distilled water discharge line 29.

特開2011−173097号公報JP 2011-173097 A 特開2013−212464号公報JP 2013-212464 A

上述したような膜蒸留装置においては、被処理液Wが流通する原水室23と凝縮室24とを区画する疎水性多孔質膜22は疎水性であることが必要不可欠であるが、蒸留操作を継続するうちに、被処理液Wの溶存成分が疎水性多孔質膜22に吸着して汚れることにより膜の疎水性が低下する、即ち、疎水性膜が親水化して、被処理液Wが液体のまま疎水性多孔質膜22の孔を通過し、蒸留水が得られなくなるばかりか濃縮液W1の濃縮倍率が低下し、さらに濃縮液W1の回収率も低下する、という問題点がある。また、食品プロセス、例えば、果汁や糖液や蜂蜜液の濃縮などに適用する場合、濃縮操作前に膜蒸留装置内を洗浄して清浄な状態にしておく必要がある。   In the membrane distillation apparatus as described above, the hydrophobic porous membrane 22 that partitions the raw water chamber 23 and the condensing chamber 24 through which the liquid W to be treated flows is indispensable to be hydrophobic. In the course of continuing, the dissolved component of the liquid W to be treated is adsorbed on the hydrophobic porous film 22 and becomes dirty, so that the hydrophobicity of the film decreases, that is, the hydrophobic film becomes hydrophilic and the liquid W to be treated is liquid. There is a problem in that distilled water is not obtained by passing through the pores of the hydrophobic porous membrane 22 as it is, the concentration factor of the concentrated solution W1 is reduced, and the recovery rate of the concentrated solution W1 is also reduced. In addition, when applied to a food process, for example, concentration of fruit juice, sugar liquid or honey liquid, it is necessary to clean the inside of the membrane distillation apparatus before the concentration operation.

これらの理由により膜蒸留装置の疎水性多孔質膜22を洗浄する必要があるが、単に清浄水を流通させるだけでは、疎水性多孔質膜22の細孔内を十分に洗浄することはできず、長期間の使用により濃縮率が徐々に低下する虞があった。そこで、膜蒸留装置の疎水性多孔質膜22の原水室23側と凝縮室24側の両側を十分に洗浄することの可能な洗浄方法が求められていた。   For these reasons, it is necessary to wash the hydrophobic porous membrane 22 of the membrane distillation apparatus. However, the inside of the pores of the hydrophobic porous membrane 22 cannot be sufficiently washed simply by circulating clean water. There is a possibility that the concentration rate is gradually lowered by long-term use. Therefore, a cleaning method capable of sufficiently cleaning both the raw water chamber 23 side and the condensing chamber 24 side of the hydrophobic porous membrane 22 of the membrane distillation apparatus has been demanded.

本発明は、上記課題に鑑みてなされたものであり、疎水性多孔質膜に被処理液成分が吸着して疎水性が低下し、水を弾かなくなった場合や、食品プロセスに適用するにあたり内部を予め清浄にする場合に、膜蒸留装置、特に膜蒸留装置の疎水性多孔質膜を簡単かつ確実洗浄する方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and the liquid component to be treated is adsorbed on the hydrophobic porous membrane and the hydrophobicity is reduced, so that it does not repel water or is applied to a food process. It is an object of the present invention to provide a simple and reliable method for cleaning a hydrophobic porous membrane of a membrane distillation apparatus, particularly a membrane distillation apparatus, in the case of pre-cleaning.

上記課題を解決するために、本発明は、疎水性多孔質膜により区画された原水部及び凝縮部と、前記凝縮部を減圧状態に維持する減圧手段と、前記凝縮部を冷却する冷却手段とを備え、加熱された被処理液を前記原水部に導入し、前記被処理液の蒸気を前記疎水性多孔質膜に透過させることで、該被処理液を濃縮して濃縮液を生成する膜蒸留装置の洗浄方法であって、前記原水部に27℃以下の洗浄水を流通して、原水部に残存する被処理液を洗い流す第一の洗浄工程と、前記凝縮部に50〜80℃の温洗浄薬液を流通して洗浄する第二の洗浄工程と、前記原水部に27℃以下の洗浄薬液を流通して洗浄する第三の洗浄工程とを有することを特徴とする膜蒸留装置の洗浄方法を提供する(発明1)。   In order to solve the above problems, the present invention provides a raw water section and a condensation section partitioned by a hydrophobic porous membrane, a decompression means for maintaining the condensation section in a decompressed state, and a cooling means for cooling the condensation section. A membrane for introducing a heated liquid to be treated into the raw water portion and allowing the vapor of the liquid to be treated to permeate the hydrophobic porous membrane, thereby concentrating the liquid to be treated to produce a concentrated liquid. A cleaning method for a distillation apparatus, wherein a first cleaning step of flowing a wash water of 27 ° C. or less to the raw water portion to wash away a liquid to be treated remaining in the raw water portion, and a temperature of 50 to 80 ° C. to the condensing portion Cleaning of a membrane distillation apparatus comprising: a second cleaning step for circulating and cleaning a warm cleaning chemical solution; and a third cleaning step for circulating and cleaning a cleaning chemical solution of 27 ° C. or less in the raw water portion A method is provided (Invention 1).

かかる発明(発明1)によれば、膜蒸留装置の濃縮率の低下は、特に疎水性多孔質膜の汚れによる疎水性の低下に起因することから、まず、第一の洗浄工程で原水部に常温(27℃以下)の洗浄水を流通して、原水部に残存する被処理液を洗い流し、次いで第二の洗浄工程で表面張力の小さい温洗浄薬液により疎水性多孔質膜の細孔内の吸着成分(汚れ)を凝縮部側から溶解洗浄し、さらに第三の洗浄工程で、今度は原水部に室温の洗浄薬液を流通し、原水部側の疎水性多孔質膜表面に吸着した被処理液の吸着成分(汚れ)を洗浄する。このとき洗浄薬液を室温以下にすることで、液体の表面張力の低下を防止し、洗浄薬液が疎水性多孔質膜の細孔を透過して凝縮部に浸入するのを防止する。これにより疎水性多孔質膜の細孔内を清浄にして膜蒸留装置の濃縮率を回復することができる。   According to this invention (Invention 1), since the decrease in the concentration rate of the membrane distillation apparatus is caused by the decrease in the hydrophobicity due to particularly the contamination of the hydrophobic porous membrane, first, in the first washing step, Washing water at room temperature (27 ° C. or less) is circulated to wash away the liquid to be treated remaining in the raw water portion, and then in the second washing step, the inside of the pores of the hydrophobic porous membrane is washed with a warm washing chemical solution having a small surface tension. The adsorbed component (dirt) is dissolved and washed from the condensing part side, and then in the third washing step, a cleaning chemical solution at room temperature is passed through the raw water part and adsorbed on the hydrophobic porous membrane surface on the raw water part side. Wash the adsorbed components (dirt) of the liquid. At this time, the cleaning chemical solution is set to room temperature or lower to prevent a decrease in the surface tension of the liquid and to prevent the cleaning chemical solution from permeating through the pores of the hydrophobic porous membrane and entering the condensing part. Thereby, the inside of the pores of the hydrophobic porous membrane can be cleaned and the concentration rate of the membrane distillation apparatus can be recovered.

上記発明(発明1)においては、前記第二の洗浄工程の後に、前記凝縮部に50〜80℃の温洗浄水を流通して前記温洗浄薬液を洗い流す温水洗浄工程を有するとともに、前記第三の洗浄工程の後に、前記原水部に27℃以下の洗浄水を流通して前記27℃以下の洗浄薬液を洗い流す常温水洗浄工程を有するのが好ましい(発明2)。   In the said invention (invention 1), it has a warm water washing | cleaning process which distribute | circulates 50-80 degreeC warm washing | cleaning water to the said condensation part and wash | cleans the said warm washing | cleaning chemical | medical solution after a said 2nd washing | cleaning process. After the washing step, it is preferable to have a room temperature water washing step in which washing water of 27 ° C. or lower is passed through the raw water portion to wash away the cleaning chemical solution of 27 ° C. or lower (Invention 2).

かかる発明(発明2)によれば、薬液洗浄の後に洗浄水により洗浄薬液を洗い流すことで、疎水性多孔質膜から除去した汚れが再度疎水性多孔質膜の細孔に再付着するのを防止して良好に洗浄することができる。   According to this invention (Invention 2), after washing the chemical solution with the washing water after washing with the chemical solution, the dirt removed from the hydrophobic porous membrane is prevented from reattaching to the pores of the hydrophobic porous membrane. And can be washed well.

上記発明(発明1又は2)においては、前記第三の洗浄工程の後に、撥水性再現工程を有するのが好ましい(発明3)。   In the said invention (invention 1 or 2), it is preferable to have a water-repellent reproduction process after the said 3rd washing | cleaning process (invention 3).

かかる発明(発明3)によれば、清浄になった疎水性多孔質膜の撥水性をさらに向上させることで、膜蒸留装置の濃縮性能を大幅に回復することができる。   According to this invention (invention 3), the concentration performance of the membrane distillation apparatus can be greatly recovered by further improving the water repellency of the cleaned hydrophobic porous membrane.

本発明の膜蒸留装置の洗浄方法は、膜蒸留装置の濃縮率の低下は、特に疎水性多孔質膜の汚れによる疎水性の低下に起因することから、まず、原水部に残存する被処理液を洗い流し、次いで表面張力の小さい温洗浄薬液により疎水性多孔質膜の細孔内の吸着成分(汚れ)を凝縮部側から溶解洗浄し、さらに今度は原水部に室温の洗浄薬液を流通し、液体の表面張力の低下を防止し洗浄薬液が疎水性多孔質膜の細孔を透過して凝縮部に浸入するのを防止しながら、原水部側の疎水性多孔質膜表面に吸着した被処理液の吸着成分(汚れ)を洗浄する。これにより疎水性多孔質膜の細孔内を清浄にして膜蒸留装置の濃縮性能を回復することができる。   In the method for cleaning a membrane distillation apparatus of the present invention, since the decrease in the concentration rate of the membrane distillation apparatus is caused by the decrease in hydrophobicity due to especially the contamination of the hydrophobic porous membrane, first, the liquid to be treated remaining in the raw water portion Next, the adsorbed component (dirt) in the pores of the hydrophobic porous membrane is dissolved and washed from the condensing part side with a warm washing chemical solution with a small surface tension, and then a room temperature washing chemical solution is circulated in the raw water part. Treatment to be adsorbed on the surface of the hydrophobic porous membrane on the raw water part side while preventing the surface tension of the liquid from decreasing and preventing the cleaning chemical from permeating the pores of the hydrophobic porous membrane and entering the condensing part Wash the adsorbed components (dirt) of the liquid. Thereby, the inside of the pores of the hydrophobic porous membrane can be cleaned and the concentration performance of the membrane distillation apparatus can be recovered.

本発明の一実施形態による膜蒸留装置の洗浄方法を適用可能な膜蒸留装置の濃縮時の状態を示す概略図である。It is the schematic which shows the state at the time of concentration of the membrane distillation apparatus which can apply the washing | cleaning method of the membrane distillation apparatus by one Embodiment of this invention. 同実施形態の膜蒸留装置の洗浄方法を適用可能な膜蒸留装置の洗浄時の状態を示す概略図である。It is the schematic which shows the state at the time of the washing | cleaning of the membrane distillation apparatus which can apply the washing | cleaning method of the membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における濃縮時の疎水性多孔質膜の状態を示す概略図である。It is the schematic which shows the state of the hydrophobic porous membrane at the time of concentration in the washing | cleaning method of the membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における汚染初期時の疎水性多孔質膜の状態を示す概略図である。It is the schematic which shows the state of the hydrophobic porous membrane at the time of the pollution initial stage in the washing | cleaning method of the membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における汚染進行時の疎水性多孔質膜の状態を示す概略図である。It is the schematic which shows the state of the hydrophobic porous membrane at the time of the contamination progress in the washing | cleaning method of the membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における第一の洗浄工程を示す概略図である。It is the schematic which shows the 1st washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における第二の洗浄工程を示す概略図である。It is the schematic which shows the 2nd washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における温水洗浄工程を示す概略図である。It is the schematic which shows the warm water washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における第三の洗浄工程を示す概略図である。It is the schematic which shows the 3rd washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における常温水洗浄工程を示す概略図である。It is the schematic which shows the normal temperature water washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における第三の洗浄工程の後の撥水性再現工程を示す概略図である。It is the schematic which shows the water-repellent reproduction process after the 3rd washing | cleaning process in the washing | cleaning method of the film | membrane distillation apparatus of the embodiment. 同実施形態の膜蒸留装置の洗浄方法における洗浄後の疎水性多孔質膜の乾燥工程を示す概略図である。It is the schematic which shows the drying process of the hydrophobic porous membrane after washing | cleaning in the washing | cleaning method of the membrane distillation apparatus of the embodiment. 膜蒸留装置の代表的な例を示す概略図である。It is the schematic which shows the typical example of a membrane distillation apparatus.

以下、本発明の膜蒸留装置の洗浄方法の一実施形態について添付図面を参照して詳細に説明する。   Hereinafter, an embodiment of a cleaning method for a membrane distillation apparatus of the present invention will be described in detail with reference to the accompanying drawings.

図1及び図2は、本発明の洗浄方法を適用可能な膜蒸留装置であり、それぞれ膜蒸留装置1の濃縮時および洗浄時を示しており、基本的には図13に示す膜蒸留装置と同じ構造及び作用効果を発揮するものである。膜蒸留装置は、所望とする濃縮率になるまで直列に複数段、例えば2段〜12段、望ましくは3段〜10段連通させて構成されているが、本実施形態においては、説明の便宜上、単位構造体の1段の構造について説明する。   FIGS. 1 and 2 are membrane distillation apparatuses to which the cleaning method of the present invention can be applied, and show the membrane distillation apparatus 1 when it is concentrated and washed, respectively. Basically, the membrane distillation apparatus shown in FIG. It exhibits the same structure and effect. The membrane distillation apparatus is configured to communicate with a plurality of stages, for example, 2 to 12 stages, preferably 3 to 10 stages in series until a desired concentration rate is achieved. However, in this embodiment, for convenience of explanation. The one-stage structure of the unit structure will be described.

図1及び図2において、膜蒸留装置1は、疎水性多孔質膜2により区画された被処理液Wの流路となる原水部としての原水室3と水蒸気の凝縮部としての凝縮室4とを有する。原水室3の流入側には被処理液Wを導入する原水ライン5と洗浄液供給ライン6とが原水バルブ7及び洗浄液バルブ8により切り替え可能に接続している一方、排出側には濃縮液W1を回収する濃縮液回収ライン9と洗浄液排出ライン10とが回収バルブ11及び排出バルブ12により切り替え可能となっている。また、凝縮室4の排出側には、蒸留水W2の排出ライン13が接続されているとともに洗浄液供給ライン14が接続されていて、排出側の他側には洗浄液排出ライン15が接続されている。そして、これらラインは、それぞれ蒸留水排出バルブ16、温洗浄液供給バルブ17及び温洗浄液排出バルブ18により切り替え可能となっている。なお、凝縮室4には真空ポンプ(図示せず)が接続されているとともに凝縮室4の壁面には冷却部(図示せず)が備えられている。   1 and 2, the membrane distillation apparatus 1 includes a raw water chamber 3 as a raw water portion serving as a flow path for the liquid W to be treated partitioned by a hydrophobic porous membrane 2, and a condensing chamber 4 as a water vapor condensing portion. Have A raw water line 5 for introducing the liquid W to be treated and a cleaning liquid supply line 6 are connected to the inflow side of the raw water chamber 3 by a raw water valve 7 and a cleaning liquid valve 8, while a concentrated liquid W1 is supplied to the discharge side. A concentrated liquid recovery line 9 and a cleaning liquid discharge line 10 to be recovered can be switched by a recovery valve 11 and a discharge valve 12. A discharge line 13 for distilled water W2 is connected to the discharge side of the condensing chamber 4 and a cleaning liquid supply line 14 is connected to the discharge side of the condensation chamber 4, and a cleaning liquid discharge line 15 is connected to the other side of the discharge side. . These lines can be switched by a distilled water discharge valve 16, a warm cleaning liquid supply valve 17, and a warm cleaning liquid discharge valve 18, respectively. A vacuum pump (not shown) is connected to the condensation chamber 4 and a cooling unit (not shown) is provided on the wall surface of the condensation chamber 4.

上述したよう膜蒸留装置1は、図1に示す濃縮時においては、原水室3の流入側の原水バルブ7は開成している一方、洗浄液バルブ8は閉鎖しており、排出側の回収バルブ11は開成している一方、排出バルブ12は閉鎖していて、被処理液Wを原水ライン5から原水室3に供給するとともに濃縮液W1を濃縮液回収ライン9から排出可能となっている。また、凝縮室4では、排出側の蒸留水排出バルブ16は開成している一方、温洗浄液供給バルブ17は閉鎖しており、排出側の他側の温洗浄液排出バルブ18は閉鎖していて、排出ライン13から蒸留水W2を排出可能となっている。   As described above, in the membrane distillation apparatus 1, during the concentration shown in FIG. 1, the raw water valve 7 on the inflow side of the raw water chamber 3 is open, while the cleaning liquid valve 8 is closed, and the recovery valve 11 on the discharge side. Is opened, the discharge valve 12 is closed, and the liquid W to be treated can be supplied from the raw water line 5 to the raw water chamber 3 and the concentrated liquid W1 can be discharged from the concentrated liquid recovery line 9. Further, in the condensing chamber 4, the distilled water discharge valve 16 on the discharge side is open, while the warm cleaning liquid supply valve 17 is closed, and the warm cleaning liquid discharge valve 18 on the other side of the discharge side is closed, Distilled water W2 can be discharged from the discharge line 13.

そして、図2に示す洗浄時においては、図1とは逆に原水室3の流入側の原水バルブ7は閉鎖している一方、洗浄液バルブ8は開成しており、排出側の回収バルブ11は閉鎖している一方、排出バルブ12は開成していて、後述する洗浄水R及び洗浄薬液M2を洗浄液供給ライン6から原水室3に供給するとともに洗浄液排出ライン10から排出可能となっている。また、凝縮室4では、排出側の蒸留水排出バルブ16は閉鎖している一方、温洗浄液供給バルブ17は開成しており、排出側の他側の温洗浄液排出バルブ18は開成していて、洗浄液供給ライン14から後述する温洗浄薬液M1及び温洗浄水Hを供給するとともに洗浄液排出ライン15から排出可能となっている。   At the time of cleaning shown in FIG. 2, the raw water valve 7 on the inflow side of the raw water chamber 3 is closed, while the cleaning liquid valve 8 is opened, and the recovery valve 11 on the discharge side is opened, contrary to FIG. On the other hand, the discharge valve 12 is opened, and cleaning water R and cleaning chemical M2, which will be described later, can be supplied from the cleaning liquid supply line 6 to the raw water chamber 3 and discharged from the cleaning liquid discharge line 10. Further, in the condensing chamber 4, the distilled water discharge valve 16 on the discharge side is closed, while the warm cleaning liquid supply valve 17 is opened, and the warm cleaning liquid discharge valve 18 on the other side of the discharge side is opened, A warm cleaning chemical M1 and warm cleaning water H, which will be described later, are supplied from the cleaning liquid supply line 14 and can be discharged from the cleaning liquid discharge line 15.

上述したような膜蒸留装置1の洗浄方法について以下説明する。   A method for cleaning the membrane distillation apparatus 1 as described above will be described below.

まず、図3に示すように疎水性多孔質膜2が清浄な状態における被処理液Wの濃縮(蒸留)工程では、被処理液Wは、図示しない熱交換器により所定の温度、例えば100℃未満、好ましくは40〜90℃、特に60℃〜80℃程度になるように温度調整され、原水室3を流通して濃縮液W1となる。このとき、疎水性多孔質膜2が被処理液Wを弾くため、液/気界面は細孔の外側にあり、細孔内に液体成分は浸入しないが、水蒸気Sは凝縮室4へ透過する。   First, as shown in FIG. 3, in the concentration (distillation) process of the liquid W to be processed in a state where the hydrophobic porous membrane 2 is clean, the liquid W to be processed is heated to a predetermined temperature, for example, 100 ° C. by a heat exchanger (not shown). The temperature is adjusted to be less than, preferably 40 to 90 ° C., particularly about 60 to 80 ° C., and flows through the raw water chamber 3 to become the concentrated solution W1. At this time, since the hydrophobic porous membrane 2 repels the liquid W to be treated, the liquid / gas interface is outside the pores, and no liquid component enters the pores, but the water vapor S permeates into the condensation chamber 4. .

次に、被処理液W中に疎水性多孔質膜2を親水化する成分Cが含まれていると、蒸留操作を進めるに伴い、図4に示すように親水化成分Cがまず疎水性多孔質膜2の膜表面に吸着して、疎水性が低減しはじめ、液/気界面は細孔の内部に位置し、疎水性多孔質膜2の細孔内へ被処理液Wが少しずつ浸入し始めるようになる。   Next, when the component C for hydrophilizing the hydrophobic porous membrane 2 is contained in the liquid W to be treated, as the distillation operation proceeds, the hydrophilizing component C first becomes hydrophobic porous as shown in FIG. Adsorption on the membrane surface of the membrane 2 starts to reduce hydrophobicity, the liquid / gas interface is located inside the pores, and the liquid W to be processed gradually enters the pores of the hydrophobic porous membrane 2 Start to do.

そして、図5に示すように疎水性多孔質膜2の細孔内内面に親水化成分Cが接触して吸着すると、細孔内が親水化されるため疎水性多孔質膜2は水を弾くことができなくなり、液/気界面が消失して疎水性多孔質膜2の細孔内に被処理液Wが浸入し、この結果被処理液Wに起因する水分が凝縮室4へ透過するようになる。この状態に至るまでに蒸留水W2の水質が除々に悪化する。その一方で蒸留水W2の糖度(例えばBrix値(糖度の指標の一つ))や導電率が増加し始めるので、蒸留水W2の水質が所定のレベルより低下し始めた時点で、蒸留操作を止め、蒸留装置内を洗浄する。この洗浄は、以下のような手順で行う。   As shown in FIG. 5, when the hydrophilizing component C comes into contact with and adsorbs on the inner surface of the pores of the hydrophobic porous membrane 2, the inside of the pores is hydrophilized, so that the hydrophobic porous membrane 2 repels water. As a result, the liquid / gas interface disappears and the liquid W to be treated penetrates into the pores of the hydrophobic porous membrane 2, and as a result, moisture caused by the liquid W to be treated permeates into the condensation chamber 4. become. Until this state is reached, the water quality of the distilled water W2 gradually deteriorates. On the other hand, since the sugar content (for example, Brix value (one of the indicators of sugar content)) and conductivity of the distilled water W2 start to increase, the distillation operation is performed when the water quality of the distilled water W2 starts to decrease below a predetermined level. Stop and clean inside the distillation unit. This washing is performed according to the following procedure.

すなわち、まず図6に示すように原水室3へ室温以下、具体的には27℃以下の洗浄水R、好ましくは純水を流して、原水室3に残存する被処理液Wを洗い流す(第一の洗浄工程)。ここで、室温以下の洗浄水Rを用いることにより、洗浄水Rの蒸発を抑制し、凝縮室4への水分の浸入を防止する。   That is, as shown in FIG. 6, first, a cleaning water R of room temperature or lower, specifically 27 ° C. or lower, preferably pure water is flowed into the raw water chamber 3 to wash away the liquid W to be treated remaining in the raw water chamber 3 (first One washing step). Here, by using the cleaning water R at room temperature or lower, the evaporation of the cleaning water R is suppressed, and the intrusion of moisture into the condensing chamber 4 is prevented.

次に凝縮室4に50〜80℃の温洗浄薬液M1を流通して凝縮室4側を洗浄する(第二の洗浄工程)。温洗浄薬液M1としては、例えば、水酸化ナトリウム、水酸化カリウムなどのアルカリ成分及びこれらの混合液などのアルカリ溶液、またはこれらアルカリ溶液に塩素成分として、次亜塩素酸ナトリウム、過塩素酸ナトリウムなどを加えた洗浄薬液を用いることができる。温洗浄薬液M1におけるアルカリの濃度は、例えば、水酸化ナトリウム、水酸化カリウムなどの強アルカリ塩の質量基準で、3mg/L〜50g/L程度、好ましくは30mg/L〜30g/L程度である。また、塩素試薬の濃度は3mg/L〜50g/L程度、好ましくは30mg/L〜30g/L程度である。さらに、被処理液Wの吸着成分によっては、温洗浄薬液M1として酸性剤、例えば塩酸や硫酸、硝酸、またはこれらの混合剤の酸性溶液も適用することができる。酸性溶液の濃度は、例えば、塩酸や硫酸、硝酸などの強酸の質量基準で、3mg/L〜50g/L程度、好ましくは30mg/L〜30g/L程度である。   Next, the 50 to 80 degreeC warm washing | cleaning chemical | medical solution M1 is distribute | circulated to the condensation chamber 4, and the condensation chamber 4 side is wash | cleaned (2nd washing process). Examples of the warm cleaning chemical solution M1 include alkali components such as sodium hydroxide and potassium hydroxide and mixed solutions thereof, or sodium hypochlorite and sodium perchlorate as chlorine components in these alkaline solutions. Can be used. The alkali concentration in the warm cleaning chemical M1 is, for example, about 3 mg / L to 50 g / L, preferably about 30 mg / L to 30 g / L, based on the mass of a strong alkali salt such as sodium hydroxide or potassium hydroxide. . The concentration of the chlorine reagent is about 3 mg / L to 50 g / L, preferably about 30 mg / L to 30 g / L. Furthermore, depending on the adsorbed component of the liquid W to be treated, an acidic agent such as hydrochloric acid, sulfuric acid, nitric acid, or an acidic solution of a mixture thereof can be used as the warm cleaning chemical solution M1. The concentration of the acidic solution is, for example, about 3 mg / L to 50 g / L, preferably about 30 mg / L to 30 g / L, based on the mass of a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid.

なお、酸とアルカリを混在させないことはいうまでもない。したがって、両方の薬液で洗浄したい場合には、アルカリまたはアルカリと塩素を組み合わせたアルカリ溶液による温洗浄薬液M1で洗浄した後、いったん純水や超純水などでアルカリまたはアルカリと塩素を洗い流し、その後酸性溶液による温洗浄薬液M1で洗浄する。あるいは逆に酸性溶液による温洗浄薬液M1で洗浄した後、いったん純水や超純水などで酸を洗い流し、その後アルカリまたはアルカリと塩素を組み合わせたアルカリ溶液による温洗浄薬液M1で洗浄する。洗浄成分の種類や組み合わせ、順序、洗浄回数、所要時間などは、被処理液中の成分や汚れ程度から条件を適正化することができる。   Needless to say, acid and alkali are not mixed. Therefore, when it is desired to wash with both chemical solutions, after washing with the warm washing chemical solution M1 using an alkali solution or a combination of alkali and chlorine, the alkali or alkali and chlorine are once washed away with pure water or ultrapure water. Wash with warm wash chemical M1 with acidic solution. Or, conversely, after washing with the warm cleaning chemical solution M1 using an acidic solution, the acid is once washed away with pure water or ultrapure water, and then washed with the warm cleaning chemical solution M1 using an alkali solution or a combination of alkali and chlorine. Conditions such as types and combinations of cleaning components, order, number of times of cleaning, required time, and the like can be optimized from the components in the liquid to be processed and the degree of contamination.

この第二の洗浄工程において、室温以下の洗浄薬液ではなく温洗浄薬液M1を用いることにより、被処理液Wに起因する吸着成分(汚れ)を溶かしやすくすると共に、温洗浄薬液M1の表面張力を下げて、疎水性多孔質膜2の細孔内に侵入させやすくして細孔を経由して凝縮室4から原水室3側へ温洗浄薬液M1を流すことができる。このように凝縮室4から原水室3側へ温洗浄薬液M1を流すことで、温洗浄薬液M1は吸着成分(汚れ)の少ない凝縮室4側の領域から吸着成分(汚れ)の多い原水室3側の領域へ流れることになり、蒸留水を得る領域である凝縮室4を、清浄に保つことができる、という効果を奏する。   In this second cleaning step, by using the warm cleaning chemical solution M1 instead of the cleaning chemical solution below the room temperature, it is easy to dissolve the adsorbing component (dirt) caused by the liquid W to be treated, and the surface tension of the warm cleaning chemical solution M1 is increased. The hot cleaning chemical M1 can be flowed from the condensing chamber 4 to the raw water chamber 3 through the pores by lowering and facilitating entry into the pores of the hydrophobic porous membrane 2. By flowing the warm cleaning chemical solution M1 from the condensing chamber 4 to the raw water chamber 3 in this way, the warm cleaning chemical solution M1 flows from the region on the condensing chamber 4 side with a small amount of adsorbed components (dirt) to the raw water chamber 3 with a large amount of adsorbed components (dirt). It will flow to the area | region of the side, and there exists an effect that the condensation chamber 4 which is an area | region which obtains distilled water can be kept clean.

このようにして第二の洗浄工程により、疎水性多孔質膜2の細孔内の吸着成分(汚れ)を洗い流したら、図8に示すように温洗浄薬液M1を50〜80℃の温洗浄水(温純水)Hへ変えて、細孔内の薬液を原水室3側に洗い流すのが好ましい(温水洗浄工程)。この温水洗浄工程において、室温以下の洗浄水ではなく温洗浄水Hを用いることにより、温洗浄水Hの表面張力を下げて、疎水性多孔質膜2の細孔内に侵入させて、細孔内の温洗浄薬液M1を除去しやすくすることができる。   When the adsorbed component (dirt) in the pores of the hydrophobic porous membrane 2 is washed away by the second washing step in this manner, the warm washing chemical solution M1 is washed with warm washing water at 50 to 80 ° C. as shown in FIG. (Warm pure water) It is preferable to change to H and wash away the chemical solution in the pores toward the raw water chamber 3 (warm water washing step). In this warm water washing process, by using the warm washing water H instead of the washing water below room temperature, the surface tension of the warm washing water H is lowered so as to penetrate into the pores of the hydrophobic porous membrane 2. It is possible to make it easier to remove the warm washing chemical solution M1.

続いて、図9に示すように原水室3へ室温以下、具体的には27℃以下の洗浄薬液M2を流通して、原水室3側の疎水性多孔質膜2表面に吸着した被処理液Wの吸着成分(汚れ)を洗浄する(第三の洗浄工程)。ここで、洗浄薬液M2としては、温洗浄薬液M1と同じものを用いることができる。ここで、洗浄薬液M2を室温以下にすることで、洗浄薬液M2の表面張力の低下を防止し、洗浄薬液M2が洗浄を完了した凝縮室4側に浸入するのを防止することができる。   Subsequently, as shown in FIG. 9, a liquid to be treated adsorbed on the surface of the hydrophobic porous membrane 2 on the raw water chamber 3 side by flowing a cleaning chemical solution M2 at room temperature or lower, specifically 27 ° C. or lower, into the raw water chamber 3. The adsorbed component (dirt) of W is washed (third washing step). Here, the same cleaning chemical liquid M1 as the warm cleaning chemical liquid M1 can be used. Here, by setting the cleaning chemical liquid M2 to room temperature or lower, it is possible to prevent the surface tension of the cleaning chemical liquid M2 from being lowered, and to prevent the cleaning chemical liquid M2 from entering the side of the condensation chamber 4 that has been cleaned.

そして、図10に示すように原水室3に室温以下、具体的には27℃以下の洗浄水R、好ましくは純水を流して、原水室3に残存する洗浄薬液M2を洗い流すのが好ましい(常温水洗浄工程)。ここで、室温以下の洗浄水Rを用いることにより、洗浄水Rの蒸発を抑制し、凝縮室4への水分の浸入を防止することができる。   Then, as shown in FIG. 10, it is preferable to wash the cleaning chemical solution M2 remaining in the raw water chamber 3 by flowing a cleaning water R, preferably pure water, of room temperature or lower, specifically 27 ° C. or lower, into the raw water chamber 3. Normal temperature water washing process). Here, by using the cleaning water R at room temperature or lower, evaporation of the cleaning water R can be suppressed, and moisture can be prevented from entering the condensing chamber 4.

このようにして疎水性多孔質膜2の原水室3側の表面、細孔内部及び凝縮室4側に吸着していた被処理液Wの吸着成分(汚れ)を洗い流したら、図11に示すように清浄になった疎水性多孔質膜に撥水性を持たせるために、例えば、エチルアルコール、メチルアルコール、イソプロピルアルコールなどのアルコール類Aを通液し、疎水性多孔質膜の細孔内部の水をアルコール類Aに置換する(撥水性再現工程)。このアルコール類Aの通液は、例えば、原水室3側、好ましくは凝縮室4側、さらに好ましくはその両方から行う。   When the adsorption component (dirt) of the liquid W to be treated adsorbed on the surface of the hydrophobic porous membrane 2 on the raw water chamber 3 side, inside the pores, and on the condensation chamber 4 side is washed away as shown in FIG. In order to impart water repellency to the cleaned hydrophobic porous membrane, for example, an alcohol A such as ethyl alcohol, methyl alcohol, isopropyl alcohol or the like is passed through, and the water inside the pores of the hydrophobic porous membrane Is replaced with alcohols A (water repellency reproduction step). The alcohol A is passed through, for example, the raw water chamber 3 side, preferably the condensing chamber 4 side, and more preferably both.

最後に疎水性多孔質膜2の細孔内の水をアルコール類Aに置換し、アルコール類を原水室3と凝縮室4から流下させたら、図12に示すように原水室3及び凝縮室4を真空ポンプ(図示せず)で減圧して、疎水性多孔質膜2を乾燥させて、撥水性を再現すればよい。   Finally, when water in the pores of the hydrophobic porous membrane 2 is replaced with alcohols A and alcohols are allowed to flow down from the raw water chamber 3 and the condensing chamber 4, the raw water chamber 3 and the condensing chamber 4 as shown in FIG. Is reduced in pressure with a vacuum pump (not shown), and the hydrophobic porous membrane 2 is dried to reproduce the water repellency.

以上、本発明について説明してきたが、本発明は前記実施形態に限らず種々の変形実施が可能である。例えば、バルブの開閉の組み合わせは、被処理液W、蒸留水W2及び洗浄薬液M1、M2が混ざり合わなければよく、適宜変更可能である。   Although the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the combination of opening and closing of the valves is not required to mix the liquid W to be treated, the distilled water W2, and the cleaning chemicals M1 and M2, and can be changed as appropriate.

以下の具体的実施例により本発明をさらに詳細に説明する。   The following specific examples further illustrate the present invention.

<実施例1>
だし汁を図1及び図2に示す膜蒸留装置1により濃縮した。得られた蒸留水W2の電気導電率は0.7〜0.8mS/mでだし汁を濃縮できていた。そのまま濃縮を継続したところ、300時間以上経過した時点で、蒸留水W2の電気導電率が緩やかに上昇し0.9〜1mS/mとなった。そこで、だし汁の濃縮を止め、図6〜図12に示す方法で洗浄を行った。洗浄液の条件としては、洗浄水R及び温洗浄水Hとしては純水を用い、洗浄薬液M1及びM2としては、水酸化ナトリウム0.1%溶液を用いた。また、洗浄水R及び洗浄薬液M2の温度は20℃で、温洗浄水H及び洗浄薬液M1の温度は60℃に設定した。
<Example 1>
The soup stock was concentrated by the membrane distillation apparatus 1 shown in FIGS. The obtained distilled water W2 had an electrical conductivity of 0.7 to 0.8 mS / m and was able to concentrate the soup stock. When the concentration was continued as it was, when 300 hours or more passed, the electrical conductivity of the distilled water W2 gradually increased to 0.9 to 1 mS / m. Therefore, the soup stock was stopped and washed by the method shown in FIGS. As the cleaning liquid conditions, pure water was used as the cleaning water R and warm cleaning water H, and a 0.1% sodium hydroxide solution was used as the cleaning chemicals M1 and M2. The temperature of the cleaning water R and the cleaning chemical liquid M2 was set to 20 ° C., and the temperature of the warm cleaning water H and the cleaning chemical liquid M1 was set to 60 ° C.

洗浄後、再び、だし汁を濃縮したところ、電気導電率0.7〜0.8mS/mの蒸留水を得た。洗浄後の蒸留水水質は良好で、再洗浄までの蒸留時間は初期と同様であり、膜内部まで十分洗浄でき、濃縮性能が回復していると判断できた。   After washing, the broth was concentrated again to obtain distilled water having an electric conductivity of 0.7 to 0.8 mS / m. The quality of distilled water after washing was good, and the distillation time until rewashing was the same as in the initial stage, so that the inside of the membrane could be washed sufficiently and the concentration performance was recovered.

<比較例1>
実施例1と同じだし汁を実施例1と同様に図1及び図2に示す膜蒸留装置により濃縮した。得られた蒸留水W2の電気導電率は0.7〜0.8mS/mでだし汁を濃縮できていた。そのまま濃縮を継続したところ、300時間以上経過した時点で蒸留水W2の電気導電率が緩やかに上昇し0.9〜1mS/mとなった。そこで、だし汁の濃縮を止め、逆浸透膜モジュールの洗浄の要領で、原水室3に純水を通液して残留するだし汁を洗い出した。そして、原水室3に洗浄薬液として水酸化ナトリウム0.1%溶液を溜めて、室温で2時間浸漬した後、原水室3と凝縮室4に純水を通液して水酸化ナトリウム0.1%溶液を洗い流した。
<Comparative Example 1>
The same soup stock as in Example 1 was concentrated by the membrane distillation apparatus shown in FIGS. The obtained distilled water W2 had an electrical conductivity of 0.7 to 0.8 mS / m and was able to concentrate the soup stock. When the concentration was continued as it was, the electrical conductivity of distilled water W2 gradually increased to 0.9 to 1 mS / m when 300 hours or more had elapsed. Therefore, the stock broth concentration was stopped, and the remaining stock broth was washed out by passing pure water through the raw water chamber 3 in the manner of washing the reverse osmosis membrane module. Then, a 0.1% sodium hydroxide solution is stored in the raw water chamber 3 as a cleaning chemical solution and immersed for 2 hours at room temperature, and then pure water is passed through the raw water chamber 3 and the condensing chamber 4 to add 0.1% sodium hydroxide. % Solution was washed away.

洗浄後、再び、だし汁を濃縮したところ、電気導電率0.8〜0.9mS/mの蒸留水が得られたが、濃縮から30時間を超過した時点で蒸留水の電気導電率が1mS/mより高くなり、濃縮性能の回復が十分でないと判断できた。   After washing, the stock broth was concentrated again to obtain distilled water having an electric conductivity of 0.8 to 0.9 mS / m. However, when the concentration exceeded 30 hours after the concentration, the electric conductivity of distilled water was 1 mS / m. It was higher than m, and it was judged that the recovery of the concentration performance was not sufficient.

本発明の膜蒸留装置の洗浄方法によれば、膜蒸留装置の疎水性多孔質膜の細孔内を清浄にして膜蒸留装置の濃縮性能を回復することができるので、膜蒸留装置の有用性を高め、食品プロセス溶液などの濃縮技術として一層好適なものとすることができる。   According to the method for cleaning a membrane distillation apparatus of the present invention, the concentration performance of the membrane distillation apparatus can be recovered by cleaning the pores of the hydrophobic porous membrane of the membrane distillation apparatus. And can be made more suitable as a concentration technique for food processing solutions.

1…膜蒸留装置
2…疎水性多孔質膜
3…原水室(原水部)
4…凝縮室(凝縮部)
W…被処理液
W1…濃縮液
W2…蒸留水
R…洗浄水
M1…温洗浄薬液
M2…洗浄薬液
H…温洗浄水(温純水)
A…アルコール類
S…蒸気
DESCRIPTION OF SYMBOLS 1 ... Membrane distillation apparatus 2 ... Hydrophobic porous membrane 3 ... Raw water chamber (raw water part)
4 ... Condensing chamber (condensing part)
W ... Liquid to be treated W1 ... Concentrated liquid W2 ... Distilled water R ... Washing water M1 ... Warm cleaning chemical solution M2 ... Cleaning chemical solution H ... Warm cleaning water (warm pure water)
A ... Alcohol S ... Steam

Claims (3)

疎水性多孔質膜により区画された原水部及び凝縮部と、
前記凝縮部を減圧状態に維持する減圧手段と、
前記凝縮部を冷却する冷却手段とを備え、
加熱された被処理液を前記原水部に導入し、前記被処理液の蒸気を前記疎水性多孔質膜に透過させることで、該被処理液を濃縮して濃縮液を生成する膜蒸留装置の洗浄方法であって、
前記原水部に27℃以下の洗浄水を流通して、原水部に残存する被処理液を洗い流す第一の洗浄工程と、
前記凝縮部に50〜80℃の温洗浄薬液を流通して洗浄する第二の洗浄工程と、
前記原水部に27℃以下の洗浄薬液を流通して洗浄する第三の洗浄工程と
を有することを特徴とする膜蒸留装置の洗浄方法。
Raw water section and condensation section partitioned by a hydrophobic porous membrane;
Pressure reducing means for maintaining the condensing part in a reduced pressure state;
Cooling means for cooling the condensing part,
A membrane distillation apparatus for introducing a heated liquid to be treated into the raw water portion and allowing the vapor of the liquid to be treated to permeate the hydrophobic porous membrane, thereby concentrating the liquid to be treated to produce a concentrated liquid. A cleaning method,
A first washing step in which washing water of 27 ° C. or less is circulated in the raw water portion to wash away the liquid to be treated remaining in the raw water portion;
A second cleaning step of circulating and cleaning a hot cleaning chemical solution of 50 to 80 ° C. in the condensing part;
And a third cleaning step in which a cleaning chemical solution of 27 ° C. or lower is circulated in the raw water section to clean the membrane distillation apparatus.
前記第二の洗浄工程の後に、前記凝縮部に50〜80℃の温洗浄水を流通して前記温洗浄薬液を洗い流す温水洗浄工程を有するとともに、前記第三の洗浄工程の後に、前記原水部に27℃以下の洗浄水を流通して前記27℃以下の洗浄薬液を洗い流す常温水洗浄工程を有することを特徴とする請求項1に記載の膜蒸留装置の洗浄方法。   After the second cleaning step, there is a warm water cleaning step in which 50-80 ° C. warm cleaning water is circulated through the condensing unit to wash away the warm cleaning chemical solution, and after the third cleaning step, the raw water unit 2. The method for cleaning a membrane distillation apparatus according to claim 1, further comprising a room-temperature water cleaning step in which cleaning water of 27 ° C. or lower is circulated to wash away the cleaning chemical solution of 27 ° C. or lower. 前記第三の洗浄工程の後に、撥水性再現工程を有することを特徴とする請求項1又は2に記載の膜蒸留装置の洗浄方法。   The method for cleaning a membrane distillation apparatus according to claim 1, further comprising a water repellency reproduction step after the third cleaning step.
JP2014224610A 2014-11-04 2014-11-04 Cleaning method for membrane distillation apparatus Active JP6394290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014224610A JP6394290B2 (en) 2014-11-04 2014-11-04 Cleaning method for membrane distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014224610A JP6394290B2 (en) 2014-11-04 2014-11-04 Cleaning method for membrane distillation apparatus

Publications (2)

Publication Number Publication Date
JP2016087545A true JP2016087545A (en) 2016-05-23
JP6394290B2 JP6394290B2 (en) 2018-09-26

Family

ID=56015449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014224610A Active JP6394290B2 (en) 2014-11-04 2014-11-04 Cleaning method for membrane distillation apparatus

Country Status (1)

Country Link
JP (1) JP6394290B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174279A1 (en) * 2017-03-24 2018-09-27 旭化成株式会社 Porous membrane for membrane distillation, and method for operating membrane distillation module
CN108704486A (en) * 2018-05-31 2018-10-26 同济大学 The Membrane cleaning drying means and Membrane cleaning drying system of vacuum membrane distillation
KR20200114557A (en) * 2019-03-29 2020-10-07 국민대학교산학협력단 Air gap membrane distillation apparatus and controlling method thereof
CN115845425A (en) * 2023-02-28 2023-03-28 江苏和诚制药设备制造有限公司 Energy-saving environment-friendly rectifying tower for improving purity of lactic acid
WO2024122564A1 (en) * 2022-12-07 2024-06-13 旭化成株式会社 Method for regenerating semipermeable membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159808A (en) * 1979-05-31 1980-12-12 Osaka Gas Co Ltd Cleaning method of membrane
JPH05192543A (en) * 1992-01-21 1993-08-03 Hitachi Ltd Method and apparatus for regenerating membrane evaporative concentrator of waste fluid
CN102101019A (en) * 2009-12-21 2011-06-22 天津工业大学 Membrane distillation and cleaning method
WO2012043433A1 (en) * 2010-09-27 2012-04-05 住友電気工業株式会社 Method for cleaning filter membrane, and membrane filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159808A (en) * 1979-05-31 1980-12-12 Osaka Gas Co Ltd Cleaning method of membrane
JPH05192543A (en) * 1992-01-21 1993-08-03 Hitachi Ltd Method and apparatus for regenerating membrane evaporative concentrator of waste fluid
CN102101019A (en) * 2009-12-21 2011-06-22 天津工业大学 Membrane distillation and cleaning method
WO2012043433A1 (en) * 2010-09-27 2012-04-05 住友電気工業株式会社 Method for cleaning filter membrane, and membrane filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174279A1 (en) * 2017-03-24 2018-09-27 旭化成株式会社 Porous membrane for membrane distillation, and method for operating membrane distillation module
JPWO2018174279A1 (en) * 2017-03-24 2019-11-07 旭化成株式会社 Method of operating porous membrane for membrane distillation and module for membrane distillation
TWI712448B (en) * 2017-03-24 2020-12-11 日商旭化成股份有限公司 Operation method of porous membrane for membrane distillation and module for membrane distillation
EP3603777A4 (en) * 2017-03-24 2021-05-05 Asahi Kasei Kabushiki Kaisha Porous membrane for membrane distillation, and method for operating membrane distillation module
US11352270B2 (en) 2017-03-24 2022-06-07 Asahi Kasei Kabushiki Kaisha Porous membrane for membrane distillation, and method for operating membrane distillation module
CN108704486A (en) * 2018-05-31 2018-10-26 同济大学 The Membrane cleaning drying means and Membrane cleaning drying system of vacuum membrane distillation
KR20200114557A (en) * 2019-03-29 2020-10-07 국민대학교산학협력단 Air gap membrane distillation apparatus and controlling method thereof
KR102203652B1 (en) * 2019-03-29 2021-01-15 국민대학교 산학협력단 Air gap membrane distillation apparatus and controlling method thereof
WO2024122564A1 (en) * 2022-12-07 2024-06-13 旭化成株式会社 Method for regenerating semipermeable membrane
CN115845425A (en) * 2023-02-28 2023-03-28 江苏和诚制药设备制造有限公司 Energy-saving environment-friendly rectifying tower for improving purity of lactic acid

Also Published As

Publication number Publication date
JP6394290B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6394290B2 (en) Cleaning method for membrane distillation apparatus
Criscuoli et al. Treatment of dye solutions by vacuum membrane distillation
CN112933987B (en) Organic solvent purification system and method
JP5723887B2 (en) Thermal desalting method
CN102101019A (en) Membrane distillation and cleaning method
JP2007130523A (en) Membrane washing method for water treatment system
JP2018001110A (en) Processing method of brine, processing method of desalinating salt water, processing system of brine, and processing method of desalinating salt water
WO2015080123A1 (en) Waste water treatment method, membrane distillation module, and waste water treatment device
KR101524225B1 (en) Membrane Distillation Module
JP2006272135A5 (en)
WO2015080124A1 (en) Wastewater treatment method, membrane distillation module and wastewater treatment apparatus
JP2016030232A (en) Organic solvent refining system and method
KR101564758B1 (en) Membrane Distillation Module
JP2007175643A (en) Dry air production apparatus, substrate treatment system, and dry air producing method
CN106268341A (en) Regeneration method of nanofiltration membrane
JP5779369B2 (en) Membrane cleaning and regeneration method in zeolite membrane dehydration equipment
JP2008080255A (en) Pure water making apparatus
KR101564759B1 (en) Separation Membrame for Membrane Distillation
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
JP6651850B2 (en) Operation method of separation membrane module
TW201819034A (en) Filtering membrane module and manufacturing method thereof, and mounting method of the same capable of maintaining filtering performance of filtering membrane and suppressing microorganism reproduction without affecting water quality
JP2898080B2 (en) Operation method of degassing membrane device
JP6513874B1 (en) Water treatment method and water treatment apparatus
JP2021003663A (en) Concentrator, concentrator cleaning method, and concentration method
JP2007203187A (en) Washing method of hollow fiber deairing membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6394290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150